1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/memblock.h>
38 #include <linux/fault-inject.h>
39 #include <linux/slab.h>
40
41 #include "futex.h"
42 #include "../locking/rtmutex_common.h"
43
44 /*
45 * The base of the bucket array and its size are always used together
46 * (after initialization only in futex_hash()), so ensure that they
47 * reside in the same cacheline.
48 */
49 static struct {
50 struct futex_hash_bucket *queues;
51 unsigned long hashsize;
52 } __futex_data __read_mostly __aligned(2*sizeof(long));
53 #define futex_queues (__futex_data.queues)
54 #define futex_hashsize (__futex_data.hashsize)
55
56
57 /*
58 * Fault injections for futexes.
59 */
60 #ifdef CONFIG_FAIL_FUTEX
61
62 static struct {
63 struct fault_attr attr;
64
65 bool ignore_private;
66 } fail_futex = {
67 .attr = FAULT_ATTR_INITIALIZER,
68 .ignore_private = false,
69 };
70
setup_fail_futex(char * str)71 static int __init setup_fail_futex(char *str)
72 {
73 return setup_fault_attr(&fail_futex.attr, str);
74 }
75 __setup("fail_futex=", setup_fail_futex);
76
should_fail_futex(bool fshared)77 bool should_fail_futex(bool fshared)
78 {
79 if (fail_futex.ignore_private && !fshared)
80 return false;
81
82 return should_fail(&fail_futex.attr, 1);
83 }
84
85 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
86
fail_futex_debugfs(void)87 static int __init fail_futex_debugfs(void)
88 {
89 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
90 struct dentry *dir;
91
92 dir = fault_create_debugfs_attr("fail_futex", NULL,
93 &fail_futex.attr);
94 if (IS_ERR(dir))
95 return PTR_ERR(dir);
96
97 debugfs_create_bool("ignore-private", mode, dir,
98 &fail_futex.ignore_private);
99 return 0;
100 }
101
102 late_initcall(fail_futex_debugfs);
103
104 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
105
106 #endif /* CONFIG_FAIL_FUTEX */
107
108 /**
109 * futex_hash - Return the hash bucket in the global hash
110 * @key: Pointer to the futex key for which the hash is calculated
111 *
112 * We hash on the keys returned from get_futex_key (see below) and return the
113 * corresponding hash bucket in the global hash.
114 */
futex_hash(union futex_key * key)115 struct futex_hash_bucket *futex_hash(union futex_key *key)
116 {
117 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
118 key->both.offset);
119
120 return &futex_queues[hash & (futex_hashsize - 1)];
121 }
122
123
124 /**
125 * futex_setup_timer - set up the sleeping hrtimer.
126 * @time: ptr to the given timeout value
127 * @timeout: the hrtimer_sleeper structure to be set up
128 * @flags: futex flags
129 * @range_ns: optional range in ns
130 *
131 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
132 * value given
133 */
134 struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)135 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
136 int flags, u64 range_ns)
137 {
138 if (!time)
139 return NULL;
140
141 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
142 CLOCK_REALTIME : CLOCK_MONOTONIC,
143 HRTIMER_MODE_ABS);
144 /*
145 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
146 * effectively the same as calling hrtimer_set_expires().
147 */
148 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
149
150 return timeout;
151 }
152
153 /*
154 * Generate a machine wide unique identifier for this inode.
155 *
156 * This relies on u64 not wrapping in the life-time of the machine; which with
157 * 1ns resolution means almost 585 years.
158 *
159 * This further relies on the fact that a well formed program will not unmap
160 * the file while it has a (shared) futex waiting on it. This mapping will have
161 * a file reference which pins the mount and inode.
162 *
163 * If for some reason an inode gets evicted and read back in again, it will get
164 * a new sequence number and will _NOT_ match, even though it is the exact same
165 * file.
166 *
167 * It is important that futex_match() will never have a false-positive, esp.
168 * for PI futexes that can mess up the state. The above argues that false-negatives
169 * are only possible for malformed programs.
170 */
get_inode_sequence_number(struct inode * inode)171 static u64 get_inode_sequence_number(struct inode *inode)
172 {
173 static atomic64_t i_seq;
174 u64 old;
175
176 /* Does the inode already have a sequence number? */
177 old = atomic64_read(&inode->i_sequence);
178 if (likely(old))
179 return old;
180
181 for (;;) {
182 u64 new = atomic64_add_return(1, &i_seq);
183 if (WARN_ON_ONCE(!new))
184 continue;
185
186 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
187 if (old)
188 return old;
189 return new;
190 }
191 }
192
193 /**
194 * get_futex_key() - Get parameters which are the keys for a futex
195 * @uaddr: virtual address of the futex
196 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
197 * @key: address where result is stored.
198 * @rw: mapping needs to be read/write (values: FUTEX_READ,
199 * FUTEX_WRITE)
200 *
201 * Return: a negative error code or 0
202 *
203 * The key words are stored in @key on success.
204 *
205 * For shared mappings (when @fshared), the key is:
206 *
207 * ( inode->i_sequence, page->index, offset_within_page )
208 *
209 * [ also see get_inode_sequence_number() ]
210 *
211 * For private mappings (or when !@fshared), the key is:
212 *
213 * ( current->mm, address, 0 )
214 *
215 * This allows (cross process, where applicable) identification of the futex
216 * without keeping the page pinned for the duration of the FUTEX_WAIT.
217 *
218 * lock_page() might sleep, the caller should not hold a spinlock.
219 */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)220 int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
221 enum futex_access rw)
222 {
223 unsigned long address = (unsigned long)uaddr;
224 struct mm_struct *mm = current->mm;
225 struct page *page, *tail;
226 struct address_space *mapping;
227 int err, ro = 0;
228
229 /*
230 * The futex address must be "naturally" aligned.
231 */
232 key->both.offset = address % PAGE_SIZE;
233 if (unlikely((address % sizeof(u32)) != 0))
234 return -EINVAL;
235 address -= key->both.offset;
236
237 if (unlikely(!access_ok(uaddr, sizeof(u32))))
238 return -EFAULT;
239
240 if (unlikely(should_fail_futex(fshared)))
241 return -EFAULT;
242
243 /*
244 * PROCESS_PRIVATE futexes are fast.
245 * As the mm cannot disappear under us and the 'key' only needs
246 * virtual address, we dont even have to find the underlying vma.
247 * Note : We do have to check 'uaddr' is a valid user address,
248 * but access_ok() should be faster than find_vma()
249 */
250 if (!fshared) {
251 key->private.mm = mm;
252 key->private.address = address;
253 return 0;
254 }
255
256 again:
257 /* Ignore any VERIFY_READ mapping (futex common case) */
258 if (unlikely(should_fail_futex(true)))
259 return -EFAULT;
260
261 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
262 /*
263 * If write access is not required (eg. FUTEX_WAIT), try
264 * and get read-only access.
265 */
266 if (err == -EFAULT && rw == FUTEX_READ) {
267 err = get_user_pages_fast(address, 1, 0, &page);
268 ro = 1;
269 }
270 if (err < 0)
271 return err;
272 else
273 err = 0;
274
275 /*
276 * The treatment of mapping from this point on is critical. The page
277 * lock protects many things but in this context the page lock
278 * stabilizes mapping, prevents inode freeing in the shared
279 * file-backed region case and guards against movement to swap cache.
280 *
281 * Strictly speaking the page lock is not needed in all cases being
282 * considered here and page lock forces unnecessarily serialization
283 * From this point on, mapping will be re-verified if necessary and
284 * page lock will be acquired only if it is unavoidable
285 *
286 * Mapping checks require the head page for any compound page so the
287 * head page and mapping is looked up now. For anonymous pages, it
288 * does not matter if the page splits in the future as the key is
289 * based on the address. For filesystem-backed pages, the tail is
290 * required as the index of the page determines the key. For
291 * base pages, there is no tail page and tail == page.
292 */
293 tail = page;
294 page = compound_head(page);
295 mapping = READ_ONCE(page->mapping);
296
297 /*
298 * If page->mapping is NULL, then it cannot be a PageAnon
299 * page; but it might be the ZERO_PAGE or in the gate area or
300 * in a special mapping (all cases which we are happy to fail);
301 * or it may have been a good file page when get_user_pages_fast
302 * found it, but truncated or holepunched or subjected to
303 * invalidate_complete_page2 before we got the page lock (also
304 * cases which we are happy to fail). And we hold a reference,
305 * so refcount care in invalidate_inode_page's remove_mapping
306 * prevents drop_caches from setting mapping to NULL beneath us.
307 *
308 * The case we do have to guard against is when memory pressure made
309 * shmem_writepage move it from filecache to swapcache beneath us:
310 * an unlikely race, but we do need to retry for page->mapping.
311 */
312 if (unlikely(!mapping)) {
313 int shmem_swizzled;
314
315 /*
316 * Page lock is required to identify which special case above
317 * applies. If this is really a shmem page then the page lock
318 * will prevent unexpected transitions.
319 */
320 lock_page(page);
321 shmem_swizzled = PageSwapCache(page) || page->mapping;
322 unlock_page(page);
323 put_page(page);
324
325 if (shmem_swizzled)
326 goto again;
327
328 return -EFAULT;
329 }
330
331 /*
332 * Private mappings are handled in a simple way.
333 *
334 * If the futex key is stored on an anonymous page, then the associated
335 * object is the mm which is implicitly pinned by the calling process.
336 *
337 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
338 * it's a read-only handle, it's expected that futexes attach to
339 * the object not the particular process.
340 */
341 if (PageAnon(page)) {
342 /*
343 * A RO anonymous page will never change and thus doesn't make
344 * sense for futex operations.
345 */
346 if (unlikely(should_fail_futex(true)) || ro) {
347 err = -EFAULT;
348 goto out;
349 }
350
351 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
352 key->private.mm = mm;
353 key->private.address = address;
354
355 } else {
356 struct inode *inode;
357
358 /*
359 * The associated futex object in this case is the inode and
360 * the page->mapping must be traversed. Ordinarily this should
361 * be stabilised under page lock but it's not strictly
362 * necessary in this case as we just want to pin the inode, not
363 * update the radix tree or anything like that.
364 *
365 * The RCU read lock is taken as the inode is finally freed
366 * under RCU. If the mapping still matches expectations then the
367 * mapping->host can be safely accessed as being a valid inode.
368 */
369 rcu_read_lock();
370
371 if (READ_ONCE(page->mapping) != mapping) {
372 rcu_read_unlock();
373 put_page(page);
374
375 goto again;
376 }
377
378 inode = READ_ONCE(mapping->host);
379 if (!inode) {
380 rcu_read_unlock();
381 put_page(page);
382
383 goto again;
384 }
385
386 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
387 key->shared.i_seq = get_inode_sequence_number(inode);
388 key->shared.pgoff = page_to_pgoff(tail);
389 rcu_read_unlock();
390 }
391
392 out:
393 put_page(page);
394 return err;
395 }
396
397 /**
398 * fault_in_user_writeable() - Fault in user address and verify RW access
399 * @uaddr: pointer to faulting user space address
400 *
401 * Slow path to fixup the fault we just took in the atomic write
402 * access to @uaddr.
403 *
404 * We have no generic implementation of a non-destructive write to the
405 * user address. We know that we faulted in the atomic pagefault
406 * disabled section so we can as well avoid the #PF overhead by
407 * calling get_user_pages() right away.
408 */
fault_in_user_writeable(u32 __user * uaddr)409 int fault_in_user_writeable(u32 __user *uaddr)
410 {
411 struct mm_struct *mm = current->mm;
412 int ret;
413
414 mmap_read_lock(mm);
415 ret = fixup_user_fault(mm, (unsigned long)uaddr,
416 FAULT_FLAG_WRITE, NULL);
417 mmap_read_unlock(mm);
418
419 return ret < 0 ? ret : 0;
420 }
421
422 /**
423 * futex_top_waiter() - Return the highest priority waiter on a futex
424 * @hb: the hash bucket the futex_q's reside in
425 * @key: the futex key (to distinguish it from other futex futex_q's)
426 *
427 * Must be called with the hb lock held.
428 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)429 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
430 {
431 struct futex_q *this;
432
433 plist_for_each_entry(this, &hb->chain, list) {
434 if (futex_match(&this->key, key))
435 return this;
436 }
437 return NULL;
438 }
439
futex_cmpxchg_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)440 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
441 {
442 int ret;
443
444 pagefault_disable();
445 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
446 pagefault_enable();
447
448 return ret;
449 }
450
futex_get_value_locked(u32 * dest,u32 __user * from)451 int futex_get_value_locked(u32 *dest, u32 __user *from)
452 {
453 int ret;
454
455 pagefault_disable();
456 ret = __get_user(*dest, from);
457 pagefault_enable();
458
459 return ret ? -EFAULT : 0;
460 }
461
462 /**
463 * wait_for_owner_exiting - Block until the owner has exited
464 * @ret: owner's current futex lock status
465 * @exiting: Pointer to the exiting task
466 *
467 * Caller must hold a refcount on @exiting.
468 */
wait_for_owner_exiting(int ret,struct task_struct * exiting)469 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
470 {
471 if (ret != -EBUSY) {
472 WARN_ON_ONCE(exiting);
473 return;
474 }
475
476 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
477 return;
478
479 mutex_lock(&exiting->futex_exit_mutex);
480 /*
481 * No point in doing state checking here. If the waiter got here
482 * while the task was in exec()->exec_futex_release() then it can
483 * have any FUTEX_STATE_* value when the waiter has acquired the
484 * mutex. OK, if running, EXITING or DEAD if it reached exit()
485 * already. Highly unlikely and not a problem. Just one more round
486 * through the futex maze.
487 */
488 mutex_unlock(&exiting->futex_exit_mutex);
489
490 put_task_struct(exiting);
491 }
492
493 /**
494 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
495 * @q: The futex_q to unqueue
496 *
497 * The q->lock_ptr must not be NULL and must be held by the caller.
498 */
__futex_unqueue(struct futex_q * q)499 void __futex_unqueue(struct futex_q *q)
500 {
501 struct futex_hash_bucket *hb;
502
503 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
504 return;
505 lockdep_assert_held(q->lock_ptr);
506
507 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
508 plist_del(&q->list, &hb->chain);
509 futex_hb_waiters_dec(hb);
510 }
511
512 /* The key must be already stored in q->key. */
futex_q_lock(struct futex_q * q)513 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
514 __acquires(&hb->lock)
515 {
516 struct futex_hash_bucket *hb;
517
518 hb = futex_hash(&q->key);
519
520 /*
521 * Increment the counter before taking the lock so that
522 * a potential waker won't miss a to-be-slept task that is
523 * waiting for the spinlock. This is safe as all futex_q_lock()
524 * users end up calling futex_queue(). Similarly, for housekeeping,
525 * decrement the counter at futex_q_unlock() when some error has
526 * occurred and we don't end up adding the task to the list.
527 */
528 futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
529
530 q->lock_ptr = &hb->lock;
531
532 spin_lock(&hb->lock);
533 return hb;
534 }
535
futex_q_unlock(struct futex_hash_bucket * hb)536 void futex_q_unlock(struct futex_hash_bucket *hb)
537 __releases(&hb->lock)
538 {
539 spin_unlock(&hb->lock);
540 futex_hb_waiters_dec(hb);
541 }
542
__futex_queue(struct futex_q * q,struct futex_hash_bucket * hb)543 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
544 {
545 int prio;
546
547 /*
548 * The priority used to register this element is
549 * - either the real thread-priority for the real-time threads
550 * (i.e. threads with a priority lower than MAX_RT_PRIO)
551 * - or MAX_RT_PRIO for non-RT threads.
552 * Thus, all RT-threads are woken first in priority order, and
553 * the others are woken last, in FIFO order.
554 */
555 prio = min(current->normal_prio, MAX_RT_PRIO);
556
557 plist_node_init(&q->list, prio);
558 plist_add(&q->list, &hb->chain);
559 q->task = current;
560 }
561
562 /**
563 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
564 * @q: The futex_q to unqueue
565 *
566 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
567 * be paired with exactly one earlier call to futex_queue().
568 *
569 * Return:
570 * - 1 - if the futex_q was still queued (and we removed unqueued it);
571 * - 0 - if the futex_q was already removed by the waking thread
572 */
futex_unqueue(struct futex_q * q)573 int futex_unqueue(struct futex_q *q)
574 {
575 spinlock_t *lock_ptr;
576 int ret = 0;
577
578 /* In the common case we don't take the spinlock, which is nice. */
579 retry:
580 /*
581 * q->lock_ptr can change between this read and the following spin_lock.
582 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
583 * optimizing lock_ptr out of the logic below.
584 */
585 lock_ptr = READ_ONCE(q->lock_ptr);
586 if (lock_ptr != NULL) {
587 spin_lock(lock_ptr);
588 /*
589 * q->lock_ptr can change between reading it and
590 * spin_lock(), causing us to take the wrong lock. This
591 * corrects the race condition.
592 *
593 * Reasoning goes like this: if we have the wrong lock,
594 * q->lock_ptr must have changed (maybe several times)
595 * between reading it and the spin_lock(). It can
596 * change again after the spin_lock() but only if it was
597 * already changed before the spin_lock(). It cannot,
598 * however, change back to the original value. Therefore
599 * we can detect whether we acquired the correct lock.
600 */
601 if (unlikely(lock_ptr != q->lock_ptr)) {
602 spin_unlock(lock_ptr);
603 goto retry;
604 }
605 __futex_unqueue(q);
606
607 BUG_ON(q->pi_state);
608
609 spin_unlock(lock_ptr);
610 ret = 1;
611 }
612
613 return ret;
614 }
615
616 /*
617 * PI futexes can not be requeued and must remove themselves from the
618 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
619 */
futex_unqueue_pi(struct futex_q * q)620 void futex_unqueue_pi(struct futex_q *q)
621 {
622 __futex_unqueue(q);
623
624 BUG_ON(!q->pi_state);
625 put_pi_state(q->pi_state);
626 q->pi_state = NULL;
627 }
628
629 /* Constants for the pending_op argument of handle_futex_death */
630 #define HANDLE_DEATH_PENDING true
631 #define HANDLE_DEATH_LIST false
632
633 /*
634 * Process a futex-list entry, check whether it's owned by the
635 * dying task, and do notification if so:
636 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)637 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
638 bool pi, bool pending_op)
639 {
640 u32 uval, nval, mval;
641 int err;
642
643 /* Futex address must be 32bit aligned */
644 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
645 return -1;
646
647 retry:
648 if (get_user(uval, uaddr))
649 return -1;
650
651 /*
652 * Special case for regular (non PI) futexes. The unlock path in
653 * user space has two race scenarios:
654 *
655 * 1. The unlock path releases the user space futex value and
656 * before it can execute the futex() syscall to wake up
657 * waiters it is killed.
658 *
659 * 2. A woken up waiter is killed before it can acquire the
660 * futex in user space.
661 *
662 * In both cases the TID validation below prevents a wakeup of
663 * potential waiters which can cause these waiters to block
664 * forever.
665 *
666 * In both cases the following conditions are met:
667 *
668 * 1) task->robust_list->list_op_pending != NULL
669 * @pending_op == true
670 * 2) User space futex value == 0
671 * 3) Regular futex: @pi == false
672 *
673 * If these conditions are met, it is safe to attempt waking up a
674 * potential waiter without touching the user space futex value and
675 * trying to set the OWNER_DIED bit. The user space futex value is
676 * uncontended and the rest of the user space mutex state is
677 * consistent, so a woken waiter will just take over the
678 * uncontended futex. Setting the OWNER_DIED bit would create
679 * inconsistent state and malfunction of the user space owner died
680 * handling.
681 */
682 if (pending_op && !pi && !uval) {
683 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
684 return 0;
685 }
686
687 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
688 return 0;
689
690 /*
691 * Ok, this dying thread is truly holding a futex
692 * of interest. Set the OWNER_DIED bit atomically
693 * via cmpxchg, and if the value had FUTEX_WAITERS
694 * set, wake up a waiter (if any). (We have to do a
695 * futex_wake() even if OWNER_DIED is already set -
696 * to handle the rare but possible case of recursive
697 * thread-death.) The rest of the cleanup is done in
698 * userspace.
699 */
700 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
701
702 /*
703 * We are not holding a lock here, but we want to have
704 * the pagefault_disable/enable() protection because
705 * we want to handle the fault gracefully. If the
706 * access fails we try to fault in the futex with R/W
707 * verification via get_user_pages. get_user() above
708 * does not guarantee R/W access. If that fails we
709 * give up and leave the futex locked.
710 */
711 if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
712 switch (err) {
713 case -EFAULT:
714 if (fault_in_user_writeable(uaddr))
715 return -1;
716 goto retry;
717
718 case -EAGAIN:
719 cond_resched();
720 goto retry;
721
722 default:
723 WARN_ON_ONCE(1);
724 return err;
725 }
726 }
727
728 if (nval != uval)
729 goto retry;
730
731 /*
732 * Wake robust non-PI futexes here. The wakeup of
733 * PI futexes happens in exit_pi_state():
734 */
735 if (!pi && (uval & FUTEX_WAITERS))
736 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
737
738 return 0;
739 }
740
741 /*
742 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
743 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)744 static inline int fetch_robust_entry(struct robust_list __user **entry,
745 struct robust_list __user * __user *head,
746 unsigned int *pi)
747 {
748 unsigned long uentry;
749
750 if (get_user(uentry, (unsigned long __user *)head))
751 return -EFAULT;
752
753 *entry = (void __user *)(uentry & ~1UL);
754 *pi = uentry & 1;
755
756 return 0;
757 }
758
759 /*
760 * Walk curr->robust_list (very carefully, it's a userspace list!)
761 * and mark any locks found there dead, and notify any waiters.
762 *
763 * We silently return on any sign of list-walking problem.
764 */
exit_robust_list(struct task_struct * curr)765 static void exit_robust_list(struct task_struct *curr)
766 {
767 struct robust_list_head __user *head = curr->robust_list;
768 struct robust_list __user *entry, *next_entry, *pending;
769 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
770 unsigned int next_pi;
771 unsigned long futex_offset;
772 int rc;
773
774 /*
775 * Fetch the list head (which was registered earlier, via
776 * sys_set_robust_list()):
777 */
778 if (fetch_robust_entry(&entry, &head->list.next, &pi))
779 return;
780 /*
781 * Fetch the relative futex offset:
782 */
783 if (get_user(futex_offset, &head->futex_offset))
784 return;
785 /*
786 * Fetch any possibly pending lock-add first, and handle it
787 * if it exists:
788 */
789 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
790 return;
791
792 next_entry = NULL; /* avoid warning with gcc */
793 while (entry != &head->list) {
794 /*
795 * Fetch the next entry in the list before calling
796 * handle_futex_death:
797 */
798 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
799 /*
800 * A pending lock might already be on the list, so
801 * don't process it twice:
802 */
803 if (entry != pending) {
804 if (handle_futex_death((void __user *)entry + futex_offset,
805 curr, pi, HANDLE_DEATH_LIST))
806 return;
807 }
808 if (rc)
809 return;
810 entry = next_entry;
811 pi = next_pi;
812 /*
813 * Avoid excessively long or circular lists:
814 */
815 if (!--limit)
816 break;
817
818 cond_resched();
819 }
820
821 if (pending) {
822 handle_futex_death((void __user *)pending + futex_offset,
823 curr, pip, HANDLE_DEATH_PENDING);
824 }
825 }
826
827 #ifdef CONFIG_COMPAT
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)828 static void __user *futex_uaddr(struct robust_list __user *entry,
829 compat_long_t futex_offset)
830 {
831 compat_uptr_t base = ptr_to_compat(entry);
832 void __user *uaddr = compat_ptr(base + futex_offset);
833
834 return uaddr;
835 }
836
837 /*
838 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
839 */
840 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)841 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
842 compat_uptr_t __user *head, unsigned int *pi)
843 {
844 if (get_user(*uentry, head))
845 return -EFAULT;
846
847 *entry = compat_ptr((*uentry) & ~1);
848 *pi = (unsigned int)(*uentry) & 1;
849
850 return 0;
851 }
852
853 /*
854 * Walk curr->robust_list (very carefully, it's a userspace list!)
855 * and mark any locks found there dead, and notify any waiters.
856 *
857 * We silently return on any sign of list-walking problem.
858 */
compat_exit_robust_list(struct task_struct * curr)859 static void compat_exit_robust_list(struct task_struct *curr)
860 {
861 struct compat_robust_list_head __user *head = curr->compat_robust_list;
862 struct robust_list __user *entry, *next_entry, *pending;
863 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
864 unsigned int next_pi;
865 compat_uptr_t uentry, next_uentry, upending;
866 compat_long_t futex_offset;
867 int rc;
868
869 /*
870 * Fetch the list head (which was registered earlier, via
871 * sys_set_robust_list()):
872 */
873 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
874 return;
875 /*
876 * Fetch the relative futex offset:
877 */
878 if (get_user(futex_offset, &head->futex_offset))
879 return;
880 /*
881 * Fetch any possibly pending lock-add first, and handle it
882 * if it exists:
883 */
884 if (compat_fetch_robust_entry(&upending, &pending,
885 &head->list_op_pending, &pip))
886 return;
887
888 next_entry = NULL; /* avoid warning with gcc */
889 while (entry != (struct robust_list __user *) &head->list) {
890 /*
891 * Fetch the next entry in the list before calling
892 * handle_futex_death:
893 */
894 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
895 (compat_uptr_t __user *)&entry->next, &next_pi);
896 /*
897 * A pending lock might already be on the list, so
898 * dont process it twice:
899 */
900 if (entry != pending) {
901 void __user *uaddr = futex_uaddr(entry, futex_offset);
902
903 if (handle_futex_death(uaddr, curr, pi,
904 HANDLE_DEATH_LIST))
905 return;
906 }
907 if (rc)
908 return;
909 uentry = next_uentry;
910 entry = next_entry;
911 pi = next_pi;
912 /*
913 * Avoid excessively long or circular lists:
914 */
915 if (!--limit)
916 break;
917
918 cond_resched();
919 }
920 if (pending) {
921 void __user *uaddr = futex_uaddr(pending, futex_offset);
922
923 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
924 }
925 }
926 #endif
927
928 #ifdef CONFIG_FUTEX_PI
929
930 /*
931 * This task is holding PI mutexes at exit time => bad.
932 * Kernel cleans up PI-state, but userspace is likely hosed.
933 * (Robust-futex cleanup is separate and might save the day for userspace.)
934 */
exit_pi_state_list(struct task_struct * curr)935 static void exit_pi_state_list(struct task_struct *curr)
936 {
937 struct list_head *next, *head = &curr->pi_state_list;
938 struct futex_pi_state *pi_state;
939 struct futex_hash_bucket *hb;
940 union futex_key key = FUTEX_KEY_INIT;
941
942 /*
943 * We are a ZOMBIE and nobody can enqueue itself on
944 * pi_state_list anymore, but we have to be careful
945 * versus waiters unqueueing themselves:
946 */
947 raw_spin_lock_irq(&curr->pi_lock);
948 while (!list_empty(head)) {
949 next = head->next;
950 pi_state = list_entry(next, struct futex_pi_state, list);
951 key = pi_state->key;
952 hb = futex_hash(&key);
953
954 /*
955 * We can race against put_pi_state() removing itself from the
956 * list (a waiter going away). put_pi_state() will first
957 * decrement the reference count and then modify the list, so
958 * its possible to see the list entry but fail this reference
959 * acquire.
960 *
961 * In that case; drop the locks to let put_pi_state() make
962 * progress and retry the loop.
963 */
964 if (!refcount_inc_not_zero(&pi_state->refcount)) {
965 raw_spin_unlock_irq(&curr->pi_lock);
966 cpu_relax();
967 raw_spin_lock_irq(&curr->pi_lock);
968 continue;
969 }
970 raw_spin_unlock_irq(&curr->pi_lock);
971
972 spin_lock(&hb->lock);
973 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
974 raw_spin_lock(&curr->pi_lock);
975 /*
976 * We dropped the pi-lock, so re-check whether this
977 * task still owns the PI-state:
978 */
979 if (head->next != next) {
980 /* retain curr->pi_lock for the loop invariant */
981 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
982 spin_unlock(&hb->lock);
983 put_pi_state(pi_state);
984 continue;
985 }
986
987 WARN_ON(pi_state->owner != curr);
988 WARN_ON(list_empty(&pi_state->list));
989 list_del_init(&pi_state->list);
990 pi_state->owner = NULL;
991
992 raw_spin_unlock(&curr->pi_lock);
993 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
994 spin_unlock(&hb->lock);
995
996 rt_mutex_futex_unlock(&pi_state->pi_mutex);
997 put_pi_state(pi_state);
998
999 raw_spin_lock_irq(&curr->pi_lock);
1000 }
1001 raw_spin_unlock_irq(&curr->pi_lock);
1002 }
1003 #else
exit_pi_state_list(struct task_struct * curr)1004 static inline void exit_pi_state_list(struct task_struct *curr) { }
1005 #endif
1006
futex_cleanup(struct task_struct * tsk)1007 static void futex_cleanup(struct task_struct *tsk)
1008 {
1009 if (unlikely(tsk->robust_list)) {
1010 exit_robust_list(tsk);
1011 tsk->robust_list = NULL;
1012 }
1013
1014 #ifdef CONFIG_COMPAT
1015 if (unlikely(tsk->compat_robust_list)) {
1016 compat_exit_robust_list(tsk);
1017 tsk->compat_robust_list = NULL;
1018 }
1019 #endif
1020
1021 if (unlikely(!list_empty(&tsk->pi_state_list)))
1022 exit_pi_state_list(tsk);
1023 }
1024
1025 /**
1026 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1027 * @tsk: task to set the state on
1028 *
1029 * Set the futex exit state of the task lockless. The futex waiter code
1030 * observes that state when a task is exiting and loops until the task has
1031 * actually finished the futex cleanup. The worst case for this is that the
1032 * waiter runs through the wait loop until the state becomes visible.
1033 *
1034 * This is called from the recursive fault handling path in make_task_dead().
1035 *
1036 * This is best effort. Either the futex exit code has run already or
1037 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1038 * take it over. If not, the problem is pushed back to user space. If the
1039 * futex exit code did not run yet, then an already queued waiter might
1040 * block forever, but there is nothing which can be done about that.
1041 */
futex_exit_recursive(struct task_struct * tsk)1042 void futex_exit_recursive(struct task_struct *tsk)
1043 {
1044 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1045 if (tsk->futex_state == FUTEX_STATE_EXITING)
1046 mutex_unlock(&tsk->futex_exit_mutex);
1047 tsk->futex_state = FUTEX_STATE_DEAD;
1048 }
1049
futex_cleanup_begin(struct task_struct * tsk)1050 static void futex_cleanup_begin(struct task_struct *tsk)
1051 {
1052 /*
1053 * Prevent various race issues against a concurrent incoming waiter
1054 * including live locks by forcing the waiter to block on
1055 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1056 * attach_to_pi_owner().
1057 */
1058 mutex_lock(&tsk->futex_exit_mutex);
1059
1060 /*
1061 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1062 *
1063 * This ensures that all subsequent checks of tsk->futex_state in
1064 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1065 * tsk->pi_lock held.
1066 *
1067 * It guarantees also that a pi_state which was queued right before
1068 * the state change under tsk->pi_lock by a concurrent waiter must
1069 * be observed in exit_pi_state_list().
1070 */
1071 raw_spin_lock_irq(&tsk->pi_lock);
1072 tsk->futex_state = FUTEX_STATE_EXITING;
1073 raw_spin_unlock_irq(&tsk->pi_lock);
1074 }
1075
futex_cleanup_end(struct task_struct * tsk,int state)1076 static void futex_cleanup_end(struct task_struct *tsk, int state)
1077 {
1078 /*
1079 * Lockless store. The only side effect is that an observer might
1080 * take another loop until it becomes visible.
1081 */
1082 tsk->futex_state = state;
1083 /*
1084 * Drop the exit protection. This unblocks waiters which observed
1085 * FUTEX_STATE_EXITING to reevaluate the state.
1086 */
1087 mutex_unlock(&tsk->futex_exit_mutex);
1088 }
1089
futex_exec_release(struct task_struct * tsk)1090 void futex_exec_release(struct task_struct *tsk)
1091 {
1092 /*
1093 * The state handling is done for consistency, but in the case of
1094 * exec() there is no way to prevent further damage as the PID stays
1095 * the same. But for the unlikely and arguably buggy case that a
1096 * futex is held on exec(), this provides at least as much state
1097 * consistency protection which is possible.
1098 */
1099 futex_cleanup_begin(tsk);
1100 futex_cleanup(tsk);
1101 /*
1102 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1103 * exec a new binary.
1104 */
1105 futex_cleanup_end(tsk, FUTEX_STATE_OK);
1106 }
1107
futex_exit_release(struct task_struct * tsk)1108 void futex_exit_release(struct task_struct *tsk)
1109 {
1110 futex_cleanup_begin(tsk);
1111 futex_cleanup(tsk);
1112 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1113 }
1114
futex_init(void)1115 static int __init futex_init(void)
1116 {
1117 unsigned int futex_shift;
1118 unsigned long i;
1119
1120 #if CONFIG_BASE_SMALL
1121 futex_hashsize = 16;
1122 #else
1123 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1124 #endif
1125
1126 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1127 futex_hashsize, 0,
1128 futex_hashsize < 256 ? HASH_SMALL : 0,
1129 &futex_shift, NULL,
1130 futex_hashsize, futex_hashsize);
1131 futex_hashsize = 1UL << futex_shift;
1132
1133 for (i = 0; i < futex_hashsize; i++) {
1134 atomic_set(&futex_queues[i].waiters, 0);
1135 plist_head_init(&futex_queues[i].chain);
1136 spin_lock_init(&futex_queues[i].lock);
1137 }
1138
1139 return 0;
1140 }
1141 core_initcall(futex_init);
1142