1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70 
71 #include <asm/futex.h>
72 
73 #include "locking/rtmutex_common.h"
74 
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *	X = Y = 0
155  *
156  *	w[X]=1		w[Y]=1
157  *	MB		MB
158  *	r[Y]=y		r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175 
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179 
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED		0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED		0x00
192 #endif
193 #define FLAGS_CLOCKRT		0x02
194 #define FLAGS_HAS_TIMEOUT	0x04
195 
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200 	/*
201 	 * list of 'owned' pi_state instances - these have to be
202 	 * cleaned up in do_exit() if the task exits prematurely:
203 	 */
204 	struct list_head list;
205 
206 	/*
207 	 * The PI object:
208 	 */
209 	struct rt_mutex pi_mutex;
210 
211 	struct task_struct *owner;
212 	atomic_t refcount;
213 
214 	union futex_key key;
215 } __randomize_layout;
216 
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:		priority-sorted list of tasks waiting on this futex
220  * @task:		the task waiting on the futex
221  * @lock_ptr:		the hash bucket lock
222  * @key:		the key the futex is hashed on
223  * @pi_state:		optional priority inheritance state
224  * @rt_waiter:		rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:	the requeue_pi target futex key
226  * @bitset:		bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240 	struct plist_node list;
241 
242 	struct task_struct *task;
243 	spinlock_t *lock_ptr;
244 	union futex_key key;
245 	struct futex_pi_state *pi_state;
246 	struct rt_mutex_waiter *rt_waiter;
247 	union futex_key *requeue_pi_key;
248 	u32 bitset;
249 } __randomize_layout;
250 
251 static const struct futex_q futex_q_init = {
252 	/* list gets initialized in queue_me()*/
253 	.key = FUTEX_KEY_INIT,
254 	.bitset = FUTEX_BITSET_MATCH_ANY
255 };
256 
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263 	atomic_t waiters;
264 	spinlock_t lock;
265 	struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267 
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274 	struct futex_hash_bucket *queues;
275 	unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279 
280 
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285 
286 static struct {
287 	struct fault_attr attr;
288 
289 	bool ignore_private;
290 } fail_futex = {
291 	.attr = FAULT_ATTR_INITIALIZER,
292 	.ignore_private = false,
293 };
294 
setup_fail_futex(char * str)295 static int __init setup_fail_futex(char *str)
296 {
297 	return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300 
should_fail_futex(bool fshared)301 static bool should_fail_futex(bool fshared)
302 {
303 	if (fail_futex.ignore_private && !fshared)
304 		return false;
305 
306 	return should_fail(&fail_futex.attr, 1);
307 }
308 
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310 
fail_futex_debugfs(void)311 static int __init fail_futex_debugfs(void)
312 {
313 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 	struct dentry *dir;
315 
316 	dir = fault_create_debugfs_attr("fail_futex", NULL,
317 					&fail_futex.attr);
318 	if (IS_ERR(dir))
319 		return PTR_ERR(dir);
320 
321 	if (!debugfs_create_bool("ignore-private", mode, dir,
322 				 &fail_futex.ignore_private)) {
323 		debugfs_remove_recursive(dir);
324 		return -ENOMEM;
325 	}
326 
327 	return 0;
328 }
329 
330 late_initcall(fail_futex_debugfs);
331 
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333 
334 #else
should_fail_futex(bool fshared)335 static inline bool should_fail_futex(bool fshared)
336 {
337 	return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340 
futex_get_mm(union futex_key * key)341 static inline void futex_get_mm(union futex_key *key)
342 {
343 	mmgrab(key->private.mm);
344 	/*
345 	 * Ensure futex_get_mm() implies a full barrier such that
346 	 * get_futex_key() implies a full barrier. This is relied upon
347 	 * as smp_mb(); (B), see the ordering comment above.
348 	 */
349 	smp_mb__after_atomic();
350 }
351 
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
hb_waiters_inc(struct futex_hash_bucket * hb)355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 	atomic_inc(&hb->waiters);
359 	/*
360 	 * Full barrier (A), see the ordering comment above.
361 	 */
362 	smp_mb__after_atomic();
363 #endif
364 }
365 
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
hb_waiters_dec(struct futex_hash_bucket * hb)370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 	atomic_dec(&hb->waiters);
374 #endif
375 }
376 
hb_waiters_pending(struct futex_hash_bucket * hb)377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 	return atomic_read(&hb->waiters);
381 #else
382 	return 1;
383 #endif
384 }
385 
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:	Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
hash_futex(union futex_key * key)393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 	u32 hash = jhash2((u32*)&key->both.word,
396 			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 			  key->both.offset);
398 	return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400 
401 
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:	Pointer to key1
405  * @key2:	Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
match_futex(union futex_key * key1,union futex_key * key2)409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 	return (key1 && key2
412 		&& key1->both.word == key2->both.word
413 		&& key1->both.ptr == key2->both.ptr
414 		&& key1->both.offset == key2->both.offset);
415 }
416 
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
get_futex_key_refs(union futex_key * key)422 static void get_futex_key_refs(union futex_key *key)
423 {
424 	if (!key->both.ptr)
425 		return;
426 
427 	/*
428 	 * On MMU less systems futexes are always "private" as there is no per
429 	 * process address space. We need the smp wmb nevertheless - yes,
430 	 * arch/blackfin has MMU less SMP ...
431 	 */
432 	if (!IS_ENABLED(CONFIG_MMU)) {
433 		smp_mb(); /* explicit smp_mb(); (B) */
434 		return;
435 	}
436 
437 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 	case FUT_OFF_INODE:
439 		ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 		break;
441 	case FUT_OFF_MMSHARED:
442 		futex_get_mm(key); /* implies smp_mb(); (B) */
443 		break;
444 	default:
445 		/*
446 		 * Private futexes do not hold reference on an inode or
447 		 * mm, therefore the only purpose of calling get_futex_key_refs
448 		 * is because we need the barrier for the lockless waiter check.
449 		 */
450 		smp_mb(); /* explicit smp_mb(); (B) */
451 	}
452 }
453 
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
drop_futex_key_refs(union futex_key * key)460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 	if (!key->both.ptr) {
463 		/* If we're here then we tried to put a key we failed to get */
464 		WARN_ON_ONCE(1);
465 		return;
466 	}
467 
468 	if (!IS_ENABLED(CONFIG_MMU))
469 		return;
470 
471 	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 	case FUT_OFF_INODE:
473 		iput(key->shared.inode);
474 		break;
475 	case FUT_OFF_MMSHARED:
476 		mmdrop(key->private.mm);
477 		break;
478 	}
479 }
480 
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:	virtual address of the futex
484  * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:	address where result is stored.
486  * @rw:		mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 	unsigned long address = (unsigned long)uaddr;
503 	struct mm_struct *mm = current->mm;
504 	struct page *page, *tail;
505 	struct address_space *mapping;
506 	int err, ro = 0;
507 
508 	/*
509 	 * The futex address must be "naturally" aligned.
510 	 */
511 	key->both.offset = address % PAGE_SIZE;
512 	if (unlikely((address % sizeof(u32)) != 0))
513 		return -EINVAL;
514 	address -= key->both.offset;
515 
516 	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 		return -EFAULT;
518 
519 	if (unlikely(should_fail_futex(fshared)))
520 		return -EFAULT;
521 
522 	/*
523 	 * PROCESS_PRIVATE futexes are fast.
524 	 * As the mm cannot disappear under us and the 'key' only needs
525 	 * virtual address, we dont even have to find the underlying vma.
526 	 * Note : We do have to check 'uaddr' is a valid user address,
527 	 *        but access_ok() should be faster than find_vma()
528 	 */
529 	if (!fshared) {
530 		key->private.mm = mm;
531 		key->private.address = address;
532 		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533 		return 0;
534 	}
535 
536 again:
537 	/* Ignore any VERIFY_READ mapping (futex common case) */
538 	if (unlikely(should_fail_futex(fshared)))
539 		return -EFAULT;
540 
541 	err = get_user_pages_fast(address, 1, 1, &page);
542 	/*
543 	 * If write access is not required (eg. FUTEX_WAIT), try
544 	 * and get read-only access.
545 	 */
546 	if (err == -EFAULT && rw == VERIFY_READ) {
547 		err = get_user_pages_fast(address, 1, 0, &page);
548 		ro = 1;
549 	}
550 	if (err < 0)
551 		return err;
552 	else
553 		err = 0;
554 
555 	/*
556 	 * The treatment of mapping from this point on is critical. The page
557 	 * lock protects many things but in this context the page lock
558 	 * stabilizes mapping, prevents inode freeing in the shared
559 	 * file-backed region case and guards against movement to swap cache.
560 	 *
561 	 * Strictly speaking the page lock is not needed in all cases being
562 	 * considered here and page lock forces unnecessarily serialization
563 	 * From this point on, mapping will be re-verified if necessary and
564 	 * page lock will be acquired only if it is unavoidable
565 	 *
566 	 * Mapping checks require the head page for any compound page so the
567 	 * head page and mapping is looked up now. For anonymous pages, it
568 	 * does not matter if the page splits in the future as the key is
569 	 * based on the address. For filesystem-backed pages, the tail is
570 	 * required as the index of the page determines the key. For
571 	 * base pages, there is no tail page and tail == page.
572 	 */
573 	tail = page;
574 	page = compound_head(page);
575 	mapping = READ_ONCE(page->mapping);
576 
577 	/*
578 	 * If page->mapping is NULL, then it cannot be a PageAnon
579 	 * page; but it might be the ZERO_PAGE or in the gate area or
580 	 * in a special mapping (all cases which we are happy to fail);
581 	 * or it may have been a good file page when get_user_pages_fast
582 	 * found it, but truncated or holepunched or subjected to
583 	 * invalidate_complete_page2 before we got the page lock (also
584 	 * cases which we are happy to fail).  And we hold a reference,
585 	 * so refcount care in invalidate_complete_page's remove_mapping
586 	 * prevents drop_caches from setting mapping to NULL beneath us.
587 	 *
588 	 * The case we do have to guard against is when memory pressure made
589 	 * shmem_writepage move it from filecache to swapcache beneath us:
590 	 * an unlikely race, but we do need to retry for page->mapping.
591 	 */
592 	if (unlikely(!mapping)) {
593 		int shmem_swizzled;
594 
595 		/*
596 		 * Page lock is required to identify which special case above
597 		 * applies. If this is really a shmem page then the page lock
598 		 * will prevent unexpected transitions.
599 		 */
600 		lock_page(page);
601 		shmem_swizzled = PageSwapCache(page) || page->mapping;
602 		unlock_page(page);
603 		put_page(page);
604 
605 		if (shmem_swizzled)
606 			goto again;
607 
608 		return -EFAULT;
609 	}
610 
611 	/*
612 	 * Private mappings are handled in a simple way.
613 	 *
614 	 * If the futex key is stored on an anonymous page, then the associated
615 	 * object is the mm which is implicitly pinned by the calling process.
616 	 *
617 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 	 * it's a read-only handle, it's expected that futexes attach to
619 	 * the object not the particular process.
620 	 */
621 	if (PageAnon(page)) {
622 		/*
623 		 * A RO anonymous page will never change and thus doesn't make
624 		 * sense for futex operations.
625 		 */
626 		if (unlikely(should_fail_futex(fshared)) || ro) {
627 			err = -EFAULT;
628 			goto out;
629 		}
630 
631 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 		key->private.mm = mm;
633 		key->private.address = address;
634 
635 		get_futex_key_refs(key); /* implies smp_mb(); (B) */
636 
637 	} else {
638 		struct inode *inode;
639 
640 		/*
641 		 * The associated futex object in this case is the inode and
642 		 * the page->mapping must be traversed. Ordinarily this should
643 		 * be stabilised under page lock but it's not strictly
644 		 * necessary in this case as we just want to pin the inode, not
645 		 * update the radix tree or anything like that.
646 		 *
647 		 * The RCU read lock is taken as the inode is finally freed
648 		 * under RCU. If the mapping still matches expectations then the
649 		 * mapping->host can be safely accessed as being a valid inode.
650 		 */
651 		rcu_read_lock();
652 
653 		if (READ_ONCE(page->mapping) != mapping) {
654 			rcu_read_unlock();
655 			put_page(page);
656 
657 			goto again;
658 		}
659 
660 		inode = READ_ONCE(mapping->host);
661 		if (!inode) {
662 			rcu_read_unlock();
663 			put_page(page);
664 
665 			goto again;
666 		}
667 
668 		/*
669 		 * Take a reference unless it is about to be freed. Previously
670 		 * this reference was taken by ihold under the page lock
671 		 * pinning the inode in place so i_lock was unnecessary. The
672 		 * only way for this check to fail is if the inode was
673 		 * truncated in parallel which is almost certainly an
674 		 * application bug. In such a case, just retry.
675 		 *
676 		 * We are not calling into get_futex_key_refs() in file-backed
677 		 * cases, therefore a successful atomic_inc return below will
678 		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 		 */
680 		if (!atomic_inc_not_zero(&inode->i_count)) {
681 			rcu_read_unlock();
682 			put_page(page);
683 
684 			goto again;
685 		}
686 
687 		/* Should be impossible but lets be paranoid for now */
688 		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 			err = -EFAULT;
690 			rcu_read_unlock();
691 			iput(inode);
692 
693 			goto out;
694 		}
695 
696 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 		key->shared.inode = inode;
698 		key->shared.pgoff = basepage_index(tail);
699 		rcu_read_unlock();
700 	}
701 
702 out:
703 	put_page(page);
704 	return err;
705 }
706 
put_futex_key(union futex_key * key)707 static inline void put_futex_key(union futex_key *key)
708 {
709 	drop_futex_key_refs(key);
710 }
711 
712 /**
713  * fault_in_user_writeable() - Fault in user address and verify RW access
714  * @uaddr:	pointer to faulting user space address
715  *
716  * Slow path to fixup the fault we just took in the atomic write
717  * access to @uaddr.
718  *
719  * We have no generic implementation of a non-destructive write to the
720  * user address. We know that we faulted in the atomic pagefault
721  * disabled section so we can as well avoid the #PF overhead by
722  * calling get_user_pages() right away.
723  */
fault_in_user_writeable(u32 __user * uaddr)724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 	struct mm_struct *mm = current->mm;
727 	int ret;
728 
729 	down_read(&mm->mmap_sem);
730 	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 			       FAULT_FLAG_WRITE, NULL);
732 	up_read(&mm->mmap_sem);
733 
734 	return ret < 0 ? ret : 0;
735 }
736 
737 /**
738  * futex_top_waiter() - Return the highest priority waiter on a futex
739  * @hb:		the hash bucket the futex_q's reside in
740  * @key:	the futex key (to distinguish it from other futex futex_q's)
741  *
742  * Must be called with the hb lock held.
743  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 					union futex_key *key)
746 {
747 	struct futex_q *this;
748 
749 	plist_for_each_entry(this, &hb->chain, list) {
750 		if (match_futex(&this->key, key))
751 			return this;
752 	}
753 	return NULL;
754 }
755 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 				      u32 uval, u32 newval)
758 {
759 	int ret;
760 
761 	pagefault_disable();
762 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 	pagefault_enable();
764 
765 	return ret;
766 }
767 
get_futex_value_locked(u32 * dest,u32 __user * from)768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 	int ret;
771 
772 	pagefault_disable();
773 	ret = __get_user(*dest, from);
774 	pagefault_enable();
775 
776 	return ret ? -EFAULT : 0;
777 }
778 
779 
780 /*
781  * PI code:
782  */
refill_pi_state_cache(void)783 static int refill_pi_state_cache(void)
784 {
785 	struct futex_pi_state *pi_state;
786 
787 	if (likely(current->pi_state_cache))
788 		return 0;
789 
790 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791 
792 	if (!pi_state)
793 		return -ENOMEM;
794 
795 	INIT_LIST_HEAD(&pi_state->list);
796 	/* pi_mutex gets initialized later */
797 	pi_state->owner = NULL;
798 	atomic_set(&pi_state->refcount, 1);
799 	pi_state->key = FUTEX_KEY_INIT;
800 
801 	current->pi_state_cache = pi_state;
802 
803 	return 0;
804 }
805 
alloc_pi_state(void)806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 	struct futex_pi_state *pi_state = current->pi_state_cache;
809 
810 	WARN_ON(!pi_state);
811 	current->pi_state_cache = NULL;
812 
813 	return pi_state;
814 }
815 
get_pi_state(struct futex_pi_state * pi_state)816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820 
821 /*
822  * Drops a reference to the pi_state object and frees or caches it
823  * when the last reference is gone.
824  */
put_pi_state(struct futex_pi_state * pi_state)825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 	if (!pi_state)
828 		return;
829 
830 	if (!atomic_dec_and_test(&pi_state->refcount))
831 		return;
832 
833 	/*
834 	 * If pi_state->owner is NULL, the owner is most probably dying
835 	 * and has cleaned up the pi_state already
836 	 */
837 	if (pi_state->owner) {
838 		struct task_struct *owner;
839 
840 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 		owner = pi_state->owner;
842 		if (owner) {
843 			raw_spin_lock(&owner->pi_lock);
844 			list_del_init(&pi_state->list);
845 			raw_spin_unlock(&owner->pi_lock);
846 		}
847 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 	}
850 
851 	if (current->pi_state_cache) {
852 		kfree(pi_state);
853 	} else {
854 		/*
855 		 * pi_state->list is already empty.
856 		 * clear pi_state->owner.
857 		 * refcount is at 0 - put it back to 1.
858 		 */
859 		pi_state->owner = NULL;
860 		atomic_set(&pi_state->refcount, 1);
861 		current->pi_state_cache = pi_state;
862 	}
863 }
864 
865 #ifdef CONFIG_FUTEX_PI
866 
867 /*
868  * This task is holding PI mutexes at exit time => bad.
869  * Kernel cleans up PI-state, but userspace is likely hosed.
870  * (Robust-futex cleanup is separate and might save the day for userspace.)
871  */
exit_pi_state_list(struct task_struct * curr)872 void exit_pi_state_list(struct task_struct *curr)
873 {
874 	struct list_head *next, *head = &curr->pi_state_list;
875 	struct futex_pi_state *pi_state;
876 	struct futex_hash_bucket *hb;
877 	union futex_key key = FUTEX_KEY_INIT;
878 
879 	if (!futex_cmpxchg_enabled)
880 		return;
881 	/*
882 	 * We are a ZOMBIE and nobody can enqueue itself on
883 	 * pi_state_list anymore, but we have to be careful
884 	 * versus waiters unqueueing themselves:
885 	 */
886 	raw_spin_lock_irq(&curr->pi_lock);
887 	while (!list_empty(head)) {
888 		next = head->next;
889 		pi_state = list_entry(next, struct futex_pi_state, list);
890 		key = pi_state->key;
891 		hb = hash_futex(&key);
892 
893 		/*
894 		 * We can race against put_pi_state() removing itself from the
895 		 * list (a waiter going away). put_pi_state() will first
896 		 * decrement the reference count and then modify the list, so
897 		 * its possible to see the list entry but fail this reference
898 		 * acquire.
899 		 *
900 		 * In that case; drop the locks to let put_pi_state() make
901 		 * progress and retry the loop.
902 		 */
903 		if (!atomic_inc_not_zero(&pi_state->refcount)) {
904 			raw_spin_unlock_irq(&curr->pi_lock);
905 			cpu_relax();
906 			raw_spin_lock_irq(&curr->pi_lock);
907 			continue;
908 		}
909 		raw_spin_unlock_irq(&curr->pi_lock);
910 
911 		spin_lock(&hb->lock);
912 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913 		raw_spin_lock(&curr->pi_lock);
914 		/*
915 		 * We dropped the pi-lock, so re-check whether this
916 		 * task still owns the PI-state:
917 		 */
918 		if (head->next != next) {
919 			/* retain curr->pi_lock for the loop invariant */
920 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921 			spin_unlock(&hb->lock);
922 			put_pi_state(pi_state);
923 			continue;
924 		}
925 
926 		WARN_ON(pi_state->owner != curr);
927 		WARN_ON(list_empty(&pi_state->list));
928 		list_del_init(&pi_state->list);
929 		pi_state->owner = NULL;
930 
931 		raw_spin_unlock(&curr->pi_lock);
932 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933 		spin_unlock(&hb->lock);
934 
935 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
936 		put_pi_state(pi_state);
937 
938 		raw_spin_lock_irq(&curr->pi_lock);
939 	}
940 	raw_spin_unlock_irq(&curr->pi_lock);
941 }
942 
943 #endif
944 
945 /*
946  * We need to check the following states:
947  *
948  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
949  *
950  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
951  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
952  *
953  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
954  *
955  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
956  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
957  *
958  * [6]  Found  | Found    | task      | 0         | 1      | Valid
959  *
960  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
961  *
962  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
963  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
964  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
965  *
966  * [1]	Indicates that the kernel can acquire the futex atomically. We
967  *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
968  *
969  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
970  *      thread is found then it indicates that the owner TID has died.
971  *
972  * [3]	Invalid. The waiter is queued on a non PI futex
973  *
974  * [4]	Valid state after exit_robust_list(), which sets the user space
975  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
976  *
977  * [5]	The user space value got manipulated between exit_robust_list()
978  *	and exit_pi_state_list()
979  *
980  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
981  *	the pi_state but cannot access the user space value.
982  *
983  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
984  *
985  * [8]	Owner and user space value match
986  *
987  * [9]	There is no transient state which sets the user space TID to 0
988  *	except exit_robust_list(), but this is indicated by the
989  *	FUTEX_OWNER_DIED bit. See [4]
990  *
991  * [10] There is no transient state which leaves owner and user space
992  *	TID out of sync.
993  *
994  *
995  * Serialization and lifetime rules:
996  *
997  * hb->lock:
998  *
999  *	hb -> futex_q, relation
1000  *	futex_q -> pi_state, relation
1001  *
1002  *	(cannot be raw because hb can contain arbitrary amount
1003  *	 of futex_q's)
1004  *
1005  * pi_mutex->wait_lock:
1006  *
1007  *	{uval, pi_state}
1008  *
1009  *	(and pi_mutex 'obviously')
1010  *
1011  * p->pi_lock:
1012  *
1013  *	p->pi_state_list -> pi_state->list, relation
1014  *
1015  * pi_state->refcount:
1016  *
1017  *	pi_state lifetime
1018  *
1019  *
1020  * Lock order:
1021  *
1022  *   hb->lock
1023  *     pi_mutex->wait_lock
1024  *       p->pi_lock
1025  *
1026  */
1027 
1028 /*
1029  * Validate that the existing waiter has a pi_state and sanity check
1030  * the pi_state against the user space value. If correct, attach to
1031  * it.
1032  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1033 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034 			      struct futex_pi_state *pi_state,
1035 			      struct futex_pi_state **ps)
1036 {
1037 	pid_t pid = uval & FUTEX_TID_MASK;
1038 	u32 uval2;
1039 	int ret;
1040 
1041 	/*
1042 	 * Userspace might have messed up non-PI and PI futexes [3]
1043 	 */
1044 	if (unlikely(!pi_state))
1045 		return -EINVAL;
1046 
1047 	/*
1048 	 * We get here with hb->lock held, and having found a
1049 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051 	 * which in turn means that futex_lock_pi() still has a reference on
1052 	 * our pi_state.
1053 	 *
1054 	 * The waiter holding a reference on @pi_state also protects against
1055 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057 	 * free pi_state before we can take a reference ourselves.
1058 	 */
1059 	WARN_ON(!atomic_read(&pi_state->refcount));
1060 
1061 	/*
1062 	 * Now that we have a pi_state, we can acquire wait_lock
1063 	 * and do the state validation.
1064 	 */
1065 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066 
1067 	/*
1068 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1069 	 * uval was read without holding it, it can have changed. Verify it
1070 	 * still is what we expect it to be, otherwise retry the entire
1071 	 * operation.
1072 	 */
1073 	if (get_futex_value_locked(&uval2, uaddr))
1074 		goto out_efault;
1075 
1076 	if (uval != uval2)
1077 		goto out_eagain;
1078 
1079 	/*
1080 	 * Handle the owner died case:
1081 	 */
1082 	if (uval & FUTEX_OWNER_DIED) {
1083 		/*
1084 		 * exit_pi_state_list sets owner to NULL and wakes the
1085 		 * topmost waiter. The task which acquires the
1086 		 * pi_state->rt_mutex will fixup owner.
1087 		 */
1088 		if (!pi_state->owner) {
1089 			/*
1090 			 * No pi state owner, but the user space TID
1091 			 * is not 0. Inconsistent state. [5]
1092 			 */
1093 			if (pid)
1094 				goto out_einval;
1095 			/*
1096 			 * Take a ref on the state and return success. [4]
1097 			 */
1098 			goto out_attach;
1099 		}
1100 
1101 		/*
1102 		 * If TID is 0, then either the dying owner has not
1103 		 * yet executed exit_pi_state_list() or some waiter
1104 		 * acquired the rtmutex in the pi state, but did not
1105 		 * yet fixup the TID in user space.
1106 		 *
1107 		 * Take a ref on the state and return success. [6]
1108 		 */
1109 		if (!pid)
1110 			goto out_attach;
1111 	} else {
1112 		/*
1113 		 * If the owner died bit is not set, then the pi_state
1114 		 * must have an owner. [7]
1115 		 */
1116 		if (!pi_state->owner)
1117 			goto out_einval;
1118 	}
1119 
1120 	/*
1121 	 * Bail out if user space manipulated the futex value. If pi
1122 	 * state exists then the owner TID must be the same as the
1123 	 * user space TID. [9/10]
1124 	 */
1125 	if (pid != task_pid_vnr(pi_state->owner))
1126 		goto out_einval;
1127 
1128 out_attach:
1129 	get_pi_state(pi_state);
1130 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131 	*ps = pi_state;
1132 	return 0;
1133 
1134 out_einval:
1135 	ret = -EINVAL;
1136 	goto out_error;
1137 
1138 out_eagain:
1139 	ret = -EAGAIN;
1140 	goto out_error;
1141 
1142 out_efault:
1143 	ret = -EFAULT;
1144 	goto out_error;
1145 
1146 out_error:
1147 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Lookup the task for the TID provided from user space and attach to
1153  * it after doing proper sanity checks.
1154  */
attach_to_pi_owner(u32 uval,union futex_key * key,struct futex_pi_state ** ps)1155 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1156 			      struct futex_pi_state **ps)
1157 {
1158 	pid_t pid = uval & FUTEX_TID_MASK;
1159 	struct futex_pi_state *pi_state;
1160 	struct task_struct *p;
1161 
1162 	/*
1163 	 * We are the first waiter - try to look up the real owner and attach
1164 	 * the new pi_state to it, but bail out when TID = 0 [1]
1165 	 */
1166 	if (!pid)
1167 		return -ESRCH;
1168 	p = find_get_task_by_vpid(pid);
1169 	if (!p)
1170 		return -ESRCH;
1171 
1172 	if (unlikely(p->flags & PF_KTHREAD)) {
1173 		put_task_struct(p);
1174 		return -EPERM;
1175 	}
1176 
1177 	/*
1178 	 * We need to look at the task state flags to figure out,
1179 	 * whether the task is exiting. To protect against the do_exit
1180 	 * change of the task flags, we do this protected by
1181 	 * p->pi_lock:
1182 	 */
1183 	raw_spin_lock_irq(&p->pi_lock);
1184 	if (unlikely(p->flags & PF_EXITING)) {
1185 		/*
1186 		 * The task is on the way out. When PF_EXITPIDONE is
1187 		 * set, we know that the task has finished the
1188 		 * cleanup:
1189 		 */
1190 		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1191 
1192 		raw_spin_unlock_irq(&p->pi_lock);
1193 		put_task_struct(p);
1194 		return ret;
1195 	}
1196 
1197 	/*
1198 	 * No existing pi state. First waiter. [2]
1199 	 *
1200 	 * This creates pi_state, we have hb->lock held, this means nothing can
1201 	 * observe this state, wait_lock is irrelevant.
1202 	 */
1203 	pi_state = alloc_pi_state();
1204 
1205 	/*
1206 	 * Initialize the pi_mutex in locked state and make @p
1207 	 * the owner of it:
1208 	 */
1209 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1210 
1211 	/* Store the key for possible exit cleanups: */
1212 	pi_state->key = *key;
1213 
1214 	WARN_ON(!list_empty(&pi_state->list));
1215 	list_add(&pi_state->list, &p->pi_state_list);
1216 	/*
1217 	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1218 	 * because there is no concurrency as the object is not published yet.
1219 	 */
1220 	pi_state->owner = p;
1221 	raw_spin_unlock_irq(&p->pi_lock);
1222 
1223 	put_task_struct(p);
1224 
1225 	*ps = pi_state;
1226 
1227 	return 0;
1228 }
1229 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)1230 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1231 			   struct futex_hash_bucket *hb,
1232 			   union futex_key *key, struct futex_pi_state **ps)
1233 {
1234 	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235 
1236 	/*
1237 	 * If there is a waiter on that futex, validate it and
1238 	 * attach to the pi_state when the validation succeeds.
1239 	 */
1240 	if (top_waiter)
1241 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242 
1243 	/*
1244 	 * We are the first waiter - try to look up the owner based on
1245 	 * @uval and attach to it.
1246 	 */
1247 	return attach_to_pi_owner(uval, key, ps);
1248 }
1249 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1250 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1251 {
1252 	u32 uninitialized_var(curval);
1253 
1254 	if (unlikely(should_fail_futex(true)))
1255 		return -EFAULT;
1256 
1257 	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1258 		return -EFAULT;
1259 
1260 	/* If user space value changed, let the caller retry */
1261 	return curval != uval ? -EAGAIN : 0;
1262 }
1263 
1264 /**
1265  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266  * @uaddr:		the pi futex user address
1267  * @hb:			the pi futex hash bucket
1268  * @key:		the futex key associated with uaddr and hb
1269  * @ps:			the pi_state pointer where we store the result of the
1270  *			lookup
1271  * @task:		the task to perform the atomic lock work for.  This will
1272  *			be "current" except in the case of requeue pi.
1273  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1274  *
1275  * Return:
1276  *  -  0 - ready to wait;
1277  *  -  1 - acquired the lock;
1278  *  - <0 - error
1279  *
1280  * The hb->lock and futex_key refs shall be held by the caller.
1281  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)1282 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1283 				union futex_key *key,
1284 				struct futex_pi_state **ps,
1285 				struct task_struct *task, int set_waiters)
1286 {
1287 	u32 uval, newval, vpid = task_pid_vnr(task);
1288 	struct futex_q *top_waiter;
1289 	int ret;
1290 
1291 	/*
1292 	 * Read the user space value first so we can validate a few
1293 	 * things before proceeding further.
1294 	 */
1295 	if (get_futex_value_locked(&uval, uaddr))
1296 		return -EFAULT;
1297 
1298 	if (unlikely(should_fail_futex(true)))
1299 		return -EFAULT;
1300 
1301 	/*
1302 	 * Detect deadlocks.
1303 	 */
1304 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305 		return -EDEADLK;
1306 
1307 	if ((unlikely(should_fail_futex(true))))
1308 		return -EDEADLK;
1309 
1310 	/*
1311 	 * Lookup existing state first. If it exists, try to attach to
1312 	 * its pi_state.
1313 	 */
1314 	top_waiter = futex_top_waiter(hb, key);
1315 	if (top_waiter)
1316 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317 
1318 	/*
1319 	 * No waiter and user TID is 0. We are here because the
1320 	 * waiters or the owner died bit is set or called from
1321 	 * requeue_cmp_pi or for whatever reason something took the
1322 	 * syscall.
1323 	 */
1324 	if (!(uval & FUTEX_TID_MASK)) {
1325 		/*
1326 		 * We take over the futex. No other waiters and the user space
1327 		 * TID is 0. We preserve the owner died bit.
1328 		 */
1329 		newval = uval & FUTEX_OWNER_DIED;
1330 		newval |= vpid;
1331 
1332 		/* The futex requeue_pi code can enforce the waiters bit */
1333 		if (set_waiters)
1334 			newval |= FUTEX_WAITERS;
1335 
1336 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1337 		/* If the take over worked, return 1 */
1338 		return ret < 0 ? ret : 1;
1339 	}
1340 
1341 	/*
1342 	 * First waiter. Set the waiters bit before attaching ourself to
1343 	 * the owner. If owner tries to unlock, it will be forced into
1344 	 * the kernel and blocked on hb->lock.
1345 	 */
1346 	newval = uval | FUTEX_WAITERS;
1347 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1348 	if (ret)
1349 		return ret;
1350 	/*
1351 	 * If the update of the user space value succeeded, we try to
1352 	 * attach to the owner. If that fails, no harm done, we only
1353 	 * set the FUTEX_WAITERS bit in the user space variable.
1354 	 */
1355 	return attach_to_pi_owner(uval, key, ps);
1356 }
1357 
1358 /**
1359  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1360  * @q:	The futex_q to unqueue
1361  *
1362  * The q->lock_ptr must not be NULL and must be held by the caller.
1363  */
__unqueue_futex(struct futex_q * q)1364 static void __unqueue_futex(struct futex_q *q)
1365 {
1366 	struct futex_hash_bucket *hb;
1367 
1368 	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1369 	    || WARN_ON(plist_node_empty(&q->list)))
1370 		return;
1371 
1372 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1373 	plist_del(&q->list, &hb->chain);
1374 	hb_waiters_dec(hb);
1375 }
1376 
1377 /*
1378  * The hash bucket lock must be held when this is called.
1379  * Afterwards, the futex_q must not be accessed. Callers
1380  * must ensure to later call wake_up_q() for the actual
1381  * wakeups to occur.
1382  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1383 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1384 {
1385 	struct task_struct *p = q->task;
1386 
1387 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1388 		return;
1389 
1390 	/*
1391 	 * Queue the task for later wakeup for after we've released
1392 	 * the hb->lock. wake_q_add() grabs reference to p.
1393 	 */
1394 	wake_q_add(wake_q, p);
1395 	__unqueue_futex(q);
1396 	/*
1397 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1398 	 * is written, without taking any locks. This is possible in the event
1399 	 * of a spurious wakeup, for example. A memory barrier is required here
1400 	 * to prevent the following store to lock_ptr from getting ahead of the
1401 	 * plist_del in __unqueue_futex().
1402 	 */
1403 	smp_store_release(&q->lock_ptr, NULL);
1404 }
1405 
1406 /*
1407  * Caller must hold a reference on @pi_state.
1408  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1409 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410 {
1411 	u32 uninitialized_var(curval), newval;
1412 	struct task_struct *new_owner;
1413 	bool postunlock = false;
1414 	DEFINE_WAKE_Q(wake_q);
1415 	int ret = 0;
1416 
1417 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418 	if (WARN_ON_ONCE(!new_owner)) {
1419 		/*
1420 		 * As per the comment in futex_unlock_pi() this should not happen.
1421 		 *
1422 		 * When this happens, give up our locks and try again, giving
1423 		 * the futex_lock_pi() instance time to complete, either by
1424 		 * waiting on the rtmutex or removing itself from the futex
1425 		 * queue.
1426 		 */
1427 		ret = -EAGAIN;
1428 		goto out_unlock;
1429 	}
1430 
1431 	/*
1432 	 * We pass it to the next owner. The WAITERS bit is always kept
1433 	 * enabled while there is PI state around. We cleanup the owner
1434 	 * died bit, because we are the owner.
1435 	 */
1436 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437 
1438 	if (unlikely(should_fail_futex(true)))
1439 		ret = -EFAULT;
1440 
1441 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442 		ret = -EFAULT;
1443 
1444 	} else if (curval != uval) {
1445 		/*
1446 		 * If a unconditional UNLOCK_PI operation (user space did not
1447 		 * try the TID->0 transition) raced with a waiter setting the
1448 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1449 		 * bucket lock, retry the operation.
1450 		 */
1451 		if ((FUTEX_TID_MASK & curval) == uval)
1452 			ret = -EAGAIN;
1453 		else
1454 			ret = -EINVAL;
1455 	}
1456 
1457 	if (ret)
1458 		goto out_unlock;
1459 
1460 	/*
1461 	 * This is a point of no return; once we modify the uval there is no
1462 	 * going back and subsequent operations must not fail.
1463 	 */
1464 
1465 	raw_spin_lock(&pi_state->owner->pi_lock);
1466 	WARN_ON(list_empty(&pi_state->list));
1467 	list_del_init(&pi_state->list);
1468 	raw_spin_unlock(&pi_state->owner->pi_lock);
1469 
1470 	raw_spin_lock(&new_owner->pi_lock);
1471 	WARN_ON(!list_empty(&pi_state->list));
1472 	list_add(&pi_state->list, &new_owner->pi_state_list);
1473 	pi_state->owner = new_owner;
1474 	raw_spin_unlock(&new_owner->pi_lock);
1475 
1476 	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1477 
1478 out_unlock:
1479 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1480 
1481 	if (postunlock)
1482 		rt_mutex_postunlock(&wake_q);
1483 
1484 	return ret;
1485 }
1486 
1487 /*
1488  * Express the locking dependencies for lockdep:
1489  */
1490 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1491 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492 {
1493 	if (hb1 <= hb2) {
1494 		spin_lock(&hb1->lock);
1495 		if (hb1 < hb2)
1496 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1497 	} else { /* hb1 > hb2 */
1498 		spin_lock(&hb2->lock);
1499 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1500 	}
1501 }
1502 
1503 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1504 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1505 {
1506 	spin_unlock(&hb1->lock);
1507 	if (hb1 != hb2)
1508 		spin_unlock(&hb2->lock);
1509 }
1510 
1511 /*
1512  * Wake up waiters matching bitset queued on this futex (uaddr).
1513  */
1514 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1515 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1516 {
1517 	struct futex_hash_bucket *hb;
1518 	struct futex_q *this, *next;
1519 	union futex_key key = FUTEX_KEY_INIT;
1520 	int ret;
1521 	DEFINE_WAKE_Q(wake_q);
1522 
1523 	if (!bitset)
1524 		return -EINVAL;
1525 
1526 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1527 	if (unlikely(ret != 0))
1528 		goto out;
1529 
1530 	hb = hash_futex(&key);
1531 
1532 	/* Make sure we really have tasks to wakeup */
1533 	if (!hb_waiters_pending(hb))
1534 		goto out_put_key;
1535 
1536 	spin_lock(&hb->lock);
1537 
1538 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1539 		if (match_futex (&this->key, &key)) {
1540 			if (this->pi_state || this->rt_waiter) {
1541 				ret = -EINVAL;
1542 				break;
1543 			}
1544 
1545 			/* Check if one of the bits is set in both bitsets */
1546 			if (!(this->bitset & bitset))
1547 				continue;
1548 
1549 			mark_wake_futex(&wake_q, this);
1550 			if (++ret >= nr_wake)
1551 				break;
1552 		}
1553 	}
1554 
1555 	spin_unlock(&hb->lock);
1556 	wake_up_q(&wake_q);
1557 out_put_key:
1558 	put_futex_key(&key);
1559 out:
1560 	return ret;
1561 }
1562 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1563 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1564 {
1565 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1566 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1567 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1568 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569 	int oldval, ret;
1570 
1571 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572 		if (oparg < 0 || oparg > 31) {
1573 			char comm[sizeof(current->comm)];
1574 			/*
1575 			 * kill this print and return -EINVAL when userspace
1576 			 * is sane again
1577 			 */
1578 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1579 					get_task_comm(comm, current), oparg);
1580 			oparg &= 31;
1581 		}
1582 		oparg = 1 << oparg;
1583 	}
1584 
1585 	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1586 		return -EFAULT;
1587 
1588 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1589 	if (ret)
1590 		return ret;
1591 
1592 	switch (cmp) {
1593 	case FUTEX_OP_CMP_EQ:
1594 		return oldval == cmparg;
1595 	case FUTEX_OP_CMP_NE:
1596 		return oldval != cmparg;
1597 	case FUTEX_OP_CMP_LT:
1598 		return oldval < cmparg;
1599 	case FUTEX_OP_CMP_GE:
1600 		return oldval >= cmparg;
1601 	case FUTEX_OP_CMP_LE:
1602 		return oldval <= cmparg;
1603 	case FUTEX_OP_CMP_GT:
1604 		return oldval > cmparg;
1605 	default:
1606 		return -ENOSYS;
1607 	}
1608 }
1609 
1610 /*
1611  * Wake up all waiters hashed on the physical page that is mapped
1612  * to this virtual address:
1613  */
1614 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1615 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616 	      int nr_wake, int nr_wake2, int op)
1617 {
1618 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619 	struct futex_hash_bucket *hb1, *hb2;
1620 	struct futex_q *this, *next;
1621 	int ret, op_ret;
1622 	DEFINE_WAKE_Q(wake_q);
1623 
1624 retry:
1625 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626 	if (unlikely(ret != 0))
1627 		goto out;
1628 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629 	if (unlikely(ret != 0))
1630 		goto out_put_key1;
1631 
1632 	hb1 = hash_futex(&key1);
1633 	hb2 = hash_futex(&key2);
1634 
1635 retry_private:
1636 	double_lock_hb(hb1, hb2);
1637 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1638 	if (unlikely(op_ret < 0)) {
1639 
1640 		double_unlock_hb(hb1, hb2);
1641 
1642 #ifndef CONFIG_MMU
1643 		/*
1644 		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1645 		 * but we might get them from range checking
1646 		 */
1647 		ret = op_ret;
1648 		goto out_put_keys;
1649 #endif
1650 
1651 		if (unlikely(op_ret != -EFAULT)) {
1652 			ret = op_ret;
1653 			goto out_put_keys;
1654 		}
1655 
1656 		ret = fault_in_user_writeable(uaddr2);
1657 		if (ret)
1658 			goto out_put_keys;
1659 
1660 		if (!(flags & FLAGS_SHARED))
1661 			goto retry_private;
1662 
1663 		put_futex_key(&key2);
1664 		put_futex_key(&key1);
1665 		goto retry;
1666 	}
1667 
1668 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669 		if (match_futex (&this->key, &key1)) {
1670 			if (this->pi_state || this->rt_waiter) {
1671 				ret = -EINVAL;
1672 				goto out_unlock;
1673 			}
1674 			mark_wake_futex(&wake_q, this);
1675 			if (++ret >= nr_wake)
1676 				break;
1677 		}
1678 	}
1679 
1680 	if (op_ret > 0) {
1681 		op_ret = 0;
1682 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683 			if (match_futex (&this->key, &key2)) {
1684 				if (this->pi_state || this->rt_waiter) {
1685 					ret = -EINVAL;
1686 					goto out_unlock;
1687 				}
1688 				mark_wake_futex(&wake_q, this);
1689 				if (++op_ret >= nr_wake2)
1690 					break;
1691 			}
1692 		}
1693 		ret += op_ret;
1694 	}
1695 
1696 out_unlock:
1697 	double_unlock_hb(hb1, hb2);
1698 	wake_up_q(&wake_q);
1699 out_put_keys:
1700 	put_futex_key(&key2);
1701 out_put_key1:
1702 	put_futex_key(&key1);
1703 out:
1704 	return ret;
1705 }
1706 
1707 /**
1708  * requeue_futex() - Requeue a futex_q from one hb to another
1709  * @q:		the futex_q to requeue
1710  * @hb1:	the source hash_bucket
1711  * @hb2:	the target hash_bucket
1712  * @key2:	the new key for the requeued futex_q
1713  */
1714 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1715 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1716 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1717 {
1718 
1719 	/*
1720 	 * If key1 and key2 hash to the same bucket, no need to
1721 	 * requeue.
1722 	 */
1723 	if (likely(&hb1->chain != &hb2->chain)) {
1724 		plist_del(&q->list, &hb1->chain);
1725 		hb_waiters_dec(hb1);
1726 		hb_waiters_inc(hb2);
1727 		plist_add(&q->list, &hb2->chain);
1728 		q->lock_ptr = &hb2->lock;
1729 	}
1730 	get_futex_key_refs(key2);
1731 	q->key = *key2;
1732 }
1733 
1734 /**
1735  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736  * @q:		the futex_q
1737  * @key:	the key of the requeue target futex
1738  * @hb:		the hash_bucket of the requeue target futex
1739  *
1740  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1741  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1742  * to the requeue target futex so the waiter can detect the wakeup on the right
1743  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1745  * to protect access to the pi_state to fixup the owner later.  Must be called
1746  * with both q->lock_ptr and hb->lock held.
1747  */
1748 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1749 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1750 			   struct futex_hash_bucket *hb)
1751 {
1752 	get_futex_key_refs(key);
1753 	q->key = *key;
1754 
1755 	__unqueue_futex(q);
1756 
1757 	WARN_ON(!q->rt_waiter);
1758 	q->rt_waiter = NULL;
1759 
1760 	q->lock_ptr = &hb->lock;
1761 
1762 	wake_up_state(q->task, TASK_NORMAL);
1763 }
1764 
1765 /**
1766  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767  * @pifutex:		the user address of the to futex
1768  * @hb1:		the from futex hash bucket, must be locked by the caller
1769  * @hb2:		the to futex hash bucket, must be locked by the caller
1770  * @key1:		the from futex key
1771  * @key2:		the to futex key
1772  * @ps:			address to store the pi_state pointer
1773  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1774  *
1775  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1777  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1778  * hb1 and hb2 must be held by the caller.
1779  *
1780  * Return:
1781  *  -  0 - failed to acquire the lock atomically;
1782  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1783  *  - <0 - error
1784  */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1785 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1786 				 struct futex_hash_bucket *hb1,
1787 				 struct futex_hash_bucket *hb2,
1788 				 union futex_key *key1, union futex_key *key2,
1789 				 struct futex_pi_state **ps, int set_waiters)
1790 {
1791 	struct futex_q *top_waiter = NULL;
1792 	u32 curval;
1793 	int ret, vpid;
1794 
1795 	if (get_futex_value_locked(&curval, pifutex))
1796 		return -EFAULT;
1797 
1798 	if (unlikely(should_fail_futex(true)))
1799 		return -EFAULT;
1800 
1801 	/*
1802 	 * Find the top_waiter and determine if there are additional waiters.
1803 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1804 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1805 	 * as we have means to handle the possible fault.  If not, don't set
1806 	 * the bit unecessarily as it will force the subsequent unlock to enter
1807 	 * the kernel.
1808 	 */
1809 	top_waiter = futex_top_waiter(hb1, key1);
1810 
1811 	/* There are no waiters, nothing for us to do. */
1812 	if (!top_waiter)
1813 		return 0;
1814 
1815 	/* Ensure we requeue to the expected futex. */
1816 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1817 		return -EINVAL;
1818 
1819 	/*
1820 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1821 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1822 	 * in ps in contended cases.
1823 	 */
1824 	vpid = task_pid_vnr(top_waiter->task);
1825 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1826 				   set_waiters);
1827 	if (ret == 1) {
1828 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1829 		return vpid;
1830 	}
1831 	return ret;
1832 }
1833 
1834 /**
1835  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836  * @uaddr1:	source futex user address
1837  * @flags:	futex flags (FLAGS_SHARED, etc.)
1838  * @uaddr2:	target futex user address
1839  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1840  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1841  * @cmpval:	@uaddr1 expected value (or %NULL)
1842  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1843  *		pi futex (pi to pi requeue is not supported)
1844  *
1845  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1846  * uaddr2 atomically on behalf of the top waiter.
1847  *
1848  * Return:
1849  *  - >=0 - on success, the number of tasks requeued or woken;
1850  *  -  <0 - on error
1851  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1852 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1853 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1854 			 u32 *cmpval, int requeue_pi)
1855 {
1856 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857 	int drop_count = 0, task_count = 0, ret;
1858 	struct futex_pi_state *pi_state = NULL;
1859 	struct futex_hash_bucket *hb1, *hb2;
1860 	struct futex_q *this, *next;
1861 	DEFINE_WAKE_Q(wake_q);
1862 
1863 	if (nr_wake < 0 || nr_requeue < 0)
1864 		return -EINVAL;
1865 
1866 	/*
1867 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1868 	 * consequently the compiler knows requeue_pi is always false past
1869 	 * this point which will optimize away all the conditional code
1870 	 * further down.
1871 	 */
1872 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1873 		return -ENOSYS;
1874 
1875 	if (requeue_pi) {
1876 		/*
1877 		 * Requeue PI only works on two distinct uaddrs. This
1878 		 * check is only valid for private futexes. See below.
1879 		 */
1880 		if (uaddr1 == uaddr2)
1881 			return -EINVAL;
1882 
1883 		/*
1884 		 * requeue_pi requires a pi_state, try to allocate it now
1885 		 * without any locks in case it fails.
1886 		 */
1887 		if (refill_pi_state_cache())
1888 			return -ENOMEM;
1889 		/*
1890 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1891 		 * + nr_requeue, since it acquires the rt_mutex prior to
1892 		 * returning to userspace, so as to not leave the rt_mutex with
1893 		 * waiters and no owner.  However, second and third wake-ups
1894 		 * cannot be predicted as they involve race conditions with the
1895 		 * first wake and a fault while looking up the pi_state.  Both
1896 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1897 		 * use nr_wake=1.
1898 		 */
1899 		if (nr_wake != 1)
1900 			return -EINVAL;
1901 	}
1902 
1903 retry:
1904 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1905 	if (unlikely(ret != 0))
1906 		goto out;
1907 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1908 			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1909 	if (unlikely(ret != 0))
1910 		goto out_put_key1;
1911 
1912 	/*
1913 	 * The check above which compares uaddrs is not sufficient for
1914 	 * shared futexes. We need to compare the keys:
1915 	 */
1916 	if (requeue_pi && match_futex(&key1, &key2)) {
1917 		ret = -EINVAL;
1918 		goto out_put_keys;
1919 	}
1920 
1921 	hb1 = hash_futex(&key1);
1922 	hb2 = hash_futex(&key2);
1923 
1924 retry_private:
1925 	hb_waiters_inc(hb2);
1926 	double_lock_hb(hb1, hb2);
1927 
1928 	if (likely(cmpval != NULL)) {
1929 		u32 curval;
1930 
1931 		ret = get_futex_value_locked(&curval, uaddr1);
1932 
1933 		if (unlikely(ret)) {
1934 			double_unlock_hb(hb1, hb2);
1935 			hb_waiters_dec(hb2);
1936 
1937 			ret = get_user(curval, uaddr1);
1938 			if (ret)
1939 				goto out_put_keys;
1940 
1941 			if (!(flags & FLAGS_SHARED))
1942 				goto retry_private;
1943 
1944 			put_futex_key(&key2);
1945 			put_futex_key(&key1);
1946 			goto retry;
1947 		}
1948 		if (curval != *cmpval) {
1949 			ret = -EAGAIN;
1950 			goto out_unlock;
1951 		}
1952 	}
1953 
1954 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955 		/*
1956 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1957 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1958 		 * bit.  We force this here where we are able to easily handle
1959 		 * faults rather in the requeue loop below.
1960 		 */
1961 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962 						 &key2, &pi_state, nr_requeue);
1963 
1964 		/*
1965 		 * At this point the top_waiter has either taken uaddr2 or is
1966 		 * waiting on it.  If the former, then the pi_state will not
1967 		 * exist yet, look it up one more time to ensure we have a
1968 		 * reference to it. If the lock was taken, ret contains the
1969 		 * vpid of the top waiter task.
1970 		 * If the lock was not taken, we have pi_state and an initial
1971 		 * refcount on it. In case of an error we have nothing.
1972 		 */
1973 		if (ret > 0) {
1974 			WARN_ON(pi_state);
1975 			drop_count++;
1976 			task_count++;
1977 			/*
1978 			 * If we acquired the lock, then the user space value
1979 			 * of uaddr2 should be vpid. It cannot be changed by
1980 			 * the top waiter as it is blocked on hb2 lock if it
1981 			 * tries to do so. If something fiddled with it behind
1982 			 * our back the pi state lookup might unearth it. So
1983 			 * we rather use the known value than rereading and
1984 			 * handing potential crap to lookup_pi_state.
1985 			 *
1986 			 * If that call succeeds then we have pi_state and an
1987 			 * initial refcount on it.
1988 			 */
1989 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990 		}
1991 
1992 		switch (ret) {
1993 		case 0:
1994 			/* We hold a reference on the pi state. */
1995 			break;
1996 
1997 			/* If the above failed, then pi_state is NULL */
1998 		case -EFAULT:
1999 			double_unlock_hb(hb1, hb2);
2000 			hb_waiters_dec(hb2);
2001 			put_futex_key(&key2);
2002 			put_futex_key(&key1);
2003 			ret = fault_in_user_writeable(uaddr2);
2004 			if (!ret)
2005 				goto retry;
2006 			goto out;
2007 		case -EAGAIN:
2008 			/*
2009 			 * Two reasons for this:
2010 			 * - Owner is exiting and we just wait for the
2011 			 *   exit to complete.
2012 			 * - The user space value changed.
2013 			 */
2014 			double_unlock_hb(hb1, hb2);
2015 			hb_waiters_dec(hb2);
2016 			put_futex_key(&key2);
2017 			put_futex_key(&key1);
2018 			cond_resched();
2019 			goto retry;
2020 		default:
2021 			goto out_unlock;
2022 		}
2023 	}
2024 
2025 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026 		if (task_count - nr_wake >= nr_requeue)
2027 			break;
2028 
2029 		if (!match_futex(&this->key, &key1))
2030 			continue;
2031 
2032 		/*
2033 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2034 		 * be paired with each other and no other futex ops.
2035 		 *
2036 		 * We should never be requeueing a futex_q with a pi_state,
2037 		 * which is awaiting a futex_unlock_pi().
2038 		 */
2039 		if ((requeue_pi && !this->rt_waiter) ||
2040 		    (!requeue_pi && this->rt_waiter) ||
2041 		    this->pi_state) {
2042 			ret = -EINVAL;
2043 			break;
2044 		}
2045 
2046 		/*
2047 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2048 		 * lock, we already woke the top_waiter.  If not, it will be
2049 		 * woken by futex_unlock_pi().
2050 		 */
2051 		if (++task_count <= nr_wake && !requeue_pi) {
2052 			mark_wake_futex(&wake_q, this);
2053 			continue;
2054 		}
2055 
2056 		/* Ensure we requeue to the expected futex for requeue_pi. */
2057 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2058 			ret = -EINVAL;
2059 			break;
2060 		}
2061 
2062 		/*
2063 		 * Requeue nr_requeue waiters and possibly one more in the case
2064 		 * of requeue_pi if we couldn't acquire the lock atomically.
2065 		 */
2066 		if (requeue_pi) {
2067 			/*
2068 			 * Prepare the waiter to take the rt_mutex. Take a
2069 			 * refcount on the pi_state and store the pointer in
2070 			 * the futex_q object of the waiter.
2071 			 */
2072 			get_pi_state(pi_state);
2073 			this->pi_state = pi_state;
2074 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2075 							this->rt_waiter,
2076 							this->task);
2077 			if (ret == 1) {
2078 				/*
2079 				 * We got the lock. We do neither drop the
2080 				 * refcount on pi_state nor clear
2081 				 * this->pi_state because the waiter needs the
2082 				 * pi_state for cleaning up the user space
2083 				 * value. It will drop the refcount after
2084 				 * doing so.
2085 				 */
2086 				requeue_pi_wake_futex(this, &key2, hb2);
2087 				drop_count++;
2088 				continue;
2089 			} else if (ret) {
2090 				/*
2091 				 * rt_mutex_start_proxy_lock() detected a
2092 				 * potential deadlock when we tried to queue
2093 				 * that waiter. Drop the pi_state reference
2094 				 * which we took above and remove the pointer
2095 				 * to the state from the waiters futex_q
2096 				 * object.
2097 				 */
2098 				this->pi_state = NULL;
2099 				put_pi_state(pi_state);
2100 				/*
2101 				 * We stop queueing more waiters and let user
2102 				 * space deal with the mess.
2103 				 */
2104 				break;
2105 			}
2106 		}
2107 		requeue_futex(this, hb1, hb2, &key2);
2108 		drop_count++;
2109 	}
2110 
2111 	/*
2112 	 * We took an extra initial reference to the pi_state either
2113 	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2114 	 * need to drop it here again.
2115 	 */
2116 	put_pi_state(pi_state);
2117 
2118 out_unlock:
2119 	double_unlock_hb(hb1, hb2);
2120 	wake_up_q(&wake_q);
2121 	hb_waiters_dec(hb2);
2122 
2123 	/*
2124 	 * drop_futex_key_refs() must be called outside the spinlocks. During
2125 	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2126 	 * one at key2 and updated their key pointer.  We no longer need to
2127 	 * hold the references to key1.
2128 	 */
2129 	while (--drop_count >= 0)
2130 		drop_futex_key_refs(&key1);
2131 
2132 out_put_keys:
2133 	put_futex_key(&key2);
2134 out_put_key1:
2135 	put_futex_key(&key1);
2136 out:
2137 	return ret ? ret : task_count;
2138 }
2139 
2140 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2141 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142 	__acquires(&hb->lock)
2143 {
2144 	struct futex_hash_bucket *hb;
2145 
2146 	hb = hash_futex(&q->key);
2147 
2148 	/*
2149 	 * Increment the counter before taking the lock so that
2150 	 * a potential waker won't miss a to-be-slept task that is
2151 	 * waiting for the spinlock. This is safe as all queue_lock()
2152 	 * users end up calling queue_me(). Similarly, for housekeeping,
2153 	 * decrement the counter at queue_unlock() when some error has
2154 	 * occurred and we don't end up adding the task to the list.
2155 	 */
2156 	hb_waiters_inc(hb);
2157 
2158 	q->lock_ptr = &hb->lock;
2159 
2160 	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161 	return hb;
2162 }
2163 
2164 static inline void
queue_unlock(struct futex_hash_bucket * hb)2165 queue_unlock(struct futex_hash_bucket *hb)
2166 	__releases(&hb->lock)
2167 {
2168 	spin_unlock(&hb->lock);
2169 	hb_waiters_dec(hb);
2170 }
2171 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2172 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2173 {
2174 	int prio;
2175 
2176 	/*
2177 	 * The priority used to register this element is
2178 	 * - either the real thread-priority for the real-time threads
2179 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2180 	 * - or MAX_RT_PRIO for non-RT threads.
2181 	 * Thus, all RT-threads are woken first in priority order, and
2182 	 * the others are woken last, in FIFO order.
2183 	 */
2184 	prio = min(current->normal_prio, MAX_RT_PRIO);
2185 
2186 	plist_node_init(&q->list, prio);
2187 	plist_add(&q->list, &hb->chain);
2188 	q->task = current;
2189 }
2190 
2191 /**
2192  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2193  * @q:	The futex_q to enqueue
2194  * @hb:	The destination hash bucket
2195  *
2196  * The hb->lock must be held by the caller, and is released here. A call to
2197  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2198  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2199  * or nothing if the unqueue is done as part of the wake process and the unqueue
2200  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2201  * an example).
2202  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2203 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2204 	__releases(&hb->lock)
2205 {
2206 	__queue_me(q, hb);
2207 	spin_unlock(&hb->lock);
2208 }
2209 
2210 /**
2211  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2212  * @q:	The futex_q to unqueue
2213  *
2214  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2215  * be paired with exactly one earlier call to queue_me().
2216  *
2217  * Return:
2218  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2219  *  - 0 - if the futex_q was already removed by the waking thread
2220  */
unqueue_me(struct futex_q * q)2221 static int unqueue_me(struct futex_q *q)
2222 {
2223 	spinlock_t *lock_ptr;
2224 	int ret = 0;
2225 
2226 	/* In the common case we don't take the spinlock, which is nice. */
2227 retry:
2228 	/*
2229 	 * q->lock_ptr can change between this read and the following spin_lock.
2230 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2231 	 * optimizing lock_ptr out of the logic below.
2232 	 */
2233 	lock_ptr = READ_ONCE(q->lock_ptr);
2234 	if (lock_ptr != NULL) {
2235 		spin_lock(lock_ptr);
2236 		/*
2237 		 * q->lock_ptr can change between reading it and
2238 		 * spin_lock(), causing us to take the wrong lock.  This
2239 		 * corrects the race condition.
2240 		 *
2241 		 * Reasoning goes like this: if we have the wrong lock,
2242 		 * q->lock_ptr must have changed (maybe several times)
2243 		 * between reading it and the spin_lock().  It can
2244 		 * change again after the spin_lock() but only if it was
2245 		 * already changed before the spin_lock().  It cannot,
2246 		 * however, change back to the original value.  Therefore
2247 		 * we can detect whether we acquired the correct lock.
2248 		 */
2249 		if (unlikely(lock_ptr != q->lock_ptr)) {
2250 			spin_unlock(lock_ptr);
2251 			goto retry;
2252 		}
2253 		__unqueue_futex(q);
2254 
2255 		BUG_ON(q->pi_state);
2256 
2257 		spin_unlock(lock_ptr);
2258 		ret = 1;
2259 	}
2260 
2261 	drop_futex_key_refs(&q->key);
2262 	return ret;
2263 }
2264 
2265 /*
2266  * PI futexes can not be requeued and must remove themself from the
2267  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2268  * and dropped here.
2269  */
unqueue_me_pi(struct futex_q * q)2270 static void unqueue_me_pi(struct futex_q *q)
2271 	__releases(q->lock_ptr)
2272 {
2273 	__unqueue_futex(q);
2274 
2275 	BUG_ON(!q->pi_state);
2276 	put_pi_state(q->pi_state);
2277 	q->pi_state = NULL;
2278 
2279 	spin_unlock(q->lock_ptr);
2280 }
2281 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2282 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283 				struct task_struct *argowner)
2284 {
2285 	struct futex_pi_state *pi_state = q->pi_state;
2286 	u32 uval, uninitialized_var(curval), newval;
2287 	struct task_struct *oldowner, *newowner;
2288 	u32 newtid;
2289 	int ret;
2290 
2291 	lockdep_assert_held(q->lock_ptr);
2292 
2293 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2294 
2295 	oldowner = pi_state->owner;
2296 
2297 	/*
2298 	 * We are here because either:
2299 	 *
2300 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2301 	 *    that (@argowner == current),
2302 	 *
2303 	 * or:
2304 	 *
2305 	 *  - someone stole our lock and we need to fix things to point to the
2306 	 *    new owner (@argowner == NULL).
2307 	 *
2308 	 * Either way, we have to replace the TID in the user space variable.
2309 	 * This must be atomic as we have to preserve the owner died bit here.
2310 	 *
2311 	 * Note: We write the user space value _before_ changing the pi_state
2312 	 * because we can fault here. Imagine swapped out pages or a fork
2313 	 * that marked all the anonymous memory readonly for cow.
2314 	 *
2315 	 * Modifying pi_state _before_ the user space value would leave the
2316 	 * pi_state in an inconsistent state when we fault here, because we
2317 	 * need to drop the locks to handle the fault. This might be observed
2318 	 * in the PID check in lookup_pi_state.
2319 	 */
2320 retry:
2321 	if (!argowner) {
2322 		if (oldowner != current) {
2323 			/*
2324 			 * We raced against a concurrent self; things are
2325 			 * already fixed up. Nothing to do.
2326 			 */
2327 			ret = 0;
2328 			goto out_unlock;
2329 		}
2330 
2331 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2332 			/* We got the lock after all, nothing to fix. */
2333 			ret = 0;
2334 			goto out_unlock;
2335 		}
2336 
2337 		/*
2338 		 * Since we just failed the trylock; there must be an owner.
2339 		 */
2340 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2341 		BUG_ON(!newowner);
2342 	} else {
2343 		WARN_ON_ONCE(argowner != current);
2344 		if (oldowner == current) {
2345 			/*
2346 			 * We raced against a concurrent self; things are
2347 			 * already fixed up. Nothing to do.
2348 			 */
2349 			ret = 0;
2350 			goto out_unlock;
2351 		}
2352 		newowner = argowner;
2353 	}
2354 
2355 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2356 	/* Owner died? */
2357 	if (!pi_state->owner)
2358 		newtid |= FUTEX_OWNER_DIED;
2359 
2360 	if (get_futex_value_locked(&uval, uaddr))
2361 		goto handle_fault;
2362 
2363 	for (;;) {
2364 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2365 
2366 		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367 			goto handle_fault;
2368 		if (curval == uval)
2369 			break;
2370 		uval = curval;
2371 	}
2372 
2373 	/*
2374 	 * We fixed up user space. Now we need to fix the pi_state
2375 	 * itself.
2376 	 */
2377 	if (pi_state->owner != NULL) {
2378 		raw_spin_lock(&pi_state->owner->pi_lock);
2379 		WARN_ON(list_empty(&pi_state->list));
2380 		list_del_init(&pi_state->list);
2381 		raw_spin_unlock(&pi_state->owner->pi_lock);
2382 	}
2383 
2384 	pi_state->owner = newowner;
2385 
2386 	raw_spin_lock(&newowner->pi_lock);
2387 	WARN_ON(!list_empty(&pi_state->list));
2388 	list_add(&pi_state->list, &newowner->pi_state_list);
2389 	raw_spin_unlock(&newowner->pi_lock);
2390 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2391 
2392 	return 0;
2393 
2394 	/*
2395 	 * To handle the page fault we need to drop the locks here. That gives
2396 	 * the other task (either the highest priority waiter itself or the
2397 	 * task which stole the rtmutex) the chance to try the fixup of the
2398 	 * pi_state. So once we are back from handling the fault we need to
2399 	 * check the pi_state after reacquiring the locks and before trying to
2400 	 * do another fixup. When the fixup has been done already we simply
2401 	 * return.
2402 	 *
2403 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2404 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2405 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2406 	 */
2407 handle_fault:
2408 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409 	spin_unlock(q->lock_ptr);
2410 
2411 	ret = fault_in_user_writeable(uaddr);
2412 
2413 	spin_lock(q->lock_ptr);
2414 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415 
2416 	/*
2417 	 * Check if someone else fixed it for us:
2418 	 */
2419 	if (pi_state->owner != oldowner) {
2420 		ret = 0;
2421 		goto out_unlock;
2422 	}
2423 
2424 	if (ret)
2425 		goto out_unlock;
2426 
2427 	goto retry;
2428 
2429 out_unlock:
2430 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2431 	return ret;
2432 }
2433 
2434 static long futex_wait_restart(struct restart_block *restart);
2435 
2436 /**
2437  * fixup_owner() - Post lock pi_state and corner case management
2438  * @uaddr:	user address of the futex
2439  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2440  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2441  *
2442  * After attempting to lock an rt_mutex, this function is called to cleanup
2443  * the pi_state owner as well as handle race conditions that may allow us to
2444  * acquire the lock. Must be called with the hb lock held.
2445  *
2446  * Return:
2447  *  -  1 - success, lock taken;
2448  *  -  0 - success, lock not taken;
2449  *  - <0 - on error (-EFAULT)
2450  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2451 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452 {
2453 	int ret = 0;
2454 
2455 	if (locked) {
2456 		/*
2457 		 * Got the lock. We might not be the anticipated owner if we
2458 		 * did a lock-steal - fix up the PI-state in that case:
2459 		 *
2460 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2461 		 * since we own the lock pi_state->owner == current is the
2462 		 * stable state, anything else needs more attention.
2463 		 */
2464 		if (q->pi_state->owner != current)
2465 			ret = fixup_pi_state_owner(uaddr, q, current);
2466 		goto out;
2467 	}
2468 
2469 	/*
2470 	 * If we didn't get the lock; check if anybody stole it from us. In
2471 	 * that case, we need to fix up the uval to point to them instead of
2472 	 * us, otherwise bad things happen. [10]
2473 	 *
2474 	 * Another speculative read; pi_state->owner == current is unstable
2475 	 * but needs our attention.
2476 	 */
2477 	if (q->pi_state->owner == current) {
2478 		ret = fixup_pi_state_owner(uaddr, q, NULL);
2479 		goto out;
2480 	}
2481 
2482 	/*
2483 	 * Paranoia check. If we did not take the lock, then we should not be
2484 	 * the owner of the rt_mutex.
2485 	 */
2486 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2488 				"pi-state %p\n", ret,
2489 				q->pi_state->pi_mutex.owner,
2490 				q->pi_state->owner);
2491 	}
2492 
2493 out:
2494 	return ret ? ret : locked;
2495 }
2496 
2497 /**
2498  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2499  * @hb:		the futex hash bucket, must be locked by the caller
2500  * @q:		the futex_q to queue up on
2501  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2502  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2503 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2504 				struct hrtimer_sleeper *timeout)
2505 {
2506 	/*
2507 	 * The task state is guaranteed to be set before another task can
2508 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2509 	 * queue_me() calls spin_unlock() upon completion, both serializing
2510 	 * access to the hash list and forcing another memory barrier.
2511 	 */
2512 	set_current_state(TASK_INTERRUPTIBLE);
2513 	queue_me(q, hb);
2514 
2515 	/* Arm the timer */
2516 	if (timeout)
2517 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2518 
2519 	/*
2520 	 * If we have been removed from the hash list, then another task
2521 	 * has tried to wake us, and we can skip the call to schedule().
2522 	 */
2523 	if (likely(!plist_node_empty(&q->list))) {
2524 		/*
2525 		 * If the timer has already expired, current will already be
2526 		 * flagged for rescheduling. Only call schedule if there
2527 		 * is no timeout, or if it has yet to expire.
2528 		 */
2529 		if (!timeout || timeout->task)
2530 			freezable_schedule();
2531 	}
2532 	__set_current_state(TASK_RUNNING);
2533 }
2534 
2535 /**
2536  * futex_wait_setup() - Prepare to wait on a futex
2537  * @uaddr:	the futex userspace address
2538  * @val:	the expected value
2539  * @flags:	futex flags (FLAGS_SHARED, etc.)
2540  * @q:		the associated futex_q
2541  * @hb:		storage for hash_bucket pointer to be returned to caller
2542  *
2543  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2544  * compare it with the expected value.  Handle atomic faults internally.
2545  * Return with the hb lock held and a q.key reference on success, and unlocked
2546  * with no q.key reference on failure.
2547  *
2548  * Return:
2549  *  -  0 - uaddr contains val and hb has been locked;
2550  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2552 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553 			   struct futex_q *q, struct futex_hash_bucket **hb)
2554 {
2555 	u32 uval;
2556 	int ret;
2557 
2558 	/*
2559 	 * Access the page AFTER the hash-bucket is locked.
2560 	 * Order is important:
2561 	 *
2562 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2563 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2564 	 *
2565 	 * The basic logical guarantee of a futex is that it blocks ONLY
2566 	 * if cond(var) is known to be true at the time of blocking, for
2567 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2568 	 * would open a race condition where we could block indefinitely with
2569 	 * cond(var) false, which would violate the guarantee.
2570 	 *
2571 	 * On the other hand, we insert q and release the hash-bucket only
2572 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2573 	 * absorb a wakeup if *uaddr does not match the desired values
2574 	 * while the syscall executes.
2575 	 */
2576 retry:
2577 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578 	if (unlikely(ret != 0))
2579 		return ret;
2580 
2581 retry_private:
2582 	*hb = queue_lock(q);
2583 
2584 	ret = get_futex_value_locked(&uval, uaddr);
2585 
2586 	if (ret) {
2587 		queue_unlock(*hb);
2588 
2589 		ret = get_user(uval, uaddr);
2590 		if (ret)
2591 			goto out;
2592 
2593 		if (!(flags & FLAGS_SHARED))
2594 			goto retry_private;
2595 
2596 		put_futex_key(&q->key);
2597 		goto retry;
2598 	}
2599 
2600 	if (uval != val) {
2601 		queue_unlock(*hb);
2602 		ret = -EWOULDBLOCK;
2603 	}
2604 
2605 out:
2606 	if (ret)
2607 		put_futex_key(&q->key);
2608 	return ret;
2609 }
2610 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2611 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2612 		      ktime_t *abs_time, u32 bitset)
2613 {
2614 	struct hrtimer_sleeper timeout, *to = NULL;
2615 	struct restart_block *restart;
2616 	struct futex_hash_bucket *hb;
2617 	struct futex_q q = futex_q_init;
2618 	int ret;
2619 
2620 	if (!bitset)
2621 		return -EINVAL;
2622 	q.bitset = bitset;
2623 
2624 	if (abs_time) {
2625 		to = &timeout;
2626 
2627 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2628 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2629 				      HRTIMER_MODE_ABS);
2630 		hrtimer_init_sleeper(to, current);
2631 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2632 					     current->timer_slack_ns);
2633 	}
2634 
2635 retry:
2636 	/*
2637 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2638 	 * q.key refs.
2639 	 */
2640 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641 	if (ret)
2642 		goto out;
2643 
2644 	/* queue_me and wait for wakeup, timeout, or a signal. */
2645 	futex_wait_queue_me(hb, &q, to);
2646 
2647 	/* If we were woken (and unqueued), we succeeded, whatever. */
2648 	ret = 0;
2649 	/* unqueue_me() drops q.key ref */
2650 	if (!unqueue_me(&q))
2651 		goto out;
2652 	ret = -ETIMEDOUT;
2653 	if (to && !to->task)
2654 		goto out;
2655 
2656 	/*
2657 	 * We expect signal_pending(current), but we might be the
2658 	 * victim of a spurious wakeup as well.
2659 	 */
2660 	if (!signal_pending(current))
2661 		goto retry;
2662 
2663 	ret = -ERESTARTSYS;
2664 	if (!abs_time)
2665 		goto out;
2666 
2667 	restart = &current->restart_block;
2668 	restart->fn = futex_wait_restart;
2669 	restart->futex.uaddr = uaddr;
2670 	restart->futex.val = val;
2671 	restart->futex.time = *abs_time;
2672 	restart->futex.bitset = bitset;
2673 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674 
2675 	ret = -ERESTART_RESTARTBLOCK;
2676 
2677 out:
2678 	if (to) {
2679 		hrtimer_cancel(&to->timer);
2680 		destroy_hrtimer_on_stack(&to->timer);
2681 	}
2682 	return ret;
2683 }
2684 
2685 
futex_wait_restart(struct restart_block * restart)2686 static long futex_wait_restart(struct restart_block *restart)
2687 {
2688 	u32 __user *uaddr = restart->futex.uaddr;
2689 	ktime_t t, *tp = NULL;
2690 
2691 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2692 		t = restart->futex.time;
2693 		tp = &t;
2694 	}
2695 	restart->fn = do_no_restart_syscall;
2696 
2697 	return (long)futex_wait(uaddr, restart->futex.flags,
2698 				restart->futex.val, tp, restart->futex.bitset);
2699 }
2700 
2701 
2702 /*
2703  * Userspace tried a 0 -> TID atomic transition of the futex value
2704  * and failed. The kernel side here does the whole locking operation:
2705  * if there are waiters then it will block as a consequence of relying
2706  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2707  * a 0 value of the futex too.).
2708  *
2709  * Also serves as futex trylock_pi()'ing, and due semantics.
2710  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2711 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712 			 ktime_t *time, int trylock)
2713 {
2714 	struct hrtimer_sleeper timeout, *to = NULL;
2715 	struct futex_pi_state *pi_state = NULL;
2716 	struct rt_mutex_waiter rt_waiter;
2717 	struct futex_hash_bucket *hb;
2718 	struct futex_q q = futex_q_init;
2719 	int res, ret;
2720 
2721 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2722 		return -ENOSYS;
2723 
2724 	if (refill_pi_state_cache())
2725 		return -ENOMEM;
2726 
2727 	if (time) {
2728 		to = &timeout;
2729 		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2730 				      HRTIMER_MODE_ABS);
2731 		hrtimer_init_sleeper(to, current);
2732 		hrtimer_set_expires(&to->timer, *time);
2733 	}
2734 
2735 retry:
2736 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737 	if (unlikely(ret != 0))
2738 		goto out;
2739 
2740 retry_private:
2741 	hb = queue_lock(&q);
2742 
2743 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744 	if (unlikely(ret)) {
2745 		/*
2746 		 * Atomic work succeeded and we got the lock,
2747 		 * or failed. Either way, we do _not_ block.
2748 		 */
2749 		switch (ret) {
2750 		case 1:
2751 			/* We got the lock. */
2752 			ret = 0;
2753 			goto out_unlock_put_key;
2754 		case -EFAULT:
2755 			goto uaddr_faulted;
2756 		case -EAGAIN:
2757 			/*
2758 			 * Two reasons for this:
2759 			 * - Task is exiting and we just wait for the
2760 			 *   exit to complete.
2761 			 * - The user space value changed.
2762 			 */
2763 			queue_unlock(hb);
2764 			put_futex_key(&q.key);
2765 			cond_resched();
2766 			goto retry;
2767 		default:
2768 			goto out_unlock_put_key;
2769 		}
2770 	}
2771 
2772 	WARN_ON(!q.pi_state);
2773 
2774 	/*
2775 	 * Only actually queue now that the atomic ops are done:
2776 	 */
2777 	__queue_me(&q, hb);
2778 
2779 	if (trylock) {
2780 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2781 		/* Fixup the trylock return value: */
2782 		ret = ret ? 0 : -EWOULDBLOCK;
2783 		goto no_block;
2784 	}
2785 
2786 	rt_mutex_init_waiter(&rt_waiter);
2787 
2788 	/*
2789 	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2790 	 * hold it while doing rt_mutex_start_proxy(), because then it will
2791 	 * include hb->lock in the blocking chain, even through we'll not in
2792 	 * fact hold it while blocking. This will lead it to report -EDEADLK
2793 	 * and BUG when futex_unlock_pi() interleaves with this.
2794 	 *
2795 	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2796 	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2797 	 * serializes against futex_unlock_pi() as that does the exact same
2798 	 * lock handoff sequence.
2799 	 */
2800 	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2801 	spin_unlock(q.lock_ptr);
2802 	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2803 	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2804 
2805 	if (ret) {
2806 		if (ret == 1)
2807 			ret = 0;
2808 
2809 		spin_lock(q.lock_ptr);
2810 		goto no_block;
2811 	}
2812 
2813 
2814 	if (unlikely(to))
2815 		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2816 
2817 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2818 
2819 	spin_lock(q.lock_ptr);
2820 	/*
2821 	 * If we failed to acquire the lock (signal/timeout), we must
2822 	 * first acquire the hb->lock before removing the lock from the
2823 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2824 	 * wait lists consistent.
2825 	 *
2826 	 * In particular; it is important that futex_unlock_pi() can not
2827 	 * observe this inconsistency.
2828 	 */
2829 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2830 		ret = 0;
2831 
2832 no_block:
2833 	/*
2834 	 * Fixup the pi_state owner and possibly acquire the lock if we
2835 	 * haven't already.
2836 	 */
2837 	res = fixup_owner(uaddr, &q, !ret);
2838 	/*
2839 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2840 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2841 	 */
2842 	if (res)
2843 		ret = (res < 0) ? res : 0;
2844 
2845 	/*
2846 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2847 	 * it and return the fault to userspace.
2848 	 */
2849 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2850 		pi_state = q.pi_state;
2851 		get_pi_state(pi_state);
2852 	}
2853 
2854 	/* Unqueue and drop the lock */
2855 	unqueue_me_pi(&q);
2856 
2857 	if (pi_state) {
2858 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2859 		put_pi_state(pi_state);
2860 	}
2861 
2862 	goto out_put_key;
2863 
2864 out_unlock_put_key:
2865 	queue_unlock(hb);
2866 
2867 out_put_key:
2868 	put_futex_key(&q.key);
2869 out:
2870 	if (to) {
2871 		hrtimer_cancel(&to->timer);
2872 		destroy_hrtimer_on_stack(&to->timer);
2873 	}
2874 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875 
2876 uaddr_faulted:
2877 	queue_unlock(hb);
2878 
2879 	ret = fault_in_user_writeable(uaddr);
2880 	if (ret)
2881 		goto out_put_key;
2882 
2883 	if (!(flags & FLAGS_SHARED))
2884 		goto retry_private;
2885 
2886 	put_futex_key(&q.key);
2887 	goto retry;
2888 }
2889 
2890 /*
2891  * Userspace attempted a TID -> 0 atomic transition, and failed.
2892  * This is the in-kernel slowpath: we look up the PI state (if any),
2893  * and do the rt-mutex unlock.
2894  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2895 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896 {
2897 	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2898 	union futex_key key = FUTEX_KEY_INIT;
2899 	struct futex_hash_bucket *hb;
2900 	struct futex_q *top_waiter;
2901 	int ret;
2902 
2903 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2904 		return -ENOSYS;
2905 
2906 retry:
2907 	if (get_user(uval, uaddr))
2908 		return -EFAULT;
2909 	/*
2910 	 * We release only a lock we actually own:
2911 	 */
2912 	if ((uval & FUTEX_TID_MASK) != vpid)
2913 		return -EPERM;
2914 
2915 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916 	if (ret)
2917 		return ret;
2918 
2919 	hb = hash_futex(&key);
2920 	spin_lock(&hb->lock);
2921 
2922 	/*
2923 	 * Check waiters first. We do not trust user space values at
2924 	 * all and we at least want to know if user space fiddled
2925 	 * with the futex value instead of blindly unlocking.
2926 	 */
2927 	top_waiter = futex_top_waiter(hb, &key);
2928 	if (top_waiter) {
2929 		struct futex_pi_state *pi_state = top_waiter->pi_state;
2930 
2931 		ret = -EINVAL;
2932 		if (!pi_state)
2933 			goto out_unlock;
2934 
2935 		/*
2936 		 * If current does not own the pi_state then the futex is
2937 		 * inconsistent and user space fiddled with the futex value.
2938 		 */
2939 		if (pi_state->owner != current)
2940 			goto out_unlock;
2941 
2942 		get_pi_state(pi_state);
2943 		/*
2944 		 * By taking wait_lock while still holding hb->lock, we ensure
2945 		 * there is no point where we hold neither; and therefore
2946 		 * wake_futex_pi() must observe a state consistent with what we
2947 		 * observed.
2948 		 */
2949 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950 		spin_unlock(&hb->lock);
2951 
2952 		/* drops pi_state->pi_mutex.wait_lock */
2953 		ret = wake_futex_pi(uaddr, uval, pi_state);
2954 
2955 		put_pi_state(pi_state);
2956 
2957 		/*
2958 		 * Success, we're done! No tricky corner cases.
2959 		 */
2960 		if (!ret)
2961 			goto out_putkey;
2962 		/*
2963 		 * The atomic access to the futex value generated a
2964 		 * pagefault, so retry the user-access and the wakeup:
2965 		 */
2966 		if (ret == -EFAULT)
2967 			goto pi_faulted;
2968 		/*
2969 		 * A unconditional UNLOCK_PI op raced against a waiter
2970 		 * setting the FUTEX_WAITERS bit. Try again.
2971 		 */
2972 		if (ret == -EAGAIN) {
2973 			put_futex_key(&key);
2974 			goto retry;
2975 		}
2976 		/*
2977 		 * wake_futex_pi has detected invalid state. Tell user
2978 		 * space.
2979 		 */
2980 		goto out_putkey;
2981 	}
2982 
2983 	/*
2984 	 * We have no kernel internal state, i.e. no waiters in the
2985 	 * kernel. Waiters which are about to queue themselves are stuck
2986 	 * on hb->lock. So we can safely ignore them. We do neither
2987 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2988 	 * owner.
2989 	 */
2990 	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2991 		spin_unlock(&hb->lock);
2992 		goto pi_faulted;
2993 	}
2994 
2995 	/*
2996 	 * If uval has changed, let user space handle it.
2997 	 */
2998 	ret = (curval == uval) ? 0 : -EAGAIN;
2999 
3000 out_unlock:
3001 	spin_unlock(&hb->lock);
3002 out_putkey:
3003 	put_futex_key(&key);
3004 	return ret;
3005 
3006 pi_faulted:
3007 	put_futex_key(&key);
3008 
3009 	ret = fault_in_user_writeable(uaddr);
3010 	if (!ret)
3011 		goto retry;
3012 
3013 	return ret;
3014 }
3015 
3016 /**
3017  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3018  * @hb:		the hash_bucket futex_q was original enqueued on
3019  * @q:		the futex_q woken while waiting to be requeued
3020  * @key2:	the futex_key of the requeue target futex
3021  * @timeout:	the timeout associated with the wait (NULL if none)
3022  *
3023  * Detect if the task was woken on the initial futex as opposed to the requeue
3024  * target futex.  If so, determine if it was a timeout or a signal that caused
3025  * the wakeup and return the appropriate error code to the caller.  Must be
3026  * called with the hb lock held.
3027  *
3028  * Return:
3029  *  -  0 = no early wakeup detected;
3030  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031  */
3032 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3033 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3034 				   struct futex_q *q, union futex_key *key2,
3035 				   struct hrtimer_sleeper *timeout)
3036 {
3037 	int ret = 0;
3038 
3039 	/*
3040 	 * With the hb lock held, we avoid races while we process the wakeup.
3041 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3042 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3043 	 * It can't be requeued from uaddr2 to something else since we don't
3044 	 * support a PI aware source futex for requeue.
3045 	 */
3046 	if (!match_futex(&q->key, key2)) {
3047 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3048 		/*
3049 		 * We were woken prior to requeue by a timeout or a signal.
3050 		 * Unqueue the futex_q and determine which it was.
3051 		 */
3052 		plist_del(&q->list, &hb->chain);
3053 		hb_waiters_dec(hb);
3054 
3055 		/* Handle spurious wakeups gracefully */
3056 		ret = -EWOULDBLOCK;
3057 		if (timeout && !timeout->task)
3058 			ret = -ETIMEDOUT;
3059 		else if (signal_pending(current))
3060 			ret = -ERESTARTNOINTR;
3061 	}
3062 	return ret;
3063 }
3064 
3065 /**
3066  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067  * @uaddr:	the futex we initially wait on (non-pi)
3068  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069  *		the same type, no requeueing from private to shared, etc.
3070  * @val:	the expected value of uaddr
3071  * @abs_time:	absolute timeout
3072  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3073  * @uaddr2:	the pi futex we will take prior to returning to user-space
3074  *
3075  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3077  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3078  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3079  * without one, the pi logic would not know which task to boost/deboost, if
3080  * there was a need to.
3081  *
3082  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083  * via the following--
3084  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085  * 2) wakeup on uaddr2 after a requeue
3086  * 3) signal
3087  * 4) timeout
3088  *
3089  * If 3, cleanup and return -ERESTARTNOINTR.
3090  *
3091  * If 2, we may then block on trying to take the rt_mutex and return via:
3092  * 5) successful lock
3093  * 6) signal
3094  * 7) timeout
3095  * 8) other lock acquisition failure
3096  *
3097  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098  *
3099  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3100  *
3101  * Return:
3102  *  -  0 - On success;
3103  *  - <0 - On error
3104  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3105 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106 				 u32 val, ktime_t *abs_time, u32 bitset,
3107 				 u32 __user *uaddr2)
3108 {
3109 	struct hrtimer_sleeper timeout, *to = NULL;
3110 	struct futex_pi_state *pi_state = NULL;
3111 	struct rt_mutex_waiter rt_waiter;
3112 	struct futex_hash_bucket *hb;
3113 	union futex_key key2 = FUTEX_KEY_INIT;
3114 	struct futex_q q = futex_q_init;
3115 	int res, ret;
3116 
3117 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3118 		return -ENOSYS;
3119 
3120 	if (uaddr == uaddr2)
3121 		return -EINVAL;
3122 
3123 	if (!bitset)
3124 		return -EINVAL;
3125 
3126 	if (abs_time) {
3127 		to = &timeout;
3128 		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3129 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
3130 				      HRTIMER_MODE_ABS);
3131 		hrtimer_init_sleeper(to, current);
3132 		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3133 					     current->timer_slack_ns);
3134 	}
3135 
3136 	/*
3137 	 * The waiter is allocated on our stack, manipulated by the requeue
3138 	 * code while we sleep on uaddr.
3139 	 */
3140 	rt_mutex_init_waiter(&rt_waiter);
3141 
3142 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143 	if (unlikely(ret != 0))
3144 		goto out;
3145 
3146 	q.bitset = bitset;
3147 	q.rt_waiter = &rt_waiter;
3148 	q.requeue_pi_key = &key2;
3149 
3150 	/*
3151 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3152 	 * count.
3153 	 */
3154 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3155 	if (ret)
3156 		goto out_key2;
3157 
3158 	/*
3159 	 * The check above which compares uaddrs is not sufficient for
3160 	 * shared futexes. We need to compare the keys:
3161 	 */
3162 	if (match_futex(&q.key, &key2)) {
3163 		queue_unlock(hb);
3164 		ret = -EINVAL;
3165 		goto out_put_keys;
3166 	}
3167 
3168 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3169 	futex_wait_queue_me(hb, &q, to);
3170 
3171 	spin_lock(&hb->lock);
3172 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3173 	spin_unlock(&hb->lock);
3174 	if (ret)
3175 		goto out_put_keys;
3176 
3177 	/*
3178 	 * In order for us to be here, we know our q.key == key2, and since
3179 	 * we took the hb->lock above, we also know that futex_requeue() has
3180 	 * completed and we no longer have to concern ourselves with a wakeup
3181 	 * race with the atomic proxy lock acquisition by the requeue code. The
3182 	 * futex_requeue dropped our key1 reference and incremented our key2
3183 	 * reference count.
3184 	 */
3185 
3186 	/* Check if the requeue code acquired the second futex for us. */
3187 	if (!q.rt_waiter) {
3188 		/*
3189 		 * Got the lock. We might not be the anticipated owner if we
3190 		 * did a lock-steal - fix up the PI-state in that case.
3191 		 */
3192 		if (q.pi_state && (q.pi_state->owner != current)) {
3193 			spin_lock(q.lock_ptr);
3194 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3195 			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3196 				pi_state = q.pi_state;
3197 				get_pi_state(pi_state);
3198 			}
3199 			/*
3200 			 * Drop the reference to the pi state which
3201 			 * the requeue_pi() code acquired for us.
3202 			 */
3203 			put_pi_state(q.pi_state);
3204 			spin_unlock(q.lock_ptr);
3205 		}
3206 	} else {
3207 		struct rt_mutex *pi_mutex;
3208 
3209 		/*
3210 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3211 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3212 		 * the pi_state.
3213 		 */
3214 		WARN_ON(!q.pi_state);
3215 		pi_mutex = &q.pi_state->pi_mutex;
3216 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3217 
3218 		spin_lock(q.lock_ptr);
3219 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3220 			ret = 0;
3221 
3222 		debug_rt_mutex_free_waiter(&rt_waiter);
3223 		/*
3224 		 * Fixup the pi_state owner and possibly acquire the lock if we
3225 		 * haven't already.
3226 		 */
3227 		res = fixup_owner(uaddr2, &q, !ret);
3228 		/*
3229 		 * If fixup_owner() returned an error, proprogate that.  If it
3230 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231 		 */
3232 		if (res)
3233 			ret = (res < 0) ? res : 0;
3234 
3235 		/*
3236 		 * If fixup_pi_state_owner() faulted and was unable to handle
3237 		 * the fault, unlock the rt_mutex and return the fault to
3238 		 * userspace.
3239 		 */
3240 		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3241 			pi_state = q.pi_state;
3242 			get_pi_state(pi_state);
3243 		}
3244 
3245 		/* Unqueue and drop the lock. */
3246 		unqueue_me_pi(&q);
3247 	}
3248 
3249 	if (pi_state) {
3250 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3251 		put_pi_state(pi_state);
3252 	}
3253 
3254 	if (ret == -EINTR) {
3255 		/*
3256 		 * We've already been requeued, but cannot restart by calling
3257 		 * futex_lock_pi() directly. We could restart this syscall, but
3258 		 * it would detect that the user space "val" changed and return
3259 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3260 		 * -EWOULDBLOCK directly.
3261 		 */
3262 		ret = -EWOULDBLOCK;
3263 	}
3264 
3265 out_put_keys:
3266 	put_futex_key(&q.key);
3267 out_key2:
3268 	put_futex_key(&key2);
3269 
3270 out:
3271 	if (to) {
3272 		hrtimer_cancel(&to->timer);
3273 		destroy_hrtimer_on_stack(&to->timer);
3274 	}
3275 	return ret;
3276 }
3277 
3278 /*
3279  * Support for robust futexes: the kernel cleans up held futexes at
3280  * thread exit time.
3281  *
3282  * Implementation: user-space maintains a per-thread list of locks it
3283  * is holding. Upon do_exit(), the kernel carefully walks this list,
3284  * and marks all locks that are owned by this thread with the
3285  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286  * always manipulated with the lock held, so the list is private and
3287  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3288  * field, to allow the kernel to clean up if the thread dies after
3289  * acquiring the lock, but just before it could have added itself to
3290  * the list. There can only be one such pending lock.
3291  */
3292 
3293 /**
3294  * sys_set_robust_list() - Set the robust-futex list head of a task
3295  * @head:	pointer to the list-head
3296  * @len:	length of the list-head, as userspace expects
3297  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3298 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3299 		size_t, len)
3300 {
3301 	if (!futex_cmpxchg_enabled)
3302 		return -ENOSYS;
3303 	/*
3304 	 * The kernel knows only one size for now:
3305 	 */
3306 	if (unlikely(len != sizeof(*head)))
3307 		return -EINVAL;
3308 
3309 	current->robust_list = head;
3310 
3311 	return 0;
3312 }
3313 
3314 /**
3315  * sys_get_robust_list() - Get the robust-futex list head of a task
3316  * @pid:	pid of the process [zero for current task]
3317  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3318  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3319  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3320 SYSCALL_DEFINE3(get_robust_list, int, pid,
3321 		struct robust_list_head __user * __user *, head_ptr,
3322 		size_t __user *, len_ptr)
3323 {
3324 	struct robust_list_head __user *head;
3325 	unsigned long ret;
3326 	struct task_struct *p;
3327 
3328 	if (!futex_cmpxchg_enabled)
3329 		return -ENOSYS;
3330 
3331 	rcu_read_lock();
3332 
3333 	ret = -ESRCH;
3334 	if (!pid)
3335 		p = current;
3336 	else {
3337 		p = find_task_by_vpid(pid);
3338 		if (!p)
3339 			goto err_unlock;
3340 	}
3341 
3342 	ret = -EPERM;
3343 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344 		goto err_unlock;
3345 
3346 	head = p->robust_list;
3347 	rcu_read_unlock();
3348 
3349 	if (put_user(sizeof(*head), len_ptr))
3350 		return -EFAULT;
3351 	return put_user(head, head_ptr);
3352 
3353 err_unlock:
3354 	rcu_read_unlock();
3355 
3356 	return ret;
3357 }
3358 
3359 /*
3360  * Process a futex-list entry, check whether it's owned by the
3361  * dying task, and do notification if so:
3362  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)3363 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364 {
3365 	u32 uval, uninitialized_var(nval), mval;
3366 
3367 retry:
3368 	if (get_user(uval, uaddr))
3369 		return -1;
3370 
3371 	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372 		/*
3373 		 * Ok, this dying thread is truly holding a futex
3374 		 * of interest. Set the OWNER_DIED bit atomically
3375 		 * via cmpxchg, and if the value had FUTEX_WAITERS
3376 		 * set, wake up a waiter (if any). (We have to do a
3377 		 * futex_wake() even if OWNER_DIED is already set -
3378 		 * to handle the rare but possible case of recursive
3379 		 * thread-death.) The rest of the cleanup is done in
3380 		 * userspace.
3381 		 */
3382 		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383 		/*
3384 		 * We are not holding a lock here, but we want to have
3385 		 * the pagefault_disable/enable() protection because
3386 		 * we want to handle the fault gracefully. If the
3387 		 * access fails we try to fault in the futex with R/W
3388 		 * verification via get_user_pages. get_user() above
3389 		 * does not guarantee R/W access. If that fails we
3390 		 * give up and leave the futex locked.
3391 		 */
3392 		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3393 			if (fault_in_user_writeable(uaddr))
3394 				return -1;
3395 			goto retry;
3396 		}
3397 		if (nval != uval)
3398 			goto retry;
3399 
3400 		/*
3401 		 * Wake robust non-PI futexes here. The wakeup of
3402 		 * PI futexes happens in exit_pi_state():
3403 		 */
3404 		if (!pi && (uval & FUTEX_WAITERS))
3405 			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406 	}
3407 	return 0;
3408 }
3409 
3410 /*
3411  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3412  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3413 static inline int fetch_robust_entry(struct robust_list __user **entry,
3414 				     struct robust_list __user * __user *head,
3415 				     unsigned int *pi)
3416 {
3417 	unsigned long uentry;
3418 
3419 	if (get_user(uentry, (unsigned long __user *)head))
3420 		return -EFAULT;
3421 
3422 	*entry = (void __user *)(uentry & ~1UL);
3423 	*pi = uentry & 1;
3424 
3425 	return 0;
3426 }
3427 
3428 /*
3429  * Walk curr->robust_list (very carefully, it's a userspace list!)
3430  * and mark any locks found there dead, and notify any waiters.
3431  *
3432  * We silently return on any sign of list-walking problem.
3433  */
exit_robust_list(struct task_struct * curr)3434 void exit_robust_list(struct task_struct *curr)
3435 {
3436 	struct robust_list_head __user *head = curr->robust_list;
3437 	struct robust_list __user *entry, *next_entry, *pending;
3438 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3439 	unsigned int uninitialized_var(next_pi);
3440 	unsigned long futex_offset;
3441 	int rc;
3442 
3443 	if (!futex_cmpxchg_enabled)
3444 		return;
3445 
3446 	/*
3447 	 * Fetch the list head (which was registered earlier, via
3448 	 * sys_set_robust_list()):
3449 	 */
3450 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451 		return;
3452 	/*
3453 	 * Fetch the relative futex offset:
3454 	 */
3455 	if (get_user(futex_offset, &head->futex_offset))
3456 		return;
3457 	/*
3458 	 * Fetch any possibly pending lock-add first, and handle it
3459 	 * if it exists:
3460 	 */
3461 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462 		return;
3463 
3464 	next_entry = NULL;	/* avoid warning with gcc */
3465 	while (entry != &head->list) {
3466 		/*
3467 		 * Fetch the next entry in the list before calling
3468 		 * handle_futex_death:
3469 		 */
3470 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471 		/*
3472 		 * A pending lock might already be on the list, so
3473 		 * don't process it twice:
3474 		 */
3475 		if (entry != pending)
3476 			if (handle_futex_death((void __user *)entry + futex_offset,
3477 						curr, pi))
3478 				return;
3479 		if (rc)
3480 			return;
3481 		entry = next_entry;
3482 		pi = next_pi;
3483 		/*
3484 		 * Avoid excessively long or circular lists:
3485 		 */
3486 		if (!--limit)
3487 			break;
3488 
3489 		cond_resched();
3490 	}
3491 
3492 	if (pending)
3493 		handle_futex_death((void __user *)pending + futex_offset,
3494 				   curr, pip);
3495 }
3496 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3497 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498 		u32 __user *uaddr2, u32 val2, u32 val3)
3499 {
3500 	int cmd = op & FUTEX_CMD_MASK;
3501 	unsigned int flags = 0;
3502 
3503 	if (!(op & FUTEX_PRIVATE_FLAG))
3504 		flags |= FLAGS_SHARED;
3505 
3506 	if (op & FUTEX_CLOCK_REALTIME) {
3507 		flags |= FLAGS_CLOCKRT;
3508 		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3509 		    cmd != FUTEX_WAIT_REQUEUE_PI)
3510 			return -ENOSYS;
3511 	}
3512 
3513 	switch (cmd) {
3514 	case FUTEX_LOCK_PI:
3515 	case FUTEX_UNLOCK_PI:
3516 	case FUTEX_TRYLOCK_PI:
3517 	case FUTEX_WAIT_REQUEUE_PI:
3518 	case FUTEX_CMP_REQUEUE_PI:
3519 		if (!futex_cmpxchg_enabled)
3520 			return -ENOSYS;
3521 	}
3522 
3523 	switch (cmd) {
3524 	case FUTEX_WAIT:
3525 		val3 = FUTEX_BITSET_MATCH_ANY;
3526 		/* fall through */
3527 	case FUTEX_WAIT_BITSET:
3528 		return futex_wait(uaddr, flags, val, timeout, val3);
3529 	case FUTEX_WAKE:
3530 		val3 = FUTEX_BITSET_MATCH_ANY;
3531 		/* fall through */
3532 	case FUTEX_WAKE_BITSET:
3533 		return futex_wake(uaddr, flags, val, val3);
3534 	case FUTEX_REQUEUE:
3535 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3536 	case FUTEX_CMP_REQUEUE:
3537 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3538 	case FUTEX_WAKE_OP:
3539 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3540 	case FUTEX_LOCK_PI:
3541 		return futex_lock_pi(uaddr, flags, timeout, 0);
3542 	case FUTEX_UNLOCK_PI:
3543 		return futex_unlock_pi(uaddr, flags);
3544 	case FUTEX_TRYLOCK_PI:
3545 		return futex_lock_pi(uaddr, flags, NULL, 1);
3546 	case FUTEX_WAIT_REQUEUE_PI:
3547 		val3 = FUTEX_BITSET_MATCH_ANY;
3548 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3549 					     uaddr2);
3550 	case FUTEX_CMP_REQUEUE_PI:
3551 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3552 	}
3553 	return -ENOSYS;
3554 }
3555 
3556 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3557 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3558 		struct timespec __user *, utime, u32 __user *, uaddr2,
3559 		u32, val3)
3560 {
3561 	struct timespec ts;
3562 	ktime_t t, *tp = NULL;
3563 	u32 val2 = 0;
3564 	int cmd = op & FUTEX_CMD_MASK;
3565 
3566 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3567 		      cmd == FUTEX_WAIT_BITSET ||
3568 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3569 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3570 			return -EFAULT;
3571 		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3572 			return -EFAULT;
3573 		if (!timespec_valid(&ts))
3574 			return -EINVAL;
3575 
3576 		t = timespec_to_ktime(ts);
3577 		if (cmd == FUTEX_WAIT)
3578 			t = ktime_add_safe(ktime_get(), t);
3579 		tp = &t;
3580 	}
3581 	/*
3582 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3583 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3584 	 */
3585 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3586 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3587 		val2 = (u32) (unsigned long) utime;
3588 
3589 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3590 }
3591 
futex_detect_cmpxchg(void)3592 static void __init futex_detect_cmpxchg(void)
3593 {
3594 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3595 	u32 curval;
3596 
3597 	/*
3598 	 * This will fail and we want it. Some arch implementations do
3599 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3600 	 * functionality. We want to know that before we call in any
3601 	 * of the complex code paths. Also we want to prevent
3602 	 * registration of robust lists in that case. NULL is
3603 	 * guaranteed to fault and we get -EFAULT on functional
3604 	 * implementation, the non-functional ones will return
3605 	 * -ENOSYS.
3606 	 */
3607 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3608 		futex_cmpxchg_enabled = 1;
3609 #endif
3610 }
3611 
futex_init(void)3612 static int __init futex_init(void)
3613 {
3614 	unsigned int futex_shift;
3615 	unsigned long i;
3616 
3617 #if CONFIG_BASE_SMALL
3618 	futex_hashsize = 16;
3619 #else
3620 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3621 #endif
3622 
3623 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3624 					       futex_hashsize, 0,
3625 					       futex_hashsize < 256 ? HASH_SMALL : 0,
3626 					       &futex_shift, NULL,
3627 					       futex_hashsize, futex_hashsize);
3628 	futex_hashsize = 1UL << futex_shift;
3629 
3630 	futex_detect_cmpxchg();
3631 
3632 	for (i = 0; i < futex_hashsize; i++) {
3633 		atomic_set(&futex_queues[i].waiters, 0);
3634 		plist_head_init(&futex_queues[i].chain);
3635 		spin_lock_init(&futex_queues[i].lock);
3636 	}
3637 
3638 	return 0;
3639 }
3640 core_initcall(futex_init);
3641