1 /*
2  * tools/testing/selftests/kvm/lib/x86.c
3  *
4  * Copyright (C) 2018, Google LLC.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2.
7  */
8 
9 #define _GNU_SOURCE /* for program_invocation_name */
10 
11 #include "test_util.h"
12 #include "kvm_util.h"
13 #include "x86.h"
14 #include "vmx.h"
15 
16 /* Allocate memory regions for nested VMX tests.
17  *
18  * Input Args:
19  *   vm - The VM to allocate guest-virtual addresses in.
20  *
21  * Output Args:
22  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
23  *
24  * Return:
25  *   Pointer to structure with the addresses of the VMX areas.
26  */
27 struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm * vm,vm_vaddr_t * p_vmx_gva)28 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
29 {
30 	vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
31 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
32 
33 	/* Setup of a region of guest memory for the vmxon region. */
34 	vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
35 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
36 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
37 
38 	/* Setup of a region of guest memory for a vmcs. */
39 	vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
40 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
41 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
42 
43 	/* Setup of a region of guest memory for the MSR bitmap. */
44 	vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
45 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
46 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
47 	memset(vmx->msr_hva, 0, getpagesize());
48 
49 	/* Setup of a region of guest memory for the shadow VMCS. */
50 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
51 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
52 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
53 
54 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
55 	vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
56 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
57 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
58 	memset(vmx->vmread_hva, 0, getpagesize());
59 
60 	vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
61 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
62 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
63 	memset(vmx->vmwrite_hva, 0, getpagesize());
64 
65 	*p_vmx_gva = vmx_gva;
66 	return vmx;
67 }
68 
prepare_for_vmx_operation(struct vmx_pages * vmx)69 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
70 {
71 	uint64_t feature_control;
72 	uint64_t required;
73 	unsigned long cr0;
74 	unsigned long cr4;
75 
76 	/*
77 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
78 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
79 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
80 	 */
81 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
82 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
83 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
84 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
85 
86 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
87 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
88 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
89 	/* Enable VMX operation */
90 	cr4 |= X86_CR4_VMXE;
91 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
92 
93 	/*
94 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
95 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
96 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
97 	 *    outside of SMX causes a #GP.
98 	 */
99 	required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
100 	required |= FEATURE_CONTROL_LOCKED;
101 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
102 	if ((feature_control & required) != required)
103 		wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
104 
105 	/* Enter VMX root operation. */
106 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
107 	if (vmxon(vmx->vmxon_gpa))
108 		return false;
109 
110 	/* Load a VMCS. */
111 	*(uint32_t *)(vmx->vmcs) = vmcs_revision();
112 	if (vmclear(vmx->vmcs_gpa))
113 		return false;
114 
115 	if (vmptrld(vmx->vmcs_gpa))
116 		return false;
117 
118 	/* Setup shadow VMCS, do not load it yet. */
119 	*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
120 	if (vmclear(vmx->shadow_vmcs_gpa))
121 		return false;
122 
123 	return true;
124 }
125 
126 /*
127  * Initialize the control fields to the most basic settings possible.
128  */
init_vmcs_control_fields(struct vmx_pages * vmx)129 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
130 {
131 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
132 	vmwrite(POSTED_INTR_NV, 0);
133 
134 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
135 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, 0))
136 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
137 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
138 	else
139 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
140 	vmwrite(EXCEPTION_BITMAP, 0);
141 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
142 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
143 	vmwrite(CR3_TARGET_COUNT, 0);
144 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
145 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
146 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
147 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
148 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
149 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
150 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
151 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
152 	vmwrite(TPR_THRESHOLD, 0);
153 
154 	vmwrite(CR0_GUEST_HOST_MASK, 0);
155 	vmwrite(CR4_GUEST_HOST_MASK, 0);
156 	vmwrite(CR0_READ_SHADOW, get_cr0());
157 	vmwrite(CR4_READ_SHADOW, get_cr4());
158 
159 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
160 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
161 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
162 }
163 
164 /*
165  * Initialize the host state fields based on the current host state, with
166  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
167  * or vmresume.
168  */
init_vmcs_host_state(void)169 static inline void init_vmcs_host_state(void)
170 {
171 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
172 
173 	vmwrite(HOST_ES_SELECTOR, get_es());
174 	vmwrite(HOST_CS_SELECTOR, get_cs());
175 	vmwrite(HOST_SS_SELECTOR, get_ss());
176 	vmwrite(HOST_DS_SELECTOR, get_ds());
177 	vmwrite(HOST_FS_SELECTOR, get_fs());
178 	vmwrite(HOST_GS_SELECTOR, get_gs());
179 	vmwrite(HOST_TR_SELECTOR, get_tr());
180 
181 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
182 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
183 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
184 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
185 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
186 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
187 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
188 
189 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
190 
191 	vmwrite(HOST_CR0, get_cr0());
192 	vmwrite(HOST_CR3, get_cr3());
193 	vmwrite(HOST_CR4, get_cr4());
194 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
195 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
196 	vmwrite(HOST_TR_BASE,
197 		get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
198 	vmwrite(HOST_GDTR_BASE, get_gdt_base());
199 	vmwrite(HOST_IDTR_BASE, get_idt_base());
200 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
201 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
202 }
203 
204 /*
205  * Initialize the guest state fields essentially as a clone of
206  * the host state fields. Some host state fields have fixed
207  * values, and we set the corresponding guest state fields accordingly.
208  */
init_vmcs_guest_state(void * rip,void * rsp)209 static inline void init_vmcs_guest_state(void *rip, void *rsp)
210 {
211 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
212 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
213 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
214 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
215 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
216 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
217 	vmwrite(GUEST_LDTR_SELECTOR, 0);
218 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
219 	vmwrite(GUEST_INTR_STATUS, 0);
220 	vmwrite(GUEST_PML_INDEX, 0);
221 
222 	vmwrite(VMCS_LINK_POINTER, -1ll);
223 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
224 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
225 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
226 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
227 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
228 
229 	vmwrite(GUEST_ES_LIMIT, -1);
230 	vmwrite(GUEST_CS_LIMIT, -1);
231 	vmwrite(GUEST_SS_LIMIT, -1);
232 	vmwrite(GUEST_DS_LIMIT, -1);
233 	vmwrite(GUEST_FS_LIMIT, -1);
234 	vmwrite(GUEST_GS_LIMIT, -1);
235 	vmwrite(GUEST_LDTR_LIMIT, -1);
236 	vmwrite(GUEST_TR_LIMIT, 0x67);
237 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
238 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
239 	vmwrite(GUEST_ES_AR_BYTES,
240 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
241 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
242 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
243 	vmwrite(GUEST_DS_AR_BYTES,
244 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
245 	vmwrite(GUEST_FS_AR_BYTES,
246 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
247 	vmwrite(GUEST_GS_AR_BYTES,
248 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
249 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
250 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
251 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
252 	vmwrite(GUEST_ACTIVITY_STATE, 0);
253 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
254 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
255 
256 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
257 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
258 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
259 	vmwrite(GUEST_ES_BASE, 0);
260 	vmwrite(GUEST_CS_BASE, 0);
261 	vmwrite(GUEST_SS_BASE, 0);
262 	vmwrite(GUEST_DS_BASE, 0);
263 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
264 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
265 	vmwrite(GUEST_LDTR_BASE, 0);
266 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
267 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
268 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
269 	vmwrite(GUEST_DR7, 0x400);
270 	vmwrite(GUEST_RSP, (uint64_t)rsp);
271 	vmwrite(GUEST_RIP, (uint64_t)rip);
272 	vmwrite(GUEST_RFLAGS, 2);
273 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
274 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
275 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
276 }
277 
prepare_vmcs(struct vmx_pages * vmx,void * guest_rip,void * guest_rsp)278 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
279 {
280 	init_vmcs_control_fields(vmx);
281 	init_vmcs_host_state();
282 	init_vmcs_guest_state(guest_rip, guest_rsp);
283 }
284