1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
head_hashfn(struct rhashtable * ht,const struct bucket_table * tbl,const struct rhash_head * he)41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
lockdep_rht_mutex_is_held(struct rhashtable * ht)51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
lockdep_rht_bucket_is_held(const struct bucket_table * tbl,u32 hash)57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
nested_table_free(union nested_table * ntbl,unsigned int size)68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 	const unsigned int len = 1 << shift;
72 	unsigned int i;
73 
74 	ntbl = rcu_dereference_raw(ntbl->table);
75 	if (!ntbl)
76 		return;
77 
78 	if (size > len) {
79 		size >>= shift;
80 		for (i = 0; i < len; i++)
81 			nested_table_free(ntbl + i, size);
82 	}
83 
84 	kfree(ntbl);
85 }
86 
nested_bucket_table_free(const struct bucket_table * tbl)87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89 	unsigned int size = tbl->size >> tbl->nest;
90 	unsigned int len = 1 << tbl->nest;
91 	union nested_table *ntbl;
92 	unsigned int i;
93 
94 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95 
96 	for (i = 0; i < len; i++)
97 		nested_table_free(ntbl + i, size);
98 
99 	kfree(ntbl);
100 }
101 
bucket_table_free(const struct bucket_table * tbl)102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 	if (tbl->nest)
105 		nested_bucket_table_free(tbl);
106 
107 	free_bucket_spinlocks(tbl->locks);
108 	kvfree(tbl);
109 }
110 
bucket_table_free_rcu(struct rcu_head * head)111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 	bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115 
nested_table_alloc(struct rhashtable * ht,union nested_table __rcu ** prev,bool leaf)116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 					      union nested_table __rcu **prev,
118 					      bool leaf)
119 {
120 	union nested_table *ntbl;
121 	int i;
122 
123 	ntbl = rcu_dereference(*prev);
124 	if (ntbl)
125 		return ntbl;
126 
127 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128 
129 	if (ntbl && leaf) {
130 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132 	}
133 
134 	rcu_assign_pointer(*prev, ntbl);
135 
136 	return ntbl;
137 }
138 
nested_bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
140 						      size_t nbuckets,
141 						      gfp_t gfp)
142 {
143 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
144 	struct bucket_table *tbl;
145 	size_t size;
146 
147 	if (nbuckets < (1 << (shift + 1)))
148 		return NULL;
149 
150 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
151 
152 	tbl = kzalloc(size, gfp);
153 	if (!tbl)
154 		return NULL;
155 
156 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
157 				false)) {
158 		kfree(tbl);
159 		return NULL;
160 	}
161 
162 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
163 
164 	return tbl;
165 }
166 
bucket_table_alloc(struct rhashtable * ht,size_t nbuckets,gfp_t gfp)167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
168 					       size_t nbuckets,
169 					       gfp_t gfp)
170 {
171 	struct bucket_table *tbl = NULL;
172 	size_t size, max_locks;
173 	int i;
174 
175 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
176 	tbl = kvzalloc(size, gfp);
177 
178 	size = nbuckets;
179 
180 	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
181 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
182 		nbuckets = 0;
183 	}
184 
185 	if (tbl == NULL)
186 		return NULL;
187 
188 	tbl->size = size;
189 
190 	max_locks = size >> 1;
191 	if (tbl->nest)
192 		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
193 
194 	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
195 				   ht->p.locks_mul, gfp) < 0) {
196 		bucket_table_free(tbl);
197 		return NULL;
198 	}
199 
200 	INIT_LIST_HEAD(&tbl->walkers);
201 
202 	tbl->hash_rnd = get_random_u32();
203 
204 	for (i = 0; i < nbuckets; i++)
205 		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
206 
207 	return tbl;
208 }
209 
rhashtable_last_table(struct rhashtable * ht,struct bucket_table * tbl)210 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
211 						  struct bucket_table *tbl)
212 {
213 	struct bucket_table *new_tbl;
214 
215 	do {
216 		new_tbl = tbl;
217 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
218 	} while (tbl);
219 
220 	return new_tbl;
221 }
222 
rhashtable_rehash_one(struct rhashtable * ht,unsigned int old_hash)223 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
224 {
225 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
226 	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
227 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
228 	int err = -EAGAIN;
229 	struct rhash_head *head, *next, *entry;
230 	spinlock_t *new_bucket_lock;
231 	unsigned int new_hash;
232 
233 	if (new_tbl->nest)
234 		goto out;
235 
236 	err = -ENOENT;
237 
238 	rht_for_each(entry, old_tbl, old_hash) {
239 		err = 0;
240 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
241 
242 		if (rht_is_a_nulls(next))
243 			break;
244 
245 		pprev = &entry->next;
246 	}
247 
248 	if (err)
249 		goto out;
250 
251 	new_hash = head_hashfn(ht, new_tbl, entry);
252 
253 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
254 
255 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
256 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
257 				      new_tbl, new_hash);
258 
259 	RCU_INIT_POINTER(entry->next, head);
260 
261 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
262 	spin_unlock(new_bucket_lock);
263 
264 	rcu_assign_pointer(*pprev, next);
265 
266 out:
267 	return err;
268 }
269 
rhashtable_rehash_chain(struct rhashtable * ht,unsigned int old_hash)270 static int rhashtable_rehash_chain(struct rhashtable *ht,
271 				    unsigned int old_hash)
272 {
273 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
274 	spinlock_t *old_bucket_lock;
275 	int err;
276 
277 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
278 
279 	spin_lock_bh(old_bucket_lock);
280 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
281 		;
282 
283 	if (err == -ENOENT) {
284 		old_tbl->rehash++;
285 		err = 0;
286 	}
287 	spin_unlock_bh(old_bucket_lock);
288 
289 	return err;
290 }
291 
rhashtable_rehash_attach(struct rhashtable * ht,struct bucket_table * old_tbl,struct bucket_table * new_tbl)292 static int rhashtable_rehash_attach(struct rhashtable *ht,
293 				    struct bucket_table *old_tbl,
294 				    struct bucket_table *new_tbl)
295 {
296 	/* Make insertions go into the new, empty table right away. Deletions
297 	 * and lookups will be attempted in both tables until we synchronize.
298 	 * As cmpxchg() provides strong barriers, we do not need
299 	 * rcu_assign_pointer().
300 	 */
301 
302 	if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
303 		return -EEXIST;
304 
305 	return 0;
306 }
307 
rhashtable_rehash_table(struct rhashtable * ht)308 static int rhashtable_rehash_table(struct rhashtable *ht)
309 {
310 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311 	struct bucket_table *new_tbl;
312 	struct rhashtable_walker *walker;
313 	unsigned int old_hash;
314 	int err;
315 
316 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
317 	if (!new_tbl)
318 		return 0;
319 
320 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
321 		err = rhashtable_rehash_chain(ht, old_hash);
322 		if (err)
323 			return err;
324 		cond_resched();
325 	}
326 
327 	/* Publish the new table pointer. */
328 	rcu_assign_pointer(ht->tbl, new_tbl);
329 
330 	spin_lock(&ht->lock);
331 	list_for_each_entry(walker, &old_tbl->walkers, list)
332 		walker->tbl = NULL;
333 	spin_unlock(&ht->lock);
334 
335 	/* Wait for readers. All new readers will see the new
336 	 * table, and thus no references to the old table will
337 	 * remain.
338 	 */
339 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
340 
341 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343 
rhashtable_rehash_alloc(struct rhashtable * ht,struct bucket_table * old_tbl,unsigned int size)344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345 				   struct bucket_table *old_tbl,
346 				   unsigned int size)
347 {
348 	struct bucket_table *new_tbl;
349 	int err;
350 
351 	ASSERT_RHT_MUTEX(ht);
352 
353 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354 	if (new_tbl == NULL)
355 		return -ENOMEM;
356 
357 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358 	if (err)
359 		bucket_table_free(new_tbl);
360 
361 	return err;
362 }
363 
364 /**
365  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366  * @ht:		the hash table to shrink
367  *
368  * This function shrinks the hash table to fit, i.e., the smallest
369  * size would not cause it to expand right away automatically.
370  *
371  * The caller must ensure that no concurrent resizing occurs by holding
372  * ht->mutex.
373  *
374  * The caller must ensure that no concurrent table mutations take place.
375  * It is however valid to have concurrent lookups if they are RCU protected.
376  *
377  * It is valid to have concurrent insertions and deletions protected by per
378  * bucket locks or concurrent RCU protected lookups and traversals.
379  */
rhashtable_shrink(struct rhashtable * ht)380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383 	unsigned int nelems = atomic_read(&ht->nelems);
384 	unsigned int size = 0;
385 
386 	if (nelems)
387 		size = roundup_pow_of_two(nelems * 3 / 2);
388 	if (size < ht->p.min_size)
389 		size = ht->p.min_size;
390 
391 	if (old_tbl->size <= size)
392 		return 0;
393 
394 	if (rht_dereference(old_tbl->future_tbl, ht))
395 		return -EEXIST;
396 
397 	return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399 
rht_deferred_worker(struct work_struct * work)400 static void rht_deferred_worker(struct work_struct *work)
401 {
402 	struct rhashtable *ht;
403 	struct bucket_table *tbl;
404 	int err = 0;
405 
406 	ht = container_of(work, struct rhashtable, run_work);
407 	mutex_lock(&ht->mutex);
408 
409 	tbl = rht_dereference(ht->tbl, ht);
410 	tbl = rhashtable_last_table(ht, tbl);
411 
412 	if (rht_grow_above_75(ht, tbl))
413 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415 		err = rhashtable_shrink(ht);
416 	else if (tbl->nest)
417 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418 
419 	if (!err)
420 		err = rhashtable_rehash_table(ht);
421 
422 	mutex_unlock(&ht->mutex);
423 
424 	if (err)
425 		schedule_work(&ht->run_work);
426 }
427 
rhashtable_insert_rehash(struct rhashtable * ht,struct bucket_table * tbl)428 static int rhashtable_insert_rehash(struct rhashtable *ht,
429 				    struct bucket_table *tbl)
430 {
431 	struct bucket_table *old_tbl;
432 	struct bucket_table *new_tbl;
433 	unsigned int size;
434 	int err;
435 
436 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
437 
438 	size = tbl->size;
439 
440 	err = -EBUSY;
441 
442 	if (rht_grow_above_75(ht, tbl))
443 		size *= 2;
444 	/* Do not schedule more than one rehash */
445 	else if (old_tbl != tbl)
446 		goto fail;
447 
448 	err = -ENOMEM;
449 
450 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
451 	if (new_tbl == NULL)
452 		goto fail;
453 
454 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
455 	if (err) {
456 		bucket_table_free(new_tbl);
457 		if (err == -EEXIST)
458 			err = 0;
459 	} else
460 		schedule_work(&ht->run_work);
461 
462 	return err;
463 
464 fail:
465 	/* Do not fail the insert if someone else did a rehash. */
466 	if (likely(rcu_access_pointer(tbl->future_tbl)))
467 		return 0;
468 
469 	/* Schedule async rehash to retry allocation in process context. */
470 	if (err == -ENOMEM)
471 		schedule_work(&ht->run_work);
472 
473 	return err;
474 }
475 
rhashtable_lookup_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,const void * key,struct rhash_head * obj)476 static void *rhashtable_lookup_one(struct rhashtable *ht,
477 				   struct bucket_table *tbl, unsigned int hash,
478 				   const void *key, struct rhash_head *obj)
479 {
480 	struct rhashtable_compare_arg arg = {
481 		.ht = ht,
482 		.key = key,
483 	};
484 	struct rhash_head __rcu **pprev;
485 	struct rhash_head *head;
486 	int elasticity;
487 
488 	elasticity = RHT_ELASTICITY;
489 	pprev = rht_bucket_var(tbl, hash);
490 	rht_for_each_continue(head, *pprev, tbl, hash) {
491 		struct rhlist_head *list;
492 		struct rhlist_head *plist;
493 
494 		elasticity--;
495 		if (!key ||
496 		    (ht->p.obj_cmpfn ?
497 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
498 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
499 			pprev = &head->next;
500 			continue;
501 		}
502 
503 		if (!ht->rhlist)
504 			return rht_obj(ht, head);
505 
506 		list = container_of(obj, struct rhlist_head, rhead);
507 		plist = container_of(head, struct rhlist_head, rhead);
508 
509 		RCU_INIT_POINTER(list->next, plist);
510 		head = rht_dereference_bucket(head->next, tbl, hash);
511 		RCU_INIT_POINTER(list->rhead.next, head);
512 		rcu_assign_pointer(*pprev, obj);
513 
514 		return NULL;
515 	}
516 
517 	if (elasticity <= 0)
518 		return ERR_PTR(-EAGAIN);
519 
520 	return ERR_PTR(-ENOENT);
521 }
522 
rhashtable_insert_one(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash,struct rhash_head * obj,void * data)523 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
524 						  struct bucket_table *tbl,
525 						  unsigned int hash,
526 						  struct rhash_head *obj,
527 						  void *data)
528 {
529 	struct rhash_head __rcu **pprev;
530 	struct bucket_table *new_tbl;
531 	struct rhash_head *head;
532 
533 	if (!IS_ERR_OR_NULL(data))
534 		return ERR_PTR(-EEXIST);
535 
536 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
537 		return ERR_CAST(data);
538 
539 	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
540 	if (new_tbl)
541 		return new_tbl;
542 
543 	if (PTR_ERR(data) != -ENOENT)
544 		return ERR_CAST(data);
545 
546 	if (unlikely(rht_grow_above_max(ht, tbl)))
547 		return ERR_PTR(-E2BIG);
548 
549 	if (unlikely(rht_grow_above_100(ht, tbl)))
550 		return ERR_PTR(-EAGAIN);
551 
552 	pprev = rht_bucket_insert(ht, tbl, hash);
553 	if (!pprev)
554 		return ERR_PTR(-ENOMEM);
555 
556 	head = rht_dereference_bucket(*pprev, tbl, hash);
557 
558 	RCU_INIT_POINTER(obj->next, head);
559 	if (ht->rhlist) {
560 		struct rhlist_head *list;
561 
562 		list = container_of(obj, struct rhlist_head, rhead);
563 		RCU_INIT_POINTER(list->next, NULL);
564 	}
565 
566 	rcu_assign_pointer(*pprev, obj);
567 
568 	atomic_inc(&ht->nelems);
569 	if (rht_grow_above_75(ht, tbl))
570 		schedule_work(&ht->run_work);
571 
572 	return NULL;
573 }
574 
rhashtable_try_insert(struct rhashtable * ht,const void * key,struct rhash_head * obj)575 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
576 				   struct rhash_head *obj)
577 {
578 	struct bucket_table *new_tbl;
579 	struct bucket_table *tbl;
580 	unsigned int hash;
581 	spinlock_t *lock;
582 	void *data;
583 
584 	tbl = rcu_dereference(ht->tbl);
585 
586 	/* All insertions must grab the oldest table containing
587 	 * the hashed bucket that is yet to be rehashed.
588 	 */
589 	for (;;) {
590 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
591 		lock = rht_bucket_lock(tbl, hash);
592 		spin_lock_bh(lock);
593 
594 		if (tbl->rehash <= hash)
595 			break;
596 
597 		spin_unlock_bh(lock);
598 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
599 	}
600 
601 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
602 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
603 	if (PTR_ERR(new_tbl) != -EEXIST)
604 		data = ERR_CAST(new_tbl);
605 
606 	while (!IS_ERR_OR_NULL(new_tbl)) {
607 		tbl = new_tbl;
608 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
609 		spin_lock_nested(rht_bucket_lock(tbl, hash),
610 				 SINGLE_DEPTH_NESTING);
611 
612 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
613 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
614 		if (PTR_ERR(new_tbl) != -EEXIST)
615 			data = ERR_CAST(new_tbl);
616 
617 		spin_unlock(rht_bucket_lock(tbl, hash));
618 	}
619 
620 	spin_unlock_bh(lock);
621 
622 	if (PTR_ERR(data) == -EAGAIN)
623 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
624 			       -EAGAIN);
625 
626 	return data;
627 }
628 
rhashtable_insert_slow(struct rhashtable * ht,const void * key,struct rhash_head * obj)629 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
630 			     struct rhash_head *obj)
631 {
632 	void *data;
633 
634 	do {
635 		rcu_read_lock();
636 		data = rhashtable_try_insert(ht, key, obj);
637 		rcu_read_unlock();
638 	} while (PTR_ERR(data) == -EAGAIN);
639 
640 	return data;
641 }
642 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
643 
644 /**
645  * rhashtable_walk_enter - Initialise an iterator
646  * @ht:		Table to walk over
647  * @iter:	Hash table Iterator
648  *
649  * This function prepares a hash table walk.
650  *
651  * Note that if you restart a walk after rhashtable_walk_stop you
652  * may see the same object twice.  Also, you may miss objects if
653  * there are removals in between rhashtable_walk_stop and the next
654  * call to rhashtable_walk_start.
655  *
656  * For a completely stable walk you should construct your own data
657  * structure outside the hash table.
658  *
659  * This function may be called from any process context, including
660  * non-preemptable context, but cannot be called from softirq or
661  * hardirq context.
662  *
663  * You must call rhashtable_walk_exit after this function returns.
664  */
rhashtable_walk_enter(struct rhashtable * ht,struct rhashtable_iter * iter)665 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
666 {
667 	iter->ht = ht;
668 	iter->p = NULL;
669 	iter->slot = 0;
670 	iter->skip = 0;
671 	iter->end_of_table = 0;
672 
673 	spin_lock(&ht->lock);
674 	iter->walker.tbl =
675 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
676 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
677 	spin_unlock(&ht->lock);
678 }
679 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
680 
681 /**
682  * rhashtable_walk_exit - Free an iterator
683  * @iter:	Hash table Iterator
684  *
685  * This function frees resources allocated by rhashtable_walk_init.
686  */
rhashtable_walk_exit(struct rhashtable_iter * iter)687 void rhashtable_walk_exit(struct rhashtable_iter *iter)
688 {
689 	spin_lock(&iter->ht->lock);
690 	if (iter->walker.tbl)
691 		list_del(&iter->walker.list);
692 	spin_unlock(&iter->ht->lock);
693 }
694 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
695 
696 /**
697  * rhashtable_walk_start_check - Start a hash table walk
698  * @iter:	Hash table iterator
699  *
700  * Start a hash table walk at the current iterator position.  Note that we take
701  * the RCU lock in all cases including when we return an error.  So you must
702  * always call rhashtable_walk_stop to clean up.
703  *
704  * Returns zero if successful.
705  *
706  * Returns -EAGAIN if resize event occured.  Note that the iterator
707  * will rewind back to the beginning and you may use it immediately
708  * by calling rhashtable_walk_next.
709  *
710  * rhashtable_walk_start is defined as an inline variant that returns
711  * void. This is preferred in cases where the caller would ignore
712  * resize events and always continue.
713  */
rhashtable_walk_start_check(struct rhashtable_iter * iter)714 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
715 	__acquires(RCU)
716 {
717 	struct rhashtable *ht = iter->ht;
718 	bool rhlist = ht->rhlist;
719 
720 	rcu_read_lock();
721 
722 	spin_lock(&ht->lock);
723 	if (iter->walker.tbl)
724 		list_del(&iter->walker.list);
725 	spin_unlock(&ht->lock);
726 
727 	if (iter->end_of_table)
728 		return 0;
729 	if (!iter->walker.tbl) {
730 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
731 		iter->slot = 0;
732 		iter->skip = 0;
733 		return -EAGAIN;
734 	}
735 
736 	if (iter->p && !rhlist) {
737 		/*
738 		 * We need to validate that 'p' is still in the table, and
739 		 * if so, update 'skip'
740 		 */
741 		struct rhash_head *p;
742 		int skip = 0;
743 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
744 			skip++;
745 			if (p == iter->p) {
746 				iter->skip = skip;
747 				goto found;
748 			}
749 		}
750 		iter->p = NULL;
751 	} else if (iter->p && rhlist) {
752 		/* Need to validate that 'list' is still in the table, and
753 		 * if so, update 'skip' and 'p'.
754 		 */
755 		struct rhash_head *p;
756 		struct rhlist_head *list;
757 		int skip = 0;
758 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
759 			for (list = container_of(p, struct rhlist_head, rhead);
760 			     list;
761 			     list = rcu_dereference(list->next)) {
762 				skip++;
763 				if (list == iter->list) {
764 					iter->p = p;
765 					iter->skip = skip;
766 					goto found;
767 				}
768 			}
769 		}
770 		iter->p = NULL;
771 	}
772 found:
773 	return 0;
774 }
775 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
776 
777 /**
778  * __rhashtable_walk_find_next - Find the next element in a table (or the first
779  * one in case of a new walk).
780  *
781  * @iter:	Hash table iterator
782  *
783  * Returns the found object or NULL when the end of the table is reached.
784  *
785  * Returns -EAGAIN if resize event occurred.
786  */
__rhashtable_walk_find_next(struct rhashtable_iter * iter)787 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
788 {
789 	struct bucket_table *tbl = iter->walker.tbl;
790 	struct rhlist_head *list = iter->list;
791 	struct rhashtable *ht = iter->ht;
792 	struct rhash_head *p = iter->p;
793 	bool rhlist = ht->rhlist;
794 
795 	if (!tbl)
796 		return NULL;
797 
798 	for (; iter->slot < tbl->size; iter->slot++) {
799 		int skip = iter->skip;
800 
801 		rht_for_each_rcu(p, tbl, iter->slot) {
802 			if (rhlist) {
803 				list = container_of(p, struct rhlist_head,
804 						    rhead);
805 				do {
806 					if (!skip)
807 						goto next;
808 					skip--;
809 					list = rcu_dereference(list->next);
810 				} while (list);
811 
812 				continue;
813 			}
814 			if (!skip)
815 				break;
816 			skip--;
817 		}
818 
819 next:
820 		if (!rht_is_a_nulls(p)) {
821 			iter->skip++;
822 			iter->p = p;
823 			iter->list = list;
824 			return rht_obj(ht, rhlist ? &list->rhead : p);
825 		}
826 
827 		iter->skip = 0;
828 	}
829 
830 	iter->p = NULL;
831 
832 	/* Ensure we see any new tables. */
833 	smp_rmb();
834 
835 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
836 	if (iter->walker.tbl) {
837 		iter->slot = 0;
838 		iter->skip = 0;
839 		return ERR_PTR(-EAGAIN);
840 	} else {
841 		iter->end_of_table = true;
842 	}
843 
844 	return NULL;
845 }
846 
847 /**
848  * rhashtable_walk_next - Return the next object and advance the iterator
849  * @iter:	Hash table iterator
850  *
851  * Note that you must call rhashtable_walk_stop when you are finished
852  * with the walk.
853  *
854  * Returns the next object or NULL when the end of the table is reached.
855  *
856  * Returns -EAGAIN if resize event occurred.  Note that the iterator
857  * will rewind back to the beginning and you may continue to use it.
858  */
rhashtable_walk_next(struct rhashtable_iter * iter)859 void *rhashtable_walk_next(struct rhashtable_iter *iter)
860 {
861 	struct rhlist_head *list = iter->list;
862 	struct rhashtable *ht = iter->ht;
863 	struct rhash_head *p = iter->p;
864 	bool rhlist = ht->rhlist;
865 
866 	if (p) {
867 		if (!rhlist || !(list = rcu_dereference(list->next))) {
868 			p = rcu_dereference(p->next);
869 			list = container_of(p, struct rhlist_head, rhead);
870 		}
871 		if (!rht_is_a_nulls(p)) {
872 			iter->skip++;
873 			iter->p = p;
874 			iter->list = list;
875 			return rht_obj(ht, rhlist ? &list->rhead : p);
876 		}
877 
878 		/* At the end of this slot, switch to next one and then find
879 		 * next entry from that point.
880 		 */
881 		iter->skip = 0;
882 		iter->slot++;
883 	}
884 
885 	return __rhashtable_walk_find_next(iter);
886 }
887 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
888 
889 /**
890  * rhashtable_walk_peek - Return the next object but don't advance the iterator
891  * @iter:	Hash table iterator
892  *
893  * Returns the next object or NULL when the end of the table is reached.
894  *
895  * Returns -EAGAIN if resize event occurred.  Note that the iterator
896  * will rewind back to the beginning and you may continue to use it.
897  */
rhashtable_walk_peek(struct rhashtable_iter * iter)898 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
899 {
900 	struct rhlist_head *list = iter->list;
901 	struct rhashtable *ht = iter->ht;
902 	struct rhash_head *p = iter->p;
903 
904 	if (p)
905 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
906 
907 	/* No object found in current iter, find next one in the table. */
908 
909 	if (iter->skip) {
910 		/* A nonzero skip value points to the next entry in the table
911 		 * beyond that last one that was found. Decrement skip so
912 		 * we find the current value. __rhashtable_walk_find_next
913 		 * will restore the original value of skip assuming that
914 		 * the table hasn't changed.
915 		 */
916 		iter->skip--;
917 	}
918 
919 	return __rhashtable_walk_find_next(iter);
920 }
921 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
922 
923 /**
924  * rhashtable_walk_stop - Finish a hash table walk
925  * @iter:	Hash table iterator
926  *
927  * Finish a hash table walk.  Does not reset the iterator to the start of the
928  * hash table.
929  */
rhashtable_walk_stop(struct rhashtable_iter * iter)930 void rhashtable_walk_stop(struct rhashtable_iter *iter)
931 	__releases(RCU)
932 {
933 	struct rhashtable *ht;
934 	struct bucket_table *tbl = iter->walker.tbl;
935 
936 	if (!tbl)
937 		goto out;
938 
939 	ht = iter->ht;
940 
941 	spin_lock(&ht->lock);
942 	if (tbl->rehash < tbl->size)
943 		list_add(&iter->walker.list, &tbl->walkers);
944 	else
945 		iter->walker.tbl = NULL;
946 	spin_unlock(&ht->lock);
947 
948 out:
949 	rcu_read_unlock();
950 }
951 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
952 
rounded_hashtable_size(const struct rhashtable_params * params)953 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
954 {
955 	size_t retsize;
956 
957 	if (params->nelem_hint)
958 		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
959 			      (unsigned long)params->min_size);
960 	else
961 		retsize = max(HASH_DEFAULT_SIZE,
962 			      (unsigned long)params->min_size);
963 
964 	return retsize;
965 }
966 
rhashtable_jhash2(const void * key,u32 length,u32 seed)967 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
968 {
969 	return jhash2(key, length, seed);
970 }
971 
972 /**
973  * rhashtable_init - initialize a new hash table
974  * @ht:		hash table to be initialized
975  * @params:	configuration parameters
976  *
977  * Initializes a new hash table based on the provided configuration
978  * parameters. A table can be configured either with a variable or
979  * fixed length key:
980  *
981  * Configuration Example 1: Fixed length keys
982  * struct test_obj {
983  *	int			key;
984  *	void *			my_member;
985  *	struct rhash_head	node;
986  * };
987  *
988  * struct rhashtable_params params = {
989  *	.head_offset = offsetof(struct test_obj, node),
990  *	.key_offset = offsetof(struct test_obj, key),
991  *	.key_len = sizeof(int),
992  *	.hashfn = jhash,
993  * };
994  *
995  * Configuration Example 2: Variable length keys
996  * struct test_obj {
997  *	[...]
998  *	struct rhash_head	node;
999  * };
1000  *
1001  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1002  * {
1003  *	struct test_obj *obj = data;
1004  *
1005  *	return [... hash ...];
1006  * }
1007  *
1008  * struct rhashtable_params params = {
1009  *	.head_offset = offsetof(struct test_obj, node),
1010  *	.hashfn = jhash,
1011  *	.obj_hashfn = my_hash_fn,
1012  * };
1013  */
rhashtable_init(struct rhashtable * ht,const struct rhashtable_params * params)1014 int rhashtable_init(struct rhashtable *ht,
1015 		    const struct rhashtable_params *params)
1016 {
1017 	struct bucket_table *tbl;
1018 	size_t size;
1019 
1020 	if ((!params->key_len && !params->obj_hashfn) ||
1021 	    (params->obj_hashfn && !params->obj_cmpfn))
1022 		return -EINVAL;
1023 
1024 	memset(ht, 0, sizeof(*ht));
1025 	mutex_init(&ht->mutex);
1026 	spin_lock_init(&ht->lock);
1027 	memcpy(&ht->p, params, sizeof(*params));
1028 
1029 	if (params->min_size)
1030 		ht->p.min_size = roundup_pow_of_two(params->min_size);
1031 
1032 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1033 	ht->max_elems = 1u << 31;
1034 
1035 	if (params->max_size) {
1036 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1037 		if (ht->p.max_size < ht->max_elems / 2)
1038 			ht->max_elems = ht->p.max_size * 2;
1039 	}
1040 
1041 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1042 
1043 	size = rounded_hashtable_size(&ht->p);
1044 
1045 	if (params->locks_mul)
1046 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1047 	else
1048 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1049 
1050 	ht->key_len = ht->p.key_len;
1051 	if (!params->hashfn) {
1052 		ht->p.hashfn = jhash;
1053 
1054 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1055 			ht->key_len /= sizeof(u32);
1056 			ht->p.hashfn = rhashtable_jhash2;
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * This is api initialization and thus we need to guarantee the
1062 	 * initial rhashtable allocation. Upon failure, retry with the
1063 	 * smallest possible size with __GFP_NOFAIL semantics.
1064 	 */
1065 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1066 	if (unlikely(tbl == NULL)) {
1067 		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1068 		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1069 	}
1070 
1071 	atomic_set(&ht->nelems, 0);
1072 
1073 	RCU_INIT_POINTER(ht->tbl, tbl);
1074 
1075 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1076 
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(rhashtable_init);
1080 
1081 /**
1082  * rhltable_init - initialize a new hash list table
1083  * @hlt:	hash list table to be initialized
1084  * @params:	configuration parameters
1085  *
1086  * Initializes a new hash list table.
1087  *
1088  * See documentation for rhashtable_init.
1089  */
rhltable_init(struct rhltable * hlt,const struct rhashtable_params * params)1090 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1091 {
1092 	int err;
1093 
1094 	err = rhashtable_init(&hlt->ht, params);
1095 	hlt->ht.rhlist = true;
1096 	return err;
1097 }
1098 EXPORT_SYMBOL_GPL(rhltable_init);
1099 
rhashtable_free_one(struct rhashtable * ht,struct rhash_head * obj,void (* free_fn)(void * ptr,void * arg),void * arg)1100 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1101 				void (*free_fn)(void *ptr, void *arg),
1102 				void *arg)
1103 {
1104 	struct rhlist_head *list;
1105 
1106 	if (!ht->rhlist) {
1107 		free_fn(rht_obj(ht, obj), arg);
1108 		return;
1109 	}
1110 
1111 	list = container_of(obj, struct rhlist_head, rhead);
1112 	do {
1113 		obj = &list->rhead;
1114 		list = rht_dereference(list->next, ht);
1115 		free_fn(rht_obj(ht, obj), arg);
1116 	} while (list);
1117 }
1118 
1119 /**
1120  * rhashtable_free_and_destroy - free elements and destroy hash table
1121  * @ht:		the hash table to destroy
1122  * @free_fn:	callback to release resources of element
1123  * @arg:	pointer passed to free_fn
1124  *
1125  * Stops an eventual async resize. If defined, invokes free_fn for each
1126  * element to releasal resources. Please note that RCU protected
1127  * readers may still be accessing the elements. Releasing of resources
1128  * must occur in a compatible manner. Then frees the bucket array.
1129  *
1130  * This function will eventually sleep to wait for an async resize
1131  * to complete. The caller is responsible that no further write operations
1132  * occurs in parallel.
1133  */
rhashtable_free_and_destroy(struct rhashtable * ht,void (* free_fn)(void * ptr,void * arg),void * arg)1134 void rhashtable_free_and_destroy(struct rhashtable *ht,
1135 				 void (*free_fn)(void *ptr, void *arg),
1136 				 void *arg)
1137 {
1138 	struct bucket_table *tbl, *next_tbl;
1139 	unsigned int i;
1140 
1141 	cancel_work_sync(&ht->run_work);
1142 
1143 	mutex_lock(&ht->mutex);
1144 	tbl = rht_dereference(ht->tbl, ht);
1145 restart:
1146 	if (free_fn) {
1147 		for (i = 0; i < tbl->size; i++) {
1148 			struct rhash_head *pos, *next;
1149 
1150 			cond_resched();
1151 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1152 			     next = !rht_is_a_nulls(pos) ?
1153 					rht_dereference(pos->next, ht) : NULL;
1154 			     !rht_is_a_nulls(pos);
1155 			     pos = next,
1156 			     next = !rht_is_a_nulls(pos) ?
1157 					rht_dereference(pos->next, ht) : NULL)
1158 				rhashtable_free_one(ht, pos, free_fn, arg);
1159 		}
1160 	}
1161 
1162 	next_tbl = rht_dereference(tbl->future_tbl, ht);
1163 	bucket_table_free(tbl);
1164 	if (next_tbl) {
1165 		tbl = next_tbl;
1166 		goto restart;
1167 	}
1168 	mutex_unlock(&ht->mutex);
1169 }
1170 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1171 
rhashtable_destroy(struct rhashtable * ht)1172 void rhashtable_destroy(struct rhashtable *ht)
1173 {
1174 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1175 }
1176 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1177 
rht_bucket_nested(const struct bucket_table * tbl,unsigned int hash)1178 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1179 					    unsigned int hash)
1180 {
1181 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1182 	static struct rhash_head __rcu *rhnull =
1183 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1184 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1185 	unsigned int size = tbl->size >> tbl->nest;
1186 	unsigned int subhash = hash;
1187 	union nested_table *ntbl;
1188 
1189 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1190 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1191 	subhash >>= tbl->nest;
1192 
1193 	while (ntbl && size > (1 << shift)) {
1194 		index = subhash & ((1 << shift) - 1);
1195 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1196 						  tbl, hash);
1197 		size >>= shift;
1198 		subhash >>= shift;
1199 	}
1200 
1201 	if (!ntbl)
1202 		return &rhnull;
1203 
1204 	return &ntbl[subhash].bucket;
1205 
1206 }
1207 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1208 
rht_bucket_nested_insert(struct rhashtable * ht,struct bucket_table * tbl,unsigned int hash)1209 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1210 						   struct bucket_table *tbl,
1211 						   unsigned int hash)
1212 {
1213 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1214 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1215 	unsigned int size = tbl->size >> tbl->nest;
1216 	union nested_table *ntbl;
1217 
1218 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1219 	hash >>= tbl->nest;
1220 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1221 				  size <= (1 << shift));
1222 
1223 	while (ntbl && size > (1 << shift)) {
1224 		index = hash & ((1 << shift) - 1);
1225 		size >>= shift;
1226 		hash >>= shift;
1227 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1228 					  size <= (1 << shift));
1229 	}
1230 
1231 	if (!ntbl)
1232 		return NULL;
1233 
1234 	return &ntbl[hash].bucket;
1235 
1236 }
1237 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1238