1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3 
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6 
7 /* Description:
8  * This header file describes the Virtual Function (VF) - Physical Function
9  * (PF) communication protocol used by the drivers for all devices starting
10  * from our 40G product line
11  *
12  * Admin queue buffer usage:
13  * desc->opcode is always aqc_opc_send_msg_to_pf
14  * flags, retval, datalen, and data addr are all used normally.
15  * The Firmware copies the cookie fields when sending messages between the
16  * PF and VF, but uses all other fields internally. Due to this limitation,
17  * we must send all messages as "indirect", i.e. using an external buffer.
18  *
19  * All the VSI indexes are relative to the VF. Each VF can have maximum of
20  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
21  * have a maximum of sixteen queues for all of its VSIs.
22  *
23  * The PF is required to return a status code in v_retval for all messages
24  * except RESET_VF, which does not require any response. The returned value
25  * is of virtchnl_status_code type, defined here.
26  *
27  * In general, VF driver initialization should roughly follow the order of
28  * these opcodes. The VF driver must first validate the API version of the
29  * PF driver, then request a reset, then get resources, then configure
30  * queues and interrupts. After these operations are complete, the VF
31  * driver may start its queues, optionally add MAC and VLAN filters, and
32  * process traffic.
33  */
34 
35 /* START GENERIC DEFINES
36  * Need to ensure the following enums and defines hold the same meaning and
37  * value in current and future projects
38  */
39 
40 /* Error Codes */
41 enum virtchnl_status_code {
42 	VIRTCHNL_STATUS_SUCCESS				= 0,
43 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
44 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
45 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
46 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
47 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
48 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
49 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
50 };
51 
52 /* Backward compatibility */
53 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
54 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
55 
56 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
57 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
58 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
59 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
60 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
61 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
62 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
63 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
64 
65 enum virtchnl_link_speed {
66 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
67 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
68 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
69 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
70 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
71 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
75 };
76 
77 /* for hsplit_0 field of Rx HMC context */
78 /* deprecated with AVF 1.0 */
79 enum virtchnl_rx_hsplit {
80 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
81 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
82 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
83 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
84 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
85 };
86 
87 /* END GENERIC DEFINES */
88 
89 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
90  * of the virtchnl_msg structure.
91  */
92 enum virtchnl_ops {
93 /* The PF sends status change events to VFs using
94  * the VIRTCHNL_OP_EVENT opcode.
95  * VFs send requests to the PF using the other ops.
96  * Use of "advanced opcode" features must be negotiated as part of capabilities
97  * exchange and are not considered part of base mode feature set.
98  */
99 	VIRTCHNL_OP_UNKNOWN = 0,
100 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
101 	VIRTCHNL_OP_RESET_VF = 2,
102 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
103 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
104 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
105 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
106 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
107 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
108 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
109 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
110 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
111 	VIRTCHNL_OP_ADD_VLAN = 12,
112 	VIRTCHNL_OP_DEL_VLAN = 13,
113 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
114 	VIRTCHNL_OP_GET_STATS = 15,
115 	VIRTCHNL_OP_RSVD = 16,
116 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
117 	/* opcode 19 is reserved */
118 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
119 	VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
120 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
121 	VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
122 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
123 	VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
124 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
125 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
126 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
127 	VIRTCHNL_OP_SET_RSS_HENA = 26,
128 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
129 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
130 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
131 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
132 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
133 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
134 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
135 	/* opcode 34 - 43 are reserved */
136 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
137 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
138 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
139 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
140 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
141 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
142 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
143 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
144 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
145 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
146 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
147 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
148 	VIRTCHNL_OP_MAX,
149 };
150 
151 /* These macros are used to generate compilation errors if a structure/union
152  * is not exactly the correct length. It gives a divide by zero error if the
153  * structure/union is not of the correct size, otherwise it creates an enum
154  * that is never used.
155  */
156 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
157 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
158 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
159 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
160 
161 /* Message descriptions and data structures. */
162 
163 /* VIRTCHNL_OP_VERSION
164  * VF posts its version number to the PF. PF responds with its version number
165  * in the same format, along with a return code.
166  * Reply from PF has its major/minor versions also in param0 and param1.
167  * If there is a major version mismatch, then the VF cannot operate.
168  * If there is a minor version mismatch, then the VF can operate but should
169  * add a warning to the system log.
170  *
171  * This enum element MUST always be specified as == 1, regardless of other
172  * changes in the API. The PF must always respond to this message without
173  * error regardless of version mismatch.
174  */
175 #define VIRTCHNL_VERSION_MAJOR		1
176 #define VIRTCHNL_VERSION_MINOR		1
177 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
178 
179 struct virtchnl_version_info {
180 	u32 major;
181 	u32 minor;
182 };
183 
184 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
185 
186 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
187 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
188 
189 /* VIRTCHNL_OP_RESET_VF
190  * VF sends this request to PF with no parameters
191  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
192  * until reset completion is indicated. The admin queue must be reinitialized
193  * after this operation.
194  *
195  * When reset is complete, PF must ensure that all queues in all VSIs associated
196  * with the VF are stopped, all queue configurations in the HMC are set to 0,
197  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
198  * are cleared.
199  */
200 
201 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
202  * vsi_type should always be 6 for backward compatibility. Add other fields
203  * as needed.
204  */
205 enum virtchnl_vsi_type {
206 	VIRTCHNL_VSI_TYPE_INVALID = 0,
207 	VIRTCHNL_VSI_SRIOV = 6,
208 };
209 
210 /* VIRTCHNL_OP_GET_VF_RESOURCES
211  * Version 1.0 VF sends this request to PF with no parameters
212  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
213  * PF responds with an indirect message containing
214  * virtchnl_vf_resource and one or more
215  * virtchnl_vsi_resource structures.
216  */
217 
218 struct virtchnl_vsi_resource {
219 	u16 vsi_id;
220 	u16 num_queue_pairs;
221 
222 	/* see enum virtchnl_vsi_type */
223 	s32 vsi_type;
224 	u16 qset_handle;
225 	u8 default_mac_addr[ETH_ALEN];
226 };
227 
228 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
229 
230 /* VF capability flags
231  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
232  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
233  */
234 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
235 #define VIRTCHNL_VF_OFFLOAD_RDMA		BIT(1)
236 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_RDMA
237 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
238 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
239 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
240 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
241 /* used to negotiate communicating link speeds in Mbps */
242 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
243 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
244 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
245 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
246 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
247 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
248 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
249 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
250 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
251 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
252 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
253 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
254 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
255 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
256 
257 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
258 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
259 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
260 
261 struct virtchnl_vf_resource {
262 	u16 num_vsis;
263 	u16 num_queue_pairs;
264 	u16 max_vectors;
265 	u16 max_mtu;
266 
267 	u32 vf_cap_flags;
268 	u32 rss_key_size;
269 	u32 rss_lut_size;
270 
271 	struct virtchnl_vsi_resource vsi_res[];
272 };
273 
274 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
275 #define virtchnl_vf_resource_LEGACY_SIZEOF	36
276 
277 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
278  * VF sends this message to set up parameters for one TX queue.
279  * External data buffer contains one instance of virtchnl_txq_info.
280  * PF configures requested queue and returns a status code.
281  */
282 
283 /* Tx queue config info */
284 struct virtchnl_txq_info {
285 	u16 vsi_id;
286 	u16 queue_id;
287 	u16 ring_len;		/* number of descriptors, multiple of 8 */
288 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
289 	u64 dma_ring_addr;
290 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
291 };
292 
293 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
294 
295 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
296  * VF sends this message to set up parameters for one RX queue.
297  * External data buffer contains one instance of virtchnl_rxq_info.
298  * PF configures requested queue and returns a status code.
299  */
300 
301 /* Rx queue config info */
302 struct virtchnl_rxq_info {
303 	u16 vsi_id;
304 	u16 queue_id;
305 	u32 ring_len;		/* number of descriptors, multiple of 32 */
306 	u16 hdr_size;
307 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
308 	u32 databuffer_size;
309 	u32 max_pkt_size;
310 	u8 pad0;
311 	u8 rxdid;
312 	u8 pad1[2];
313 	u64 dma_ring_addr;
314 
315 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
316 	s32 rx_split_pos;
317 	u32 pad2;
318 };
319 
320 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
321 
322 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
323  * VF sends this message to set parameters for all active TX and RX queues
324  * associated with the specified VSI.
325  * PF configures queues and returns status.
326  * If the number of queues specified is greater than the number of queues
327  * associated with the VSI, an error is returned and no queues are configured.
328  * NOTE: The VF is not required to configure all queues in a single request.
329  * It may send multiple messages. PF drivers must correctly handle all VF
330  * requests.
331  */
332 struct virtchnl_queue_pair_info {
333 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
334 	struct virtchnl_txq_info txq;
335 	struct virtchnl_rxq_info rxq;
336 };
337 
338 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
339 
340 struct virtchnl_vsi_queue_config_info {
341 	u16 vsi_id;
342 	u16 num_queue_pairs;
343 	u32 pad;
344 	struct virtchnl_queue_pair_info qpair[];
345 };
346 
347 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
348 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF	72
349 
350 /* VIRTCHNL_OP_REQUEST_QUEUES
351  * VF sends this message to request the PF to allocate additional queues to
352  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
353  * additional queues must be negotiated.  This is a best effort request as it
354  * is possible the PF does not have enough queues left to support the request.
355  * If the PF cannot support the number requested it will respond with the
356  * maximum number it is able to support.  If the request is successful, PF will
357  * then reset the VF to institute required changes.
358  */
359 
360 /* VF resource request */
361 struct virtchnl_vf_res_request {
362 	u16 num_queue_pairs;
363 };
364 
365 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
366  * VF uses this message to map vectors to queues.
367  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
368  * are to be associated with the specified vector.
369  * The "other" causes are always mapped to vector 0. The VF may not request
370  * that vector 0 be used for traffic.
371  * PF configures interrupt mapping and returns status.
372  * NOTE: due to hardware requirements, all active queues (both TX and RX)
373  * should be mapped to interrupts, even if the driver intends to operate
374  * only in polling mode. In this case the interrupt may be disabled, but
375  * the ITR timer will still run to trigger writebacks.
376  */
377 struct virtchnl_vector_map {
378 	u16 vsi_id;
379 	u16 vector_id;
380 	u16 rxq_map;
381 	u16 txq_map;
382 	u16 rxitr_idx;
383 	u16 txitr_idx;
384 };
385 
386 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
387 
388 struct virtchnl_irq_map_info {
389 	u16 num_vectors;
390 	struct virtchnl_vector_map vecmap[];
391 };
392 
393 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
394 #define virtchnl_irq_map_info_LEGACY_SIZEOF	14
395 
396 /* VIRTCHNL_OP_ENABLE_QUEUES
397  * VIRTCHNL_OP_DISABLE_QUEUES
398  * VF sends these message to enable or disable TX/RX queue pairs.
399  * The queues fields are bitmaps indicating which queues to act upon.
400  * (Currently, we only support 16 queues per VF, but we make the field
401  * u32 to allow for expansion.)
402  * PF performs requested action and returns status.
403  * NOTE: The VF is not required to enable/disable all queues in a single
404  * request. It may send multiple messages.
405  * PF drivers must correctly handle all VF requests.
406  */
407 struct virtchnl_queue_select {
408 	u16 vsi_id;
409 	u16 pad;
410 	u32 rx_queues;
411 	u32 tx_queues;
412 };
413 
414 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
415 
416 /* VIRTCHNL_OP_ADD_ETH_ADDR
417  * VF sends this message in order to add one or more unicast or multicast
418  * address filters for the specified VSI.
419  * PF adds the filters and returns status.
420  */
421 
422 /* VIRTCHNL_OP_DEL_ETH_ADDR
423  * VF sends this message in order to remove one or more unicast or multicast
424  * filters for the specified VSI.
425  * PF removes the filters and returns status.
426  */
427 
428 /* VIRTCHNL_ETHER_ADDR_LEGACY
429  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
430  * bytes. Moving forward all VF drivers should not set type to
431  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
432  * behavior. The control plane function (i.e. PF) can use a best effort method
433  * of tracking the primary/device unicast in this case, but there is no
434  * guarantee and functionality depends on the implementation of the PF.
435  */
436 
437 /* VIRTCHNL_ETHER_ADDR_PRIMARY
438  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
439  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
440  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
441  * function (i.e. PF) to accurately track and use this MAC address for
442  * displaying on the host and for VM/function reset.
443  */
444 
445 /* VIRTCHNL_ETHER_ADDR_EXTRA
446  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
447  * unicast and/or multicast filters that are being added/deleted via
448  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
449  */
450 struct virtchnl_ether_addr {
451 	u8 addr[ETH_ALEN];
452 	u8 type;
453 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
454 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
455 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
456 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
457 	u8 pad;
458 };
459 
460 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
461 
462 struct virtchnl_ether_addr_list {
463 	u16 vsi_id;
464 	u16 num_elements;
465 	struct virtchnl_ether_addr list[];
466 };
467 
468 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
469 #define virtchnl_ether_addr_list_LEGACY_SIZEOF	12
470 
471 /* VIRTCHNL_OP_ADD_VLAN
472  * VF sends this message to add one or more VLAN tag filters for receives.
473  * PF adds the filters and returns status.
474  * If a port VLAN is configured by the PF, this operation will return an
475  * error to the VF.
476  */
477 
478 /* VIRTCHNL_OP_DEL_VLAN
479  * VF sends this message to remove one or more VLAN tag filters for receives.
480  * PF removes the filters and returns status.
481  * If a port VLAN is configured by the PF, this operation will return an
482  * error to the VF.
483  */
484 
485 struct virtchnl_vlan_filter_list {
486 	u16 vsi_id;
487 	u16 num_elements;
488 	u16 vlan_id[];
489 };
490 
491 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
492 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF	6
493 
494 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
495  * structures and opcodes.
496  *
497  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
498  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
499  *
500  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
501  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
502  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
503  *
504  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
505  * by the PF concurrently. For example, if the PF can support
506  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
507  * would OR the following bits:
508  *
509  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
510  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
511  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
512  *
513  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
514  * and 0x88A8 VLAN ethertypes.
515  *
516  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
517  * by the PF concurrently. For example if the PF can support
518  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
519  * offload it would OR the following bits:
520  *
521  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
522  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
523  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
524  *
525  * The VF would interpret this as VLAN stripping can be supported on either
526  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
527  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
528  * the previously set value.
529  *
530  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
531  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
532  *
533  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
534  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
535  *
536  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
537  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
538  *
539  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
540  * VLAN filtering if the underlying PF supports it.
541  *
542  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
543  * certain VLAN capability can be toggled. For example if the underlying PF/CP
544  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
545  * set this bit along with the supported ethertypes.
546  */
547 enum virtchnl_vlan_support {
548 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
549 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
550 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
551 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
552 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
553 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
554 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
555 	VIRTCHNL_VLAN_PRIO =			BIT(24),
556 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
557 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
558 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
559 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
560 };
561 
562 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
563  * for filtering, insertion, and stripping capabilities.
564  *
565  * If only outer capabilities are supported (for filtering, insertion, and/or
566  * stripping) then this refers to the outer most or single VLAN from the VF's
567  * perspective.
568  *
569  * If only inner capabilities are supported (for filtering, insertion, and/or
570  * stripping) then this refers to the outer most or single VLAN from the VF's
571  * perspective. Functionally this is the same as if only outer capabilities are
572  * supported. The VF driver is just forced to use the inner fields when
573  * adding/deleting filters and enabling/disabling offloads (if supported).
574  *
575  * If both outer and inner capabilities are supported (for filtering, insertion,
576  * and/or stripping) then outer refers to the outer most or single VLAN and
577  * inner refers to the second VLAN, if it exists, in the packet.
578  *
579  * There is no support for tunneled VLAN offloads, so outer or inner are never
580  * referring to a tunneled packet from the VF's perspective.
581  */
582 struct virtchnl_vlan_supported_caps {
583 	u32 outer;
584 	u32 inner;
585 };
586 
587 /* The PF populates these fields based on the supported VLAN filtering. If a
588  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
589  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
590  * the unsupported fields.
591  *
592  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
593  * VIRTCHNL_VLAN_TOGGLE bit is set.
594  *
595  * The ethertype(s) specified in the ethertype_init field are the ethertypes
596  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
597  * most VLAN from the VF's perspective. If both inner and outer filtering are
598  * allowed then ethertype_init only refers to the outer most VLAN as only
599  * VLAN ethertype supported for inner VLAN filtering is
600  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
601  * when both inner and outer filtering are allowed.
602  *
603  * The max_filters field tells the VF how many VLAN filters it's allowed to have
604  * at any one time. If it exceeds this amount and tries to add another filter,
605  * then the request will be rejected by the PF. To prevent failures, the VF
606  * should keep track of how many VLAN filters it has added and not attempt to
607  * add more than max_filters.
608  */
609 struct virtchnl_vlan_filtering_caps {
610 	struct virtchnl_vlan_supported_caps filtering_support;
611 	u32 ethertype_init;
612 	u16 max_filters;
613 	u8 pad[2];
614 };
615 
616 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
617 
618 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
619  * if the PF supports a different ethertype for stripping and insertion.
620  *
621  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
622  * for stripping affect the ethertype(s) specified for insertion and visa versa
623  * as well. If the VF tries to configure VLAN stripping via
624  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
625  * that will be the ethertype for both stripping and insertion.
626  *
627  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
628  * stripping do not affect the ethertype(s) specified for insertion and visa
629  * versa.
630  */
631 enum virtchnl_vlan_ethertype_match {
632 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
633 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
634 };
635 
636 /* The PF populates these fields based on the supported VLAN offloads. If a
637  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
638  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
639  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
640  *
641  * Also, a VF is only allowed to toggle its VLAN offload setting if the
642  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
643  *
644  * The VF driver needs to be aware of how the tags are stripped by hardware and
645  * inserted by the VF driver based on the level of offload support. The PF will
646  * populate these fields based on where the VLAN tags are expected to be
647  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
648  * interpret these fields. See the definition of the
649  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
650  * enumeration.
651  */
652 struct virtchnl_vlan_offload_caps {
653 	struct virtchnl_vlan_supported_caps stripping_support;
654 	struct virtchnl_vlan_supported_caps insertion_support;
655 	u32 ethertype_init;
656 	u8 ethertype_match;
657 	u8 pad[3];
658 };
659 
660 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
661 
662 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
663  * VF sends this message to determine its VLAN capabilities.
664  *
665  * PF will mark which capabilities it supports based on hardware support and
666  * current configuration. For example, if a port VLAN is configured the PF will
667  * not allow outer VLAN filtering, stripping, or insertion to be configured so
668  * it will block these features from the VF.
669  *
670  * The VF will need to cross reference its capabilities with the PFs
671  * capabilities in the response message from the PF to determine the VLAN
672  * support.
673  */
674 struct virtchnl_vlan_caps {
675 	struct virtchnl_vlan_filtering_caps filtering;
676 	struct virtchnl_vlan_offload_caps offloads;
677 };
678 
679 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
680 
681 struct virtchnl_vlan {
682 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
683 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
684 			 * filtering caps
685 			 */
686 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
687 			 * filtering caps. Note that tpid here does not refer to
688 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
689 			 * actual 2-byte VLAN TPID
690 			 */
691 	u8 pad[2];
692 };
693 
694 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
695 
696 struct virtchnl_vlan_filter {
697 	struct virtchnl_vlan inner;
698 	struct virtchnl_vlan outer;
699 	u8 pad[16];
700 };
701 
702 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
703 
704 /* VIRTCHNL_OP_ADD_VLAN_V2
705  * VIRTCHNL_OP_DEL_VLAN_V2
706  *
707  * VF sends these messages to add/del one or more VLAN tag filters for Rx
708  * traffic.
709  *
710  * The PF attempts to add the filters and returns status.
711  *
712  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
713  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
714  */
715 struct virtchnl_vlan_filter_list_v2 {
716 	u16 vport_id;
717 	u16 num_elements;
718 	u8 pad[4];
719 	struct virtchnl_vlan_filter filters[];
720 };
721 
722 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
723 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF	40
724 
725 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
726  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
727  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
728  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
729  *
730  * VF sends this message to enable or disable VLAN stripping or insertion. It
731  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
732  * allowed and whether or not it's allowed to enable/disable the specific
733  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
734  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
735  * messages are allowed.
736  *
737  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
738  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
739  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
740  * case means the outer most or single VLAN from the VF's perspective. This is
741  * because no outer offloads are supported. See the comments above the
742  * virtchnl_vlan_supported_caps structure for more details.
743  *
744  * virtchnl_vlan_caps.offloads.stripping_support.inner =
745  *			VIRTCHNL_VLAN_TOGGLE |
746  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
747  *
748  * virtchnl_vlan_caps.offloads.insertion_support.inner =
749  *			VIRTCHNL_VLAN_TOGGLE |
750  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
751  *
752  * In order to enable inner (again note that in this case inner is the outer
753  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
754  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
755  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
756  *
757  * virtchnl_vlan_setting.inner_ethertype_setting =
758  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
759  *
760  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
761  * initialization.
762  *
763  * The reason that VLAN TPID(s) are not being used for the
764  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
765  * possible a device could support VLAN insertion and/or stripping offload on
766  * multiple ethertypes concurrently, so this method allows a VF to request
767  * multiple ethertypes in one message using the virtchnl_vlan_support
768  * enumeration.
769  *
770  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
771  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
772  * VLAN insertion and stripping simultaneously. The
773  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
774  * populated based on what the PF can support.
775  *
776  * virtchnl_vlan_caps.offloads.stripping_support.outer =
777  *			VIRTCHNL_VLAN_TOGGLE |
778  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
779  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
780  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
781  *
782  * virtchnl_vlan_caps.offloads.insertion_support.outer =
783  *			VIRTCHNL_VLAN_TOGGLE |
784  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
785  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
786  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
787  *
788  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
789  * would populate the virthcnl_vlan_offload_structure in the following manner
790  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
791  *
792  * virtchnl_vlan_setting.outer_ethertype_setting =
793  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
794  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
795  *
796  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
797  * initialization.
798  *
799  * There is also the case where a PF and the underlying hardware can support
800  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
801  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
802  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
803  * offloads. The ethertypes must match for stripping and insertion.
804  *
805  * virtchnl_vlan_caps.offloads.stripping_support.outer =
806  *			VIRTCHNL_VLAN_TOGGLE |
807  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
808  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
809  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
810  *
811  * virtchnl_vlan_caps.offloads.insertion_support.outer =
812  *			VIRTCHNL_VLAN_TOGGLE |
813  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
814  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
815  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
816  *
817  * virtchnl_vlan_caps.offloads.ethertype_match =
818  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
819  *
820  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
821  * populate the virtchnl_vlan_setting structure in the following manner and send
822  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
823  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
824  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
825  *
826  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
827  *
828  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
829  * initialization.
830  */
831 struct virtchnl_vlan_setting {
832 	u32 outer_ethertype_setting;
833 	u32 inner_ethertype_setting;
834 	u16 vport_id;
835 	u8 pad[6];
836 };
837 
838 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
839 
840 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
841  * VF sends VSI id and flags.
842  * PF returns status code in retval.
843  * Note: we assume that broadcast accept mode is always enabled.
844  */
845 struct virtchnl_promisc_info {
846 	u16 vsi_id;
847 	u16 flags;
848 };
849 
850 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
851 
852 #define FLAG_VF_UNICAST_PROMISC	0x00000001
853 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
854 
855 /* VIRTCHNL_OP_GET_STATS
856  * VF sends this message to request stats for the selected VSI. VF uses
857  * the virtchnl_queue_select struct to specify the VSI. The queue_id
858  * field is ignored by the PF.
859  *
860  * PF replies with struct eth_stats in an external buffer.
861  */
862 
863 /* VIRTCHNL_OP_CONFIG_RSS_KEY
864  * VIRTCHNL_OP_CONFIG_RSS_LUT
865  * VF sends these messages to configure RSS. Only supported if both PF
866  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
867  * configuration negotiation. If this is the case, then the RSS fields in
868  * the VF resource struct are valid.
869  * Both the key and LUT are initialized to 0 by the PF, meaning that
870  * RSS is effectively disabled until set up by the VF.
871  */
872 struct virtchnl_rss_key {
873 	u16 vsi_id;
874 	u16 key_len;
875 	u8 key[];          /* RSS hash key, packed bytes */
876 };
877 
878 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
879 #define virtchnl_rss_key_LEGACY_SIZEOF	6
880 
881 struct virtchnl_rss_lut {
882 	u16 vsi_id;
883 	u16 lut_entries;
884 	u8 lut[];         /* RSS lookup table */
885 };
886 
887 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
888 #define virtchnl_rss_lut_LEGACY_SIZEOF	6
889 
890 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
891  * VIRTCHNL_OP_SET_RSS_HENA
892  * VF sends these messages to get and set the hash filter enable bits for RSS.
893  * By default, the PF sets these to all possible traffic types that the
894  * hardware supports. The VF can query this value if it wants to change the
895  * traffic types that are hashed by the hardware.
896  */
897 struct virtchnl_rss_hena {
898 	u64 hena;
899 };
900 
901 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
902 
903 /* VIRTCHNL_OP_ENABLE_CHANNELS
904  * VIRTCHNL_OP_DISABLE_CHANNELS
905  * VF sends these messages to enable or disable channels based on
906  * the user specified queue count and queue offset for each traffic class.
907  * This struct encompasses all the information that the PF needs from
908  * VF to create a channel.
909  */
910 struct virtchnl_channel_info {
911 	u16 count; /* number of queues in a channel */
912 	u16 offset; /* queues in a channel start from 'offset' */
913 	u32 pad;
914 	u64 max_tx_rate;
915 };
916 
917 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
918 
919 struct virtchnl_tc_info {
920 	u32	num_tc;
921 	u32	pad;
922 	struct virtchnl_channel_info list[];
923 };
924 
925 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
926 #define virtchnl_tc_info_LEGACY_SIZEOF	24
927 
928 /* VIRTCHNL_ADD_CLOUD_FILTER
929  * VIRTCHNL_DEL_CLOUD_FILTER
930  * VF sends these messages to add or delete a cloud filter based on the
931  * user specified match and action filters. These structures encompass
932  * all the information that the PF needs from the VF to add/delete a
933  * cloud filter.
934  */
935 
936 struct virtchnl_l4_spec {
937 	u8	src_mac[ETH_ALEN];
938 	u8	dst_mac[ETH_ALEN];
939 	__be16	vlan_id;
940 	__be16	pad; /* reserved for future use */
941 	__be32	src_ip[4];
942 	__be32	dst_ip[4];
943 	__be16	src_port;
944 	__be16	dst_port;
945 };
946 
947 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
948 
949 union virtchnl_flow_spec {
950 	struct	virtchnl_l4_spec tcp_spec;
951 	u8	buffer[128]; /* reserved for future use */
952 };
953 
954 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
955 
956 enum virtchnl_action {
957 	/* action types */
958 	VIRTCHNL_ACTION_DROP = 0,
959 	VIRTCHNL_ACTION_TC_REDIRECT,
960 	VIRTCHNL_ACTION_PASSTHRU,
961 	VIRTCHNL_ACTION_QUEUE,
962 	VIRTCHNL_ACTION_Q_REGION,
963 	VIRTCHNL_ACTION_MARK,
964 	VIRTCHNL_ACTION_COUNT,
965 };
966 
967 enum virtchnl_flow_type {
968 	/* flow types */
969 	VIRTCHNL_TCP_V4_FLOW = 0,
970 	VIRTCHNL_TCP_V6_FLOW,
971 };
972 
973 struct virtchnl_filter {
974 	union	virtchnl_flow_spec data;
975 	union	virtchnl_flow_spec mask;
976 
977 	/* see enum virtchnl_flow_type */
978 	s32	flow_type;
979 
980 	/* see enum virtchnl_action */
981 	s32	action;
982 	u32	action_meta;
983 	u8	field_flags;
984 	u8	pad[3];
985 };
986 
987 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
988 
989 struct virtchnl_supported_rxdids {
990 	u64 supported_rxdids;
991 };
992 
993 /* VIRTCHNL_OP_EVENT
994  * PF sends this message to inform the VF driver of events that may affect it.
995  * No direct response is expected from the VF, though it may generate other
996  * messages in response to this one.
997  */
998 enum virtchnl_event_codes {
999 	VIRTCHNL_EVENT_UNKNOWN = 0,
1000 	VIRTCHNL_EVENT_LINK_CHANGE,
1001 	VIRTCHNL_EVENT_RESET_IMPENDING,
1002 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1003 };
1004 
1005 #define PF_EVENT_SEVERITY_INFO		0
1006 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1007 
1008 struct virtchnl_pf_event {
1009 	/* see enum virtchnl_event_codes */
1010 	s32 event;
1011 	union {
1012 		/* If the PF driver does not support the new speed reporting
1013 		 * capabilities then use link_event else use link_event_adv to
1014 		 * get the speed and link information. The ability to understand
1015 		 * new speeds is indicated by setting the capability flag
1016 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1017 		 * in virtchnl_vf_resource struct and can be used to determine
1018 		 * which link event struct to use below.
1019 		 */
1020 		struct {
1021 			enum virtchnl_link_speed link_speed;
1022 			bool link_status;
1023 			u8 pad[3];
1024 		} link_event;
1025 		struct {
1026 			/* link_speed provided in Mbps */
1027 			u32 link_speed;
1028 			u8 link_status;
1029 			u8 pad[3];
1030 		} link_event_adv;
1031 	} event_data;
1032 
1033 	s32 severity;
1034 };
1035 
1036 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1037 
1038 /* used to specify if a ceq_idx or aeq_idx is invalid */
1039 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX	0xFFFF
1040 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1041  * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1042  * The request for this originates from the VF RDMA driver through
1043  * a client interface between VF LAN and VF RDMA driver.
1044  * A vector could have an AEQ and CEQ attached to it although
1045  * there is a single AEQ per VF RDMA instance in which case
1046  * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1047  * idx for ceqs There will never be a case where there will be multiple CEQs
1048  * attached to a single vector.
1049  * PF configures interrupt mapping and returns status.
1050  */
1051 
1052 struct virtchnl_rdma_qv_info {
1053 	u32 v_idx; /* msix_vector */
1054 	u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1055 	u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1056 	u8 itr_idx;
1057 	u8 pad[3];
1058 };
1059 
1060 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1061 
1062 struct virtchnl_rdma_qvlist_info {
1063 	u32 num_vectors;
1064 	struct virtchnl_rdma_qv_info qv_info[];
1065 };
1066 
1067 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1068 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF	16
1069 
1070 /* VF reset states - these are written into the RSTAT register:
1071  * VFGEN_RSTAT on the VF
1072  * When the PF initiates a reset, it writes 0
1073  * When the reset is complete, it writes 1
1074  * When the PF detects that the VF has recovered, it writes 2
1075  * VF checks this register periodically to determine if a reset has occurred,
1076  * then polls it to know when the reset is complete.
1077  * If either the PF or VF reads the register while the hardware
1078  * is in a reset state, it will return DEADBEEF, which, when masked
1079  * will result in 3.
1080  */
1081 enum virtchnl_vfr_states {
1082 	VIRTCHNL_VFR_INPROGRESS = 0,
1083 	VIRTCHNL_VFR_COMPLETED,
1084 	VIRTCHNL_VFR_VFACTIVE,
1085 };
1086 
1087 /* Type of RSS algorithm */
1088 enum virtchnl_rss_algorithm {
1089 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1090 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1091 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1092 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1093 };
1094 
1095 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1096 #define PROTO_HDR_SHIFT			5
1097 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1098 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1099 
1100 /* VF use these macros to configure each protocol header.
1101  * Specify which protocol headers and protocol header fields base on
1102  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1103  * @param hdr: a struct of virtchnl_proto_hdr
1104  * @param hdr_type: ETH/IPV4/TCP, etc
1105  * @param field: SRC/DST/TEID/SPI, etc
1106  */
1107 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1108 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1109 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1110 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1111 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1112 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1113 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1114 
1115 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1116 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1117 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1118 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1119 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1120 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1121 
1122 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1123 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1124 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1125 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1126 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1127 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1128 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1129 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1130 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1131 
1132 /* Protocol header type within a packet segment. A segment consists of one or
1133  * more protocol headers that make up a logical group of protocol headers. Each
1134  * logical group of protocol headers encapsulates or is encapsulated using/by
1135  * tunneling or encapsulation protocols for network virtualization.
1136  */
1137 enum virtchnl_proto_hdr_type {
1138 	VIRTCHNL_PROTO_HDR_NONE,
1139 	VIRTCHNL_PROTO_HDR_ETH,
1140 	VIRTCHNL_PROTO_HDR_S_VLAN,
1141 	VIRTCHNL_PROTO_HDR_C_VLAN,
1142 	VIRTCHNL_PROTO_HDR_IPV4,
1143 	VIRTCHNL_PROTO_HDR_IPV6,
1144 	VIRTCHNL_PROTO_HDR_TCP,
1145 	VIRTCHNL_PROTO_HDR_UDP,
1146 	VIRTCHNL_PROTO_HDR_SCTP,
1147 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1148 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1149 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1150 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1151 	VIRTCHNL_PROTO_HDR_PPPOE,
1152 	VIRTCHNL_PROTO_HDR_L2TPV3,
1153 	VIRTCHNL_PROTO_HDR_ESP,
1154 	VIRTCHNL_PROTO_HDR_AH,
1155 	VIRTCHNL_PROTO_HDR_PFCP,
1156 };
1157 
1158 /* Protocol header field within a protocol header. */
1159 enum virtchnl_proto_hdr_field {
1160 	/* ETHER */
1161 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1162 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1163 	VIRTCHNL_PROTO_HDR_ETH_DST,
1164 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1165 	/* S-VLAN */
1166 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1167 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1168 	/* C-VLAN */
1169 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1170 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1171 	/* IPV4 */
1172 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1173 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1174 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1175 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1176 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1177 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1178 	/* IPV6 */
1179 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1180 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1181 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1182 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1183 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1184 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1185 	/* TCP */
1186 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1187 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1188 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1189 	/* UDP */
1190 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1191 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1192 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1193 	/* SCTP */
1194 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1195 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1196 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1197 	/* GTPU_IP */
1198 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1199 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1200 	/* GTPU_EH */
1201 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1202 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1203 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1204 	/* PPPOE */
1205 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1206 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1207 	/* L2TPV3 */
1208 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1209 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1210 	/* ESP */
1211 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1212 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1213 	/* AH */
1214 	VIRTCHNL_PROTO_HDR_AH_SPI =
1215 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1216 	/* PFCP */
1217 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1218 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1219 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1220 };
1221 
1222 struct virtchnl_proto_hdr {
1223 	/* see enum virtchnl_proto_hdr_type */
1224 	s32 type;
1225 	u32 field_selector; /* a bit mask to select field for header type */
1226 	u8 buffer[64];
1227 	/**
1228 	 * binary buffer in network order for specific header type.
1229 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1230 	 * header is expected to be copied into the buffer.
1231 	 */
1232 };
1233 
1234 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1235 
1236 struct virtchnl_proto_hdrs {
1237 	u8 tunnel_level;
1238 	u8 pad[3];
1239 	/**
1240 	 * specify where protocol header start from.
1241 	 * 0 - from the outer layer
1242 	 * 1 - from the first inner layer
1243 	 * 2 - from the second inner layer
1244 	 * ....
1245 	 **/
1246 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1247 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1248 };
1249 
1250 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1251 
1252 struct virtchnl_rss_cfg {
1253 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1254 
1255 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1256 	s32 rss_algorithm;
1257 	u8 reserved[128];                          /* reserve for future */
1258 };
1259 
1260 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1261 
1262 /* action configuration for FDIR */
1263 struct virtchnl_filter_action {
1264 	/* see enum virtchnl_action type */
1265 	s32 type;
1266 	union {
1267 		/* used for queue and qgroup action */
1268 		struct {
1269 			u16 index;
1270 			u8 region;
1271 		} queue;
1272 		/* used for count action */
1273 		struct {
1274 			/* share counter ID with other flow rules */
1275 			u8 shared;
1276 			u32 id; /* counter ID */
1277 		} count;
1278 		/* used for mark action */
1279 		u32 mark_id;
1280 		u8 reserve[32];
1281 	} act_conf;
1282 };
1283 
1284 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1285 
1286 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1287 
1288 struct virtchnl_filter_action_set {
1289 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1290 	int count;
1291 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1292 };
1293 
1294 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1295 
1296 /* pattern and action for FDIR rule */
1297 struct virtchnl_fdir_rule {
1298 	struct virtchnl_proto_hdrs proto_hdrs;
1299 	struct virtchnl_filter_action_set action_set;
1300 };
1301 
1302 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1303 
1304 /* Status returned to VF after VF requests FDIR commands
1305  * VIRTCHNL_FDIR_SUCCESS
1306  * VF FDIR related request is successfully done by PF
1307  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1308  *
1309  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1310  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1311  *
1312  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1313  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1314  *
1315  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1316  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1317  *
1318  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1319  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1320  *
1321  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1322  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1323  * or HW doesn't support.
1324  *
1325  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1326  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1327  * for programming.
1328  *
1329  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1330  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1331  * for example, VF query counter of a rule who has no counter action.
1332  */
1333 enum virtchnl_fdir_prgm_status {
1334 	VIRTCHNL_FDIR_SUCCESS = 0,
1335 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1336 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1337 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1338 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1339 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1340 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1341 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1342 };
1343 
1344 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1345  * VF sends this request to PF by filling out vsi_id,
1346  * validate_only and rule_cfg. PF will return flow_id
1347  * if the request is successfully done and return add_status to VF.
1348  */
1349 struct virtchnl_fdir_add {
1350 	u16 vsi_id;  /* INPUT */
1351 	/*
1352 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1353 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1354 	 */
1355 	u16 validate_only; /* INPUT */
1356 	u32 flow_id;       /* OUTPUT */
1357 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1358 
1359 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1360 	s32 status;
1361 };
1362 
1363 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1364 
1365 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1366  * VF sends this request to PF by filling out vsi_id
1367  * and flow_id. PF will return del_status to VF.
1368  */
1369 struct virtchnl_fdir_del {
1370 	u16 vsi_id;  /* INPUT */
1371 	u16 pad;
1372 	u32 flow_id; /* INPUT */
1373 
1374 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1375 	s32 status;
1376 };
1377 
1378 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1379 
1380 #define __vss_byone(p, member, count, old)				      \
1381 	(struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1382 
1383 #define __vss_byelem(p, member, count, old)				      \
1384 	(struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1385 
1386 #define __vss_full(p, member, count, old)				      \
1387 	(struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1388 
1389 #define __vss(type, func, p, member, count)		\
1390 	struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1391 
1392 #define virtchnl_struct_size(p, m, c)					      \
1393 	_Generic(*p,							      \
1394 		 __vss(virtchnl_vf_resource, __vss_full, p, m, c),	      \
1395 		 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c),  \
1396 		 __vss(virtchnl_irq_map_info, __vss_full, p, m, c),	      \
1397 		 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c),	      \
1398 		 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c),	      \
1399 		 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c),  \
1400 		 __vss(virtchnl_tc_info, __vss_byelem, p, m, c),	      \
1401 		 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c),     \
1402 		 __vss(virtchnl_rss_key, __vss_byone, p, m, c),		      \
1403 		 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1404 
1405 /**
1406  * virtchnl_vc_validate_vf_msg
1407  * @ver: Virtchnl version info
1408  * @v_opcode: Opcode for the message
1409  * @msg: pointer to the msg buffer
1410  * @msglen: msg length
1411  *
1412  * validate msg format against struct for each opcode
1413  */
1414 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1415 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1416 			    u8 *msg, u16 msglen)
1417 {
1418 	bool err_msg_format = false;
1419 	u32 valid_len = 0;
1420 
1421 	/* Validate message length. */
1422 	switch (v_opcode) {
1423 	case VIRTCHNL_OP_VERSION:
1424 		valid_len = sizeof(struct virtchnl_version_info);
1425 		break;
1426 	case VIRTCHNL_OP_RESET_VF:
1427 		break;
1428 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1429 		if (VF_IS_V11(ver))
1430 			valid_len = sizeof(u32);
1431 		break;
1432 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1433 		valid_len = sizeof(struct virtchnl_txq_info);
1434 		break;
1435 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1436 		valid_len = sizeof(struct virtchnl_rxq_info);
1437 		break;
1438 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1439 		valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1440 		if (msglen >= valid_len) {
1441 			struct virtchnl_vsi_queue_config_info *vqc =
1442 			    (struct virtchnl_vsi_queue_config_info *)msg;
1443 			valid_len = virtchnl_struct_size(vqc, qpair,
1444 							 vqc->num_queue_pairs);
1445 			if (vqc->num_queue_pairs == 0)
1446 				err_msg_format = true;
1447 		}
1448 		break;
1449 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1450 		valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1451 		if (msglen >= valid_len) {
1452 			struct virtchnl_irq_map_info *vimi =
1453 			    (struct virtchnl_irq_map_info *)msg;
1454 			valid_len = virtchnl_struct_size(vimi, vecmap,
1455 							 vimi->num_vectors);
1456 			if (vimi->num_vectors == 0)
1457 				err_msg_format = true;
1458 		}
1459 		break;
1460 	case VIRTCHNL_OP_ENABLE_QUEUES:
1461 	case VIRTCHNL_OP_DISABLE_QUEUES:
1462 		valid_len = sizeof(struct virtchnl_queue_select);
1463 		break;
1464 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1465 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1466 		valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1467 		if (msglen >= valid_len) {
1468 			struct virtchnl_ether_addr_list *veal =
1469 			    (struct virtchnl_ether_addr_list *)msg;
1470 			valid_len = virtchnl_struct_size(veal, list,
1471 							 veal->num_elements);
1472 			if (veal->num_elements == 0)
1473 				err_msg_format = true;
1474 		}
1475 		break;
1476 	case VIRTCHNL_OP_ADD_VLAN:
1477 	case VIRTCHNL_OP_DEL_VLAN:
1478 		valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1479 		if (msglen >= valid_len) {
1480 			struct virtchnl_vlan_filter_list *vfl =
1481 			    (struct virtchnl_vlan_filter_list *)msg;
1482 			valid_len = virtchnl_struct_size(vfl, vlan_id,
1483 							 vfl->num_elements);
1484 			if (vfl->num_elements == 0)
1485 				err_msg_format = true;
1486 		}
1487 		break;
1488 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1489 		valid_len = sizeof(struct virtchnl_promisc_info);
1490 		break;
1491 	case VIRTCHNL_OP_GET_STATS:
1492 		valid_len = sizeof(struct virtchnl_queue_select);
1493 		break;
1494 	case VIRTCHNL_OP_RDMA:
1495 		/* These messages are opaque to us and will be validated in
1496 		 * the RDMA client code. We just need to check for nonzero
1497 		 * length. The firmware will enforce max length restrictions.
1498 		 */
1499 		if (msglen)
1500 			valid_len = msglen;
1501 		else
1502 			err_msg_format = true;
1503 		break;
1504 	case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1505 		break;
1506 	case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1507 		valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1508 		if (msglen >= valid_len) {
1509 			struct virtchnl_rdma_qvlist_info *qv =
1510 				(struct virtchnl_rdma_qvlist_info *)msg;
1511 
1512 			valid_len = virtchnl_struct_size(qv, qv_info,
1513 							 qv->num_vectors);
1514 		}
1515 		break;
1516 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1517 		valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1518 		if (msglen >= valid_len) {
1519 			struct virtchnl_rss_key *vrk =
1520 				(struct virtchnl_rss_key *)msg;
1521 			valid_len = virtchnl_struct_size(vrk, key,
1522 							 vrk->key_len);
1523 		}
1524 		break;
1525 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1526 		valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1527 		if (msglen >= valid_len) {
1528 			struct virtchnl_rss_lut *vrl =
1529 				(struct virtchnl_rss_lut *)msg;
1530 			valid_len = virtchnl_struct_size(vrl, lut,
1531 							 vrl->lut_entries);
1532 		}
1533 		break;
1534 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1535 		break;
1536 	case VIRTCHNL_OP_SET_RSS_HENA:
1537 		valid_len = sizeof(struct virtchnl_rss_hena);
1538 		break;
1539 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1540 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1541 		break;
1542 	case VIRTCHNL_OP_REQUEST_QUEUES:
1543 		valid_len = sizeof(struct virtchnl_vf_res_request);
1544 		break;
1545 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1546 		valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1547 		if (msglen >= valid_len) {
1548 			struct virtchnl_tc_info *vti =
1549 				(struct virtchnl_tc_info *)msg;
1550 			valid_len = virtchnl_struct_size(vti, list,
1551 							 vti->num_tc);
1552 			if (vti->num_tc == 0)
1553 				err_msg_format = true;
1554 		}
1555 		break;
1556 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1557 		break;
1558 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1559 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1560 		valid_len = sizeof(struct virtchnl_filter);
1561 		break;
1562 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1563 		break;
1564 	case VIRTCHNL_OP_ADD_RSS_CFG:
1565 	case VIRTCHNL_OP_DEL_RSS_CFG:
1566 		valid_len = sizeof(struct virtchnl_rss_cfg);
1567 		break;
1568 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1569 		valid_len = sizeof(struct virtchnl_fdir_add);
1570 		break;
1571 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1572 		valid_len = sizeof(struct virtchnl_fdir_del);
1573 		break;
1574 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1575 		break;
1576 	case VIRTCHNL_OP_ADD_VLAN_V2:
1577 	case VIRTCHNL_OP_DEL_VLAN_V2:
1578 		valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1579 		if (msglen >= valid_len) {
1580 			struct virtchnl_vlan_filter_list_v2 *vfl =
1581 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1582 
1583 			valid_len = virtchnl_struct_size(vfl, filters,
1584 							 vfl->num_elements);
1585 
1586 			if (vfl->num_elements == 0) {
1587 				err_msg_format = true;
1588 				break;
1589 			}
1590 		}
1591 		break;
1592 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1593 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1594 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1595 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1596 		valid_len = sizeof(struct virtchnl_vlan_setting);
1597 		break;
1598 	/* These are always errors coming from the VF. */
1599 	case VIRTCHNL_OP_EVENT:
1600 	case VIRTCHNL_OP_UNKNOWN:
1601 	default:
1602 		return VIRTCHNL_STATUS_ERR_PARAM;
1603 	}
1604 	/* few more checks */
1605 	if (err_msg_format || valid_len != msglen)
1606 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1607 
1608 	return 0;
1609 }
1610 #endif /* _VIRTCHNL_H_ */
1611