1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Pressure stall information for CPU, memory and IO
4 *
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 *
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
10 *
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
15 *
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
19 *
20 * Model
21 *
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
25 *
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
29 *
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
33 *
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
37 *
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40 *
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an oncpu task.
45 *
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
51 *
52 * The percentage of wallclock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
56 *
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
59 *
60 * Multiple CPUs
61 *
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
65 * tasks and CPUs.
66 *
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
74 *
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
81 *
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
88 *
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
92 *
93 * For the 257 number crunchers on 256 CPUs, this yields:
94 *
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
98 *
99 * For the 1 out of 4 memory-delayed tasks, this yields:
100 *
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
104 *
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
107 *
108 * Implementation
109 *
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
113 *
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
118 *
119 * For each runqueue, we track:
120 *
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124 *
125 * and then periodically aggregate:
126 *
127 * tNONIDLE = sum(tNONIDLE[i])
128 *
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131 *
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
134 *
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
138 */
139
140 static int psi_bug __read_mostly;
141
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
144
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
147 #else
148 static bool psi_enable = true;
149 #endif
setup_psi(char * str)150 static int __init setup_psi(char *str)
151 {
152 return kstrtobool(str, &psi_enable) == 0;
153 }
154 __setup("psi=", setup_psi);
155
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s 1981 /* 1/exp(2s/60s) */
160 #define EXP_300s 2034 /* 1/exp(2s/300s) */
161
162 /* PSI trigger definitions */
163 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
164 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
165 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
166
167 /* Sampling frequency in nanoseconds */
168 static u64 psi_period __read_mostly;
169
170 /* System-level pressure and stall tracking */
171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
172 struct psi_group psi_system = {
173 .pcpu = &system_group_pcpu,
174 };
175
176 static void psi_avgs_work(struct work_struct *work);
177
178 static void poll_timer_fn(struct timer_list *t);
179
group_init(struct psi_group * group)180 static void group_init(struct psi_group *group)
181 {
182 int cpu;
183
184 group->enabled = true;
185 for_each_possible_cpu(cpu)
186 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
187 group->avg_last_update = sched_clock();
188 group->avg_next_update = group->avg_last_update + psi_period;
189 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
190 mutex_init(&group->avgs_lock);
191 /* Init trigger-related members */
192 mutex_init(&group->trigger_lock);
193 INIT_LIST_HEAD(&group->triggers);
194 group->poll_min_period = U32_MAX;
195 group->polling_next_update = ULLONG_MAX;
196 init_waitqueue_head(&group->poll_wait);
197 timer_setup(&group->poll_timer, poll_timer_fn, 0);
198 rcu_assign_pointer(group->poll_task, NULL);
199 }
200
psi_init(void)201 void __init psi_init(void)
202 {
203 if (!psi_enable) {
204 static_branch_enable(&psi_disabled);
205 static_branch_disable(&psi_cgroups_enabled);
206 return;
207 }
208
209 if (!cgroup_psi_enabled())
210 static_branch_disable(&psi_cgroups_enabled);
211
212 psi_period = jiffies_to_nsecs(PSI_FREQ);
213 group_init(&psi_system);
214 }
215
test_state(unsigned int * tasks,enum psi_states state,bool oncpu)216 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu)
217 {
218 switch (state) {
219 case PSI_IO_SOME:
220 return unlikely(tasks[NR_IOWAIT]);
221 case PSI_IO_FULL:
222 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
223 case PSI_MEM_SOME:
224 return unlikely(tasks[NR_MEMSTALL]);
225 case PSI_MEM_FULL:
226 return unlikely(tasks[NR_MEMSTALL] &&
227 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
228 case PSI_CPU_SOME:
229 return unlikely(tasks[NR_RUNNING] > oncpu);
230 case PSI_CPU_FULL:
231 return unlikely(tasks[NR_RUNNING] && !oncpu);
232 case PSI_NONIDLE:
233 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
234 tasks[NR_RUNNING];
235 default:
236 return false;
237 }
238 }
239
get_recent_times(struct psi_group * group,int cpu,enum psi_aggregators aggregator,u32 * times,u32 * pchanged_states)240 static void get_recent_times(struct psi_group *group, int cpu,
241 enum psi_aggregators aggregator, u32 *times,
242 u32 *pchanged_states)
243 {
244 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
245 u64 now, state_start;
246 enum psi_states s;
247 unsigned int seq;
248 u32 state_mask;
249
250 *pchanged_states = 0;
251
252 /* Snapshot a coherent view of the CPU state */
253 do {
254 seq = read_seqcount_begin(&groupc->seq);
255 now = cpu_clock(cpu);
256 memcpy(times, groupc->times, sizeof(groupc->times));
257 state_mask = groupc->state_mask;
258 state_start = groupc->state_start;
259 } while (read_seqcount_retry(&groupc->seq, seq));
260
261 /* Calculate state time deltas against the previous snapshot */
262 for (s = 0; s < NR_PSI_STATES; s++) {
263 u32 delta;
264 /*
265 * In addition to already concluded states, we also
266 * incorporate currently active states on the CPU,
267 * since states may last for many sampling periods.
268 *
269 * This way we keep our delta sampling buckets small
270 * (u32) and our reported pressure close to what's
271 * actually happening.
272 */
273 if (state_mask & (1 << s))
274 times[s] += now - state_start;
275
276 delta = times[s] - groupc->times_prev[aggregator][s];
277 groupc->times_prev[aggregator][s] = times[s];
278
279 times[s] = delta;
280 if (delta)
281 *pchanged_states |= (1 << s);
282 }
283 }
284
calc_avgs(unsigned long avg[3],int missed_periods,u64 time,u64 period)285 static void calc_avgs(unsigned long avg[3], int missed_periods,
286 u64 time, u64 period)
287 {
288 unsigned long pct;
289
290 /* Fill in zeroes for periods of no activity */
291 if (missed_periods) {
292 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
293 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
294 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
295 }
296
297 /* Sample the most recent active period */
298 pct = div_u64(time * 100, period);
299 pct *= FIXED_1;
300 avg[0] = calc_load(avg[0], EXP_10s, pct);
301 avg[1] = calc_load(avg[1], EXP_60s, pct);
302 avg[2] = calc_load(avg[2], EXP_300s, pct);
303 }
304
collect_percpu_times(struct psi_group * group,enum psi_aggregators aggregator,u32 * pchanged_states)305 static void collect_percpu_times(struct psi_group *group,
306 enum psi_aggregators aggregator,
307 u32 *pchanged_states)
308 {
309 u64 deltas[NR_PSI_STATES - 1] = { 0, };
310 unsigned long nonidle_total = 0;
311 u32 changed_states = 0;
312 int cpu;
313 int s;
314
315 /*
316 * Collect the per-cpu time buckets and average them into a
317 * single time sample that is normalized to wallclock time.
318 *
319 * For averaging, each CPU is weighted by its non-idle time in
320 * the sampling period. This eliminates artifacts from uneven
321 * loading, or even entirely idle CPUs.
322 */
323 for_each_possible_cpu(cpu) {
324 u32 times[NR_PSI_STATES];
325 u32 nonidle;
326 u32 cpu_changed_states;
327
328 get_recent_times(group, cpu, aggregator, times,
329 &cpu_changed_states);
330 changed_states |= cpu_changed_states;
331
332 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
333 nonidle_total += nonidle;
334
335 for (s = 0; s < PSI_NONIDLE; s++)
336 deltas[s] += (u64)times[s] * nonidle;
337 }
338
339 /*
340 * Integrate the sample into the running statistics that are
341 * reported to userspace: the cumulative stall times and the
342 * decaying averages.
343 *
344 * Pressure percentages are sampled at PSI_FREQ. We might be
345 * called more often when the user polls more frequently than
346 * that; we might be called less often when there is no task
347 * activity, thus no data, and clock ticks are sporadic. The
348 * below handles both.
349 */
350
351 /* total= */
352 for (s = 0; s < NR_PSI_STATES - 1; s++)
353 group->total[aggregator][s] +=
354 div_u64(deltas[s], max(nonidle_total, 1UL));
355
356 if (pchanged_states)
357 *pchanged_states = changed_states;
358 }
359
update_averages(struct psi_group * group,u64 now)360 static u64 update_averages(struct psi_group *group, u64 now)
361 {
362 unsigned long missed_periods = 0;
363 u64 expires, period;
364 u64 avg_next_update;
365 int s;
366
367 /* avgX= */
368 expires = group->avg_next_update;
369 if (now - expires >= psi_period)
370 missed_periods = div_u64(now - expires, psi_period);
371
372 /*
373 * The periodic clock tick can get delayed for various
374 * reasons, especially on loaded systems. To avoid clock
375 * drift, we schedule the clock in fixed psi_period intervals.
376 * But the deltas we sample out of the per-cpu buckets above
377 * are based on the actual time elapsing between clock ticks.
378 */
379 avg_next_update = expires + ((1 + missed_periods) * psi_period);
380 period = now - (group->avg_last_update + (missed_periods * psi_period));
381 group->avg_last_update = now;
382
383 for (s = 0; s < NR_PSI_STATES - 1; s++) {
384 u32 sample;
385
386 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
387 /*
388 * Due to the lockless sampling of the time buckets,
389 * recorded time deltas can slip into the next period,
390 * which under full pressure can result in samples in
391 * excess of the period length.
392 *
393 * We don't want to report non-sensical pressures in
394 * excess of 100%, nor do we want to drop such events
395 * on the floor. Instead we punt any overage into the
396 * future until pressure subsides. By doing this we
397 * don't underreport the occurring pressure curve, we
398 * just report it delayed by one period length.
399 *
400 * The error isn't cumulative. As soon as another
401 * delta slips from a period P to P+1, by definition
402 * it frees up its time T in P.
403 */
404 if (sample > period)
405 sample = period;
406 group->avg_total[s] += sample;
407 calc_avgs(group->avg[s], missed_periods, sample, period);
408 }
409
410 return avg_next_update;
411 }
412
psi_avgs_work(struct work_struct * work)413 static void psi_avgs_work(struct work_struct *work)
414 {
415 struct delayed_work *dwork;
416 struct psi_group *group;
417 u32 changed_states;
418 bool nonidle;
419 u64 now;
420
421 dwork = to_delayed_work(work);
422 group = container_of(dwork, struct psi_group, avgs_work);
423
424 mutex_lock(&group->avgs_lock);
425
426 now = sched_clock();
427
428 collect_percpu_times(group, PSI_AVGS, &changed_states);
429 nonidle = changed_states & (1 << PSI_NONIDLE);
430 /*
431 * If there is task activity, periodically fold the per-cpu
432 * times and feed samples into the running averages. If things
433 * are idle and there is no data to process, stop the clock.
434 * Once restarted, we'll catch up the running averages in one
435 * go - see calc_avgs() and missed_periods.
436 */
437 if (now >= group->avg_next_update)
438 group->avg_next_update = update_averages(group, now);
439
440 if (nonidle) {
441 schedule_delayed_work(dwork, nsecs_to_jiffies(
442 group->avg_next_update - now) + 1);
443 }
444
445 mutex_unlock(&group->avgs_lock);
446 }
447
448 /* Trigger tracking window manipulations */
window_reset(struct psi_window * win,u64 now,u64 value,u64 prev_growth)449 static void window_reset(struct psi_window *win, u64 now, u64 value,
450 u64 prev_growth)
451 {
452 win->start_time = now;
453 win->start_value = value;
454 win->prev_growth = prev_growth;
455 }
456
457 /*
458 * PSI growth tracking window update and growth calculation routine.
459 *
460 * This approximates a sliding tracking window by interpolating
461 * partially elapsed windows using historical growth data from the
462 * previous intervals. This minimizes memory requirements (by not storing
463 * all the intermediate values in the previous window) and simplifies
464 * the calculations. It works well because PSI signal changes only in
465 * positive direction and over relatively small window sizes the growth
466 * is close to linear.
467 */
window_update(struct psi_window * win,u64 now,u64 value)468 static u64 window_update(struct psi_window *win, u64 now, u64 value)
469 {
470 u64 elapsed;
471 u64 growth;
472
473 elapsed = now - win->start_time;
474 growth = value - win->start_value;
475 /*
476 * After each tracking window passes win->start_value and
477 * win->start_time get reset and win->prev_growth stores
478 * the average per-window growth of the previous window.
479 * win->prev_growth is then used to interpolate additional
480 * growth from the previous window assuming it was linear.
481 */
482 if (elapsed > win->size)
483 window_reset(win, now, value, growth);
484 else {
485 u32 remaining;
486
487 remaining = win->size - elapsed;
488 growth += div64_u64(win->prev_growth * remaining, win->size);
489 }
490
491 return growth;
492 }
493
init_triggers(struct psi_group * group,u64 now)494 static void init_triggers(struct psi_group *group, u64 now)
495 {
496 struct psi_trigger *t;
497
498 list_for_each_entry(t, &group->triggers, node)
499 window_reset(&t->win, now,
500 group->total[PSI_POLL][t->state], 0);
501 memcpy(group->polling_total, group->total[PSI_POLL],
502 sizeof(group->polling_total));
503 group->polling_next_update = now + group->poll_min_period;
504 }
505
update_triggers(struct psi_group * group,u64 now)506 static u64 update_triggers(struct psi_group *group, u64 now)
507 {
508 struct psi_trigger *t;
509 bool update_total = false;
510 u64 *total = group->total[PSI_POLL];
511
512 /*
513 * On subsequent updates, calculate growth deltas and let
514 * watchers know when their specified thresholds are exceeded.
515 */
516 list_for_each_entry(t, &group->triggers, node) {
517 u64 growth;
518 bool new_stall;
519
520 new_stall = group->polling_total[t->state] != total[t->state];
521
522 /* Check for stall activity or a previous threshold breach */
523 if (!new_stall && !t->pending_event)
524 continue;
525 /*
526 * Check for new stall activity, as well as deferred
527 * events that occurred in the last window after the
528 * trigger had already fired (we want to ratelimit
529 * events without dropping any).
530 */
531 if (new_stall) {
532 /*
533 * Multiple triggers might be looking at the same state,
534 * remember to update group->polling_total[] once we've
535 * been through all of them. Also remember to extend the
536 * polling time if we see new stall activity.
537 */
538 update_total = true;
539
540 /* Calculate growth since last update */
541 growth = window_update(&t->win, now, total[t->state]);
542 if (growth < t->threshold)
543 continue;
544
545 t->pending_event = true;
546 }
547 /* Limit event signaling to once per window */
548 if (now < t->last_event_time + t->win.size)
549 continue;
550
551 /* Generate an event */
552 if (cmpxchg(&t->event, 0, 1) == 0)
553 wake_up_interruptible(&t->event_wait);
554 t->last_event_time = now;
555 /* Reset threshold breach flag once event got generated */
556 t->pending_event = false;
557 }
558
559 if (update_total)
560 memcpy(group->polling_total, total,
561 sizeof(group->polling_total));
562
563 return now + group->poll_min_period;
564 }
565
566 /* Schedule polling if it's not already scheduled. */
psi_schedule_poll_work(struct psi_group * group,unsigned long delay)567 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
568 {
569 struct task_struct *task;
570
571 /*
572 * Do not reschedule if already scheduled.
573 * Possible race with a timer scheduled after this check but before
574 * mod_timer below can be tolerated because group->polling_next_update
575 * will keep updates on schedule.
576 */
577 if (timer_pending(&group->poll_timer))
578 return;
579
580 rcu_read_lock();
581
582 task = rcu_dereference(group->poll_task);
583 /*
584 * kworker might be NULL in case psi_trigger_destroy races with
585 * psi_task_change (hotpath) which can't use locks
586 */
587 if (likely(task))
588 mod_timer(&group->poll_timer, jiffies + delay);
589
590 rcu_read_unlock();
591 }
592
psi_poll_work(struct psi_group * group)593 static void psi_poll_work(struct psi_group *group)
594 {
595 u32 changed_states;
596 u64 now;
597
598 mutex_lock(&group->trigger_lock);
599
600 now = sched_clock();
601
602 collect_percpu_times(group, PSI_POLL, &changed_states);
603
604 if (changed_states & group->poll_states) {
605 /* Initialize trigger windows when entering polling mode */
606 if (now > group->polling_until)
607 init_triggers(group, now);
608
609 /*
610 * Keep the monitor active for at least the duration of the
611 * minimum tracking window as long as monitor states are
612 * changing.
613 */
614 group->polling_until = now +
615 group->poll_min_period * UPDATES_PER_WINDOW;
616 }
617
618 if (now > group->polling_until) {
619 group->polling_next_update = ULLONG_MAX;
620 goto out;
621 }
622
623 if (now >= group->polling_next_update)
624 group->polling_next_update = update_triggers(group, now);
625
626 psi_schedule_poll_work(group,
627 nsecs_to_jiffies(group->polling_next_update - now) + 1);
628
629 out:
630 mutex_unlock(&group->trigger_lock);
631 }
632
psi_poll_worker(void * data)633 static int psi_poll_worker(void *data)
634 {
635 struct psi_group *group = (struct psi_group *)data;
636
637 sched_set_fifo_low(current);
638
639 while (true) {
640 wait_event_interruptible(group->poll_wait,
641 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
642 kthread_should_stop());
643 if (kthread_should_stop())
644 break;
645
646 psi_poll_work(group);
647 }
648 return 0;
649 }
650
poll_timer_fn(struct timer_list * t)651 static void poll_timer_fn(struct timer_list *t)
652 {
653 struct psi_group *group = from_timer(group, t, poll_timer);
654
655 atomic_set(&group->poll_wakeup, 1);
656 wake_up_interruptible(&group->poll_wait);
657 }
658
record_times(struct psi_group_cpu * groupc,u64 now)659 static void record_times(struct psi_group_cpu *groupc, u64 now)
660 {
661 u32 delta;
662
663 delta = now - groupc->state_start;
664 groupc->state_start = now;
665
666 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
667 groupc->times[PSI_IO_SOME] += delta;
668 if (groupc->state_mask & (1 << PSI_IO_FULL))
669 groupc->times[PSI_IO_FULL] += delta;
670 }
671
672 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
673 groupc->times[PSI_MEM_SOME] += delta;
674 if (groupc->state_mask & (1 << PSI_MEM_FULL))
675 groupc->times[PSI_MEM_FULL] += delta;
676 }
677
678 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
679 groupc->times[PSI_CPU_SOME] += delta;
680 if (groupc->state_mask & (1 << PSI_CPU_FULL))
681 groupc->times[PSI_CPU_FULL] += delta;
682 }
683
684 if (groupc->state_mask & (1 << PSI_NONIDLE))
685 groupc->times[PSI_NONIDLE] += delta;
686 }
687
psi_group_change(struct psi_group * group,int cpu,unsigned int clear,unsigned int set,u64 now,bool wake_clock)688 static void psi_group_change(struct psi_group *group, int cpu,
689 unsigned int clear, unsigned int set, u64 now,
690 bool wake_clock)
691 {
692 struct psi_group_cpu *groupc;
693 unsigned int t, m;
694 enum psi_states s;
695 u32 state_mask;
696
697 groupc = per_cpu_ptr(group->pcpu, cpu);
698
699 /*
700 * First we update the task counts according to the state
701 * change requested through the @clear and @set bits.
702 *
703 * Then if the cgroup PSI stats accounting enabled, we
704 * assess the aggregate resource states this CPU's tasks
705 * have been in since the last change, and account any
706 * SOME and FULL time these may have resulted in.
707 */
708 write_seqcount_begin(&groupc->seq);
709
710 /*
711 * Start with TSK_ONCPU, which doesn't have a corresponding
712 * task count - it's just a boolean flag directly encoded in
713 * the state mask. Clear, set, or carry the current state if
714 * no changes are requested.
715 */
716 if (unlikely(clear & TSK_ONCPU)) {
717 state_mask = 0;
718 clear &= ~TSK_ONCPU;
719 } else if (unlikely(set & TSK_ONCPU)) {
720 state_mask = PSI_ONCPU;
721 set &= ~TSK_ONCPU;
722 } else {
723 state_mask = groupc->state_mask & PSI_ONCPU;
724 }
725
726 /*
727 * The rest of the state mask is calculated based on the task
728 * counts. Update those first, then construct the mask.
729 */
730 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
731 if (!(m & (1 << t)))
732 continue;
733 if (groupc->tasks[t]) {
734 groupc->tasks[t]--;
735 } else if (!psi_bug) {
736 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
737 cpu, t, groupc->tasks[0],
738 groupc->tasks[1], groupc->tasks[2],
739 groupc->tasks[3], clear, set);
740 psi_bug = 1;
741 }
742 }
743
744 for (t = 0; set; set &= ~(1 << t), t++)
745 if (set & (1 << t))
746 groupc->tasks[t]++;
747
748 if (!group->enabled) {
749 /*
750 * On the first group change after disabling PSI, conclude
751 * the current state and flush its time. This is unlikely
752 * to matter to the user, but aggregation (get_recent_times)
753 * may have already incorporated the live state into times_prev;
754 * avoid a delta sample underflow when PSI is later re-enabled.
755 */
756 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
757 record_times(groupc, now);
758
759 groupc->state_mask = state_mask;
760
761 write_seqcount_end(&groupc->seq);
762 return;
763 }
764
765 for (s = 0; s < NR_PSI_STATES; s++) {
766 if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU))
767 state_mask |= (1 << s);
768 }
769
770 /*
771 * Since we care about lost potential, a memstall is FULL
772 * when there are no other working tasks, but also when
773 * the CPU is actively reclaiming and nothing productive
774 * could run even if it were runnable. So when the current
775 * task in a cgroup is in_memstall, the corresponding groupc
776 * on that cpu is in PSI_MEM_FULL state.
777 */
778 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
779 state_mask |= (1 << PSI_MEM_FULL);
780
781 record_times(groupc, now);
782
783 groupc->state_mask = state_mask;
784
785 write_seqcount_end(&groupc->seq);
786
787 if (state_mask & group->poll_states)
788 psi_schedule_poll_work(group, 1);
789
790 if (wake_clock && !delayed_work_pending(&group->avgs_work))
791 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
792 }
793
task_psi_group(struct task_struct * task)794 static inline struct psi_group *task_psi_group(struct task_struct *task)
795 {
796 #ifdef CONFIG_CGROUPS
797 if (static_branch_likely(&psi_cgroups_enabled))
798 return cgroup_psi(task_dfl_cgroup(task));
799 #endif
800 return &psi_system;
801 }
802
psi_flags_change(struct task_struct * task,int clear,int set)803 static void psi_flags_change(struct task_struct *task, int clear, int set)
804 {
805 if (((task->psi_flags & set) ||
806 (task->psi_flags & clear) != clear) &&
807 !psi_bug) {
808 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
809 task->pid, task->comm, task_cpu(task),
810 task->psi_flags, clear, set);
811 psi_bug = 1;
812 }
813
814 task->psi_flags &= ~clear;
815 task->psi_flags |= set;
816 }
817
psi_task_change(struct task_struct * task,int clear,int set)818 void psi_task_change(struct task_struct *task, int clear, int set)
819 {
820 int cpu = task_cpu(task);
821 struct psi_group *group;
822 u64 now;
823
824 if (!task->pid)
825 return;
826
827 psi_flags_change(task, clear, set);
828
829 now = cpu_clock(cpu);
830
831 group = task_psi_group(task);
832 do {
833 psi_group_change(group, cpu, clear, set, now, true);
834 } while ((group = group->parent));
835 }
836
psi_task_switch(struct task_struct * prev,struct task_struct * next,bool sleep)837 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
838 bool sleep)
839 {
840 struct psi_group *group, *common = NULL;
841 int cpu = task_cpu(prev);
842 u64 now = cpu_clock(cpu);
843
844 if (next->pid) {
845 psi_flags_change(next, 0, TSK_ONCPU);
846 /*
847 * Set TSK_ONCPU on @next's cgroups. If @next shares any
848 * ancestors with @prev, those will already have @prev's
849 * TSK_ONCPU bit set, and we can stop the iteration there.
850 */
851 group = task_psi_group(next);
852 do {
853 if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
854 PSI_ONCPU) {
855 common = group;
856 break;
857 }
858
859 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
860 } while ((group = group->parent));
861 }
862
863 if (prev->pid) {
864 int clear = TSK_ONCPU, set = 0;
865 bool wake_clock = true;
866
867 /*
868 * When we're going to sleep, psi_dequeue() lets us
869 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
870 * TSK_IOWAIT here, where we can combine it with
871 * TSK_ONCPU and save walking common ancestors twice.
872 */
873 if (sleep) {
874 clear |= TSK_RUNNING;
875 if (prev->in_memstall)
876 clear |= TSK_MEMSTALL_RUNNING;
877 if (prev->in_iowait)
878 set |= TSK_IOWAIT;
879
880 /*
881 * Periodic aggregation shuts off if there is a period of no
882 * task changes, so we wake it back up if necessary. However,
883 * don't do this if the task change is the aggregation worker
884 * itself going to sleep, or we'll ping-pong forever.
885 */
886 if (unlikely((prev->flags & PF_WQ_WORKER) &&
887 wq_worker_last_func(prev) == psi_avgs_work))
888 wake_clock = false;
889 }
890
891 psi_flags_change(prev, clear, set);
892
893 group = task_psi_group(prev);
894 do {
895 if (group == common)
896 break;
897 psi_group_change(group, cpu, clear, set, now, wake_clock);
898 } while ((group = group->parent));
899
900 /*
901 * TSK_ONCPU is handled up to the common ancestor. If there are
902 * any other differences between the two tasks (e.g. prev goes
903 * to sleep, or only one task is memstall), finish propagating
904 * those differences all the way up to the root.
905 */
906 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
907 clear &= ~TSK_ONCPU;
908 for (; group; group = group->parent)
909 psi_group_change(group, cpu, clear, set, now, wake_clock);
910 }
911 }
912 }
913
914 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_account_irqtime(struct task_struct * task,u32 delta)915 void psi_account_irqtime(struct task_struct *task, u32 delta)
916 {
917 int cpu = task_cpu(task);
918 struct psi_group *group;
919 struct psi_group_cpu *groupc;
920 u64 now;
921
922 if (!task->pid)
923 return;
924
925 now = cpu_clock(cpu);
926
927 group = task_psi_group(task);
928 do {
929 if (!group->enabled)
930 continue;
931
932 groupc = per_cpu_ptr(group->pcpu, cpu);
933
934 write_seqcount_begin(&groupc->seq);
935
936 record_times(groupc, now);
937 groupc->times[PSI_IRQ_FULL] += delta;
938
939 write_seqcount_end(&groupc->seq);
940
941 if (group->poll_states & (1 << PSI_IRQ_FULL))
942 psi_schedule_poll_work(group, 1);
943 } while ((group = group->parent));
944 }
945 #endif
946
947 /**
948 * psi_memstall_enter - mark the beginning of a memory stall section
949 * @flags: flags to handle nested sections
950 *
951 * Marks the calling task as being stalled due to a lack of memory,
952 * such as waiting for a refault or performing reclaim.
953 */
psi_memstall_enter(unsigned long * flags)954 void psi_memstall_enter(unsigned long *flags)
955 {
956 struct rq_flags rf;
957 struct rq *rq;
958
959 if (static_branch_likely(&psi_disabled))
960 return;
961
962 *flags = current->in_memstall;
963 if (*flags)
964 return;
965 /*
966 * in_memstall setting & accounting needs to be atomic wrt
967 * changes to the task's scheduling state, otherwise we can
968 * race with CPU migration.
969 */
970 rq = this_rq_lock_irq(&rf);
971
972 current->in_memstall = 1;
973 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
974
975 rq_unlock_irq(rq, &rf);
976 }
977 EXPORT_SYMBOL_GPL(psi_memstall_enter);
978
979 /**
980 * psi_memstall_leave - mark the end of an memory stall section
981 * @flags: flags to handle nested memdelay sections
982 *
983 * Marks the calling task as no longer stalled due to lack of memory.
984 */
psi_memstall_leave(unsigned long * flags)985 void psi_memstall_leave(unsigned long *flags)
986 {
987 struct rq_flags rf;
988 struct rq *rq;
989
990 if (static_branch_likely(&psi_disabled))
991 return;
992
993 if (*flags)
994 return;
995 /*
996 * in_memstall clearing & accounting needs to be atomic wrt
997 * changes to the task's scheduling state, otherwise we could
998 * race with CPU migration.
999 */
1000 rq = this_rq_lock_irq(&rf);
1001
1002 current->in_memstall = 0;
1003 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1004
1005 rq_unlock_irq(rq, &rf);
1006 }
1007 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1008
1009 #ifdef CONFIG_CGROUPS
psi_cgroup_alloc(struct cgroup * cgroup)1010 int psi_cgroup_alloc(struct cgroup *cgroup)
1011 {
1012 if (!static_branch_likely(&psi_cgroups_enabled))
1013 return 0;
1014
1015 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1016 if (!cgroup->psi)
1017 return -ENOMEM;
1018
1019 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1020 if (!cgroup->psi->pcpu) {
1021 kfree(cgroup->psi);
1022 return -ENOMEM;
1023 }
1024 group_init(cgroup->psi);
1025 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1026 return 0;
1027 }
1028
psi_cgroup_free(struct cgroup * cgroup)1029 void psi_cgroup_free(struct cgroup *cgroup)
1030 {
1031 if (!static_branch_likely(&psi_cgroups_enabled))
1032 return;
1033
1034 cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1035 free_percpu(cgroup->psi->pcpu);
1036 /* All triggers must be removed by now */
1037 WARN_ONCE(cgroup->psi->poll_states, "psi: trigger leak\n");
1038 kfree(cgroup->psi);
1039 }
1040
1041 /**
1042 * cgroup_move_task - move task to a different cgroup
1043 * @task: the task
1044 * @to: the target css_set
1045 *
1046 * Move task to a new cgroup and safely migrate its associated stall
1047 * state between the different groups.
1048 *
1049 * This function acquires the task's rq lock to lock out concurrent
1050 * changes to the task's scheduling state and - in case the task is
1051 * running - concurrent changes to its stall state.
1052 */
cgroup_move_task(struct task_struct * task,struct css_set * to)1053 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1054 {
1055 unsigned int task_flags;
1056 struct rq_flags rf;
1057 struct rq *rq;
1058
1059 if (!static_branch_likely(&psi_cgroups_enabled)) {
1060 /*
1061 * Lame to do this here, but the scheduler cannot be locked
1062 * from the outside, so we move cgroups from inside sched/.
1063 */
1064 rcu_assign_pointer(task->cgroups, to);
1065 return;
1066 }
1067
1068 rq = task_rq_lock(task, &rf);
1069
1070 /*
1071 * We may race with schedule() dropping the rq lock between
1072 * deactivating prev and switching to next. Because the psi
1073 * updates from the deactivation are deferred to the switch
1074 * callback to save cgroup tree updates, the task's scheduling
1075 * state here is not coherent with its psi state:
1076 *
1077 * schedule() cgroup_move_task()
1078 * rq_lock()
1079 * deactivate_task()
1080 * p->on_rq = 0
1081 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1082 * pick_next_task()
1083 * rq_unlock()
1084 * rq_lock()
1085 * psi_task_change() // old cgroup
1086 * task->cgroups = to
1087 * psi_task_change() // new cgroup
1088 * rq_unlock()
1089 * rq_lock()
1090 * psi_sched_switch() // does deferred updates in new cgroup
1091 *
1092 * Don't rely on the scheduling state. Use psi_flags instead.
1093 */
1094 task_flags = task->psi_flags;
1095
1096 if (task_flags)
1097 psi_task_change(task, task_flags, 0);
1098
1099 /* See comment above */
1100 rcu_assign_pointer(task->cgroups, to);
1101
1102 if (task_flags)
1103 psi_task_change(task, 0, task_flags);
1104
1105 task_rq_unlock(rq, task, &rf);
1106 }
1107
psi_cgroup_restart(struct psi_group * group)1108 void psi_cgroup_restart(struct psi_group *group)
1109 {
1110 int cpu;
1111
1112 /*
1113 * After we disable psi_group->enabled, we don't actually
1114 * stop percpu tasks accounting in each psi_group_cpu,
1115 * instead only stop test_state() loop, record_times()
1116 * and averaging worker, see psi_group_change() for details.
1117 *
1118 * When disable cgroup PSI, this function has nothing to sync
1119 * since cgroup pressure files are hidden and percpu psi_group_cpu
1120 * would see !psi_group->enabled and only do task accounting.
1121 *
1122 * When re-enable cgroup PSI, this function use psi_group_change()
1123 * to get correct state mask from test_state() loop on tasks[],
1124 * and restart groupc->state_start from now, use .clear = .set = 0
1125 * here since no task status really changed.
1126 */
1127 if (!group->enabled)
1128 return;
1129
1130 for_each_possible_cpu(cpu) {
1131 struct rq *rq = cpu_rq(cpu);
1132 struct rq_flags rf;
1133 u64 now;
1134
1135 rq_lock_irq(rq, &rf);
1136 now = cpu_clock(cpu);
1137 psi_group_change(group, cpu, 0, 0, now, true);
1138 rq_unlock_irq(rq, &rf);
1139 }
1140 }
1141 #endif /* CONFIG_CGROUPS */
1142
psi_show(struct seq_file * m,struct psi_group * group,enum psi_res res)1143 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1144 {
1145 bool only_full = false;
1146 int full;
1147 u64 now;
1148
1149 if (static_branch_likely(&psi_disabled))
1150 return -EOPNOTSUPP;
1151
1152 /* Update averages before reporting them */
1153 mutex_lock(&group->avgs_lock);
1154 now = sched_clock();
1155 collect_percpu_times(group, PSI_AVGS, NULL);
1156 if (now >= group->avg_next_update)
1157 group->avg_next_update = update_averages(group, now);
1158 mutex_unlock(&group->avgs_lock);
1159
1160 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1161 only_full = res == PSI_IRQ;
1162 #endif
1163
1164 for (full = 0; full < 2 - only_full; full++) {
1165 unsigned long avg[3] = { 0, };
1166 u64 total = 0;
1167 int w;
1168
1169 /* CPU FULL is undefined at the system level */
1170 if (!(group == &psi_system && res == PSI_CPU && full)) {
1171 for (w = 0; w < 3; w++)
1172 avg[w] = group->avg[res * 2 + full][w];
1173 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1174 NSEC_PER_USEC);
1175 }
1176
1177 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1178 full || only_full ? "full" : "some",
1179 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1180 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1181 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1182 total);
1183 }
1184
1185 return 0;
1186 }
1187
psi_trigger_create(struct psi_group * group,char * buf,enum psi_res res)1188 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1189 char *buf, enum psi_res res)
1190 {
1191 struct psi_trigger *t;
1192 enum psi_states state;
1193 u32 threshold_us;
1194 u32 window_us;
1195
1196 if (static_branch_likely(&psi_disabled))
1197 return ERR_PTR(-EOPNOTSUPP);
1198
1199 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1200 state = PSI_IO_SOME + res * 2;
1201 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1202 state = PSI_IO_FULL + res * 2;
1203 else
1204 return ERR_PTR(-EINVAL);
1205
1206 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1207 if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1208 return ERR_PTR(-EINVAL);
1209 #endif
1210
1211 if (state >= PSI_NONIDLE)
1212 return ERR_PTR(-EINVAL);
1213
1214 if (window_us < WINDOW_MIN_US ||
1215 window_us > WINDOW_MAX_US)
1216 return ERR_PTR(-EINVAL);
1217
1218 /* Check threshold */
1219 if (threshold_us == 0 || threshold_us > window_us)
1220 return ERR_PTR(-EINVAL);
1221
1222 t = kmalloc(sizeof(*t), GFP_KERNEL);
1223 if (!t)
1224 return ERR_PTR(-ENOMEM);
1225
1226 t->group = group;
1227 t->state = state;
1228 t->threshold = threshold_us * NSEC_PER_USEC;
1229 t->win.size = window_us * NSEC_PER_USEC;
1230 window_reset(&t->win, sched_clock(),
1231 group->total[PSI_POLL][t->state], 0);
1232
1233 t->event = 0;
1234 t->last_event_time = 0;
1235 init_waitqueue_head(&t->event_wait);
1236 t->pending_event = false;
1237
1238 mutex_lock(&group->trigger_lock);
1239
1240 if (!rcu_access_pointer(group->poll_task)) {
1241 struct task_struct *task;
1242
1243 task = kthread_create(psi_poll_worker, group, "psimon");
1244 if (IS_ERR(task)) {
1245 kfree(t);
1246 mutex_unlock(&group->trigger_lock);
1247 return ERR_CAST(task);
1248 }
1249 atomic_set(&group->poll_wakeup, 0);
1250 wake_up_process(task);
1251 rcu_assign_pointer(group->poll_task, task);
1252 }
1253
1254 list_add(&t->node, &group->triggers);
1255 group->poll_min_period = min(group->poll_min_period,
1256 div_u64(t->win.size, UPDATES_PER_WINDOW));
1257 group->nr_triggers[t->state]++;
1258 group->poll_states |= (1 << t->state);
1259
1260 mutex_unlock(&group->trigger_lock);
1261
1262 return t;
1263 }
1264
psi_trigger_destroy(struct psi_trigger * t)1265 void psi_trigger_destroy(struct psi_trigger *t)
1266 {
1267 struct psi_group *group;
1268 struct task_struct *task_to_destroy = NULL;
1269
1270 /*
1271 * We do not check psi_disabled since it might have been disabled after
1272 * the trigger got created.
1273 */
1274 if (!t)
1275 return;
1276
1277 group = t->group;
1278 /*
1279 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1280 * from under a polling process.
1281 */
1282 wake_up_interruptible(&t->event_wait);
1283
1284 mutex_lock(&group->trigger_lock);
1285
1286 if (!list_empty(&t->node)) {
1287 struct psi_trigger *tmp;
1288 u64 period = ULLONG_MAX;
1289
1290 list_del(&t->node);
1291 group->nr_triggers[t->state]--;
1292 if (!group->nr_triggers[t->state])
1293 group->poll_states &= ~(1 << t->state);
1294 /* reset min update period for the remaining triggers */
1295 list_for_each_entry(tmp, &group->triggers, node)
1296 period = min(period, div_u64(tmp->win.size,
1297 UPDATES_PER_WINDOW));
1298 group->poll_min_period = period;
1299 /* Destroy poll_task when the last trigger is destroyed */
1300 if (group->poll_states == 0) {
1301 group->polling_until = 0;
1302 task_to_destroy = rcu_dereference_protected(
1303 group->poll_task,
1304 lockdep_is_held(&group->trigger_lock));
1305 rcu_assign_pointer(group->poll_task, NULL);
1306 del_timer(&group->poll_timer);
1307 }
1308 }
1309
1310 mutex_unlock(&group->trigger_lock);
1311
1312 /*
1313 * Wait for psi_schedule_poll_work RCU to complete its read-side
1314 * critical section before destroying the trigger and optionally the
1315 * poll_task.
1316 */
1317 synchronize_rcu();
1318 /*
1319 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1320 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1321 */
1322 if (task_to_destroy) {
1323 /*
1324 * After the RCU grace period has expired, the worker
1325 * can no longer be found through group->poll_task.
1326 */
1327 kthread_stop(task_to_destroy);
1328 }
1329 kfree(t);
1330 }
1331
psi_trigger_poll(void ** trigger_ptr,struct file * file,poll_table * wait)1332 __poll_t psi_trigger_poll(void **trigger_ptr,
1333 struct file *file, poll_table *wait)
1334 {
1335 __poll_t ret = DEFAULT_POLLMASK;
1336 struct psi_trigger *t;
1337
1338 if (static_branch_likely(&psi_disabled))
1339 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1340
1341 t = smp_load_acquire(trigger_ptr);
1342 if (!t)
1343 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1344
1345 poll_wait(file, &t->event_wait, wait);
1346
1347 if (cmpxchg(&t->event, 1, 0) == 1)
1348 ret |= EPOLLPRI;
1349
1350 return ret;
1351 }
1352
1353 #ifdef CONFIG_PROC_FS
psi_io_show(struct seq_file * m,void * v)1354 static int psi_io_show(struct seq_file *m, void *v)
1355 {
1356 return psi_show(m, &psi_system, PSI_IO);
1357 }
1358
psi_memory_show(struct seq_file * m,void * v)1359 static int psi_memory_show(struct seq_file *m, void *v)
1360 {
1361 return psi_show(m, &psi_system, PSI_MEM);
1362 }
1363
psi_cpu_show(struct seq_file * m,void * v)1364 static int psi_cpu_show(struct seq_file *m, void *v)
1365 {
1366 return psi_show(m, &psi_system, PSI_CPU);
1367 }
1368
psi_open(struct file * file,int (* psi_show)(struct seq_file *,void *))1369 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1370 {
1371 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1372 return -EPERM;
1373
1374 return single_open(file, psi_show, NULL);
1375 }
1376
psi_io_open(struct inode * inode,struct file * file)1377 static int psi_io_open(struct inode *inode, struct file *file)
1378 {
1379 return psi_open(file, psi_io_show);
1380 }
1381
psi_memory_open(struct inode * inode,struct file * file)1382 static int psi_memory_open(struct inode *inode, struct file *file)
1383 {
1384 return psi_open(file, psi_memory_show);
1385 }
1386
psi_cpu_open(struct inode * inode,struct file * file)1387 static int psi_cpu_open(struct inode *inode, struct file *file)
1388 {
1389 return psi_open(file, psi_cpu_show);
1390 }
1391
psi_write(struct file * file,const char __user * user_buf,size_t nbytes,enum psi_res res)1392 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1393 size_t nbytes, enum psi_res res)
1394 {
1395 char buf[32];
1396 size_t buf_size;
1397 struct seq_file *seq;
1398 struct psi_trigger *new;
1399
1400 if (static_branch_likely(&psi_disabled))
1401 return -EOPNOTSUPP;
1402
1403 if (!nbytes)
1404 return -EINVAL;
1405
1406 buf_size = min(nbytes, sizeof(buf));
1407 if (copy_from_user(buf, user_buf, buf_size))
1408 return -EFAULT;
1409
1410 buf[buf_size - 1] = '\0';
1411
1412 seq = file->private_data;
1413
1414 /* Take seq->lock to protect seq->private from concurrent writes */
1415 mutex_lock(&seq->lock);
1416
1417 /* Allow only one trigger per file descriptor */
1418 if (seq->private) {
1419 mutex_unlock(&seq->lock);
1420 return -EBUSY;
1421 }
1422
1423 new = psi_trigger_create(&psi_system, buf, res);
1424 if (IS_ERR(new)) {
1425 mutex_unlock(&seq->lock);
1426 return PTR_ERR(new);
1427 }
1428
1429 smp_store_release(&seq->private, new);
1430 mutex_unlock(&seq->lock);
1431
1432 return nbytes;
1433 }
1434
psi_io_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1435 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1436 size_t nbytes, loff_t *ppos)
1437 {
1438 return psi_write(file, user_buf, nbytes, PSI_IO);
1439 }
1440
psi_memory_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1441 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1442 size_t nbytes, loff_t *ppos)
1443 {
1444 return psi_write(file, user_buf, nbytes, PSI_MEM);
1445 }
1446
psi_cpu_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1447 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1448 size_t nbytes, loff_t *ppos)
1449 {
1450 return psi_write(file, user_buf, nbytes, PSI_CPU);
1451 }
1452
psi_fop_poll(struct file * file,poll_table * wait)1453 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1454 {
1455 struct seq_file *seq = file->private_data;
1456
1457 return psi_trigger_poll(&seq->private, file, wait);
1458 }
1459
psi_fop_release(struct inode * inode,struct file * file)1460 static int psi_fop_release(struct inode *inode, struct file *file)
1461 {
1462 struct seq_file *seq = file->private_data;
1463
1464 psi_trigger_destroy(seq->private);
1465 return single_release(inode, file);
1466 }
1467
1468 static const struct proc_ops psi_io_proc_ops = {
1469 .proc_open = psi_io_open,
1470 .proc_read = seq_read,
1471 .proc_lseek = seq_lseek,
1472 .proc_write = psi_io_write,
1473 .proc_poll = psi_fop_poll,
1474 .proc_release = psi_fop_release,
1475 };
1476
1477 static const struct proc_ops psi_memory_proc_ops = {
1478 .proc_open = psi_memory_open,
1479 .proc_read = seq_read,
1480 .proc_lseek = seq_lseek,
1481 .proc_write = psi_memory_write,
1482 .proc_poll = psi_fop_poll,
1483 .proc_release = psi_fop_release,
1484 };
1485
1486 static const struct proc_ops psi_cpu_proc_ops = {
1487 .proc_open = psi_cpu_open,
1488 .proc_read = seq_read,
1489 .proc_lseek = seq_lseek,
1490 .proc_write = psi_cpu_write,
1491 .proc_poll = psi_fop_poll,
1492 .proc_release = psi_fop_release,
1493 };
1494
1495 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
psi_irq_show(struct seq_file * m,void * v)1496 static int psi_irq_show(struct seq_file *m, void *v)
1497 {
1498 return psi_show(m, &psi_system, PSI_IRQ);
1499 }
1500
psi_irq_open(struct inode * inode,struct file * file)1501 static int psi_irq_open(struct inode *inode, struct file *file)
1502 {
1503 return psi_open(file, psi_irq_show);
1504 }
1505
psi_irq_write(struct file * file,const char __user * user_buf,size_t nbytes,loff_t * ppos)1506 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1507 size_t nbytes, loff_t *ppos)
1508 {
1509 return psi_write(file, user_buf, nbytes, PSI_IRQ);
1510 }
1511
1512 static const struct proc_ops psi_irq_proc_ops = {
1513 .proc_open = psi_irq_open,
1514 .proc_read = seq_read,
1515 .proc_lseek = seq_lseek,
1516 .proc_write = psi_irq_write,
1517 .proc_poll = psi_fop_poll,
1518 .proc_release = psi_fop_release,
1519 };
1520 #endif
1521
psi_proc_init(void)1522 static int __init psi_proc_init(void)
1523 {
1524 if (psi_enable) {
1525 proc_mkdir("pressure", NULL);
1526 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1527 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1528 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1529 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1530 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1531 #endif
1532 }
1533 return 0;
1534 }
1535 module_init(psi_proc_init);
1536
1537 #endif /* CONFIG_PROC_FS */
1538