1 /*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/device.h>
29 #include <linux/clocksource.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33 #include <linux/tick.h>
34 #include <linux/kthread.h>
35
36 #include "tick-internal.h"
37 #include "timekeeping_internal.h"
38
39 /**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64 {
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91 }
92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93
94 /*[Clocksource internal variables]---------
95 * curr_clocksource:
96 * currently selected clocksource.
97 * suspend_clocksource:
98 * used to calculate the suspend time.
99 * clocksource_list:
100 * linked list with the registered clocksources
101 * clocksource_mutex:
102 * protects manipulations to curr_clocksource and the clocksource_list
103 * override_name:
104 * Name of the user-specified clocksource.
105 */
106 static struct clocksource *curr_clocksource;
107 static struct clocksource *suspend_clocksource;
108 static LIST_HEAD(clocksource_list);
109 static DEFINE_MUTEX(clocksource_mutex);
110 static char override_name[CS_NAME_LEN];
111 static int finished_booting;
112 static u64 suspend_start;
113
114 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
115 static void clocksource_watchdog_work(struct work_struct *work);
116 static void clocksource_select(void);
117
118 static LIST_HEAD(watchdog_list);
119 static struct clocksource *watchdog;
120 static struct timer_list watchdog_timer;
121 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
122 static DEFINE_SPINLOCK(watchdog_lock);
123 static int watchdog_running;
124 static atomic_t watchdog_reset_pending;
125
clocksource_watchdog_lock(unsigned long * flags)126 static void inline clocksource_watchdog_lock(unsigned long *flags)
127 {
128 spin_lock_irqsave(&watchdog_lock, *flags);
129 }
130
clocksource_watchdog_unlock(unsigned long * flags)131 static void inline clocksource_watchdog_unlock(unsigned long *flags)
132 {
133 spin_unlock_irqrestore(&watchdog_lock, *flags);
134 }
135
136 static int clocksource_watchdog_kthread(void *data);
137 static void __clocksource_change_rating(struct clocksource *cs, int rating);
138
139 /*
140 * Interval: 0.5sec Threshold: 0.0625s
141 */
142 #define WATCHDOG_INTERVAL (HZ >> 1)
143 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
144
clocksource_watchdog_work(struct work_struct * work)145 static void clocksource_watchdog_work(struct work_struct *work)
146 {
147 /*
148 * We cannot directly run clocksource_watchdog_kthread() here, because
149 * clocksource_select() calls timekeeping_notify() which uses
150 * stop_machine(). One cannot use stop_machine() from a workqueue() due
151 * lock inversions wrt CPU hotplug.
152 *
153 * Also, we only ever run this work once or twice during the lifetime
154 * of the kernel, so there is no point in creating a more permanent
155 * kthread for this.
156 *
157 * If kthread_run fails the next watchdog scan over the
158 * watchdog_list will find the unstable clock again.
159 */
160 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
161 }
162
__clocksource_unstable(struct clocksource * cs)163 static void __clocksource_unstable(struct clocksource *cs)
164 {
165 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
166 cs->flags |= CLOCK_SOURCE_UNSTABLE;
167
168 /*
169 * If the clocksource is registered clocksource_watchdog_kthread() will
170 * re-rate and re-select.
171 */
172 if (list_empty(&cs->list)) {
173 cs->rating = 0;
174 return;
175 }
176
177 if (cs->mark_unstable)
178 cs->mark_unstable(cs);
179
180 /* kick clocksource_watchdog_kthread() */
181 if (finished_booting)
182 schedule_work(&watchdog_work);
183 }
184
185 /**
186 * clocksource_mark_unstable - mark clocksource unstable via watchdog
187 * @cs: clocksource to be marked unstable
188 *
189 * This function is called by the x86 TSC code to mark clocksources as unstable;
190 * it defers demotion and re-selection to a kthread.
191 */
clocksource_mark_unstable(struct clocksource * cs)192 void clocksource_mark_unstable(struct clocksource *cs)
193 {
194 unsigned long flags;
195
196 spin_lock_irqsave(&watchdog_lock, flags);
197 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
198 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
199 list_add(&cs->wd_list, &watchdog_list);
200 __clocksource_unstable(cs);
201 }
202 spin_unlock_irqrestore(&watchdog_lock, flags);
203 }
204
clocksource_watchdog(struct timer_list * unused)205 static void clocksource_watchdog(struct timer_list *unused)
206 {
207 struct clocksource *cs;
208 u64 csnow, wdnow, cslast, wdlast, delta;
209 int64_t wd_nsec, cs_nsec;
210 int next_cpu, reset_pending;
211
212 spin_lock(&watchdog_lock);
213 if (!watchdog_running)
214 goto out;
215
216 reset_pending = atomic_read(&watchdog_reset_pending);
217
218 list_for_each_entry(cs, &watchdog_list, wd_list) {
219
220 /* Clocksource already marked unstable? */
221 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
222 if (finished_booting)
223 schedule_work(&watchdog_work);
224 continue;
225 }
226
227 local_irq_disable();
228 csnow = cs->read(cs);
229 wdnow = watchdog->read(watchdog);
230 local_irq_enable();
231
232 /* Clocksource initialized ? */
233 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
234 atomic_read(&watchdog_reset_pending)) {
235 cs->flags |= CLOCK_SOURCE_WATCHDOG;
236 cs->wd_last = wdnow;
237 cs->cs_last = csnow;
238 continue;
239 }
240
241 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
242 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
243 watchdog->shift);
244
245 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
246 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
247 wdlast = cs->wd_last; /* save these in case we print them */
248 cslast = cs->cs_last;
249 cs->cs_last = csnow;
250 cs->wd_last = wdnow;
251
252 if (atomic_read(&watchdog_reset_pending))
253 continue;
254
255 /* Check the deviation from the watchdog clocksource. */
256 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
257 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
258 smp_processor_id(), cs->name);
259 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
260 watchdog->name, wdnow, wdlast, watchdog->mask);
261 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
262 cs->name, csnow, cslast, cs->mask);
263 __clocksource_unstable(cs);
264 continue;
265 }
266
267 if (cs == curr_clocksource && cs->tick_stable)
268 cs->tick_stable(cs);
269
270 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
271 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
272 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
273 /* Mark it valid for high-res. */
274 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
275
276 /*
277 * clocksource_done_booting() will sort it if
278 * finished_booting is not set yet.
279 */
280 if (!finished_booting)
281 continue;
282
283 /*
284 * If this is not the current clocksource let
285 * the watchdog thread reselect it. Due to the
286 * change to high res this clocksource might
287 * be preferred now. If it is the current
288 * clocksource let the tick code know about
289 * that change.
290 */
291 if (cs != curr_clocksource) {
292 cs->flags |= CLOCK_SOURCE_RESELECT;
293 schedule_work(&watchdog_work);
294 } else {
295 tick_clock_notify();
296 }
297 }
298 }
299
300 /*
301 * We only clear the watchdog_reset_pending, when we did a
302 * full cycle through all clocksources.
303 */
304 if (reset_pending)
305 atomic_dec(&watchdog_reset_pending);
306
307 /*
308 * Cycle through CPUs to check if the CPUs stay synchronized
309 * to each other.
310 */
311 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
312 if (next_cpu >= nr_cpu_ids)
313 next_cpu = cpumask_first(cpu_online_mask);
314 watchdog_timer.expires += WATCHDOG_INTERVAL;
315 add_timer_on(&watchdog_timer, next_cpu);
316 out:
317 spin_unlock(&watchdog_lock);
318 }
319
clocksource_start_watchdog(void)320 static inline void clocksource_start_watchdog(void)
321 {
322 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
323 return;
324 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
325 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
326 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
327 watchdog_running = 1;
328 }
329
clocksource_stop_watchdog(void)330 static inline void clocksource_stop_watchdog(void)
331 {
332 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
333 return;
334 del_timer(&watchdog_timer);
335 watchdog_running = 0;
336 }
337
clocksource_reset_watchdog(void)338 static inline void clocksource_reset_watchdog(void)
339 {
340 struct clocksource *cs;
341
342 list_for_each_entry(cs, &watchdog_list, wd_list)
343 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
344 }
345
clocksource_resume_watchdog(void)346 static void clocksource_resume_watchdog(void)
347 {
348 atomic_inc(&watchdog_reset_pending);
349 }
350
clocksource_enqueue_watchdog(struct clocksource * cs)351 static void clocksource_enqueue_watchdog(struct clocksource *cs)
352 {
353 INIT_LIST_HEAD(&cs->wd_list);
354
355 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
356 /* cs is a clocksource to be watched. */
357 list_add(&cs->wd_list, &watchdog_list);
358 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
359 } else {
360 /* cs is a watchdog. */
361 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
362 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
363 }
364 }
365
clocksource_select_watchdog(bool fallback)366 static void clocksource_select_watchdog(bool fallback)
367 {
368 struct clocksource *cs, *old_wd;
369 unsigned long flags;
370
371 spin_lock_irqsave(&watchdog_lock, flags);
372 /* save current watchdog */
373 old_wd = watchdog;
374 if (fallback)
375 watchdog = NULL;
376
377 list_for_each_entry(cs, &clocksource_list, list) {
378 /* cs is a clocksource to be watched. */
379 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
380 continue;
381
382 /* Skip current if we were requested for a fallback. */
383 if (fallback && cs == old_wd)
384 continue;
385
386 /* Pick the best watchdog. */
387 if (!watchdog || cs->rating > watchdog->rating)
388 watchdog = cs;
389 }
390 /* If we failed to find a fallback restore the old one. */
391 if (!watchdog)
392 watchdog = old_wd;
393
394 /* If we changed the watchdog we need to reset cycles. */
395 if (watchdog != old_wd)
396 clocksource_reset_watchdog();
397
398 /* Check if the watchdog timer needs to be started. */
399 clocksource_start_watchdog();
400 spin_unlock_irqrestore(&watchdog_lock, flags);
401 }
402
clocksource_dequeue_watchdog(struct clocksource * cs)403 static void clocksource_dequeue_watchdog(struct clocksource *cs)
404 {
405 if (cs != watchdog) {
406 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
407 /* cs is a watched clocksource. */
408 list_del_init(&cs->wd_list);
409 /* Check if the watchdog timer needs to be stopped. */
410 clocksource_stop_watchdog();
411 }
412 }
413 }
414
__clocksource_watchdog_kthread(void)415 static int __clocksource_watchdog_kthread(void)
416 {
417 struct clocksource *cs, *tmp;
418 unsigned long flags;
419 int select = 0;
420
421 spin_lock_irqsave(&watchdog_lock, flags);
422 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
423 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
424 list_del_init(&cs->wd_list);
425 __clocksource_change_rating(cs, 0);
426 select = 1;
427 }
428 if (cs->flags & CLOCK_SOURCE_RESELECT) {
429 cs->flags &= ~CLOCK_SOURCE_RESELECT;
430 select = 1;
431 }
432 }
433 /* Check if the watchdog timer needs to be stopped. */
434 clocksource_stop_watchdog();
435 spin_unlock_irqrestore(&watchdog_lock, flags);
436
437 return select;
438 }
439
clocksource_watchdog_kthread(void * data)440 static int clocksource_watchdog_kthread(void *data)
441 {
442 mutex_lock(&clocksource_mutex);
443 if (__clocksource_watchdog_kthread())
444 clocksource_select();
445 mutex_unlock(&clocksource_mutex);
446 return 0;
447 }
448
clocksource_is_watchdog(struct clocksource * cs)449 static bool clocksource_is_watchdog(struct clocksource *cs)
450 {
451 return cs == watchdog;
452 }
453
454 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
455
clocksource_enqueue_watchdog(struct clocksource * cs)456 static void clocksource_enqueue_watchdog(struct clocksource *cs)
457 {
458 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
459 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
460 }
461
clocksource_select_watchdog(bool fallback)462 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)463 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)464 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)465 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)466 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)467 void clocksource_mark_unstable(struct clocksource *cs) { }
468
clocksource_watchdog_lock(unsigned long * flags)469 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)470 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
471
472 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
473
clocksource_is_suspend(struct clocksource * cs)474 static bool clocksource_is_suspend(struct clocksource *cs)
475 {
476 return cs == suspend_clocksource;
477 }
478
__clocksource_suspend_select(struct clocksource * cs)479 static void __clocksource_suspend_select(struct clocksource *cs)
480 {
481 /*
482 * Skip the clocksource which will be stopped in suspend state.
483 */
484 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
485 return;
486
487 /*
488 * The nonstop clocksource can be selected as the suspend clocksource to
489 * calculate the suspend time, so it should not supply suspend/resume
490 * interfaces to suspend the nonstop clocksource when system suspends.
491 */
492 if (cs->suspend || cs->resume) {
493 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
494 cs->name);
495 }
496
497 /* Pick the best rating. */
498 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
499 suspend_clocksource = cs;
500 }
501
502 /**
503 * clocksource_suspend_select - Select the best clocksource for suspend timing
504 * @fallback: if select a fallback clocksource
505 */
clocksource_suspend_select(bool fallback)506 static void clocksource_suspend_select(bool fallback)
507 {
508 struct clocksource *cs, *old_suspend;
509
510 old_suspend = suspend_clocksource;
511 if (fallback)
512 suspend_clocksource = NULL;
513
514 list_for_each_entry(cs, &clocksource_list, list) {
515 /* Skip current if we were requested for a fallback. */
516 if (fallback && cs == old_suspend)
517 continue;
518
519 __clocksource_suspend_select(cs);
520 }
521 }
522
523 /**
524 * clocksource_start_suspend_timing - Start measuring the suspend timing
525 * @cs: current clocksource from timekeeping
526 * @start_cycles: current cycles from timekeeping
527 *
528 * This function will save the start cycle values of suspend timer to calculate
529 * the suspend time when resuming system.
530 *
531 * This function is called late in the suspend process from timekeeping_suspend(),
532 * that means processes are freezed, non-boot cpus and interrupts are disabled
533 * now. It is therefore possible to start the suspend timer without taking the
534 * clocksource mutex.
535 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)536 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
537 {
538 if (!suspend_clocksource)
539 return;
540
541 /*
542 * If current clocksource is the suspend timer, we should use the
543 * tkr_mono.cycle_last value as suspend_start to avoid same reading
544 * from suspend timer.
545 */
546 if (clocksource_is_suspend(cs)) {
547 suspend_start = start_cycles;
548 return;
549 }
550
551 if (suspend_clocksource->enable &&
552 suspend_clocksource->enable(suspend_clocksource)) {
553 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
554 return;
555 }
556
557 suspend_start = suspend_clocksource->read(suspend_clocksource);
558 }
559
560 /**
561 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
562 * @cs: current clocksource from timekeeping
563 * @cycle_now: current cycles from timekeeping
564 *
565 * This function will calculate the suspend time from suspend timer.
566 *
567 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
568 *
569 * This function is called early in the resume process from timekeeping_resume(),
570 * that means there is only one cpu, no processes are running and the interrupts
571 * are disabled. It is therefore possible to stop the suspend timer without
572 * taking the clocksource mutex.
573 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)574 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
575 {
576 u64 now, delta, nsec = 0;
577
578 if (!suspend_clocksource)
579 return 0;
580
581 /*
582 * If current clocksource is the suspend timer, we should use the
583 * tkr_mono.cycle_last value from timekeeping as current cycle to
584 * avoid same reading from suspend timer.
585 */
586 if (clocksource_is_suspend(cs))
587 now = cycle_now;
588 else
589 now = suspend_clocksource->read(suspend_clocksource);
590
591 if (now > suspend_start) {
592 delta = clocksource_delta(now, suspend_start,
593 suspend_clocksource->mask);
594 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
595 suspend_clocksource->shift);
596 }
597
598 /*
599 * Disable the suspend timer to save power if current clocksource is
600 * not the suspend timer.
601 */
602 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
603 suspend_clocksource->disable(suspend_clocksource);
604
605 return nsec;
606 }
607
608 /**
609 * clocksource_suspend - suspend the clocksource(s)
610 */
clocksource_suspend(void)611 void clocksource_suspend(void)
612 {
613 struct clocksource *cs;
614
615 list_for_each_entry_reverse(cs, &clocksource_list, list)
616 if (cs->suspend)
617 cs->suspend(cs);
618 }
619
620 /**
621 * clocksource_resume - resume the clocksource(s)
622 */
clocksource_resume(void)623 void clocksource_resume(void)
624 {
625 struct clocksource *cs;
626
627 list_for_each_entry(cs, &clocksource_list, list)
628 if (cs->resume)
629 cs->resume(cs);
630
631 clocksource_resume_watchdog();
632 }
633
634 /**
635 * clocksource_touch_watchdog - Update watchdog
636 *
637 * Update the watchdog after exception contexts such as kgdb so as not
638 * to incorrectly trip the watchdog. This might fail when the kernel
639 * was stopped in code which holds watchdog_lock.
640 */
clocksource_touch_watchdog(void)641 void clocksource_touch_watchdog(void)
642 {
643 clocksource_resume_watchdog();
644 }
645
646 /**
647 * clocksource_max_adjustment- Returns max adjustment amount
648 * @cs: Pointer to clocksource
649 *
650 */
clocksource_max_adjustment(struct clocksource * cs)651 static u32 clocksource_max_adjustment(struct clocksource *cs)
652 {
653 u64 ret;
654 /*
655 * We won't try to correct for more than 11% adjustments (110,000 ppm),
656 */
657 ret = (u64)cs->mult * 11;
658 do_div(ret,100);
659 return (u32)ret;
660 }
661
662 /**
663 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
664 * @mult: cycle to nanosecond multiplier
665 * @shift: cycle to nanosecond divisor (power of two)
666 * @maxadj: maximum adjustment value to mult (~11%)
667 * @mask: bitmask for two's complement subtraction of non 64 bit counters
668 * @max_cyc: maximum cycle value before potential overflow (does not include
669 * any safety margin)
670 *
671 * NOTE: This function includes a safety margin of 50%, in other words, we
672 * return half the number of nanoseconds the hardware counter can technically
673 * cover. This is done so that we can potentially detect problems caused by
674 * delayed timers or bad hardware, which might result in time intervals that
675 * are larger than what the math used can handle without overflows.
676 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)677 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
678 {
679 u64 max_nsecs, max_cycles;
680
681 /*
682 * Calculate the maximum number of cycles that we can pass to the
683 * cyc2ns() function without overflowing a 64-bit result.
684 */
685 max_cycles = ULLONG_MAX;
686 do_div(max_cycles, mult+maxadj);
687
688 /*
689 * The actual maximum number of cycles we can defer the clocksource is
690 * determined by the minimum of max_cycles and mask.
691 * Note: Here we subtract the maxadj to make sure we don't sleep for
692 * too long if there's a large negative adjustment.
693 */
694 max_cycles = min(max_cycles, mask);
695 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
696
697 /* return the max_cycles value as well if requested */
698 if (max_cyc)
699 *max_cyc = max_cycles;
700
701 /* Return 50% of the actual maximum, so we can detect bad values */
702 max_nsecs >>= 1;
703
704 return max_nsecs;
705 }
706
707 /**
708 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
709 * @cs: Pointer to clocksource to be updated
710 *
711 */
clocksource_update_max_deferment(struct clocksource * cs)712 static inline void clocksource_update_max_deferment(struct clocksource *cs)
713 {
714 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
715 cs->maxadj, cs->mask,
716 &cs->max_cycles);
717 }
718
719 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
720
clocksource_find_best(bool oneshot,bool skipcur)721 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
722 {
723 struct clocksource *cs;
724
725 if (!finished_booting || list_empty(&clocksource_list))
726 return NULL;
727
728 /*
729 * We pick the clocksource with the highest rating. If oneshot
730 * mode is active, we pick the highres valid clocksource with
731 * the best rating.
732 */
733 list_for_each_entry(cs, &clocksource_list, list) {
734 if (skipcur && cs == curr_clocksource)
735 continue;
736 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
737 continue;
738 return cs;
739 }
740 return NULL;
741 }
742
__clocksource_select(bool skipcur)743 static void __clocksource_select(bool skipcur)
744 {
745 bool oneshot = tick_oneshot_mode_active();
746 struct clocksource *best, *cs;
747
748 /* Find the best suitable clocksource */
749 best = clocksource_find_best(oneshot, skipcur);
750 if (!best)
751 return;
752
753 if (!strlen(override_name))
754 goto found;
755
756 /* Check for the override clocksource. */
757 list_for_each_entry(cs, &clocksource_list, list) {
758 if (skipcur && cs == curr_clocksource)
759 continue;
760 if (strcmp(cs->name, override_name) != 0)
761 continue;
762 /*
763 * Check to make sure we don't switch to a non-highres
764 * capable clocksource if the tick code is in oneshot
765 * mode (highres or nohz)
766 */
767 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
768 /* Override clocksource cannot be used. */
769 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
770 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
771 cs->name);
772 override_name[0] = 0;
773 } else {
774 /*
775 * The override cannot be currently verified.
776 * Deferring to let the watchdog check.
777 */
778 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
779 cs->name);
780 }
781 } else
782 /* Override clocksource can be used. */
783 best = cs;
784 break;
785 }
786
787 found:
788 if (curr_clocksource != best && !timekeeping_notify(best)) {
789 pr_info("Switched to clocksource %s\n", best->name);
790 curr_clocksource = best;
791 }
792 }
793
794 /**
795 * clocksource_select - Select the best clocksource available
796 *
797 * Private function. Must hold clocksource_mutex when called.
798 *
799 * Select the clocksource with the best rating, or the clocksource,
800 * which is selected by userspace override.
801 */
clocksource_select(void)802 static void clocksource_select(void)
803 {
804 __clocksource_select(false);
805 }
806
clocksource_select_fallback(void)807 static void clocksource_select_fallback(void)
808 {
809 __clocksource_select(true);
810 }
811
812 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)813 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)814 static inline void clocksource_select_fallback(void) { }
815
816 #endif
817
818 /*
819 * clocksource_done_booting - Called near the end of core bootup
820 *
821 * Hack to avoid lots of clocksource churn at boot time.
822 * We use fs_initcall because we want this to start before
823 * device_initcall but after subsys_initcall.
824 */
clocksource_done_booting(void)825 static int __init clocksource_done_booting(void)
826 {
827 mutex_lock(&clocksource_mutex);
828 curr_clocksource = clocksource_default_clock();
829 finished_booting = 1;
830 /*
831 * Run the watchdog first to eliminate unstable clock sources
832 */
833 __clocksource_watchdog_kthread();
834 clocksource_select();
835 mutex_unlock(&clocksource_mutex);
836 return 0;
837 }
838 fs_initcall(clocksource_done_booting);
839
840 /*
841 * Enqueue the clocksource sorted by rating
842 */
clocksource_enqueue(struct clocksource * cs)843 static void clocksource_enqueue(struct clocksource *cs)
844 {
845 struct list_head *entry = &clocksource_list;
846 struct clocksource *tmp;
847
848 list_for_each_entry(tmp, &clocksource_list, list) {
849 /* Keep track of the place, where to insert */
850 if (tmp->rating < cs->rating)
851 break;
852 entry = &tmp->list;
853 }
854 list_add(&cs->list, entry);
855 }
856
857 /**
858 * __clocksource_update_freq_scale - Used update clocksource with new freq
859 * @cs: clocksource to be registered
860 * @scale: Scale factor multiplied against freq to get clocksource hz
861 * @freq: clocksource frequency (cycles per second) divided by scale
862 *
863 * This should only be called from the clocksource->enable() method.
864 *
865 * This *SHOULD NOT* be called directly! Please use the
866 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
867 * functions.
868 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)869 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
870 {
871 u64 sec;
872
873 /*
874 * Default clocksources are *special* and self-define their mult/shift.
875 * But, you're not special, so you should specify a freq value.
876 */
877 if (freq) {
878 /*
879 * Calc the maximum number of seconds which we can run before
880 * wrapping around. For clocksources which have a mask > 32-bit
881 * we need to limit the max sleep time to have a good
882 * conversion precision. 10 minutes is still a reasonable
883 * amount. That results in a shift value of 24 for a
884 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
885 * ~ 0.06ppm granularity for NTP.
886 */
887 sec = cs->mask;
888 do_div(sec, freq);
889 do_div(sec, scale);
890 if (!sec)
891 sec = 1;
892 else if (sec > 600 && cs->mask > UINT_MAX)
893 sec = 600;
894
895 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
896 NSEC_PER_SEC / scale, sec * scale);
897 }
898 /*
899 * Ensure clocksources that have large 'mult' values don't overflow
900 * when adjusted.
901 */
902 cs->maxadj = clocksource_max_adjustment(cs);
903 while (freq && ((cs->mult + cs->maxadj < cs->mult)
904 || (cs->mult - cs->maxadj > cs->mult))) {
905 cs->mult >>= 1;
906 cs->shift--;
907 cs->maxadj = clocksource_max_adjustment(cs);
908 }
909
910 /*
911 * Only warn for *special* clocksources that self-define
912 * their mult/shift values and don't specify a freq.
913 */
914 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
915 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
916 cs->name);
917
918 clocksource_update_max_deferment(cs);
919
920 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
921 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
922 }
923 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
924
925 /**
926 * __clocksource_register_scale - Used to install new clocksources
927 * @cs: clocksource to be registered
928 * @scale: Scale factor multiplied against freq to get clocksource hz
929 * @freq: clocksource frequency (cycles per second) divided by scale
930 *
931 * Returns -EBUSY if registration fails, zero otherwise.
932 *
933 * This *SHOULD NOT* be called directly! Please use the
934 * clocksource_register_hz() or clocksource_register_khz helper functions.
935 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)936 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
937 {
938 unsigned long flags;
939
940 /* Initialize mult/shift and max_idle_ns */
941 __clocksource_update_freq_scale(cs, scale, freq);
942
943 /* Add clocksource to the clocksource list */
944 mutex_lock(&clocksource_mutex);
945
946 clocksource_watchdog_lock(&flags);
947 clocksource_enqueue(cs);
948 clocksource_enqueue_watchdog(cs);
949 clocksource_watchdog_unlock(&flags);
950
951 clocksource_select();
952 clocksource_select_watchdog(false);
953 __clocksource_suspend_select(cs);
954 mutex_unlock(&clocksource_mutex);
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
958
__clocksource_change_rating(struct clocksource * cs,int rating)959 static void __clocksource_change_rating(struct clocksource *cs, int rating)
960 {
961 list_del(&cs->list);
962 cs->rating = rating;
963 clocksource_enqueue(cs);
964 }
965
966 /**
967 * clocksource_change_rating - Change the rating of a registered clocksource
968 * @cs: clocksource to be changed
969 * @rating: new rating
970 */
clocksource_change_rating(struct clocksource * cs,int rating)971 void clocksource_change_rating(struct clocksource *cs, int rating)
972 {
973 unsigned long flags;
974
975 mutex_lock(&clocksource_mutex);
976 clocksource_watchdog_lock(&flags);
977 __clocksource_change_rating(cs, rating);
978 clocksource_watchdog_unlock(&flags);
979
980 clocksource_select();
981 clocksource_select_watchdog(false);
982 clocksource_suspend_select(false);
983 mutex_unlock(&clocksource_mutex);
984 }
985 EXPORT_SYMBOL(clocksource_change_rating);
986
987 /*
988 * Unbind clocksource @cs. Called with clocksource_mutex held
989 */
clocksource_unbind(struct clocksource * cs)990 static int clocksource_unbind(struct clocksource *cs)
991 {
992 unsigned long flags;
993
994 if (clocksource_is_watchdog(cs)) {
995 /* Select and try to install a replacement watchdog. */
996 clocksource_select_watchdog(true);
997 if (clocksource_is_watchdog(cs))
998 return -EBUSY;
999 }
1000
1001 if (cs == curr_clocksource) {
1002 /* Select and try to install a replacement clock source */
1003 clocksource_select_fallback();
1004 if (curr_clocksource == cs)
1005 return -EBUSY;
1006 }
1007
1008 if (clocksource_is_suspend(cs)) {
1009 /*
1010 * Select and try to install a replacement suspend clocksource.
1011 * If no replacement suspend clocksource, we will just let the
1012 * clocksource go and have no suspend clocksource.
1013 */
1014 clocksource_suspend_select(true);
1015 }
1016
1017 clocksource_watchdog_lock(&flags);
1018 clocksource_dequeue_watchdog(cs);
1019 list_del_init(&cs->list);
1020 clocksource_watchdog_unlock(&flags);
1021
1022 return 0;
1023 }
1024
1025 /**
1026 * clocksource_unregister - remove a registered clocksource
1027 * @cs: clocksource to be unregistered
1028 */
clocksource_unregister(struct clocksource * cs)1029 int clocksource_unregister(struct clocksource *cs)
1030 {
1031 int ret = 0;
1032
1033 mutex_lock(&clocksource_mutex);
1034 if (!list_empty(&cs->list))
1035 ret = clocksource_unbind(cs);
1036 mutex_unlock(&clocksource_mutex);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(clocksource_unregister);
1040
1041 #ifdef CONFIG_SYSFS
1042 /**
1043 * current_clocksource_show - sysfs interface for current clocksource
1044 * @dev: unused
1045 * @attr: unused
1046 * @buf: char buffer to be filled with clocksource list
1047 *
1048 * Provides sysfs interface for listing current clocksource.
1049 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1050 static ssize_t current_clocksource_show(struct device *dev,
1051 struct device_attribute *attr,
1052 char *buf)
1053 {
1054 ssize_t count = 0;
1055
1056 mutex_lock(&clocksource_mutex);
1057 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1058 mutex_unlock(&clocksource_mutex);
1059
1060 return count;
1061 }
1062
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1063 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1064 {
1065 size_t ret = cnt;
1066
1067 /* strings from sysfs write are not 0 terminated! */
1068 if (!cnt || cnt >= CS_NAME_LEN)
1069 return -EINVAL;
1070
1071 /* strip of \n: */
1072 if (buf[cnt-1] == '\n')
1073 cnt--;
1074 if (cnt > 0)
1075 memcpy(dst, buf, cnt);
1076 dst[cnt] = 0;
1077 return ret;
1078 }
1079
1080 /**
1081 * current_clocksource_store - interface for manually overriding clocksource
1082 * @dev: unused
1083 * @attr: unused
1084 * @buf: name of override clocksource
1085 * @count: length of buffer
1086 *
1087 * Takes input from sysfs interface for manually overriding the default
1088 * clocksource selection.
1089 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1090 static ssize_t current_clocksource_store(struct device *dev,
1091 struct device_attribute *attr,
1092 const char *buf, size_t count)
1093 {
1094 ssize_t ret;
1095
1096 mutex_lock(&clocksource_mutex);
1097
1098 ret = sysfs_get_uname(buf, override_name, count);
1099 if (ret >= 0)
1100 clocksource_select();
1101
1102 mutex_unlock(&clocksource_mutex);
1103
1104 return ret;
1105 }
1106 static DEVICE_ATTR_RW(current_clocksource);
1107
1108 /**
1109 * unbind_clocksource_store - interface for manually unbinding clocksource
1110 * @dev: unused
1111 * @attr: unused
1112 * @buf: unused
1113 * @count: length of buffer
1114 *
1115 * Takes input from sysfs interface for manually unbinding a clocksource.
1116 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1117 static ssize_t unbind_clocksource_store(struct device *dev,
1118 struct device_attribute *attr,
1119 const char *buf, size_t count)
1120 {
1121 struct clocksource *cs;
1122 char name[CS_NAME_LEN];
1123 ssize_t ret;
1124
1125 ret = sysfs_get_uname(buf, name, count);
1126 if (ret < 0)
1127 return ret;
1128
1129 ret = -ENODEV;
1130 mutex_lock(&clocksource_mutex);
1131 list_for_each_entry(cs, &clocksource_list, list) {
1132 if (strcmp(cs->name, name))
1133 continue;
1134 ret = clocksource_unbind(cs);
1135 break;
1136 }
1137 mutex_unlock(&clocksource_mutex);
1138
1139 return ret ? ret : count;
1140 }
1141 static DEVICE_ATTR_WO(unbind_clocksource);
1142
1143 /**
1144 * available_clocksource_show - sysfs interface for listing clocksource
1145 * @dev: unused
1146 * @attr: unused
1147 * @buf: char buffer to be filled with clocksource list
1148 *
1149 * Provides sysfs interface for listing registered clocksources
1150 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1151 static ssize_t available_clocksource_show(struct device *dev,
1152 struct device_attribute *attr,
1153 char *buf)
1154 {
1155 struct clocksource *src;
1156 ssize_t count = 0;
1157
1158 mutex_lock(&clocksource_mutex);
1159 list_for_each_entry(src, &clocksource_list, list) {
1160 /*
1161 * Don't show non-HRES clocksource if the tick code is
1162 * in one shot mode (highres=on or nohz=on)
1163 */
1164 if (!tick_oneshot_mode_active() ||
1165 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1166 count += snprintf(buf + count,
1167 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1168 "%s ", src->name);
1169 }
1170 mutex_unlock(&clocksource_mutex);
1171
1172 count += snprintf(buf + count,
1173 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1174
1175 return count;
1176 }
1177 static DEVICE_ATTR_RO(available_clocksource);
1178
1179 static struct attribute *clocksource_attrs[] = {
1180 &dev_attr_current_clocksource.attr,
1181 &dev_attr_unbind_clocksource.attr,
1182 &dev_attr_available_clocksource.attr,
1183 NULL
1184 };
1185 ATTRIBUTE_GROUPS(clocksource);
1186
1187 static struct bus_type clocksource_subsys = {
1188 .name = "clocksource",
1189 .dev_name = "clocksource",
1190 };
1191
1192 static struct device device_clocksource = {
1193 .id = 0,
1194 .bus = &clocksource_subsys,
1195 .groups = clocksource_groups,
1196 };
1197
init_clocksource_sysfs(void)1198 static int __init init_clocksource_sysfs(void)
1199 {
1200 int error = subsys_system_register(&clocksource_subsys, NULL);
1201
1202 if (!error)
1203 error = device_register(&device_clocksource);
1204
1205 return error;
1206 }
1207
1208 device_initcall(init_clocksource_sysfs);
1209 #endif /* CONFIG_SYSFS */
1210
1211 /**
1212 * boot_override_clocksource - boot clock override
1213 * @str: override name
1214 *
1215 * Takes a clocksource= boot argument and uses it
1216 * as the clocksource override name.
1217 */
boot_override_clocksource(char * str)1218 static int __init boot_override_clocksource(char* str)
1219 {
1220 mutex_lock(&clocksource_mutex);
1221 if (str)
1222 strlcpy(override_name, str, sizeof(override_name));
1223 mutex_unlock(&clocksource_mutex);
1224 return 1;
1225 }
1226
1227 __setup("clocksource=", boot_override_clocksource);
1228
1229 /**
1230 * boot_override_clock - Compatibility layer for deprecated boot option
1231 * @str: override name
1232 *
1233 * DEPRECATED! Takes a clock= boot argument and uses it
1234 * as the clocksource override name
1235 */
boot_override_clock(char * str)1236 static int __init boot_override_clock(char* str)
1237 {
1238 if (!strcmp(str, "pmtmr")) {
1239 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1240 return boot_override_clocksource("acpi_pm");
1241 }
1242 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1243 return boot_override_clocksource(str);
1244 }
1245
1246 __setup("clock=", boot_override_clock);
1247