1 /*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32
33 #include "posix-timers.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37
38 /**
39 * struct alarm_base - Alarm timer bases
40 * @lock: Lock for syncrhonized access to the base
41 * @timerqueue: Timerqueue head managing the list of events
42 * @gettime: Function to read the time correlating to the base
43 * @base_clockid: clockid for the base
44 */
45 static struct alarm_base {
46 spinlock_t lock;
47 struct timerqueue_head timerqueue;
48 ktime_t (*gettime)(void);
49 clockid_t base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer rtctimer;
65 static struct rtc_device *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69 * alarmtimer_get_rtcdev - Return selected rtcdevice
70 *
71 * This function returns the rtc device to use for wakealarms.
72 * If one has not already been chosen, it checks to see if a
73 * functional rtc device is available.
74 */
alarmtimer_get_rtcdev(void)75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77 unsigned long flags;
78 struct rtc_device *ret;
79
80 spin_lock_irqsave(&rtcdev_lock, flags);
81 ret = rtcdev;
82 spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84 return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
alarmtimer_rtc_add_device(struct device * dev,struct class_interface * class_intf)88 static int alarmtimer_rtc_add_device(struct device *dev,
89 struct class_interface *class_intf)
90 {
91 unsigned long flags;
92 struct rtc_device *rtc = to_rtc_device(dev);
93 struct wakeup_source *__ws;
94
95 if (rtcdev)
96 return -EBUSY;
97
98 if (!rtc->ops->set_alarm)
99 return -1;
100 if (!device_may_wakeup(rtc->dev.parent))
101 return -1;
102
103 __ws = wakeup_source_register("alarmtimer");
104
105 spin_lock_irqsave(&rtcdev_lock, flags);
106 if (!rtcdev) {
107 if (!try_module_get(rtc->owner)) {
108 spin_unlock_irqrestore(&rtcdev_lock, flags);
109 return -1;
110 }
111
112 rtcdev = rtc;
113 /* hold a reference so it doesn't go away */
114 get_device(dev);
115 ws = __ws;
116 __ws = NULL;
117 }
118 spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120 wakeup_source_unregister(__ws);
121
122 return 0;
123 }
124
alarmtimer_rtc_timer_init(void)125 static inline void alarmtimer_rtc_timer_init(void)
126 {
127 rtc_timer_init(&rtctimer, NULL, NULL);
128 }
129
130 static struct class_interface alarmtimer_rtc_interface = {
131 .add_dev = &alarmtimer_rtc_add_device,
132 };
133
alarmtimer_rtc_interface_setup(void)134 static int alarmtimer_rtc_interface_setup(void)
135 {
136 alarmtimer_rtc_interface.class = rtc_class;
137 return class_interface_register(&alarmtimer_rtc_interface);
138 }
alarmtimer_rtc_interface_remove(void)139 static void alarmtimer_rtc_interface_remove(void)
140 {
141 class_interface_unregister(&alarmtimer_rtc_interface);
142 }
143 #else
alarmtimer_get_rtcdev(void)144 struct rtc_device *alarmtimer_get_rtcdev(void)
145 {
146 return NULL;
147 }
148 #define rtcdev (NULL)
alarmtimer_rtc_interface_setup(void)149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
alarmtimer_rtc_interface_remove(void)150 static inline void alarmtimer_rtc_interface_remove(void) { }
alarmtimer_rtc_timer_init(void)151 static inline void alarmtimer_rtc_timer_init(void) { }
152 #endif
153
154 /**
155 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156 * @base: pointer to the base where the timer is being run
157 * @alarm: pointer to alarm being enqueued.
158 *
159 * Adds alarm to a alarm_base timerqueue
160 *
161 * Must hold base->lock when calling.
162 */
alarmtimer_enqueue(struct alarm_base * base,struct alarm * alarm)163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164 {
165 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166 timerqueue_del(&base->timerqueue, &alarm->node);
167
168 timerqueue_add(&base->timerqueue, &alarm->node);
169 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170 }
171
172 /**
173 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174 * @base: pointer to the base where the timer is running
175 * @alarm: pointer to alarm being removed
176 *
177 * Removes alarm to a alarm_base timerqueue
178 *
179 * Must hold base->lock when calling.
180 */
alarmtimer_dequeue(struct alarm_base * base,struct alarm * alarm)181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182 {
183 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184 return;
185
186 timerqueue_del(&base->timerqueue, &alarm->node);
187 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188 }
189
190
191 /**
192 * alarmtimer_fired - Handles alarm hrtimer being fired.
193 * @timer: pointer to hrtimer being run
194 *
195 * When a alarm timer fires, this runs through the timerqueue to
196 * see which alarms expired, and runs those. If there are more alarm
197 * timers queued for the future, we set the hrtimer to fire when
198 * when the next future alarm timer expires.
199 */
alarmtimer_fired(struct hrtimer * timer)200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201 {
202 struct alarm *alarm = container_of(timer, struct alarm, timer);
203 struct alarm_base *base = &alarm_bases[alarm->type];
204 unsigned long flags;
205 int ret = HRTIMER_NORESTART;
206 int restart = ALARMTIMER_NORESTART;
207
208 spin_lock_irqsave(&base->lock, flags);
209 alarmtimer_dequeue(base, alarm);
210 spin_unlock_irqrestore(&base->lock, flags);
211
212 if (alarm->function)
213 restart = alarm->function(alarm, base->gettime());
214
215 spin_lock_irqsave(&base->lock, flags);
216 if (restart != ALARMTIMER_NORESTART) {
217 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218 alarmtimer_enqueue(base, alarm);
219 ret = HRTIMER_RESTART;
220 }
221 spin_unlock_irqrestore(&base->lock, flags);
222
223 trace_alarmtimer_fired(alarm, base->gettime());
224 return ret;
225
226 }
227
alarm_expires_remaining(const struct alarm * alarm)228 ktime_t alarm_expires_remaining(const struct alarm *alarm)
229 {
230 struct alarm_base *base = &alarm_bases[alarm->type];
231 return ktime_sub(alarm->node.expires, base->gettime());
232 }
233 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235 #ifdef CONFIG_RTC_CLASS
236 /**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
alarmtimer_suspend(struct device * dev)246 static int alarmtimer_suspend(struct device *dev)
247 {
248 ktime_t min, now, expires;
249 int i, ret, type;
250 struct rtc_device *rtc;
251 unsigned long flags;
252 struct rtc_time tm;
253
254 spin_lock_irqsave(&freezer_delta_lock, flags);
255 min = freezer_delta;
256 expires = freezer_expires;
257 type = freezer_alarmtype;
258 freezer_delta = 0;
259 spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261 rtc = alarmtimer_get_rtcdev();
262 /* If we have no rtcdev, just return */
263 if (!rtc)
264 return 0;
265
266 /* Find the soonest timer to expire*/
267 for (i = 0; i < ALARM_NUMTYPE; i++) {
268 struct alarm_base *base = &alarm_bases[i];
269 struct timerqueue_node *next;
270 ktime_t delta;
271
272 spin_lock_irqsave(&base->lock, flags);
273 next = timerqueue_getnext(&base->timerqueue);
274 spin_unlock_irqrestore(&base->lock, flags);
275 if (!next)
276 continue;
277 delta = ktime_sub(next->expires, base->gettime());
278 if (!min || (delta < min)) {
279 expires = next->expires;
280 min = delta;
281 type = i;
282 }
283 }
284 if (min == 0)
285 return 0;
286
287 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289 return -EBUSY;
290 }
291
292 trace_alarmtimer_suspend(expires, type);
293
294 /* Setup an rtc timer to fire that far in the future */
295 rtc_timer_cancel(rtc, &rtctimer);
296 rtc_read_time(rtc, &tm);
297 now = rtc_tm_to_ktime(tm);
298 now = ktime_add(now, min);
299
300 /* Set alarm, if in the past reject suspend briefly to handle */
301 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302 if (ret < 0)
303 __pm_wakeup_event(ws, MSEC_PER_SEC);
304 return ret;
305 }
306
alarmtimer_resume(struct device * dev)307 static int alarmtimer_resume(struct device *dev)
308 {
309 struct rtc_device *rtc;
310
311 rtc = alarmtimer_get_rtcdev();
312 if (rtc)
313 rtc_timer_cancel(rtc, &rtctimer);
314 return 0;
315 }
316
317 #else
alarmtimer_suspend(struct device * dev)318 static int alarmtimer_suspend(struct device *dev)
319 {
320 return 0;
321 }
322
alarmtimer_resume(struct device * dev)323 static int alarmtimer_resume(struct device *dev)
324 {
325 return 0;
326 }
327 #endif
328
329 static void
__alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))330 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
331 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
332 {
333 timerqueue_init(&alarm->node);
334 alarm->timer.function = alarmtimer_fired;
335 alarm->function = function;
336 alarm->type = type;
337 alarm->state = ALARMTIMER_STATE_INACTIVE;
338 }
339
340 /**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
alarm_init(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348 {
349 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
350 HRTIMER_MODE_ABS);
351 __alarm_init(alarm, type, function);
352 }
353 EXPORT_SYMBOL_GPL(alarm_init);
354
355 /**
356 * alarm_start - Sets an absolute alarm to fire
357 * @alarm: ptr to alarm to set
358 * @start: time to run the alarm
359 */
alarm_start(struct alarm * alarm,ktime_t start)360 void alarm_start(struct alarm *alarm, ktime_t start)
361 {
362 struct alarm_base *base = &alarm_bases[alarm->type];
363 unsigned long flags;
364
365 spin_lock_irqsave(&base->lock, flags);
366 alarm->node.expires = start;
367 alarmtimer_enqueue(base, alarm);
368 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
369 spin_unlock_irqrestore(&base->lock, flags);
370
371 trace_alarmtimer_start(alarm, base->gettime());
372 }
373 EXPORT_SYMBOL_GPL(alarm_start);
374
375 /**
376 * alarm_start_relative - Sets a relative alarm to fire
377 * @alarm: ptr to alarm to set
378 * @start: time relative to now to run the alarm
379 */
alarm_start_relative(struct alarm * alarm,ktime_t start)380 void alarm_start_relative(struct alarm *alarm, ktime_t start)
381 {
382 struct alarm_base *base = &alarm_bases[alarm->type];
383
384 start = ktime_add_safe(start, base->gettime());
385 alarm_start(alarm, start);
386 }
387 EXPORT_SYMBOL_GPL(alarm_start_relative);
388
alarm_restart(struct alarm * alarm)389 void alarm_restart(struct alarm *alarm)
390 {
391 struct alarm_base *base = &alarm_bases[alarm->type];
392 unsigned long flags;
393
394 spin_lock_irqsave(&base->lock, flags);
395 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
396 hrtimer_restart(&alarm->timer);
397 alarmtimer_enqueue(base, alarm);
398 spin_unlock_irqrestore(&base->lock, flags);
399 }
400 EXPORT_SYMBOL_GPL(alarm_restart);
401
402 /**
403 * alarm_try_to_cancel - Tries to cancel an alarm timer
404 * @alarm: ptr to alarm to be canceled
405 *
406 * Returns 1 if the timer was canceled, 0 if it was not running,
407 * and -1 if the callback was running
408 */
alarm_try_to_cancel(struct alarm * alarm)409 int alarm_try_to_cancel(struct alarm *alarm)
410 {
411 struct alarm_base *base = &alarm_bases[alarm->type];
412 unsigned long flags;
413 int ret;
414
415 spin_lock_irqsave(&base->lock, flags);
416 ret = hrtimer_try_to_cancel(&alarm->timer);
417 if (ret >= 0)
418 alarmtimer_dequeue(base, alarm);
419 spin_unlock_irqrestore(&base->lock, flags);
420
421 trace_alarmtimer_cancel(alarm, base->gettime());
422 return ret;
423 }
424 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
425
426
427 /**
428 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
429 * @alarm: ptr to alarm to be canceled
430 *
431 * Returns 1 if the timer was canceled, 0 if it was not active.
432 */
alarm_cancel(struct alarm * alarm)433 int alarm_cancel(struct alarm *alarm)
434 {
435 for (;;) {
436 int ret = alarm_try_to_cancel(alarm);
437 if (ret >= 0)
438 return ret;
439 cpu_relax();
440 }
441 }
442 EXPORT_SYMBOL_GPL(alarm_cancel);
443
444
alarm_forward(struct alarm * alarm,ktime_t now,ktime_t interval)445 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
446 {
447 u64 overrun = 1;
448 ktime_t delta;
449
450 delta = ktime_sub(now, alarm->node.expires);
451
452 if (delta < 0)
453 return 0;
454
455 if (unlikely(delta >= interval)) {
456 s64 incr = ktime_to_ns(interval);
457
458 overrun = ktime_divns(delta, incr);
459
460 alarm->node.expires = ktime_add_ns(alarm->node.expires,
461 incr*overrun);
462
463 if (alarm->node.expires > now)
464 return overrun;
465 /*
466 * This (and the ktime_add() below) is the
467 * correction for exact:
468 */
469 overrun++;
470 }
471
472 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
473 return overrun;
474 }
475 EXPORT_SYMBOL_GPL(alarm_forward);
476
alarm_forward_now(struct alarm * alarm,ktime_t interval)477 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
478 {
479 struct alarm_base *base = &alarm_bases[alarm->type];
480
481 return alarm_forward(alarm, base->gettime(), interval);
482 }
483 EXPORT_SYMBOL_GPL(alarm_forward_now);
484
485 #ifdef CONFIG_POSIX_TIMERS
486
alarmtimer_freezerset(ktime_t absexp,enum alarmtimer_type type)487 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
488 {
489 struct alarm_base *base;
490 unsigned long flags;
491 ktime_t delta;
492
493 switch(type) {
494 case ALARM_REALTIME:
495 base = &alarm_bases[ALARM_REALTIME];
496 type = ALARM_REALTIME_FREEZER;
497 break;
498 case ALARM_BOOTTIME:
499 base = &alarm_bases[ALARM_BOOTTIME];
500 type = ALARM_BOOTTIME_FREEZER;
501 break;
502 default:
503 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
504 return;
505 }
506
507 delta = ktime_sub(absexp, base->gettime());
508
509 spin_lock_irqsave(&freezer_delta_lock, flags);
510 if (!freezer_delta || (delta < freezer_delta)) {
511 freezer_delta = delta;
512 freezer_expires = absexp;
513 freezer_alarmtype = type;
514 }
515 spin_unlock_irqrestore(&freezer_delta_lock, flags);
516 }
517
518 /**
519 * clock2alarm - helper that converts from clockid to alarmtypes
520 * @clockid: clockid.
521 */
clock2alarm(clockid_t clockid)522 static enum alarmtimer_type clock2alarm(clockid_t clockid)
523 {
524 if (clockid == CLOCK_REALTIME_ALARM)
525 return ALARM_REALTIME;
526 if (clockid == CLOCK_BOOTTIME_ALARM)
527 return ALARM_BOOTTIME;
528 return -1;
529 }
530
531 /**
532 * alarm_handle_timer - Callback for posix timers
533 * @alarm: alarm that fired
534 *
535 * Posix timer callback for expired alarm timers.
536 */
alarm_handle_timer(struct alarm * alarm,ktime_t now)537 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
538 ktime_t now)
539 {
540 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
541 it.alarm.alarmtimer);
542 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
543 unsigned long flags;
544 int si_private = 0;
545
546 spin_lock_irqsave(&ptr->it_lock, flags);
547
548 ptr->it_active = 0;
549 if (ptr->it_interval)
550 si_private = ++ptr->it_requeue_pending;
551
552 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
553 /*
554 * Handle ignored signals and rearm the timer. This will go
555 * away once we handle ignored signals proper.
556 */
557 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
558 ++ptr->it_requeue_pending;
559 ptr->it_active = 1;
560 result = ALARMTIMER_RESTART;
561 }
562 spin_unlock_irqrestore(&ptr->it_lock, flags);
563
564 return result;
565 }
566
567 /**
568 * alarm_timer_rearm - Posix timer callback for rearming timer
569 * @timr: Pointer to the posixtimer data struct
570 */
alarm_timer_rearm(struct k_itimer * timr)571 static void alarm_timer_rearm(struct k_itimer *timr)
572 {
573 struct alarm *alarm = &timr->it.alarm.alarmtimer;
574
575 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
576 alarm_start(alarm, alarm->node.expires);
577 }
578
579 /**
580 * alarm_timer_forward - Posix timer callback for forwarding timer
581 * @timr: Pointer to the posixtimer data struct
582 * @now: Current time to forward the timer against
583 */
alarm_timer_forward(struct k_itimer * timr,ktime_t now)584 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
585 {
586 struct alarm *alarm = &timr->it.alarm.alarmtimer;
587
588 return alarm_forward(alarm, timr->it_interval, now);
589 }
590
591 /**
592 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
593 * @timr: Pointer to the posixtimer data struct
594 * @now: Current time to calculate against
595 */
alarm_timer_remaining(struct k_itimer * timr,ktime_t now)596 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
597 {
598 struct alarm *alarm = &timr->it.alarm.alarmtimer;
599
600 return ktime_sub(now, alarm->node.expires);
601 }
602
603 /**
604 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
605 * @timr: Pointer to the posixtimer data struct
606 */
alarm_timer_try_to_cancel(struct k_itimer * timr)607 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
608 {
609 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
610 }
611
612 /**
613 * alarm_timer_arm - Posix timer callback to arm a timer
614 * @timr: Pointer to the posixtimer data struct
615 * @expires: The new expiry time
616 * @absolute: Expiry value is absolute time
617 * @sigev_none: Posix timer does not deliver signals
618 */
alarm_timer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)619 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
620 bool absolute, bool sigev_none)
621 {
622 struct alarm *alarm = &timr->it.alarm.alarmtimer;
623 struct alarm_base *base = &alarm_bases[alarm->type];
624
625 if (!absolute)
626 expires = ktime_add_safe(expires, base->gettime());
627 if (sigev_none)
628 alarm->node.expires = expires;
629 else
630 alarm_start(&timr->it.alarm.alarmtimer, expires);
631 }
632
633 /**
634 * alarm_clock_getres - posix getres interface
635 * @which_clock: clockid
636 * @tp: timespec to fill
637 *
638 * Returns the granularity of underlying alarm base clock
639 */
alarm_clock_getres(const clockid_t which_clock,struct timespec64 * tp)640 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
641 {
642 if (!alarmtimer_get_rtcdev())
643 return -EINVAL;
644
645 tp->tv_sec = 0;
646 tp->tv_nsec = hrtimer_resolution;
647 return 0;
648 }
649
650 /**
651 * alarm_clock_get - posix clock_get interface
652 * @which_clock: clockid
653 * @tp: timespec to fill.
654 *
655 * Provides the underlying alarm base time.
656 */
alarm_clock_get(clockid_t which_clock,struct timespec64 * tp)657 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
658 {
659 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
660
661 if (!alarmtimer_get_rtcdev())
662 return -EINVAL;
663
664 *tp = ktime_to_timespec64(base->gettime());
665 return 0;
666 }
667
668 /**
669 * alarm_timer_create - posix timer_create interface
670 * @new_timer: k_itimer pointer to manage
671 *
672 * Initializes the k_itimer structure.
673 */
alarm_timer_create(struct k_itimer * new_timer)674 static int alarm_timer_create(struct k_itimer *new_timer)
675 {
676 enum alarmtimer_type type;
677
678 if (!alarmtimer_get_rtcdev())
679 return -ENOTSUPP;
680
681 if (!capable(CAP_WAKE_ALARM))
682 return -EPERM;
683
684 type = clock2alarm(new_timer->it_clock);
685 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
686 return 0;
687 }
688
689 /**
690 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
691 * @alarm: ptr to alarm that fired
692 *
693 * Wakes up the task that set the alarmtimer
694 */
alarmtimer_nsleep_wakeup(struct alarm * alarm,ktime_t now)695 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
696 ktime_t now)
697 {
698 struct task_struct *task = (struct task_struct *)alarm->data;
699
700 alarm->data = NULL;
701 if (task)
702 wake_up_process(task);
703 return ALARMTIMER_NORESTART;
704 }
705
706 /**
707 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
708 * @alarm: ptr to alarmtimer
709 * @absexp: absolute expiration time
710 *
711 * Sets the alarm timer and sleeps until it is fired or interrupted.
712 */
alarmtimer_do_nsleep(struct alarm * alarm,ktime_t absexp,enum alarmtimer_type type)713 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
714 enum alarmtimer_type type)
715 {
716 struct restart_block *restart;
717 alarm->data = (void *)current;
718 do {
719 set_current_state(TASK_INTERRUPTIBLE);
720 alarm_start(alarm, absexp);
721 if (likely(alarm->data))
722 schedule();
723
724 alarm_cancel(alarm);
725 } while (alarm->data && !signal_pending(current));
726
727 __set_current_state(TASK_RUNNING);
728
729 destroy_hrtimer_on_stack(&alarm->timer);
730
731 if (!alarm->data)
732 return 0;
733
734 if (freezing(current))
735 alarmtimer_freezerset(absexp, type);
736 restart = ¤t->restart_block;
737 if (restart->nanosleep.type != TT_NONE) {
738 struct timespec64 rmt;
739 ktime_t rem;
740
741 rem = ktime_sub(absexp, alarm_bases[type].gettime());
742
743 if (rem <= 0)
744 return 0;
745 rmt = ktime_to_timespec64(rem);
746
747 return nanosleep_copyout(restart, &rmt);
748 }
749 return -ERESTART_RESTARTBLOCK;
750 }
751
752 static void
alarm_init_on_stack(struct alarm * alarm,enum alarmtimer_type type,enum alarmtimer_restart (* function)(struct alarm *,ktime_t))753 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
754 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
755 {
756 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
757 HRTIMER_MODE_ABS);
758 __alarm_init(alarm, type, function);
759 }
760
761 /**
762 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
763 * @restart: ptr to restart block
764 *
765 * Handles restarted clock_nanosleep calls
766 */
alarm_timer_nsleep_restart(struct restart_block * restart)767 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
768 {
769 enum alarmtimer_type type = restart->nanosleep.clockid;
770 ktime_t exp = restart->nanosleep.expires;
771 struct alarm alarm;
772
773 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
774
775 return alarmtimer_do_nsleep(&alarm, exp, type);
776 }
777
778 /**
779 * alarm_timer_nsleep - alarmtimer nanosleep
780 * @which_clock: clockid
781 * @flags: determins abstime or relative
782 * @tsreq: requested sleep time (abs or rel)
783 * @rmtp: remaining sleep time saved
784 *
785 * Handles clock_nanosleep calls against _ALARM clockids
786 */
alarm_timer_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * tsreq)787 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
788 const struct timespec64 *tsreq)
789 {
790 enum alarmtimer_type type = clock2alarm(which_clock);
791 struct restart_block *restart = ¤t->restart_block;
792 struct alarm alarm;
793 ktime_t exp;
794 int ret = 0;
795
796 if (!alarmtimer_get_rtcdev())
797 return -ENOTSUPP;
798
799 if (flags & ~TIMER_ABSTIME)
800 return -EINVAL;
801
802 if (!capable(CAP_WAKE_ALARM))
803 return -EPERM;
804
805 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
806
807 exp = timespec64_to_ktime(*tsreq);
808 /* Convert (if necessary) to absolute time */
809 if (flags != TIMER_ABSTIME) {
810 ktime_t now = alarm_bases[type].gettime();
811
812 exp = ktime_add_safe(now, exp);
813 }
814
815 ret = alarmtimer_do_nsleep(&alarm, exp, type);
816 if (ret != -ERESTART_RESTARTBLOCK)
817 return ret;
818
819 /* abs timers don't set remaining time or restart */
820 if (flags == TIMER_ABSTIME)
821 return -ERESTARTNOHAND;
822
823 restart->fn = alarm_timer_nsleep_restart;
824 restart->nanosleep.clockid = type;
825 restart->nanosleep.expires = exp;
826 return ret;
827 }
828
829 const struct k_clock alarm_clock = {
830 .clock_getres = alarm_clock_getres,
831 .clock_get = alarm_clock_get,
832 .timer_create = alarm_timer_create,
833 .timer_set = common_timer_set,
834 .timer_del = common_timer_del,
835 .timer_get = common_timer_get,
836 .timer_arm = alarm_timer_arm,
837 .timer_rearm = alarm_timer_rearm,
838 .timer_forward = alarm_timer_forward,
839 .timer_remaining = alarm_timer_remaining,
840 .timer_try_to_cancel = alarm_timer_try_to_cancel,
841 .nsleep = alarm_timer_nsleep,
842 };
843 #endif /* CONFIG_POSIX_TIMERS */
844
845
846 /* Suspend hook structures */
847 static const struct dev_pm_ops alarmtimer_pm_ops = {
848 .suspend = alarmtimer_suspend,
849 .resume = alarmtimer_resume,
850 };
851
852 static struct platform_driver alarmtimer_driver = {
853 .driver = {
854 .name = "alarmtimer",
855 .pm = &alarmtimer_pm_ops,
856 }
857 };
858
859 /**
860 * alarmtimer_init - Initialize alarm timer code
861 *
862 * This function initializes the alarm bases and registers
863 * the posix clock ids.
864 */
alarmtimer_init(void)865 static int __init alarmtimer_init(void)
866 {
867 struct platform_device *pdev;
868 int error = 0;
869 int i;
870
871 alarmtimer_rtc_timer_init();
872
873 /* Initialize alarm bases */
874 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
875 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
876 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
877 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
878 for (i = 0; i < ALARM_NUMTYPE; i++) {
879 timerqueue_init_head(&alarm_bases[i].timerqueue);
880 spin_lock_init(&alarm_bases[i].lock);
881 }
882
883 error = alarmtimer_rtc_interface_setup();
884 if (error)
885 return error;
886
887 error = platform_driver_register(&alarmtimer_driver);
888 if (error)
889 goto out_if;
890
891 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
892 if (IS_ERR(pdev)) {
893 error = PTR_ERR(pdev);
894 goto out_drv;
895 }
896 return 0;
897
898 out_drv:
899 platform_driver_unregister(&alarmtimer_driver);
900 out_if:
901 alarmtimer_rtc_interface_remove();
902 return error;
903 }
904 device_initcall(alarmtimer_init);
905