1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
setup_fail_futex(char * str)295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
should_fail_futex(bool fshared)301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
fail_futex_debugfs(void)311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
should_fail_futex(bool fshared)335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
futex_get_mm(union futex_key * key)341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
hb_waiters_inc(struct futex_hash_bucket * hb)355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
hb_waiters_dec(struct futex_hash_bucket * hb)370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
hb_waiters_pending(struct futex_hash_bucket * hb)377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
hash_futex(union futex_key * key)393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
match_futex(union futex_key * key1,union futex_key * key2)409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
get_futex_key_refs(union futex_key * key)422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
drop_futex_key_refs(union futex_key * key)460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
get_futex_key(u32 __user * uaddr,int fshared,union futex_key * key,int rw)500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
put_futex_key(union futex_key * key)707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
fault_in_user_writeable(u32 __user * uaddr)724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
get_futex_value_locked(u32 * dest,u32 __user * from)768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
refill_pi_state_cache(void)783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
alloc_pi_state(void)806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
get_pi_state(struct futex_pi_state * pi_state)816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
put_pi_state(struct futex_pi_state * pi_state)825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 #ifdef CONFIG_FUTEX_PI
866
867 /*
868 * This task is holding PI mutexes at exit time => bad.
869 * Kernel cleans up PI-state, but userspace is likely hosed.
870 * (Robust-futex cleanup is separate and might save the day for userspace.)
871 */
exit_pi_state_list(struct task_struct * curr)872 void exit_pi_state_list(struct task_struct *curr)
873 {
874 struct list_head *next, *head = &curr->pi_state_list;
875 struct futex_pi_state *pi_state;
876 struct futex_hash_bucket *hb;
877 union futex_key key = FUTEX_KEY_INIT;
878
879 if (!futex_cmpxchg_enabled)
880 return;
881 /*
882 * We are a ZOMBIE and nobody can enqueue itself on
883 * pi_state_list anymore, but we have to be careful
884 * versus waiters unqueueing themselves:
885 */
886 raw_spin_lock_irq(&curr->pi_lock);
887 while (!list_empty(head)) {
888 next = head->next;
889 pi_state = list_entry(next, struct futex_pi_state, list);
890 key = pi_state->key;
891 hb = hash_futex(&key);
892
893 /*
894 * We can race against put_pi_state() removing itself from the
895 * list (a waiter going away). put_pi_state() will first
896 * decrement the reference count and then modify the list, so
897 * its possible to see the list entry but fail this reference
898 * acquire.
899 *
900 * In that case; drop the locks to let put_pi_state() make
901 * progress and retry the loop.
902 */
903 if (!atomic_inc_not_zero(&pi_state->refcount)) {
904 raw_spin_unlock_irq(&curr->pi_lock);
905 cpu_relax();
906 raw_spin_lock_irq(&curr->pi_lock);
907 continue;
908 }
909 raw_spin_unlock_irq(&curr->pi_lock);
910
911 spin_lock(&hb->lock);
912 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913 raw_spin_lock(&curr->pi_lock);
914 /*
915 * We dropped the pi-lock, so re-check whether this
916 * task still owns the PI-state:
917 */
918 if (head->next != next) {
919 /* retain curr->pi_lock for the loop invariant */
920 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921 spin_unlock(&hb->lock);
922 put_pi_state(pi_state);
923 continue;
924 }
925
926 WARN_ON(pi_state->owner != curr);
927 WARN_ON(list_empty(&pi_state->list));
928 list_del_init(&pi_state->list);
929 pi_state->owner = NULL;
930
931 raw_spin_unlock(&curr->pi_lock);
932 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933 spin_unlock(&hb->lock);
934
935 rt_mutex_futex_unlock(&pi_state->pi_mutex);
936 put_pi_state(pi_state);
937
938 raw_spin_lock_irq(&curr->pi_lock);
939 }
940 raw_spin_unlock_irq(&curr->pi_lock);
941 }
942
943 #endif
944
945 /*
946 * We need to check the following states:
947 *
948 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
949 *
950 * [1] NULL | --- | --- | 0 | 0/1 | Valid
951 * [2] NULL | --- | --- | >0 | 0/1 | Valid
952 *
953 * [3] Found | NULL | -- | Any | 0/1 | Invalid
954 *
955 * [4] Found | Found | NULL | 0 | 1 | Valid
956 * [5] Found | Found | NULL | >0 | 1 | Invalid
957 *
958 * [6] Found | Found | task | 0 | 1 | Valid
959 *
960 * [7] Found | Found | NULL | Any | 0 | Invalid
961 *
962 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
963 * [9] Found | Found | task | 0 | 0 | Invalid
964 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
965 *
966 * [1] Indicates that the kernel can acquire the futex atomically. We
967 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
968 *
969 * [2] Valid, if TID does not belong to a kernel thread. If no matching
970 * thread is found then it indicates that the owner TID has died.
971 *
972 * [3] Invalid. The waiter is queued on a non PI futex
973 *
974 * [4] Valid state after exit_robust_list(), which sets the user space
975 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
976 *
977 * [5] The user space value got manipulated between exit_robust_list()
978 * and exit_pi_state_list()
979 *
980 * [6] Valid state after exit_pi_state_list() which sets the new owner in
981 * the pi_state but cannot access the user space value.
982 *
983 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
984 *
985 * [8] Owner and user space value match
986 *
987 * [9] There is no transient state which sets the user space TID to 0
988 * except exit_robust_list(), but this is indicated by the
989 * FUTEX_OWNER_DIED bit. See [4]
990 *
991 * [10] There is no transient state which leaves owner and user space
992 * TID out of sync.
993 *
994 *
995 * Serialization and lifetime rules:
996 *
997 * hb->lock:
998 *
999 * hb -> futex_q, relation
1000 * futex_q -> pi_state, relation
1001 *
1002 * (cannot be raw because hb can contain arbitrary amount
1003 * of futex_q's)
1004 *
1005 * pi_mutex->wait_lock:
1006 *
1007 * {uval, pi_state}
1008 *
1009 * (and pi_mutex 'obviously')
1010 *
1011 * p->pi_lock:
1012 *
1013 * p->pi_state_list -> pi_state->list, relation
1014 *
1015 * pi_state->refcount:
1016 *
1017 * pi_state lifetime
1018 *
1019 *
1020 * Lock order:
1021 *
1022 * hb->lock
1023 * pi_mutex->wait_lock
1024 * p->pi_lock
1025 *
1026 */
1027
1028 /*
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1032 */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)1033 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034 struct futex_pi_state *pi_state,
1035 struct futex_pi_state **ps)
1036 {
1037 pid_t pid = uval & FUTEX_TID_MASK;
1038 u32 uval2;
1039 int ret;
1040
1041 /*
1042 * Userspace might have messed up non-PI and PI futexes [3]
1043 */
1044 if (unlikely(!pi_state))
1045 return -EINVAL;
1046
1047 /*
1048 * We get here with hb->lock held, and having found a
1049 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051 * which in turn means that futex_lock_pi() still has a reference on
1052 * our pi_state.
1053 *
1054 * The waiter holding a reference on @pi_state also protects against
1055 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057 * free pi_state before we can take a reference ourselves.
1058 */
1059 WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061 /*
1062 * Now that we have a pi_state, we can acquire wait_lock
1063 * and do the state validation.
1064 */
1065 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067 /*
1068 * Since {uval, pi_state} is serialized by wait_lock, and our current
1069 * uval was read without holding it, it can have changed. Verify it
1070 * still is what we expect it to be, otherwise retry the entire
1071 * operation.
1072 */
1073 if (get_futex_value_locked(&uval2, uaddr))
1074 goto out_efault;
1075
1076 if (uval != uval2)
1077 goto out_eagain;
1078
1079 /*
1080 * Handle the owner died case:
1081 */
1082 if (uval & FUTEX_OWNER_DIED) {
1083 /*
1084 * exit_pi_state_list sets owner to NULL and wakes the
1085 * topmost waiter. The task which acquires the
1086 * pi_state->rt_mutex will fixup owner.
1087 */
1088 if (!pi_state->owner) {
1089 /*
1090 * No pi state owner, but the user space TID
1091 * is not 0. Inconsistent state. [5]
1092 */
1093 if (pid)
1094 goto out_einval;
1095 /*
1096 * Take a ref on the state and return success. [4]
1097 */
1098 goto out_attach;
1099 }
1100
1101 /*
1102 * If TID is 0, then either the dying owner has not
1103 * yet executed exit_pi_state_list() or some waiter
1104 * acquired the rtmutex in the pi state, but did not
1105 * yet fixup the TID in user space.
1106 *
1107 * Take a ref on the state and return success. [6]
1108 */
1109 if (!pid)
1110 goto out_attach;
1111 } else {
1112 /*
1113 * If the owner died bit is not set, then the pi_state
1114 * must have an owner. [7]
1115 */
1116 if (!pi_state->owner)
1117 goto out_einval;
1118 }
1119
1120 /*
1121 * Bail out if user space manipulated the futex value. If pi
1122 * state exists then the owner TID must be the same as the
1123 * user space TID. [9/10]
1124 */
1125 if (pid != task_pid_vnr(pi_state->owner))
1126 goto out_einval;
1127
1128 out_attach:
1129 get_pi_state(pi_state);
1130 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131 *ps = pi_state;
1132 return 0;
1133
1134 out_einval:
1135 ret = -EINVAL;
1136 goto out_error;
1137
1138 out_eagain:
1139 ret = -EAGAIN;
1140 goto out_error;
1141
1142 out_efault:
1143 ret = -EFAULT;
1144 goto out_error;
1145
1146 out_error:
1147 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148 return ret;
1149 }
1150
1151 /*
1152 * Lookup the task for the TID provided from user space and attach to
1153 * it after doing proper sanity checks.
1154 */
attach_to_pi_owner(u32 uval,union futex_key * key,struct futex_pi_state ** ps)1155 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1156 struct futex_pi_state **ps)
1157 {
1158 pid_t pid = uval & FUTEX_TID_MASK;
1159 struct futex_pi_state *pi_state;
1160 struct task_struct *p;
1161
1162 /*
1163 * We are the first waiter - try to look up the real owner and attach
1164 * the new pi_state to it, but bail out when TID = 0 [1]
1165 */
1166 if (!pid)
1167 return -ESRCH;
1168 p = find_get_task_by_vpid(pid);
1169 if (!p)
1170 return -ESRCH;
1171
1172 if (unlikely(p->flags & PF_KTHREAD)) {
1173 put_task_struct(p);
1174 return -EPERM;
1175 }
1176
1177 /*
1178 * We need to look at the task state flags to figure out,
1179 * whether the task is exiting. To protect against the do_exit
1180 * change of the task flags, we do this protected by
1181 * p->pi_lock:
1182 */
1183 raw_spin_lock_irq(&p->pi_lock);
1184 if (unlikely(p->flags & PF_EXITING)) {
1185 /*
1186 * The task is on the way out. When PF_EXITPIDONE is
1187 * set, we know that the task has finished the
1188 * cleanup:
1189 */
1190 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1191
1192 raw_spin_unlock_irq(&p->pi_lock);
1193 put_task_struct(p);
1194 return ret;
1195 }
1196
1197 /*
1198 * No existing pi state. First waiter. [2]
1199 *
1200 * This creates pi_state, we have hb->lock held, this means nothing can
1201 * observe this state, wait_lock is irrelevant.
1202 */
1203 pi_state = alloc_pi_state();
1204
1205 /*
1206 * Initialize the pi_mutex in locked state and make @p
1207 * the owner of it:
1208 */
1209 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1210
1211 /* Store the key for possible exit cleanups: */
1212 pi_state->key = *key;
1213
1214 WARN_ON(!list_empty(&pi_state->list));
1215 list_add(&pi_state->list, &p->pi_state_list);
1216 /*
1217 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1218 * because there is no concurrency as the object is not published yet.
1219 */
1220 pi_state->owner = p;
1221 raw_spin_unlock_irq(&p->pi_lock);
1222
1223 put_task_struct(p);
1224
1225 *ps = pi_state;
1226
1227 return 0;
1228 }
1229
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps)1230 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1231 struct futex_hash_bucket *hb,
1232 union futex_key *key, struct futex_pi_state **ps)
1233 {
1234 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235
1236 /*
1237 * If there is a waiter on that futex, validate it and
1238 * attach to the pi_state when the validation succeeds.
1239 */
1240 if (top_waiter)
1241 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242
1243 /*
1244 * We are the first waiter - try to look up the owner based on
1245 * @uval and attach to it.
1246 */
1247 return attach_to_pi_owner(uval, key, ps);
1248 }
1249
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1250 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1251 {
1252 u32 uninitialized_var(curval);
1253
1254 if (unlikely(should_fail_futex(true)))
1255 return -EFAULT;
1256
1257 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1258 return -EFAULT;
1259
1260 /* If user space value changed, let the caller retry */
1261 return curval != uval ? -EAGAIN : 0;
1262 }
1263
1264 /**
1265 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266 * @uaddr: the pi futex user address
1267 * @hb: the pi futex hash bucket
1268 * @key: the futex key associated with uaddr and hb
1269 * @ps: the pi_state pointer where we store the result of the
1270 * lookup
1271 * @task: the task to perform the atomic lock work for. This will
1272 * be "current" except in the case of requeue pi.
1273 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1274 *
1275 * Return:
1276 * - 0 - ready to wait;
1277 * - 1 - acquired the lock;
1278 * - <0 - error
1279 *
1280 * The hb->lock and futex_key refs shall be held by the caller.
1281 */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,int set_waiters)1282 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1283 union futex_key *key,
1284 struct futex_pi_state **ps,
1285 struct task_struct *task, int set_waiters)
1286 {
1287 u32 uval, newval, vpid = task_pid_vnr(task);
1288 struct futex_q *top_waiter;
1289 int ret;
1290
1291 /*
1292 * Read the user space value first so we can validate a few
1293 * things before proceeding further.
1294 */
1295 if (get_futex_value_locked(&uval, uaddr))
1296 return -EFAULT;
1297
1298 if (unlikely(should_fail_futex(true)))
1299 return -EFAULT;
1300
1301 /*
1302 * Detect deadlocks.
1303 */
1304 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305 return -EDEADLK;
1306
1307 if ((unlikely(should_fail_futex(true))))
1308 return -EDEADLK;
1309
1310 /*
1311 * Lookup existing state first. If it exists, try to attach to
1312 * its pi_state.
1313 */
1314 top_waiter = futex_top_waiter(hb, key);
1315 if (top_waiter)
1316 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318 /*
1319 * No waiter and user TID is 0. We are here because the
1320 * waiters or the owner died bit is set or called from
1321 * requeue_cmp_pi or for whatever reason something took the
1322 * syscall.
1323 */
1324 if (!(uval & FUTEX_TID_MASK)) {
1325 /*
1326 * We take over the futex. No other waiters and the user space
1327 * TID is 0. We preserve the owner died bit.
1328 */
1329 newval = uval & FUTEX_OWNER_DIED;
1330 newval |= vpid;
1331
1332 /* The futex requeue_pi code can enforce the waiters bit */
1333 if (set_waiters)
1334 newval |= FUTEX_WAITERS;
1335
1336 ret = lock_pi_update_atomic(uaddr, uval, newval);
1337 /* If the take over worked, return 1 */
1338 return ret < 0 ? ret : 1;
1339 }
1340
1341 /*
1342 * First waiter. Set the waiters bit before attaching ourself to
1343 * the owner. If owner tries to unlock, it will be forced into
1344 * the kernel and blocked on hb->lock.
1345 */
1346 newval = uval | FUTEX_WAITERS;
1347 ret = lock_pi_update_atomic(uaddr, uval, newval);
1348 if (ret)
1349 return ret;
1350 /*
1351 * If the update of the user space value succeeded, we try to
1352 * attach to the owner. If that fails, no harm done, we only
1353 * set the FUTEX_WAITERS bit in the user space variable.
1354 */
1355 return attach_to_pi_owner(uval, key, ps);
1356 }
1357
1358 /**
1359 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1360 * @q: The futex_q to unqueue
1361 *
1362 * The q->lock_ptr must not be NULL and must be held by the caller.
1363 */
__unqueue_futex(struct futex_q * q)1364 static void __unqueue_futex(struct futex_q *q)
1365 {
1366 struct futex_hash_bucket *hb;
1367
1368 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1369 || WARN_ON(plist_node_empty(&q->list)))
1370 return;
1371
1372 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1373 plist_del(&q->list, &hb->chain);
1374 hb_waiters_dec(hb);
1375 }
1376
1377 /*
1378 * The hash bucket lock must be held when this is called.
1379 * Afterwards, the futex_q must not be accessed. Callers
1380 * must ensure to later call wake_up_q() for the actual
1381 * wakeups to occur.
1382 */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1383 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1384 {
1385 struct task_struct *p = q->task;
1386
1387 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1388 return;
1389
1390 /*
1391 * Queue the task for later wakeup for after we've released
1392 * the hb->lock. wake_q_add() grabs reference to p.
1393 */
1394 wake_q_add(wake_q, p);
1395 __unqueue_futex(q);
1396 /*
1397 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1398 * is written, without taking any locks. This is possible in the event
1399 * of a spurious wakeup, for example. A memory barrier is required here
1400 * to prevent the following store to lock_ptr from getting ahead of the
1401 * plist_del in __unqueue_futex().
1402 */
1403 smp_store_release(&q->lock_ptr, NULL);
1404 }
1405
1406 /*
1407 * Caller must hold a reference on @pi_state.
1408 */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1409 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410 {
1411 u32 uninitialized_var(curval), newval;
1412 struct task_struct *new_owner;
1413 bool postunlock = false;
1414 DEFINE_WAKE_Q(wake_q);
1415 int ret = 0;
1416
1417 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418 if (WARN_ON_ONCE(!new_owner)) {
1419 /*
1420 * As per the comment in futex_unlock_pi() this should not happen.
1421 *
1422 * When this happens, give up our locks and try again, giving
1423 * the futex_lock_pi() instance time to complete, either by
1424 * waiting on the rtmutex or removing itself from the futex
1425 * queue.
1426 */
1427 ret = -EAGAIN;
1428 goto out_unlock;
1429 }
1430
1431 /*
1432 * We pass it to the next owner. The WAITERS bit is always kept
1433 * enabled while there is PI state around. We cleanup the owner
1434 * died bit, because we are the owner.
1435 */
1436 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437
1438 if (unlikely(should_fail_futex(true)))
1439 ret = -EFAULT;
1440
1441 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442 ret = -EFAULT;
1443
1444 } else if (curval != uval) {
1445 /*
1446 * If a unconditional UNLOCK_PI operation (user space did not
1447 * try the TID->0 transition) raced with a waiter setting the
1448 * FUTEX_WAITERS flag between get_user() and locking the hash
1449 * bucket lock, retry the operation.
1450 */
1451 if ((FUTEX_TID_MASK & curval) == uval)
1452 ret = -EAGAIN;
1453 else
1454 ret = -EINVAL;
1455 }
1456
1457 if (ret)
1458 goto out_unlock;
1459
1460 /*
1461 * This is a point of no return; once we modify the uval there is no
1462 * going back and subsequent operations must not fail.
1463 */
1464
1465 raw_spin_lock(&pi_state->owner->pi_lock);
1466 WARN_ON(list_empty(&pi_state->list));
1467 list_del_init(&pi_state->list);
1468 raw_spin_unlock(&pi_state->owner->pi_lock);
1469
1470 raw_spin_lock(&new_owner->pi_lock);
1471 WARN_ON(!list_empty(&pi_state->list));
1472 list_add(&pi_state->list, &new_owner->pi_state_list);
1473 pi_state->owner = new_owner;
1474 raw_spin_unlock(&new_owner->pi_lock);
1475
1476 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1477
1478 out_unlock:
1479 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1480
1481 if (postunlock)
1482 rt_mutex_postunlock(&wake_q);
1483
1484 return ret;
1485 }
1486
1487 /*
1488 * Express the locking dependencies for lockdep:
1489 */
1490 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1491 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492 {
1493 if (hb1 <= hb2) {
1494 spin_lock(&hb1->lock);
1495 if (hb1 < hb2)
1496 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1497 } else { /* hb1 > hb2 */
1498 spin_lock(&hb2->lock);
1499 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1500 }
1501 }
1502
1503 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1504 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1505 {
1506 spin_unlock(&hb1->lock);
1507 if (hb1 != hb2)
1508 spin_unlock(&hb2->lock);
1509 }
1510
1511 /*
1512 * Wake up waiters matching bitset queued on this futex (uaddr).
1513 */
1514 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1515 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1516 {
1517 struct futex_hash_bucket *hb;
1518 struct futex_q *this, *next;
1519 union futex_key key = FUTEX_KEY_INIT;
1520 int ret;
1521 DEFINE_WAKE_Q(wake_q);
1522
1523 if (!bitset)
1524 return -EINVAL;
1525
1526 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1527 if (unlikely(ret != 0))
1528 goto out;
1529
1530 hb = hash_futex(&key);
1531
1532 /* Make sure we really have tasks to wakeup */
1533 if (!hb_waiters_pending(hb))
1534 goto out_put_key;
1535
1536 spin_lock(&hb->lock);
1537
1538 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1539 if (match_futex (&this->key, &key)) {
1540 if (this->pi_state || this->rt_waiter) {
1541 ret = -EINVAL;
1542 break;
1543 }
1544
1545 /* Check if one of the bits is set in both bitsets */
1546 if (!(this->bitset & bitset))
1547 continue;
1548
1549 mark_wake_futex(&wake_q, this);
1550 if (++ret >= nr_wake)
1551 break;
1552 }
1553 }
1554
1555 spin_unlock(&hb->lock);
1556 wake_up_q(&wake_q);
1557 out_put_key:
1558 put_futex_key(&key);
1559 out:
1560 return ret;
1561 }
1562
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1563 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1564 {
1565 unsigned int op = (encoded_op & 0x70000000) >> 28;
1566 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1567 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1568 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569 int oldval, ret;
1570
1571 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572 if (oparg < 0 || oparg > 31) {
1573 char comm[sizeof(current->comm)];
1574 /*
1575 * kill this print and return -EINVAL when userspace
1576 * is sane again
1577 */
1578 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1579 get_task_comm(comm, current), oparg);
1580 oparg &= 31;
1581 }
1582 oparg = 1 << oparg;
1583 }
1584
1585 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1586 return -EFAULT;
1587
1588 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1589 if (ret)
1590 return ret;
1591
1592 switch (cmp) {
1593 case FUTEX_OP_CMP_EQ:
1594 return oldval == cmparg;
1595 case FUTEX_OP_CMP_NE:
1596 return oldval != cmparg;
1597 case FUTEX_OP_CMP_LT:
1598 return oldval < cmparg;
1599 case FUTEX_OP_CMP_GE:
1600 return oldval >= cmparg;
1601 case FUTEX_OP_CMP_LE:
1602 return oldval <= cmparg;
1603 case FUTEX_OP_CMP_GT:
1604 return oldval > cmparg;
1605 default:
1606 return -ENOSYS;
1607 }
1608 }
1609
1610 /*
1611 * Wake up all waiters hashed on the physical page that is mapped
1612 * to this virtual address:
1613 */
1614 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1615 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616 int nr_wake, int nr_wake2, int op)
1617 {
1618 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619 struct futex_hash_bucket *hb1, *hb2;
1620 struct futex_q *this, *next;
1621 int ret, op_ret;
1622 DEFINE_WAKE_Q(wake_q);
1623
1624 retry:
1625 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626 if (unlikely(ret != 0))
1627 goto out;
1628 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629 if (unlikely(ret != 0))
1630 goto out_put_key1;
1631
1632 hb1 = hash_futex(&key1);
1633 hb2 = hash_futex(&key2);
1634
1635 retry_private:
1636 double_lock_hb(hb1, hb2);
1637 op_ret = futex_atomic_op_inuser(op, uaddr2);
1638 if (unlikely(op_ret < 0)) {
1639
1640 double_unlock_hb(hb1, hb2);
1641
1642 #ifndef CONFIG_MMU
1643 /*
1644 * we don't get EFAULT from MMU faults if we don't have an MMU,
1645 * but we might get them from range checking
1646 */
1647 ret = op_ret;
1648 goto out_put_keys;
1649 #endif
1650
1651 if (unlikely(op_ret != -EFAULT)) {
1652 ret = op_ret;
1653 goto out_put_keys;
1654 }
1655
1656 ret = fault_in_user_writeable(uaddr2);
1657 if (ret)
1658 goto out_put_keys;
1659
1660 if (!(flags & FLAGS_SHARED))
1661 goto retry_private;
1662
1663 put_futex_key(&key2);
1664 put_futex_key(&key1);
1665 goto retry;
1666 }
1667
1668 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669 if (match_futex (&this->key, &key1)) {
1670 if (this->pi_state || this->rt_waiter) {
1671 ret = -EINVAL;
1672 goto out_unlock;
1673 }
1674 mark_wake_futex(&wake_q, this);
1675 if (++ret >= nr_wake)
1676 break;
1677 }
1678 }
1679
1680 if (op_ret > 0) {
1681 op_ret = 0;
1682 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683 if (match_futex (&this->key, &key2)) {
1684 if (this->pi_state || this->rt_waiter) {
1685 ret = -EINVAL;
1686 goto out_unlock;
1687 }
1688 mark_wake_futex(&wake_q, this);
1689 if (++op_ret >= nr_wake2)
1690 break;
1691 }
1692 }
1693 ret += op_ret;
1694 }
1695
1696 out_unlock:
1697 double_unlock_hb(hb1, hb2);
1698 wake_up_q(&wake_q);
1699 out_put_keys:
1700 put_futex_key(&key2);
1701 out_put_key1:
1702 put_futex_key(&key1);
1703 out:
1704 return ret;
1705 }
1706
1707 /**
1708 * requeue_futex() - Requeue a futex_q from one hb to another
1709 * @q: the futex_q to requeue
1710 * @hb1: the source hash_bucket
1711 * @hb2: the target hash_bucket
1712 * @key2: the new key for the requeued futex_q
1713 */
1714 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1715 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1716 struct futex_hash_bucket *hb2, union futex_key *key2)
1717 {
1718
1719 /*
1720 * If key1 and key2 hash to the same bucket, no need to
1721 * requeue.
1722 */
1723 if (likely(&hb1->chain != &hb2->chain)) {
1724 plist_del(&q->list, &hb1->chain);
1725 hb_waiters_dec(hb1);
1726 hb_waiters_inc(hb2);
1727 plist_add(&q->list, &hb2->chain);
1728 q->lock_ptr = &hb2->lock;
1729 }
1730 get_futex_key_refs(key2);
1731 q->key = *key2;
1732 }
1733
1734 /**
1735 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736 * @q: the futex_q
1737 * @key: the key of the requeue target futex
1738 * @hb: the hash_bucket of the requeue target futex
1739 *
1740 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1741 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1742 * to the requeue target futex so the waiter can detect the wakeup on the right
1743 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1745 * to protect access to the pi_state to fixup the owner later. Must be called
1746 * with both q->lock_ptr and hb->lock held.
1747 */
1748 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1749 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1750 struct futex_hash_bucket *hb)
1751 {
1752 get_futex_key_refs(key);
1753 q->key = *key;
1754
1755 __unqueue_futex(q);
1756
1757 WARN_ON(!q->rt_waiter);
1758 q->rt_waiter = NULL;
1759
1760 q->lock_ptr = &hb->lock;
1761
1762 wake_up_state(q->task, TASK_NORMAL);
1763 }
1764
1765 /**
1766 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767 * @pifutex: the user address of the to futex
1768 * @hb1: the from futex hash bucket, must be locked by the caller
1769 * @hb2: the to futex hash bucket, must be locked by the caller
1770 * @key1: the from futex key
1771 * @key2: the to futex key
1772 * @ps: address to store the pi_state pointer
1773 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1774 *
1775 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1777 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1778 * hb1 and hb2 must be held by the caller.
1779 *
1780 * Return:
1781 * - 0 - failed to acquire the lock atomically;
1782 * - >0 - acquired the lock, return value is vpid of the top_waiter
1783 * - <0 - error
1784 */
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,int set_waiters)1785 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1786 struct futex_hash_bucket *hb1,
1787 struct futex_hash_bucket *hb2,
1788 union futex_key *key1, union futex_key *key2,
1789 struct futex_pi_state **ps, int set_waiters)
1790 {
1791 struct futex_q *top_waiter = NULL;
1792 u32 curval;
1793 int ret, vpid;
1794
1795 if (get_futex_value_locked(&curval, pifutex))
1796 return -EFAULT;
1797
1798 if (unlikely(should_fail_futex(true)))
1799 return -EFAULT;
1800
1801 /*
1802 * Find the top_waiter and determine if there are additional waiters.
1803 * If the caller intends to requeue more than 1 waiter to pifutex,
1804 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1805 * as we have means to handle the possible fault. If not, don't set
1806 * the bit unecessarily as it will force the subsequent unlock to enter
1807 * the kernel.
1808 */
1809 top_waiter = futex_top_waiter(hb1, key1);
1810
1811 /* There are no waiters, nothing for us to do. */
1812 if (!top_waiter)
1813 return 0;
1814
1815 /* Ensure we requeue to the expected futex. */
1816 if (!match_futex(top_waiter->requeue_pi_key, key2))
1817 return -EINVAL;
1818
1819 /*
1820 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1821 * the contended case or if set_waiters is 1. The pi_state is returned
1822 * in ps in contended cases.
1823 */
1824 vpid = task_pid_vnr(top_waiter->task);
1825 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1826 set_waiters);
1827 if (ret == 1) {
1828 requeue_pi_wake_futex(top_waiter, key2, hb2);
1829 return vpid;
1830 }
1831 return ret;
1832 }
1833
1834 /**
1835 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836 * @uaddr1: source futex user address
1837 * @flags: futex flags (FLAGS_SHARED, etc.)
1838 * @uaddr2: target futex user address
1839 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1840 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1841 * @cmpval: @uaddr1 expected value (or %NULL)
1842 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1843 * pi futex (pi to pi requeue is not supported)
1844 *
1845 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1846 * uaddr2 atomically on behalf of the top waiter.
1847 *
1848 * Return:
1849 * - >=0 - on success, the number of tasks requeued or woken;
1850 * - <0 - on error
1851 */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1852 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1853 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1854 u32 *cmpval, int requeue_pi)
1855 {
1856 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857 int drop_count = 0, task_count = 0, ret;
1858 struct futex_pi_state *pi_state = NULL;
1859 struct futex_hash_bucket *hb1, *hb2;
1860 struct futex_q *this, *next;
1861 DEFINE_WAKE_Q(wake_q);
1862
1863 if (nr_wake < 0 || nr_requeue < 0)
1864 return -EINVAL;
1865
1866 /*
1867 * When PI not supported: return -ENOSYS if requeue_pi is true,
1868 * consequently the compiler knows requeue_pi is always false past
1869 * this point which will optimize away all the conditional code
1870 * further down.
1871 */
1872 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1873 return -ENOSYS;
1874
1875 if (requeue_pi) {
1876 /*
1877 * Requeue PI only works on two distinct uaddrs. This
1878 * check is only valid for private futexes. See below.
1879 */
1880 if (uaddr1 == uaddr2)
1881 return -EINVAL;
1882
1883 /*
1884 * requeue_pi requires a pi_state, try to allocate it now
1885 * without any locks in case it fails.
1886 */
1887 if (refill_pi_state_cache())
1888 return -ENOMEM;
1889 /*
1890 * requeue_pi must wake as many tasks as it can, up to nr_wake
1891 * + nr_requeue, since it acquires the rt_mutex prior to
1892 * returning to userspace, so as to not leave the rt_mutex with
1893 * waiters and no owner. However, second and third wake-ups
1894 * cannot be predicted as they involve race conditions with the
1895 * first wake and a fault while looking up the pi_state. Both
1896 * pthread_cond_signal() and pthread_cond_broadcast() should
1897 * use nr_wake=1.
1898 */
1899 if (nr_wake != 1)
1900 return -EINVAL;
1901 }
1902
1903 retry:
1904 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1905 if (unlikely(ret != 0))
1906 goto out;
1907 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1908 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1909 if (unlikely(ret != 0))
1910 goto out_put_key1;
1911
1912 /*
1913 * The check above which compares uaddrs is not sufficient for
1914 * shared futexes. We need to compare the keys:
1915 */
1916 if (requeue_pi && match_futex(&key1, &key2)) {
1917 ret = -EINVAL;
1918 goto out_put_keys;
1919 }
1920
1921 hb1 = hash_futex(&key1);
1922 hb2 = hash_futex(&key2);
1923
1924 retry_private:
1925 hb_waiters_inc(hb2);
1926 double_lock_hb(hb1, hb2);
1927
1928 if (likely(cmpval != NULL)) {
1929 u32 curval;
1930
1931 ret = get_futex_value_locked(&curval, uaddr1);
1932
1933 if (unlikely(ret)) {
1934 double_unlock_hb(hb1, hb2);
1935 hb_waiters_dec(hb2);
1936
1937 ret = get_user(curval, uaddr1);
1938 if (ret)
1939 goto out_put_keys;
1940
1941 if (!(flags & FLAGS_SHARED))
1942 goto retry_private;
1943
1944 put_futex_key(&key2);
1945 put_futex_key(&key1);
1946 goto retry;
1947 }
1948 if (curval != *cmpval) {
1949 ret = -EAGAIN;
1950 goto out_unlock;
1951 }
1952 }
1953
1954 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955 /*
1956 * Attempt to acquire uaddr2 and wake the top waiter. If we
1957 * intend to requeue waiters, force setting the FUTEX_WAITERS
1958 * bit. We force this here where we are able to easily handle
1959 * faults rather in the requeue loop below.
1960 */
1961 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962 &key2, &pi_state, nr_requeue);
1963
1964 /*
1965 * At this point the top_waiter has either taken uaddr2 or is
1966 * waiting on it. If the former, then the pi_state will not
1967 * exist yet, look it up one more time to ensure we have a
1968 * reference to it. If the lock was taken, ret contains the
1969 * vpid of the top waiter task.
1970 * If the lock was not taken, we have pi_state and an initial
1971 * refcount on it. In case of an error we have nothing.
1972 */
1973 if (ret > 0) {
1974 WARN_ON(pi_state);
1975 drop_count++;
1976 task_count++;
1977 /*
1978 * If we acquired the lock, then the user space value
1979 * of uaddr2 should be vpid. It cannot be changed by
1980 * the top waiter as it is blocked on hb2 lock if it
1981 * tries to do so. If something fiddled with it behind
1982 * our back the pi state lookup might unearth it. So
1983 * we rather use the known value than rereading and
1984 * handing potential crap to lookup_pi_state.
1985 *
1986 * If that call succeeds then we have pi_state and an
1987 * initial refcount on it.
1988 */
1989 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990 }
1991
1992 switch (ret) {
1993 case 0:
1994 /* We hold a reference on the pi state. */
1995 break;
1996
1997 /* If the above failed, then pi_state is NULL */
1998 case -EFAULT:
1999 double_unlock_hb(hb1, hb2);
2000 hb_waiters_dec(hb2);
2001 put_futex_key(&key2);
2002 put_futex_key(&key1);
2003 ret = fault_in_user_writeable(uaddr2);
2004 if (!ret)
2005 goto retry;
2006 goto out;
2007 case -EAGAIN:
2008 /*
2009 * Two reasons for this:
2010 * - Owner is exiting and we just wait for the
2011 * exit to complete.
2012 * - The user space value changed.
2013 */
2014 double_unlock_hb(hb1, hb2);
2015 hb_waiters_dec(hb2);
2016 put_futex_key(&key2);
2017 put_futex_key(&key1);
2018 cond_resched();
2019 goto retry;
2020 default:
2021 goto out_unlock;
2022 }
2023 }
2024
2025 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026 if (task_count - nr_wake >= nr_requeue)
2027 break;
2028
2029 if (!match_futex(&this->key, &key1))
2030 continue;
2031
2032 /*
2033 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2034 * be paired with each other and no other futex ops.
2035 *
2036 * We should never be requeueing a futex_q with a pi_state,
2037 * which is awaiting a futex_unlock_pi().
2038 */
2039 if ((requeue_pi && !this->rt_waiter) ||
2040 (!requeue_pi && this->rt_waiter) ||
2041 this->pi_state) {
2042 ret = -EINVAL;
2043 break;
2044 }
2045
2046 /*
2047 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2048 * lock, we already woke the top_waiter. If not, it will be
2049 * woken by futex_unlock_pi().
2050 */
2051 if (++task_count <= nr_wake && !requeue_pi) {
2052 mark_wake_futex(&wake_q, this);
2053 continue;
2054 }
2055
2056 /* Ensure we requeue to the expected futex for requeue_pi. */
2057 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2058 ret = -EINVAL;
2059 break;
2060 }
2061
2062 /*
2063 * Requeue nr_requeue waiters and possibly one more in the case
2064 * of requeue_pi if we couldn't acquire the lock atomically.
2065 */
2066 if (requeue_pi) {
2067 /*
2068 * Prepare the waiter to take the rt_mutex. Take a
2069 * refcount on the pi_state and store the pointer in
2070 * the futex_q object of the waiter.
2071 */
2072 get_pi_state(pi_state);
2073 this->pi_state = pi_state;
2074 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2075 this->rt_waiter,
2076 this->task);
2077 if (ret == 1) {
2078 /*
2079 * We got the lock. We do neither drop the
2080 * refcount on pi_state nor clear
2081 * this->pi_state because the waiter needs the
2082 * pi_state for cleaning up the user space
2083 * value. It will drop the refcount after
2084 * doing so.
2085 */
2086 requeue_pi_wake_futex(this, &key2, hb2);
2087 drop_count++;
2088 continue;
2089 } else if (ret) {
2090 /*
2091 * rt_mutex_start_proxy_lock() detected a
2092 * potential deadlock when we tried to queue
2093 * that waiter. Drop the pi_state reference
2094 * which we took above and remove the pointer
2095 * to the state from the waiters futex_q
2096 * object.
2097 */
2098 this->pi_state = NULL;
2099 put_pi_state(pi_state);
2100 /*
2101 * We stop queueing more waiters and let user
2102 * space deal with the mess.
2103 */
2104 break;
2105 }
2106 }
2107 requeue_futex(this, hb1, hb2, &key2);
2108 drop_count++;
2109 }
2110
2111 /*
2112 * We took an extra initial reference to the pi_state either
2113 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2114 * need to drop it here again.
2115 */
2116 put_pi_state(pi_state);
2117
2118 out_unlock:
2119 double_unlock_hb(hb1, hb2);
2120 wake_up_q(&wake_q);
2121 hb_waiters_dec(hb2);
2122
2123 /*
2124 * drop_futex_key_refs() must be called outside the spinlocks. During
2125 * the requeue we moved futex_q's from the hash bucket at key1 to the
2126 * one at key2 and updated their key pointer. We no longer need to
2127 * hold the references to key1.
2128 */
2129 while (--drop_count >= 0)
2130 drop_futex_key_refs(&key1);
2131
2132 out_put_keys:
2133 put_futex_key(&key2);
2134 out_put_key1:
2135 put_futex_key(&key1);
2136 out:
2137 return ret ? ret : task_count;
2138 }
2139
2140 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2141 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142 __acquires(&hb->lock)
2143 {
2144 struct futex_hash_bucket *hb;
2145
2146 hb = hash_futex(&q->key);
2147
2148 /*
2149 * Increment the counter before taking the lock so that
2150 * a potential waker won't miss a to-be-slept task that is
2151 * waiting for the spinlock. This is safe as all queue_lock()
2152 * users end up calling queue_me(). Similarly, for housekeeping,
2153 * decrement the counter at queue_unlock() when some error has
2154 * occurred and we don't end up adding the task to the list.
2155 */
2156 hb_waiters_inc(hb);
2157
2158 q->lock_ptr = &hb->lock;
2159
2160 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161 return hb;
2162 }
2163
2164 static inline void
queue_unlock(struct futex_hash_bucket * hb)2165 queue_unlock(struct futex_hash_bucket *hb)
2166 __releases(&hb->lock)
2167 {
2168 spin_unlock(&hb->lock);
2169 hb_waiters_dec(hb);
2170 }
2171
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2172 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2173 {
2174 int prio;
2175
2176 /*
2177 * The priority used to register this element is
2178 * - either the real thread-priority for the real-time threads
2179 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2180 * - or MAX_RT_PRIO for non-RT threads.
2181 * Thus, all RT-threads are woken first in priority order, and
2182 * the others are woken last, in FIFO order.
2183 */
2184 prio = min(current->normal_prio, MAX_RT_PRIO);
2185
2186 plist_node_init(&q->list, prio);
2187 plist_add(&q->list, &hb->chain);
2188 q->task = current;
2189 }
2190
2191 /**
2192 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2193 * @q: The futex_q to enqueue
2194 * @hb: The destination hash bucket
2195 *
2196 * The hb->lock must be held by the caller, and is released here. A call to
2197 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2198 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2199 * or nothing if the unqueue is done as part of the wake process and the unqueue
2200 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2201 * an example).
2202 */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2203 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2204 __releases(&hb->lock)
2205 {
2206 __queue_me(q, hb);
2207 spin_unlock(&hb->lock);
2208 }
2209
2210 /**
2211 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2212 * @q: The futex_q to unqueue
2213 *
2214 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2215 * be paired with exactly one earlier call to queue_me().
2216 *
2217 * Return:
2218 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2219 * - 0 - if the futex_q was already removed by the waking thread
2220 */
unqueue_me(struct futex_q * q)2221 static int unqueue_me(struct futex_q *q)
2222 {
2223 spinlock_t *lock_ptr;
2224 int ret = 0;
2225
2226 /* In the common case we don't take the spinlock, which is nice. */
2227 retry:
2228 /*
2229 * q->lock_ptr can change between this read and the following spin_lock.
2230 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2231 * optimizing lock_ptr out of the logic below.
2232 */
2233 lock_ptr = READ_ONCE(q->lock_ptr);
2234 if (lock_ptr != NULL) {
2235 spin_lock(lock_ptr);
2236 /*
2237 * q->lock_ptr can change between reading it and
2238 * spin_lock(), causing us to take the wrong lock. This
2239 * corrects the race condition.
2240 *
2241 * Reasoning goes like this: if we have the wrong lock,
2242 * q->lock_ptr must have changed (maybe several times)
2243 * between reading it and the spin_lock(). It can
2244 * change again after the spin_lock() but only if it was
2245 * already changed before the spin_lock(). It cannot,
2246 * however, change back to the original value. Therefore
2247 * we can detect whether we acquired the correct lock.
2248 */
2249 if (unlikely(lock_ptr != q->lock_ptr)) {
2250 spin_unlock(lock_ptr);
2251 goto retry;
2252 }
2253 __unqueue_futex(q);
2254
2255 BUG_ON(q->pi_state);
2256
2257 spin_unlock(lock_ptr);
2258 ret = 1;
2259 }
2260
2261 drop_futex_key_refs(&q->key);
2262 return ret;
2263 }
2264
2265 /*
2266 * PI futexes can not be requeued and must remove themself from the
2267 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2268 * and dropped here.
2269 */
unqueue_me_pi(struct futex_q * q)2270 static void unqueue_me_pi(struct futex_q *q)
2271 __releases(q->lock_ptr)
2272 {
2273 __unqueue_futex(q);
2274
2275 BUG_ON(!q->pi_state);
2276 put_pi_state(q->pi_state);
2277 q->pi_state = NULL;
2278
2279 spin_unlock(q->lock_ptr);
2280 }
2281
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2282 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283 struct task_struct *argowner)
2284 {
2285 struct futex_pi_state *pi_state = q->pi_state;
2286 u32 uval, uninitialized_var(curval), newval;
2287 struct task_struct *oldowner, *newowner;
2288 u32 newtid;
2289 int ret;
2290
2291 lockdep_assert_held(q->lock_ptr);
2292
2293 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2294
2295 oldowner = pi_state->owner;
2296
2297 /*
2298 * We are here because either:
2299 *
2300 * - we stole the lock and pi_state->owner needs updating to reflect
2301 * that (@argowner == current),
2302 *
2303 * or:
2304 *
2305 * - someone stole our lock and we need to fix things to point to the
2306 * new owner (@argowner == NULL).
2307 *
2308 * Either way, we have to replace the TID in the user space variable.
2309 * This must be atomic as we have to preserve the owner died bit here.
2310 *
2311 * Note: We write the user space value _before_ changing the pi_state
2312 * because we can fault here. Imagine swapped out pages or a fork
2313 * that marked all the anonymous memory readonly for cow.
2314 *
2315 * Modifying pi_state _before_ the user space value would leave the
2316 * pi_state in an inconsistent state when we fault here, because we
2317 * need to drop the locks to handle the fault. This might be observed
2318 * in the PID check in lookup_pi_state.
2319 */
2320 retry:
2321 if (!argowner) {
2322 if (oldowner != current) {
2323 /*
2324 * We raced against a concurrent self; things are
2325 * already fixed up. Nothing to do.
2326 */
2327 ret = 0;
2328 goto out_unlock;
2329 }
2330
2331 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2332 /* We got the lock after all, nothing to fix. */
2333 ret = 0;
2334 goto out_unlock;
2335 }
2336
2337 /*
2338 * Since we just failed the trylock; there must be an owner.
2339 */
2340 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2341 BUG_ON(!newowner);
2342 } else {
2343 WARN_ON_ONCE(argowner != current);
2344 if (oldowner == current) {
2345 /*
2346 * We raced against a concurrent self; things are
2347 * already fixed up. Nothing to do.
2348 */
2349 ret = 0;
2350 goto out_unlock;
2351 }
2352 newowner = argowner;
2353 }
2354
2355 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2356 /* Owner died? */
2357 if (!pi_state->owner)
2358 newtid |= FUTEX_OWNER_DIED;
2359
2360 if (get_futex_value_locked(&uval, uaddr))
2361 goto handle_fault;
2362
2363 for (;;) {
2364 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2365
2366 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367 goto handle_fault;
2368 if (curval == uval)
2369 break;
2370 uval = curval;
2371 }
2372
2373 /*
2374 * We fixed up user space. Now we need to fix the pi_state
2375 * itself.
2376 */
2377 if (pi_state->owner != NULL) {
2378 raw_spin_lock(&pi_state->owner->pi_lock);
2379 WARN_ON(list_empty(&pi_state->list));
2380 list_del_init(&pi_state->list);
2381 raw_spin_unlock(&pi_state->owner->pi_lock);
2382 }
2383
2384 pi_state->owner = newowner;
2385
2386 raw_spin_lock(&newowner->pi_lock);
2387 WARN_ON(!list_empty(&pi_state->list));
2388 list_add(&pi_state->list, &newowner->pi_state_list);
2389 raw_spin_unlock(&newowner->pi_lock);
2390 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2391
2392 return 0;
2393
2394 /*
2395 * To handle the page fault we need to drop the locks here. That gives
2396 * the other task (either the highest priority waiter itself or the
2397 * task which stole the rtmutex) the chance to try the fixup of the
2398 * pi_state. So once we are back from handling the fault we need to
2399 * check the pi_state after reacquiring the locks and before trying to
2400 * do another fixup. When the fixup has been done already we simply
2401 * return.
2402 *
2403 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2404 * drop hb->lock since the caller owns the hb -> futex_q relation.
2405 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2406 */
2407 handle_fault:
2408 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409 spin_unlock(q->lock_ptr);
2410
2411 ret = fault_in_user_writeable(uaddr);
2412
2413 spin_lock(q->lock_ptr);
2414 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415
2416 /*
2417 * Check if someone else fixed it for us:
2418 */
2419 if (pi_state->owner != oldowner) {
2420 ret = 0;
2421 goto out_unlock;
2422 }
2423
2424 if (ret)
2425 goto out_unlock;
2426
2427 goto retry;
2428
2429 out_unlock:
2430 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2431 return ret;
2432 }
2433
2434 static long futex_wait_restart(struct restart_block *restart);
2435
2436 /**
2437 * fixup_owner() - Post lock pi_state and corner case management
2438 * @uaddr: user address of the futex
2439 * @q: futex_q (contains pi_state and access to the rt_mutex)
2440 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2441 *
2442 * After attempting to lock an rt_mutex, this function is called to cleanup
2443 * the pi_state owner as well as handle race conditions that may allow us to
2444 * acquire the lock. Must be called with the hb lock held.
2445 *
2446 * Return:
2447 * - 1 - success, lock taken;
2448 * - 0 - success, lock not taken;
2449 * - <0 - on error (-EFAULT)
2450 */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2451 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452 {
2453 int ret = 0;
2454
2455 if (locked) {
2456 /*
2457 * Got the lock. We might not be the anticipated owner if we
2458 * did a lock-steal - fix up the PI-state in that case:
2459 *
2460 * Speculative pi_state->owner read (we don't hold wait_lock);
2461 * since we own the lock pi_state->owner == current is the
2462 * stable state, anything else needs more attention.
2463 */
2464 if (q->pi_state->owner != current)
2465 ret = fixup_pi_state_owner(uaddr, q, current);
2466 goto out;
2467 }
2468
2469 /*
2470 * If we didn't get the lock; check if anybody stole it from us. In
2471 * that case, we need to fix up the uval to point to them instead of
2472 * us, otherwise bad things happen. [10]
2473 *
2474 * Another speculative read; pi_state->owner == current is unstable
2475 * but needs our attention.
2476 */
2477 if (q->pi_state->owner == current) {
2478 ret = fixup_pi_state_owner(uaddr, q, NULL);
2479 goto out;
2480 }
2481
2482 /*
2483 * Paranoia check. If we did not take the lock, then we should not be
2484 * the owner of the rt_mutex.
2485 */
2486 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2488 "pi-state %p\n", ret,
2489 q->pi_state->pi_mutex.owner,
2490 q->pi_state->owner);
2491 }
2492
2493 out:
2494 return ret ? ret : locked;
2495 }
2496
2497 /**
2498 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2499 * @hb: the futex hash bucket, must be locked by the caller
2500 * @q: the futex_q to queue up on
2501 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2502 */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2503 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2504 struct hrtimer_sleeper *timeout)
2505 {
2506 /*
2507 * The task state is guaranteed to be set before another task can
2508 * wake it. set_current_state() is implemented using smp_store_mb() and
2509 * queue_me() calls spin_unlock() upon completion, both serializing
2510 * access to the hash list and forcing another memory barrier.
2511 */
2512 set_current_state(TASK_INTERRUPTIBLE);
2513 queue_me(q, hb);
2514
2515 /* Arm the timer */
2516 if (timeout)
2517 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2518
2519 /*
2520 * If we have been removed from the hash list, then another task
2521 * has tried to wake us, and we can skip the call to schedule().
2522 */
2523 if (likely(!plist_node_empty(&q->list))) {
2524 /*
2525 * If the timer has already expired, current will already be
2526 * flagged for rescheduling. Only call schedule if there
2527 * is no timeout, or if it has yet to expire.
2528 */
2529 if (!timeout || timeout->task)
2530 freezable_schedule();
2531 }
2532 __set_current_state(TASK_RUNNING);
2533 }
2534
2535 /**
2536 * futex_wait_setup() - Prepare to wait on a futex
2537 * @uaddr: the futex userspace address
2538 * @val: the expected value
2539 * @flags: futex flags (FLAGS_SHARED, etc.)
2540 * @q: the associated futex_q
2541 * @hb: storage for hash_bucket pointer to be returned to caller
2542 *
2543 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2544 * compare it with the expected value. Handle atomic faults internally.
2545 * Return with the hb lock held and a q.key reference on success, and unlocked
2546 * with no q.key reference on failure.
2547 *
2548 * Return:
2549 * - 0 - uaddr contains val and hb has been locked;
2550 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551 */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2552 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553 struct futex_q *q, struct futex_hash_bucket **hb)
2554 {
2555 u32 uval;
2556 int ret;
2557
2558 /*
2559 * Access the page AFTER the hash-bucket is locked.
2560 * Order is important:
2561 *
2562 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2563 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2564 *
2565 * The basic logical guarantee of a futex is that it blocks ONLY
2566 * if cond(var) is known to be true at the time of blocking, for
2567 * any cond. If we locked the hash-bucket after testing *uaddr, that
2568 * would open a race condition where we could block indefinitely with
2569 * cond(var) false, which would violate the guarantee.
2570 *
2571 * On the other hand, we insert q and release the hash-bucket only
2572 * after testing *uaddr. This guarantees that futex_wait() will NOT
2573 * absorb a wakeup if *uaddr does not match the desired values
2574 * while the syscall executes.
2575 */
2576 retry:
2577 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578 if (unlikely(ret != 0))
2579 return ret;
2580
2581 retry_private:
2582 *hb = queue_lock(q);
2583
2584 ret = get_futex_value_locked(&uval, uaddr);
2585
2586 if (ret) {
2587 queue_unlock(*hb);
2588
2589 ret = get_user(uval, uaddr);
2590 if (ret)
2591 goto out;
2592
2593 if (!(flags & FLAGS_SHARED))
2594 goto retry_private;
2595
2596 put_futex_key(&q->key);
2597 goto retry;
2598 }
2599
2600 if (uval != val) {
2601 queue_unlock(*hb);
2602 ret = -EWOULDBLOCK;
2603 }
2604
2605 out:
2606 if (ret)
2607 put_futex_key(&q->key);
2608 return ret;
2609 }
2610
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2611 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2612 ktime_t *abs_time, u32 bitset)
2613 {
2614 struct hrtimer_sleeper timeout, *to = NULL;
2615 struct restart_block *restart;
2616 struct futex_hash_bucket *hb;
2617 struct futex_q q = futex_q_init;
2618 int ret;
2619
2620 if (!bitset)
2621 return -EINVAL;
2622 q.bitset = bitset;
2623
2624 if (abs_time) {
2625 to = &timeout;
2626
2627 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2628 CLOCK_REALTIME : CLOCK_MONOTONIC,
2629 HRTIMER_MODE_ABS);
2630 hrtimer_init_sleeper(to, current);
2631 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2632 current->timer_slack_ns);
2633 }
2634
2635 retry:
2636 /*
2637 * Prepare to wait on uaddr. On success, holds hb lock and increments
2638 * q.key refs.
2639 */
2640 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641 if (ret)
2642 goto out;
2643
2644 /* queue_me and wait for wakeup, timeout, or a signal. */
2645 futex_wait_queue_me(hb, &q, to);
2646
2647 /* If we were woken (and unqueued), we succeeded, whatever. */
2648 ret = 0;
2649 /* unqueue_me() drops q.key ref */
2650 if (!unqueue_me(&q))
2651 goto out;
2652 ret = -ETIMEDOUT;
2653 if (to && !to->task)
2654 goto out;
2655
2656 /*
2657 * We expect signal_pending(current), but we might be the
2658 * victim of a spurious wakeup as well.
2659 */
2660 if (!signal_pending(current))
2661 goto retry;
2662
2663 ret = -ERESTARTSYS;
2664 if (!abs_time)
2665 goto out;
2666
2667 restart = ¤t->restart_block;
2668 restart->fn = futex_wait_restart;
2669 restart->futex.uaddr = uaddr;
2670 restart->futex.val = val;
2671 restart->futex.time = *abs_time;
2672 restart->futex.bitset = bitset;
2673 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674
2675 ret = -ERESTART_RESTARTBLOCK;
2676
2677 out:
2678 if (to) {
2679 hrtimer_cancel(&to->timer);
2680 destroy_hrtimer_on_stack(&to->timer);
2681 }
2682 return ret;
2683 }
2684
2685
futex_wait_restart(struct restart_block * restart)2686 static long futex_wait_restart(struct restart_block *restart)
2687 {
2688 u32 __user *uaddr = restart->futex.uaddr;
2689 ktime_t t, *tp = NULL;
2690
2691 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2692 t = restart->futex.time;
2693 tp = &t;
2694 }
2695 restart->fn = do_no_restart_syscall;
2696
2697 return (long)futex_wait(uaddr, restart->futex.flags,
2698 restart->futex.val, tp, restart->futex.bitset);
2699 }
2700
2701
2702 /*
2703 * Userspace tried a 0 -> TID atomic transition of the futex value
2704 * and failed. The kernel side here does the whole locking operation:
2705 * if there are waiters then it will block as a consequence of relying
2706 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2707 * a 0 value of the futex too.).
2708 *
2709 * Also serves as futex trylock_pi()'ing, and due semantics.
2710 */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2711 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712 ktime_t *time, int trylock)
2713 {
2714 struct hrtimer_sleeper timeout, *to = NULL;
2715 struct futex_pi_state *pi_state = NULL;
2716 struct rt_mutex_waiter rt_waiter;
2717 struct futex_hash_bucket *hb;
2718 struct futex_q q = futex_q_init;
2719 int res, ret;
2720
2721 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2722 return -ENOSYS;
2723
2724 if (refill_pi_state_cache())
2725 return -ENOMEM;
2726
2727 if (time) {
2728 to = &timeout;
2729 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2730 HRTIMER_MODE_ABS);
2731 hrtimer_init_sleeper(to, current);
2732 hrtimer_set_expires(&to->timer, *time);
2733 }
2734
2735 retry:
2736 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737 if (unlikely(ret != 0))
2738 goto out;
2739
2740 retry_private:
2741 hb = queue_lock(&q);
2742
2743 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744 if (unlikely(ret)) {
2745 /*
2746 * Atomic work succeeded and we got the lock,
2747 * or failed. Either way, we do _not_ block.
2748 */
2749 switch (ret) {
2750 case 1:
2751 /* We got the lock. */
2752 ret = 0;
2753 goto out_unlock_put_key;
2754 case -EFAULT:
2755 goto uaddr_faulted;
2756 case -EAGAIN:
2757 /*
2758 * Two reasons for this:
2759 * - Task is exiting and we just wait for the
2760 * exit to complete.
2761 * - The user space value changed.
2762 */
2763 queue_unlock(hb);
2764 put_futex_key(&q.key);
2765 cond_resched();
2766 goto retry;
2767 default:
2768 goto out_unlock_put_key;
2769 }
2770 }
2771
2772 WARN_ON(!q.pi_state);
2773
2774 /*
2775 * Only actually queue now that the atomic ops are done:
2776 */
2777 __queue_me(&q, hb);
2778
2779 if (trylock) {
2780 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2781 /* Fixup the trylock return value: */
2782 ret = ret ? 0 : -EWOULDBLOCK;
2783 goto no_block;
2784 }
2785
2786 rt_mutex_init_waiter(&rt_waiter);
2787
2788 /*
2789 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2790 * hold it while doing rt_mutex_start_proxy(), because then it will
2791 * include hb->lock in the blocking chain, even through we'll not in
2792 * fact hold it while blocking. This will lead it to report -EDEADLK
2793 * and BUG when futex_unlock_pi() interleaves with this.
2794 *
2795 * Therefore acquire wait_lock while holding hb->lock, but drop the
2796 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2797 * serializes against futex_unlock_pi() as that does the exact same
2798 * lock handoff sequence.
2799 */
2800 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2801 spin_unlock(q.lock_ptr);
2802 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2803 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2804
2805 if (ret) {
2806 if (ret == 1)
2807 ret = 0;
2808
2809 spin_lock(q.lock_ptr);
2810 goto no_block;
2811 }
2812
2813
2814 if (unlikely(to))
2815 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2816
2817 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2818
2819 spin_lock(q.lock_ptr);
2820 /*
2821 * If we failed to acquire the lock (signal/timeout), we must
2822 * first acquire the hb->lock before removing the lock from the
2823 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2824 * wait lists consistent.
2825 *
2826 * In particular; it is important that futex_unlock_pi() can not
2827 * observe this inconsistency.
2828 */
2829 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2830 ret = 0;
2831
2832 no_block:
2833 /*
2834 * Fixup the pi_state owner and possibly acquire the lock if we
2835 * haven't already.
2836 */
2837 res = fixup_owner(uaddr, &q, !ret);
2838 /*
2839 * If fixup_owner() returned an error, proprogate that. If it acquired
2840 * the lock, clear our -ETIMEDOUT or -EINTR.
2841 */
2842 if (res)
2843 ret = (res < 0) ? res : 0;
2844
2845 /*
2846 * If fixup_owner() faulted and was unable to handle the fault, unlock
2847 * it and return the fault to userspace.
2848 */
2849 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2850 pi_state = q.pi_state;
2851 get_pi_state(pi_state);
2852 }
2853
2854 /* Unqueue and drop the lock */
2855 unqueue_me_pi(&q);
2856
2857 if (pi_state) {
2858 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2859 put_pi_state(pi_state);
2860 }
2861
2862 goto out_put_key;
2863
2864 out_unlock_put_key:
2865 queue_unlock(hb);
2866
2867 out_put_key:
2868 put_futex_key(&q.key);
2869 out:
2870 if (to) {
2871 hrtimer_cancel(&to->timer);
2872 destroy_hrtimer_on_stack(&to->timer);
2873 }
2874 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875
2876 uaddr_faulted:
2877 queue_unlock(hb);
2878
2879 ret = fault_in_user_writeable(uaddr);
2880 if (ret)
2881 goto out_put_key;
2882
2883 if (!(flags & FLAGS_SHARED))
2884 goto retry_private;
2885
2886 put_futex_key(&q.key);
2887 goto retry;
2888 }
2889
2890 /*
2891 * Userspace attempted a TID -> 0 atomic transition, and failed.
2892 * This is the in-kernel slowpath: we look up the PI state (if any),
2893 * and do the rt-mutex unlock.
2894 */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2895 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896 {
2897 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2898 union futex_key key = FUTEX_KEY_INIT;
2899 struct futex_hash_bucket *hb;
2900 struct futex_q *top_waiter;
2901 int ret;
2902
2903 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2904 return -ENOSYS;
2905
2906 retry:
2907 if (get_user(uval, uaddr))
2908 return -EFAULT;
2909 /*
2910 * We release only a lock we actually own:
2911 */
2912 if ((uval & FUTEX_TID_MASK) != vpid)
2913 return -EPERM;
2914
2915 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916 if (ret)
2917 return ret;
2918
2919 hb = hash_futex(&key);
2920 spin_lock(&hb->lock);
2921
2922 /*
2923 * Check waiters first. We do not trust user space values at
2924 * all and we at least want to know if user space fiddled
2925 * with the futex value instead of blindly unlocking.
2926 */
2927 top_waiter = futex_top_waiter(hb, &key);
2928 if (top_waiter) {
2929 struct futex_pi_state *pi_state = top_waiter->pi_state;
2930
2931 ret = -EINVAL;
2932 if (!pi_state)
2933 goto out_unlock;
2934
2935 /*
2936 * If current does not own the pi_state then the futex is
2937 * inconsistent and user space fiddled with the futex value.
2938 */
2939 if (pi_state->owner != current)
2940 goto out_unlock;
2941
2942 get_pi_state(pi_state);
2943 /*
2944 * By taking wait_lock while still holding hb->lock, we ensure
2945 * there is no point where we hold neither; and therefore
2946 * wake_futex_pi() must observe a state consistent with what we
2947 * observed.
2948 */
2949 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950 spin_unlock(&hb->lock);
2951
2952 /* drops pi_state->pi_mutex.wait_lock */
2953 ret = wake_futex_pi(uaddr, uval, pi_state);
2954
2955 put_pi_state(pi_state);
2956
2957 /*
2958 * Success, we're done! No tricky corner cases.
2959 */
2960 if (!ret)
2961 goto out_putkey;
2962 /*
2963 * The atomic access to the futex value generated a
2964 * pagefault, so retry the user-access and the wakeup:
2965 */
2966 if (ret == -EFAULT)
2967 goto pi_faulted;
2968 /*
2969 * A unconditional UNLOCK_PI op raced against a waiter
2970 * setting the FUTEX_WAITERS bit. Try again.
2971 */
2972 if (ret == -EAGAIN) {
2973 put_futex_key(&key);
2974 goto retry;
2975 }
2976 /*
2977 * wake_futex_pi has detected invalid state. Tell user
2978 * space.
2979 */
2980 goto out_putkey;
2981 }
2982
2983 /*
2984 * We have no kernel internal state, i.e. no waiters in the
2985 * kernel. Waiters which are about to queue themselves are stuck
2986 * on hb->lock. So we can safely ignore them. We do neither
2987 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2988 * owner.
2989 */
2990 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2991 spin_unlock(&hb->lock);
2992 goto pi_faulted;
2993 }
2994
2995 /*
2996 * If uval has changed, let user space handle it.
2997 */
2998 ret = (curval == uval) ? 0 : -EAGAIN;
2999
3000 out_unlock:
3001 spin_unlock(&hb->lock);
3002 out_putkey:
3003 put_futex_key(&key);
3004 return ret;
3005
3006 pi_faulted:
3007 put_futex_key(&key);
3008
3009 ret = fault_in_user_writeable(uaddr);
3010 if (!ret)
3011 goto retry;
3012
3013 return ret;
3014 }
3015
3016 /**
3017 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3018 * @hb: the hash_bucket futex_q was original enqueued on
3019 * @q: the futex_q woken while waiting to be requeued
3020 * @key2: the futex_key of the requeue target futex
3021 * @timeout: the timeout associated with the wait (NULL if none)
3022 *
3023 * Detect if the task was woken on the initial futex as opposed to the requeue
3024 * target futex. If so, determine if it was a timeout or a signal that caused
3025 * the wakeup and return the appropriate error code to the caller. Must be
3026 * called with the hb lock held.
3027 *
3028 * Return:
3029 * - 0 = no early wakeup detected;
3030 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031 */
3032 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3033 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3034 struct futex_q *q, union futex_key *key2,
3035 struct hrtimer_sleeper *timeout)
3036 {
3037 int ret = 0;
3038
3039 /*
3040 * With the hb lock held, we avoid races while we process the wakeup.
3041 * We only need to hold hb (and not hb2) to ensure atomicity as the
3042 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3043 * It can't be requeued from uaddr2 to something else since we don't
3044 * support a PI aware source futex for requeue.
3045 */
3046 if (!match_futex(&q->key, key2)) {
3047 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3048 /*
3049 * We were woken prior to requeue by a timeout or a signal.
3050 * Unqueue the futex_q and determine which it was.
3051 */
3052 plist_del(&q->list, &hb->chain);
3053 hb_waiters_dec(hb);
3054
3055 /* Handle spurious wakeups gracefully */
3056 ret = -EWOULDBLOCK;
3057 if (timeout && !timeout->task)
3058 ret = -ETIMEDOUT;
3059 else if (signal_pending(current))
3060 ret = -ERESTARTNOINTR;
3061 }
3062 return ret;
3063 }
3064
3065 /**
3066 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067 * @uaddr: the futex we initially wait on (non-pi)
3068 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069 * the same type, no requeueing from private to shared, etc.
3070 * @val: the expected value of uaddr
3071 * @abs_time: absolute timeout
3072 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3073 * @uaddr2: the pi futex we will take prior to returning to user-space
3074 *
3075 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3077 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3078 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3079 * without one, the pi logic would not know which task to boost/deboost, if
3080 * there was a need to.
3081 *
3082 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083 * via the following--
3084 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085 * 2) wakeup on uaddr2 after a requeue
3086 * 3) signal
3087 * 4) timeout
3088 *
3089 * If 3, cleanup and return -ERESTARTNOINTR.
3090 *
3091 * If 2, we may then block on trying to take the rt_mutex and return via:
3092 * 5) successful lock
3093 * 6) signal
3094 * 7) timeout
3095 * 8) other lock acquisition failure
3096 *
3097 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098 *
3099 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3100 *
3101 * Return:
3102 * - 0 - On success;
3103 * - <0 - On error
3104 */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3105 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106 u32 val, ktime_t *abs_time, u32 bitset,
3107 u32 __user *uaddr2)
3108 {
3109 struct hrtimer_sleeper timeout, *to = NULL;
3110 struct futex_pi_state *pi_state = NULL;
3111 struct rt_mutex_waiter rt_waiter;
3112 struct futex_hash_bucket *hb;
3113 union futex_key key2 = FUTEX_KEY_INIT;
3114 struct futex_q q = futex_q_init;
3115 int res, ret;
3116
3117 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3118 return -ENOSYS;
3119
3120 if (uaddr == uaddr2)
3121 return -EINVAL;
3122
3123 if (!bitset)
3124 return -EINVAL;
3125
3126 if (abs_time) {
3127 to = &timeout;
3128 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3129 CLOCK_REALTIME : CLOCK_MONOTONIC,
3130 HRTIMER_MODE_ABS);
3131 hrtimer_init_sleeper(to, current);
3132 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3133 current->timer_slack_ns);
3134 }
3135
3136 /*
3137 * The waiter is allocated on our stack, manipulated by the requeue
3138 * code while we sleep on uaddr.
3139 */
3140 rt_mutex_init_waiter(&rt_waiter);
3141
3142 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143 if (unlikely(ret != 0))
3144 goto out;
3145
3146 q.bitset = bitset;
3147 q.rt_waiter = &rt_waiter;
3148 q.requeue_pi_key = &key2;
3149
3150 /*
3151 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3152 * count.
3153 */
3154 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3155 if (ret)
3156 goto out_key2;
3157
3158 /*
3159 * The check above which compares uaddrs is not sufficient for
3160 * shared futexes. We need to compare the keys:
3161 */
3162 if (match_futex(&q.key, &key2)) {
3163 queue_unlock(hb);
3164 ret = -EINVAL;
3165 goto out_put_keys;
3166 }
3167
3168 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3169 futex_wait_queue_me(hb, &q, to);
3170
3171 spin_lock(&hb->lock);
3172 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3173 spin_unlock(&hb->lock);
3174 if (ret)
3175 goto out_put_keys;
3176
3177 /*
3178 * In order for us to be here, we know our q.key == key2, and since
3179 * we took the hb->lock above, we also know that futex_requeue() has
3180 * completed and we no longer have to concern ourselves with a wakeup
3181 * race with the atomic proxy lock acquisition by the requeue code. The
3182 * futex_requeue dropped our key1 reference and incremented our key2
3183 * reference count.
3184 */
3185
3186 /* Check if the requeue code acquired the second futex for us. */
3187 if (!q.rt_waiter) {
3188 /*
3189 * Got the lock. We might not be the anticipated owner if we
3190 * did a lock-steal - fix up the PI-state in that case.
3191 */
3192 if (q.pi_state && (q.pi_state->owner != current)) {
3193 spin_lock(q.lock_ptr);
3194 ret = fixup_pi_state_owner(uaddr2, &q, current);
3195 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3196 pi_state = q.pi_state;
3197 get_pi_state(pi_state);
3198 }
3199 /*
3200 * Drop the reference to the pi state which
3201 * the requeue_pi() code acquired for us.
3202 */
3203 put_pi_state(q.pi_state);
3204 spin_unlock(q.lock_ptr);
3205 }
3206 } else {
3207 struct rt_mutex *pi_mutex;
3208
3209 /*
3210 * We have been woken up by futex_unlock_pi(), a timeout, or a
3211 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3212 * the pi_state.
3213 */
3214 WARN_ON(!q.pi_state);
3215 pi_mutex = &q.pi_state->pi_mutex;
3216 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3217
3218 spin_lock(q.lock_ptr);
3219 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3220 ret = 0;
3221
3222 debug_rt_mutex_free_waiter(&rt_waiter);
3223 /*
3224 * Fixup the pi_state owner and possibly acquire the lock if we
3225 * haven't already.
3226 */
3227 res = fixup_owner(uaddr2, &q, !ret);
3228 /*
3229 * If fixup_owner() returned an error, proprogate that. If it
3230 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231 */
3232 if (res)
3233 ret = (res < 0) ? res : 0;
3234
3235 /*
3236 * If fixup_pi_state_owner() faulted and was unable to handle
3237 * the fault, unlock the rt_mutex and return the fault to
3238 * userspace.
3239 */
3240 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3241 pi_state = q.pi_state;
3242 get_pi_state(pi_state);
3243 }
3244
3245 /* Unqueue and drop the lock. */
3246 unqueue_me_pi(&q);
3247 }
3248
3249 if (pi_state) {
3250 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3251 put_pi_state(pi_state);
3252 }
3253
3254 if (ret == -EINTR) {
3255 /*
3256 * We've already been requeued, but cannot restart by calling
3257 * futex_lock_pi() directly. We could restart this syscall, but
3258 * it would detect that the user space "val" changed and return
3259 * -EWOULDBLOCK. Save the overhead of the restart and return
3260 * -EWOULDBLOCK directly.
3261 */
3262 ret = -EWOULDBLOCK;
3263 }
3264
3265 out_put_keys:
3266 put_futex_key(&q.key);
3267 out_key2:
3268 put_futex_key(&key2);
3269
3270 out:
3271 if (to) {
3272 hrtimer_cancel(&to->timer);
3273 destroy_hrtimer_on_stack(&to->timer);
3274 }
3275 return ret;
3276 }
3277
3278 /*
3279 * Support for robust futexes: the kernel cleans up held futexes at
3280 * thread exit time.
3281 *
3282 * Implementation: user-space maintains a per-thread list of locks it
3283 * is holding. Upon do_exit(), the kernel carefully walks this list,
3284 * and marks all locks that are owned by this thread with the
3285 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286 * always manipulated with the lock held, so the list is private and
3287 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3288 * field, to allow the kernel to clean up if the thread dies after
3289 * acquiring the lock, but just before it could have added itself to
3290 * the list. There can only be one such pending lock.
3291 */
3292
3293 /**
3294 * sys_set_robust_list() - Set the robust-futex list head of a task
3295 * @head: pointer to the list-head
3296 * @len: length of the list-head, as userspace expects
3297 */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3298 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3299 size_t, len)
3300 {
3301 if (!futex_cmpxchg_enabled)
3302 return -ENOSYS;
3303 /*
3304 * The kernel knows only one size for now:
3305 */
3306 if (unlikely(len != sizeof(*head)))
3307 return -EINVAL;
3308
3309 current->robust_list = head;
3310
3311 return 0;
3312 }
3313
3314 /**
3315 * sys_get_robust_list() - Get the robust-futex list head of a task
3316 * @pid: pid of the process [zero for current task]
3317 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3318 * @len_ptr: pointer to a length field, the kernel fills in the header size
3319 */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3320 SYSCALL_DEFINE3(get_robust_list, int, pid,
3321 struct robust_list_head __user * __user *, head_ptr,
3322 size_t __user *, len_ptr)
3323 {
3324 struct robust_list_head __user *head;
3325 unsigned long ret;
3326 struct task_struct *p;
3327
3328 if (!futex_cmpxchg_enabled)
3329 return -ENOSYS;
3330
3331 rcu_read_lock();
3332
3333 ret = -ESRCH;
3334 if (!pid)
3335 p = current;
3336 else {
3337 p = find_task_by_vpid(pid);
3338 if (!p)
3339 goto err_unlock;
3340 }
3341
3342 ret = -EPERM;
3343 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344 goto err_unlock;
3345
3346 head = p->robust_list;
3347 rcu_read_unlock();
3348
3349 if (put_user(sizeof(*head), len_ptr))
3350 return -EFAULT;
3351 return put_user(head, head_ptr);
3352
3353 err_unlock:
3354 rcu_read_unlock();
3355
3356 return ret;
3357 }
3358
3359 /*
3360 * Process a futex-list entry, check whether it's owned by the
3361 * dying task, and do notification if so:
3362 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,int pi)3363 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364 {
3365 u32 uval, uninitialized_var(nval), mval;
3366
3367 retry:
3368 if (get_user(uval, uaddr))
3369 return -1;
3370
3371 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372 /*
3373 * Ok, this dying thread is truly holding a futex
3374 * of interest. Set the OWNER_DIED bit atomically
3375 * via cmpxchg, and if the value had FUTEX_WAITERS
3376 * set, wake up a waiter (if any). (We have to do a
3377 * futex_wake() even if OWNER_DIED is already set -
3378 * to handle the rare but possible case of recursive
3379 * thread-death.) The rest of the cleanup is done in
3380 * userspace.
3381 */
3382 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383 /*
3384 * We are not holding a lock here, but we want to have
3385 * the pagefault_disable/enable() protection because
3386 * we want to handle the fault gracefully. If the
3387 * access fails we try to fault in the futex with R/W
3388 * verification via get_user_pages. get_user() above
3389 * does not guarantee R/W access. If that fails we
3390 * give up and leave the futex locked.
3391 */
3392 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3393 if (fault_in_user_writeable(uaddr))
3394 return -1;
3395 goto retry;
3396 }
3397 if (nval != uval)
3398 goto retry;
3399
3400 /*
3401 * Wake robust non-PI futexes here. The wakeup of
3402 * PI futexes happens in exit_pi_state():
3403 */
3404 if (!pi && (uval & FUTEX_WAITERS))
3405 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406 }
3407 return 0;
3408 }
3409
3410 /*
3411 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3412 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3413 static inline int fetch_robust_entry(struct robust_list __user **entry,
3414 struct robust_list __user * __user *head,
3415 unsigned int *pi)
3416 {
3417 unsigned long uentry;
3418
3419 if (get_user(uentry, (unsigned long __user *)head))
3420 return -EFAULT;
3421
3422 *entry = (void __user *)(uentry & ~1UL);
3423 *pi = uentry & 1;
3424
3425 return 0;
3426 }
3427
3428 /*
3429 * Walk curr->robust_list (very carefully, it's a userspace list!)
3430 * and mark any locks found there dead, and notify any waiters.
3431 *
3432 * We silently return on any sign of list-walking problem.
3433 */
exit_robust_list(struct task_struct * curr)3434 void exit_robust_list(struct task_struct *curr)
3435 {
3436 struct robust_list_head __user *head = curr->robust_list;
3437 struct robust_list __user *entry, *next_entry, *pending;
3438 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3439 unsigned int uninitialized_var(next_pi);
3440 unsigned long futex_offset;
3441 int rc;
3442
3443 if (!futex_cmpxchg_enabled)
3444 return;
3445
3446 /*
3447 * Fetch the list head (which was registered earlier, via
3448 * sys_set_robust_list()):
3449 */
3450 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451 return;
3452 /*
3453 * Fetch the relative futex offset:
3454 */
3455 if (get_user(futex_offset, &head->futex_offset))
3456 return;
3457 /*
3458 * Fetch any possibly pending lock-add first, and handle it
3459 * if it exists:
3460 */
3461 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462 return;
3463
3464 next_entry = NULL; /* avoid warning with gcc */
3465 while (entry != &head->list) {
3466 /*
3467 * Fetch the next entry in the list before calling
3468 * handle_futex_death:
3469 */
3470 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471 /*
3472 * A pending lock might already be on the list, so
3473 * don't process it twice:
3474 */
3475 if (entry != pending)
3476 if (handle_futex_death((void __user *)entry + futex_offset,
3477 curr, pi))
3478 return;
3479 if (rc)
3480 return;
3481 entry = next_entry;
3482 pi = next_pi;
3483 /*
3484 * Avoid excessively long or circular lists:
3485 */
3486 if (!--limit)
3487 break;
3488
3489 cond_resched();
3490 }
3491
3492 if (pending)
3493 handle_futex_death((void __user *)pending + futex_offset,
3494 curr, pip);
3495 }
3496
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3497 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498 u32 __user *uaddr2, u32 val2, u32 val3)
3499 {
3500 int cmd = op & FUTEX_CMD_MASK;
3501 unsigned int flags = 0;
3502
3503 if (!(op & FUTEX_PRIVATE_FLAG))
3504 flags |= FLAGS_SHARED;
3505
3506 if (op & FUTEX_CLOCK_REALTIME) {
3507 flags |= FLAGS_CLOCKRT;
3508 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3509 cmd != FUTEX_WAIT_REQUEUE_PI)
3510 return -ENOSYS;
3511 }
3512
3513 switch (cmd) {
3514 case FUTEX_LOCK_PI:
3515 case FUTEX_UNLOCK_PI:
3516 case FUTEX_TRYLOCK_PI:
3517 case FUTEX_WAIT_REQUEUE_PI:
3518 case FUTEX_CMP_REQUEUE_PI:
3519 if (!futex_cmpxchg_enabled)
3520 return -ENOSYS;
3521 }
3522
3523 switch (cmd) {
3524 case FUTEX_WAIT:
3525 val3 = FUTEX_BITSET_MATCH_ANY;
3526 /* fall through */
3527 case FUTEX_WAIT_BITSET:
3528 return futex_wait(uaddr, flags, val, timeout, val3);
3529 case FUTEX_WAKE:
3530 val3 = FUTEX_BITSET_MATCH_ANY;
3531 /* fall through */
3532 case FUTEX_WAKE_BITSET:
3533 return futex_wake(uaddr, flags, val, val3);
3534 case FUTEX_REQUEUE:
3535 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3536 case FUTEX_CMP_REQUEUE:
3537 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3538 case FUTEX_WAKE_OP:
3539 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3540 case FUTEX_LOCK_PI:
3541 return futex_lock_pi(uaddr, flags, timeout, 0);
3542 case FUTEX_UNLOCK_PI:
3543 return futex_unlock_pi(uaddr, flags);
3544 case FUTEX_TRYLOCK_PI:
3545 return futex_lock_pi(uaddr, flags, NULL, 1);
3546 case FUTEX_WAIT_REQUEUE_PI:
3547 val3 = FUTEX_BITSET_MATCH_ANY;
3548 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3549 uaddr2);
3550 case FUTEX_CMP_REQUEUE_PI:
3551 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3552 }
3553 return -ENOSYS;
3554 }
3555
3556
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3557 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3558 struct timespec __user *, utime, u32 __user *, uaddr2,
3559 u32, val3)
3560 {
3561 struct timespec ts;
3562 ktime_t t, *tp = NULL;
3563 u32 val2 = 0;
3564 int cmd = op & FUTEX_CMD_MASK;
3565
3566 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3567 cmd == FUTEX_WAIT_BITSET ||
3568 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3569 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3570 return -EFAULT;
3571 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3572 return -EFAULT;
3573 if (!timespec_valid(&ts))
3574 return -EINVAL;
3575
3576 t = timespec_to_ktime(ts);
3577 if (cmd == FUTEX_WAIT)
3578 t = ktime_add_safe(ktime_get(), t);
3579 tp = &t;
3580 }
3581 /*
3582 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3583 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3584 */
3585 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3586 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3587 val2 = (u32) (unsigned long) utime;
3588
3589 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3590 }
3591
futex_detect_cmpxchg(void)3592 static void __init futex_detect_cmpxchg(void)
3593 {
3594 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3595 u32 curval;
3596
3597 /*
3598 * This will fail and we want it. Some arch implementations do
3599 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3600 * functionality. We want to know that before we call in any
3601 * of the complex code paths. Also we want to prevent
3602 * registration of robust lists in that case. NULL is
3603 * guaranteed to fault and we get -EFAULT on functional
3604 * implementation, the non-functional ones will return
3605 * -ENOSYS.
3606 */
3607 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3608 futex_cmpxchg_enabled = 1;
3609 #endif
3610 }
3611
futex_init(void)3612 static int __init futex_init(void)
3613 {
3614 unsigned int futex_shift;
3615 unsigned long i;
3616
3617 #if CONFIG_BASE_SMALL
3618 futex_hashsize = 16;
3619 #else
3620 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3621 #endif
3622
3623 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3624 futex_hashsize, 0,
3625 futex_hashsize < 256 ? HASH_SMALL : 0,
3626 &futex_shift, NULL,
3627 futex_hashsize, futex_hashsize);
3628 futex_hashsize = 1UL << futex_shift;
3629
3630 futex_detect_cmpxchg();
3631
3632 for (i = 0; i < futex_hashsize; i++) {
3633 atomic_set(&futex_queues[i].waiters, 0);
3634 plist_head_init(&futex_queues[i].chain);
3635 spin_lock_init(&futex_queues[i].lock);
3636 }
3637
3638 return 0;
3639 }
3640 core_initcall(futex_init);
3641