1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #define pr_fmt(fmt) "software IO TLB: " fmt
21
22 #include <linux/cache.h>
23 #include <linux/dma-direct.h>
24 #include <linux/mm.h>
25 #include <linux/export.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/swiotlb.h>
29 #include <linux/pfn.h>
30 #include <linux/types.h>
31 #include <linux/ctype.h>
32 #include <linux/highmem.h>
33 #include <linux/gfp.h>
34 #include <linux/scatterlist.h>
35 #include <linux/mem_encrypt.h>
36 #include <linux/set_memory.h>
37
38 #include <asm/io.h>
39 #include <asm/dma.h>
40
41 #include <linux/init.h>
42 #include <linux/bootmem.h>
43 #include <linux/iommu-helper.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/swiotlb.h>
47
48 #define OFFSET(val,align) ((unsigned long) \
49 ( (val) & ( (align) - 1)))
50
51 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
52
53 /*
54 * Minimum IO TLB size to bother booting with. Systems with mainly
55 * 64bit capable cards will only lightly use the swiotlb. If we can't
56 * allocate a contiguous 1MB, we're probably in trouble anyway.
57 */
58 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
59
60 enum swiotlb_force swiotlb_force;
61
62 /*
63 * Used to do a quick range check in swiotlb_tbl_unmap_single and
64 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
65 * API.
66 */
67 static phys_addr_t io_tlb_start, io_tlb_end;
68
69 /*
70 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73 static unsigned long io_tlb_nslabs;
74
75 /*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78 static unsigned long io_tlb_overflow = 32*1024;
79
80 static phys_addr_t io_tlb_overflow_buffer;
81
82 /*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88
89 /*
90 * Max segment that we can provide which (if pages are contingous) will
91 * not be bounced (unless SWIOTLB_FORCE is set).
92 */
93 unsigned int max_segment;
94
95 /*
96 * We need to save away the original address corresponding to a mapped entry
97 * for the sync operations.
98 */
99 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
100 static phys_addr_t *io_tlb_orig_addr;
101
102 /*
103 * Protect the above data structures in the map and unmap calls
104 */
105 static DEFINE_SPINLOCK(io_tlb_lock);
106
107 static int late_alloc;
108
109 static int __init
setup_io_tlb_npages(char * str)110 setup_io_tlb_npages(char *str)
111 {
112 if (isdigit(*str)) {
113 io_tlb_nslabs = simple_strtoul(str, &str, 0);
114 /* avoid tail segment of size < IO_TLB_SEGSIZE */
115 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
116 }
117 if (*str == ',')
118 ++str;
119 if (!strcmp(str, "force")) {
120 swiotlb_force = SWIOTLB_FORCE;
121 } else if (!strcmp(str, "noforce")) {
122 swiotlb_force = SWIOTLB_NO_FORCE;
123 io_tlb_nslabs = 1;
124 }
125
126 return 0;
127 }
128 early_param("swiotlb", setup_io_tlb_npages);
129 /* make io_tlb_overflow tunable too? */
130
swiotlb_nr_tbl(void)131 unsigned long swiotlb_nr_tbl(void)
132 {
133 return io_tlb_nslabs;
134 }
135 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
136
swiotlb_max_segment(void)137 unsigned int swiotlb_max_segment(void)
138 {
139 return max_segment;
140 }
141 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
142
swiotlb_set_max_segment(unsigned int val)143 void swiotlb_set_max_segment(unsigned int val)
144 {
145 if (swiotlb_force == SWIOTLB_FORCE)
146 max_segment = 1;
147 else
148 max_segment = rounddown(val, PAGE_SIZE);
149 }
150
151 /* default to 64MB */
152 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
swiotlb_size_or_default(void)153 unsigned long swiotlb_size_or_default(void)
154 {
155 unsigned long size;
156
157 size = io_tlb_nslabs << IO_TLB_SHIFT;
158
159 return size ? size : (IO_TLB_DEFAULT_SIZE);
160 }
161
162 static bool no_iotlb_memory;
163
swiotlb_print_info(void)164 void swiotlb_print_info(void)
165 {
166 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
167
168 if (no_iotlb_memory) {
169 pr_warn("No low mem\n");
170 return;
171 }
172
173 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
174 (unsigned long long)io_tlb_start,
175 (unsigned long long)io_tlb_end,
176 bytes >> 20);
177 }
178
179 /*
180 * Early SWIOTLB allocation may be too early to allow an architecture to
181 * perform the desired operations. This function allows the architecture to
182 * call SWIOTLB when the operations are possible. It needs to be called
183 * before the SWIOTLB memory is used.
184 */
swiotlb_update_mem_attributes(void)185 void __init swiotlb_update_mem_attributes(void)
186 {
187 void *vaddr;
188 unsigned long bytes;
189
190 if (no_iotlb_memory || late_alloc)
191 return;
192
193 vaddr = phys_to_virt(io_tlb_start);
194 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
195 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
196 memset(vaddr, 0, bytes);
197
198 vaddr = phys_to_virt(io_tlb_overflow_buffer);
199 bytes = PAGE_ALIGN(io_tlb_overflow);
200 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
201 memset(vaddr, 0, bytes);
202 }
203
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)204 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
205 {
206 void *v_overflow_buffer;
207 unsigned long i, bytes;
208
209 bytes = nslabs << IO_TLB_SHIFT;
210
211 io_tlb_nslabs = nslabs;
212 io_tlb_start = __pa(tlb);
213 io_tlb_end = io_tlb_start + bytes;
214
215 /*
216 * Get the overflow emergency buffer
217 */
218 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
219 PAGE_ALIGN(io_tlb_overflow),
220 PAGE_SIZE);
221 if (!v_overflow_buffer)
222 return -ENOMEM;
223
224 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
225
226 /*
227 * Allocate and initialize the free list array. This array is used
228 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
229 * between io_tlb_start and io_tlb_end.
230 */
231 io_tlb_list = memblock_virt_alloc(
232 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
233 PAGE_SIZE);
234 io_tlb_orig_addr = memblock_virt_alloc(
235 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
236 PAGE_SIZE);
237 for (i = 0; i < io_tlb_nslabs; i++) {
238 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
239 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
240 }
241 io_tlb_index = 0;
242
243 if (verbose)
244 swiotlb_print_info();
245
246 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
247 return 0;
248 }
249
250 /*
251 * Statically reserve bounce buffer space and initialize bounce buffer data
252 * structures for the software IO TLB used to implement the DMA API.
253 */
254 void __init
swiotlb_init(int verbose)255 swiotlb_init(int verbose)
256 {
257 size_t default_size = IO_TLB_DEFAULT_SIZE;
258 unsigned char *vstart;
259 unsigned long bytes;
260
261 if (!io_tlb_nslabs) {
262 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
263 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
264 }
265
266 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
267
268 /* Get IO TLB memory from the low pages */
269 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
270 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
271 return;
272
273 if (io_tlb_start)
274 memblock_free_early(io_tlb_start,
275 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
276 pr_warn("Cannot allocate buffer");
277 no_iotlb_memory = true;
278 }
279
280 /*
281 * Systems with larger DMA zones (those that don't support ISA) can
282 * initialize the swiotlb later using the slab allocator if needed.
283 * This should be just like above, but with some error catching.
284 */
285 int
swiotlb_late_init_with_default_size(size_t default_size)286 swiotlb_late_init_with_default_size(size_t default_size)
287 {
288 unsigned long bytes, req_nslabs = io_tlb_nslabs;
289 unsigned char *vstart = NULL;
290 unsigned int order;
291 int rc = 0;
292
293 if (!io_tlb_nslabs) {
294 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
295 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
296 }
297
298 /*
299 * Get IO TLB memory from the low pages
300 */
301 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
302 io_tlb_nslabs = SLABS_PER_PAGE << order;
303 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
304
305 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
306 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
307 order);
308 if (vstart)
309 break;
310 order--;
311 }
312
313 if (!vstart) {
314 io_tlb_nslabs = req_nslabs;
315 return -ENOMEM;
316 }
317 if (order != get_order(bytes)) {
318 pr_warn("only able to allocate %ld MB\n",
319 (PAGE_SIZE << order) >> 20);
320 io_tlb_nslabs = SLABS_PER_PAGE << order;
321 }
322 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
323 if (rc)
324 free_pages((unsigned long)vstart, order);
325
326 return rc;
327 }
328
329 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)330 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
331 {
332 unsigned long i, bytes;
333 unsigned char *v_overflow_buffer;
334
335 bytes = nslabs << IO_TLB_SHIFT;
336
337 io_tlb_nslabs = nslabs;
338 io_tlb_start = virt_to_phys(tlb);
339 io_tlb_end = io_tlb_start + bytes;
340
341 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
342 memset(tlb, 0, bytes);
343
344 /*
345 * Get the overflow emergency buffer
346 */
347 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
348 get_order(io_tlb_overflow));
349 if (!v_overflow_buffer)
350 goto cleanup2;
351
352 set_memory_decrypted((unsigned long)v_overflow_buffer,
353 io_tlb_overflow >> PAGE_SHIFT);
354 memset(v_overflow_buffer, 0, io_tlb_overflow);
355 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
356
357 /*
358 * Allocate and initialize the free list array. This array is used
359 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
360 * between io_tlb_start and io_tlb_end.
361 */
362 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
363 get_order(io_tlb_nslabs * sizeof(int)));
364 if (!io_tlb_list)
365 goto cleanup3;
366
367 io_tlb_orig_addr = (phys_addr_t *)
368 __get_free_pages(GFP_KERNEL,
369 get_order(io_tlb_nslabs *
370 sizeof(phys_addr_t)));
371 if (!io_tlb_orig_addr)
372 goto cleanup4;
373
374 for (i = 0; i < io_tlb_nslabs; i++) {
375 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
376 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
377 }
378 io_tlb_index = 0;
379
380 swiotlb_print_info();
381
382 late_alloc = 1;
383
384 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
385
386 return 0;
387
388 cleanup4:
389 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
390 sizeof(int)));
391 io_tlb_list = NULL;
392 cleanup3:
393 free_pages((unsigned long)v_overflow_buffer,
394 get_order(io_tlb_overflow));
395 io_tlb_overflow_buffer = 0;
396 cleanup2:
397 io_tlb_end = 0;
398 io_tlb_start = 0;
399 io_tlb_nslabs = 0;
400 max_segment = 0;
401 return -ENOMEM;
402 }
403
swiotlb_exit(void)404 void __init swiotlb_exit(void)
405 {
406 if (!io_tlb_orig_addr)
407 return;
408
409 if (late_alloc) {
410 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
411 get_order(io_tlb_overflow));
412 free_pages((unsigned long)io_tlb_orig_addr,
413 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
414 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
415 sizeof(int)));
416 free_pages((unsigned long)phys_to_virt(io_tlb_start),
417 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
418 } else {
419 memblock_free_late(io_tlb_overflow_buffer,
420 PAGE_ALIGN(io_tlb_overflow));
421 memblock_free_late(__pa(io_tlb_orig_addr),
422 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
423 memblock_free_late(__pa(io_tlb_list),
424 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
425 memblock_free_late(io_tlb_start,
426 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
427 }
428 io_tlb_nslabs = 0;
429 max_segment = 0;
430 }
431
is_swiotlb_buffer(phys_addr_t paddr)432 int is_swiotlb_buffer(phys_addr_t paddr)
433 {
434 return paddr >= io_tlb_start && paddr < io_tlb_end;
435 }
436
437 /*
438 * Bounce: copy the swiotlb buffer back to the original dma location
439 */
swiotlb_bounce(phys_addr_t orig_addr,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)440 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
441 size_t size, enum dma_data_direction dir)
442 {
443 unsigned long pfn = PFN_DOWN(orig_addr);
444 unsigned char *vaddr = phys_to_virt(tlb_addr);
445
446 if (PageHighMem(pfn_to_page(pfn))) {
447 /* The buffer does not have a mapping. Map it in and copy */
448 unsigned int offset = orig_addr & ~PAGE_MASK;
449 char *buffer;
450 unsigned int sz = 0;
451 unsigned long flags;
452
453 while (size) {
454 sz = min_t(size_t, PAGE_SIZE - offset, size);
455
456 local_irq_save(flags);
457 buffer = kmap_atomic(pfn_to_page(pfn));
458 if (dir == DMA_TO_DEVICE)
459 memcpy(vaddr, buffer + offset, sz);
460 else
461 memcpy(buffer + offset, vaddr, sz);
462 kunmap_atomic(buffer);
463 local_irq_restore(flags);
464
465 size -= sz;
466 pfn++;
467 vaddr += sz;
468 offset = 0;
469 }
470 } else if (dir == DMA_TO_DEVICE) {
471 memcpy(vaddr, phys_to_virt(orig_addr), size);
472 } else {
473 memcpy(phys_to_virt(orig_addr), vaddr, size);
474 }
475 }
476
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t orig_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)477 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
478 dma_addr_t tbl_dma_addr,
479 phys_addr_t orig_addr, size_t size,
480 enum dma_data_direction dir,
481 unsigned long attrs)
482 {
483 unsigned long flags;
484 phys_addr_t tlb_addr;
485 unsigned int nslots, stride, index, wrap;
486 int i;
487 unsigned long mask;
488 unsigned long offset_slots;
489 unsigned long max_slots;
490
491 if (no_iotlb_memory)
492 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
493
494 if (mem_encrypt_active())
495 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
496 sme_active() ? "SME" : "SEV");
497
498 mask = dma_get_seg_boundary(hwdev);
499
500 tbl_dma_addr &= mask;
501
502 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
503
504 /*
505 * Carefully handle integer overflow which can occur when mask == ~0UL.
506 */
507 max_slots = mask + 1
508 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
509 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
510
511 /*
512 * For mappings greater than or equal to a page, we limit the stride
513 * (and hence alignment) to a page size.
514 */
515 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
516 if (size >= PAGE_SIZE)
517 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
518 else
519 stride = 1;
520
521 BUG_ON(!nslots);
522
523 /*
524 * Find suitable number of IO TLB entries size that will fit this
525 * request and allocate a buffer from that IO TLB pool.
526 */
527 spin_lock_irqsave(&io_tlb_lock, flags);
528 index = ALIGN(io_tlb_index, stride);
529 if (index >= io_tlb_nslabs)
530 index = 0;
531 wrap = index;
532
533 do {
534 while (iommu_is_span_boundary(index, nslots, offset_slots,
535 max_slots)) {
536 index += stride;
537 if (index >= io_tlb_nslabs)
538 index = 0;
539 if (index == wrap)
540 goto not_found;
541 }
542
543 /*
544 * If we find a slot that indicates we have 'nslots' number of
545 * contiguous buffers, we allocate the buffers from that slot
546 * and mark the entries as '0' indicating unavailable.
547 */
548 if (io_tlb_list[index] >= nslots) {
549 int count = 0;
550
551 for (i = index; i < (int) (index + nslots); i++)
552 io_tlb_list[i] = 0;
553 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
554 io_tlb_list[i] = ++count;
555 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
556
557 /*
558 * Update the indices to avoid searching in the next
559 * round.
560 */
561 io_tlb_index = ((index + nslots) < io_tlb_nslabs
562 ? (index + nslots) : 0);
563
564 goto found;
565 }
566 index += stride;
567 if (index >= io_tlb_nslabs)
568 index = 0;
569 } while (index != wrap);
570
571 not_found:
572 spin_unlock_irqrestore(&io_tlb_lock, flags);
573 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
574 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
575 return SWIOTLB_MAP_ERROR;
576 found:
577 spin_unlock_irqrestore(&io_tlb_lock, flags);
578
579 /*
580 * Save away the mapping from the original address to the DMA address.
581 * This is needed when we sync the memory. Then we sync the buffer if
582 * needed.
583 */
584 for (i = 0; i < nslots; i++)
585 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
586 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
587 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
588 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
589
590 return tlb_addr;
591 }
592
593 /*
594 * Allocates bounce buffer and returns its physical address.
595 */
596 static phys_addr_t
map_single(struct device * hwdev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)597 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
598 enum dma_data_direction dir, unsigned long attrs)
599 {
600 dma_addr_t start_dma_addr;
601
602 if (swiotlb_force == SWIOTLB_NO_FORCE) {
603 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
604 &phys);
605 return SWIOTLB_MAP_ERROR;
606 }
607
608 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
609 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
610 dir, attrs);
611 }
612
613 /*
614 * tlb_addr is the physical address of the bounce buffer to unmap.
615 */
swiotlb_tbl_unmap_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)616 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
617 size_t size, enum dma_data_direction dir,
618 unsigned long attrs)
619 {
620 unsigned long flags;
621 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
622 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
623 phys_addr_t orig_addr = io_tlb_orig_addr[index];
624
625 /*
626 * First, sync the memory before unmapping the entry
627 */
628 if (orig_addr != INVALID_PHYS_ADDR &&
629 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
630 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
631 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
632
633 /*
634 * Return the buffer to the free list by setting the corresponding
635 * entries to indicate the number of contiguous entries available.
636 * While returning the entries to the free list, we merge the entries
637 * with slots below and above the pool being returned.
638 */
639 spin_lock_irqsave(&io_tlb_lock, flags);
640 {
641 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
642 io_tlb_list[index + nslots] : 0);
643 /*
644 * Step 1: return the slots to the free list, merging the
645 * slots with superceeding slots
646 */
647 for (i = index + nslots - 1; i >= index; i--) {
648 io_tlb_list[i] = ++count;
649 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
650 }
651 /*
652 * Step 2: merge the returned slots with the preceding slots,
653 * if available (non zero)
654 */
655 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
656 io_tlb_list[i] = ++count;
657 }
658 spin_unlock_irqrestore(&io_tlb_lock, flags);
659 }
660
swiotlb_tbl_sync_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)661 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
662 size_t size, enum dma_data_direction dir,
663 enum dma_sync_target target)
664 {
665 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
666 phys_addr_t orig_addr = io_tlb_orig_addr[index];
667
668 if (orig_addr == INVALID_PHYS_ADDR)
669 return;
670 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
671
672 switch (target) {
673 case SYNC_FOR_CPU:
674 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
675 swiotlb_bounce(orig_addr, tlb_addr,
676 size, DMA_FROM_DEVICE);
677 else
678 BUG_ON(dir != DMA_TO_DEVICE);
679 break;
680 case SYNC_FOR_DEVICE:
681 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
682 swiotlb_bounce(orig_addr, tlb_addr,
683 size, DMA_TO_DEVICE);
684 else
685 BUG_ON(dir != DMA_FROM_DEVICE);
686 break;
687 default:
688 BUG();
689 }
690 }
691
dma_coherent_ok(struct device * dev,dma_addr_t addr,size_t size)692 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
693 size_t size)
694 {
695 u64 mask = DMA_BIT_MASK(32);
696
697 if (dev && dev->coherent_dma_mask)
698 mask = dev->coherent_dma_mask;
699 return addr + size - 1 <= mask;
700 }
701
702 static void *
swiotlb_alloc_buffer(struct device * dev,size_t size,dma_addr_t * dma_handle,unsigned long attrs)703 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
704 unsigned long attrs)
705 {
706 phys_addr_t phys_addr;
707
708 if (swiotlb_force == SWIOTLB_NO_FORCE)
709 goto out_warn;
710
711 phys_addr = swiotlb_tbl_map_single(dev,
712 __phys_to_dma(dev, io_tlb_start),
713 0, size, DMA_FROM_DEVICE, attrs);
714 if (phys_addr == SWIOTLB_MAP_ERROR)
715 goto out_warn;
716
717 *dma_handle = __phys_to_dma(dev, phys_addr);
718 if (!dma_coherent_ok(dev, *dma_handle, size))
719 goto out_unmap;
720
721 memset(phys_to_virt(phys_addr), 0, size);
722 return phys_to_virt(phys_addr);
723
724 out_unmap:
725 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
726 (unsigned long long)dev->coherent_dma_mask,
727 (unsigned long long)*dma_handle);
728
729 /*
730 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
731 * DMA_ATTR_SKIP_CPU_SYNC is optional.
732 */
733 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
734 DMA_ATTR_SKIP_CPU_SYNC);
735 out_warn:
736 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
737 dev_warn(dev,
738 "swiotlb: coherent allocation failed, size=%zu\n",
739 size);
740 dump_stack();
741 }
742 return NULL;
743 }
744
swiotlb_free_buffer(struct device * dev,size_t size,dma_addr_t dma_addr)745 static bool swiotlb_free_buffer(struct device *dev, size_t size,
746 dma_addr_t dma_addr)
747 {
748 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
749
750 WARN_ON_ONCE(irqs_disabled());
751
752 if (!is_swiotlb_buffer(phys_addr))
753 return false;
754
755 /*
756 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
757 * DMA_ATTR_SKIP_CPU_SYNC is optional.
758 */
759 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
760 DMA_ATTR_SKIP_CPU_SYNC);
761 return true;
762 }
763
764 static void
swiotlb_full(struct device * dev,size_t size,enum dma_data_direction dir,int do_panic)765 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
766 int do_panic)
767 {
768 if (swiotlb_force == SWIOTLB_NO_FORCE)
769 return;
770
771 /*
772 * Ran out of IOMMU space for this operation. This is very bad.
773 * Unfortunately the drivers cannot handle this operation properly.
774 * unless they check for dma_mapping_error (most don't)
775 * When the mapping is small enough return a static buffer to limit
776 * the damage, or panic when the transfer is too big.
777 */
778 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
779 size);
780
781 if (size <= io_tlb_overflow || !do_panic)
782 return;
783
784 if (dir == DMA_BIDIRECTIONAL)
785 panic("DMA: Random memory could be DMA accessed\n");
786 if (dir == DMA_FROM_DEVICE)
787 panic("DMA: Random memory could be DMA written\n");
788 if (dir == DMA_TO_DEVICE)
789 panic("DMA: Random memory could be DMA read\n");
790 }
791
792 /*
793 * Map a single buffer of the indicated size for DMA in streaming mode. The
794 * physical address to use is returned.
795 *
796 * Once the device is given the dma address, the device owns this memory until
797 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
798 */
swiotlb_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)799 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
800 unsigned long offset, size_t size,
801 enum dma_data_direction dir,
802 unsigned long attrs)
803 {
804 phys_addr_t map, phys = page_to_phys(page) + offset;
805 dma_addr_t dev_addr = phys_to_dma(dev, phys);
806
807 BUG_ON(dir == DMA_NONE);
808 /*
809 * If the address happens to be in the device's DMA window,
810 * we can safely return the device addr and not worry about bounce
811 * buffering it.
812 */
813 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
814 return dev_addr;
815
816 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
817
818 /* Oh well, have to allocate and map a bounce buffer. */
819 map = map_single(dev, phys, size, dir, attrs);
820 if (map == SWIOTLB_MAP_ERROR) {
821 swiotlb_full(dev, size, dir, 1);
822 return __phys_to_dma(dev, io_tlb_overflow_buffer);
823 }
824
825 dev_addr = __phys_to_dma(dev, map);
826
827 /* Ensure that the address returned is DMA'ble */
828 if (dma_capable(dev, dev_addr, size))
829 return dev_addr;
830
831 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
832 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
833
834 return __phys_to_dma(dev, io_tlb_overflow_buffer);
835 }
836
837 /*
838 * Unmap a single streaming mode DMA translation. The dma_addr and size must
839 * match what was provided for in a previous swiotlb_map_page call. All
840 * other usages are undefined.
841 *
842 * After this call, reads by the cpu to the buffer are guaranteed to see
843 * whatever the device wrote there.
844 */
unmap_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)845 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
846 size_t size, enum dma_data_direction dir,
847 unsigned long attrs)
848 {
849 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
850
851 BUG_ON(dir == DMA_NONE);
852
853 if (is_swiotlb_buffer(paddr)) {
854 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
855 return;
856 }
857
858 if (dir != DMA_FROM_DEVICE)
859 return;
860
861 /*
862 * phys_to_virt doesn't work with hihgmem page but we could
863 * call dma_mark_clean() with hihgmem page here. However, we
864 * are fine since dma_mark_clean() is null on POWERPC. We can
865 * make dma_mark_clean() take a physical address if necessary.
866 */
867 dma_mark_clean(phys_to_virt(paddr), size);
868 }
869
swiotlb_unmap_page(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)870 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
871 size_t size, enum dma_data_direction dir,
872 unsigned long attrs)
873 {
874 unmap_single(hwdev, dev_addr, size, dir, attrs);
875 }
876
877 /*
878 * Make physical memory consistent for a single streaming mode DMA translation
879 * after a transfer.
880 *
881 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
882 * using the cpu, yet do not wish to teardown the dma mapping, you must
883 * call this function before doing so. At the next point you give the dma
884 * address back to the card, you must first perform a
885 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
886 */
887 static void
swiotlb_sync_single(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)888 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
889 size_t size, enum dma_data_direction dir,
890 enum dma_sync_target target)
891 {
892 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
893
894 BUG_ON(dir == DMA_NONE);
895
896 if (is_swiotlb_buffer(paddr)) {
897 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
898 return;
899 }
900
901 if (dir != DMA_FROM_DEVICE)
902 return;
903
904 dma_mark_clean(phys_to_virt(paddr), size);
905 }
906
907 void
swiotlb_sync_single_for_cpu(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)908 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
909 size_t size, enum dma_data_direction dir)
910 {
911 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
912 }
913
914 void
swiotlb_sync_single_for_device(struct device * hwdev,dma_addr_t dev_addr,size_t size,enum dma_data_direction dir)915 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
916 size_t size, enum dma_data_direction dir)
917 {
918 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
919 }
920
921 /*
922 * Map a set of buffers described by scatterlist in streaming mode for DMA.
923 * This is the scatter-gather version of the above swiotlb_map_page
924 * interface. Here the scatter gather list elements are each tagged with the
925 * appropriate dma address and length. They are obtained via
926 * sg_dma_{address,length}(SG).
927 *
928 * NOTE: An implementation may be able to use a smaller number of
929 * DMA address/length pairs than there are SG table elements.
930 * (for example via virtual mapping capabilities)
931 * The routine returns the number of addr/length pairs actually
932 * used, at most nents.
933 *
934 * Device ownership issues as mentioned above for swiotlb_map_page are the
935 * same here.
936 */
937 int
swiotlb_map_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)938 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
939 enum dma_data_direction dir, unsigned long attrs)
940 {
941 struct scatterlist *sg;
942 int i;
943
944 BUG_ON(dir == DMA_NONE);
945
946 for_each_sg(sgl, sg, nelems, i) {
947 phys_addr_t paddr = sg_phys(sg);
948 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
949
950 if (swiotlb_force == SWIOTLB_FORCE ||
951 !dma_capable(hwdev, dev_addr, sg->length)) {
952 phys_addr_t map = map_single(hwdev, sg_phys(sg),
953 sg->length, dir, attrs);
954 if (map == SWIOTLB_MAP_ERROR) {
955 /* Don't panic here, we expect map_sg users
956 to do proper error handling. */
957 swiotlb_full(hwdev, sg->length, dir, 0);
958 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
959 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
960 attrs);
961 sg_dma_len(sgl) = 0;
962 return 0;
963 }
964 sg->dma_address = __phys_to_dma(hwdev, map);
965 } else
966 sg->dma_address = dev_addr;
967 sg_dma_len(sg) = sg->length;
968 }
969 return nelems;
970 }
971
972 /*
973 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
974 * concerning calls here are the same as for swiotlb_unmap_page() above.
975 */
976 void
swiotlb_unmap_sg_attrs(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,unsigned long attrs)977 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
978 int nelems, enum dma_data_direction dir,
979 unsigned long attrs)
980 {
981 struct scatterlist *sg;
982 int i;
983
984 BUG_ON(dir == DMA_NONE);
985
986 for_each_sg(sgl, sg, nelems, i)
987 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
988 attrs);
989 }
990
991 /*
992 * Make physical memory consistent for a set of streaming mode DMA translations
993 * after a transfer.
994 *
995 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
996 * and usage.
997 */
998 static void
swiotlb_sync_sg(struct device * hwdev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir,enum dma_sync_target target)999 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1000 int nelems, enum dma_data_direction dir,
1001 enum dma_sync_target target)
1002 {
1003 struct scatterlist *sg;
1004 int i;
1005
1006 for_each_sg(sgl, sg, nelems, i)
1007 swiotlb_sync_single(hwdev, sg->dma_address,
1008 sg_dma_len(sg), dir, target);
1009 }
1010
1011 void
swiotlb_sync_sg_for_cpu(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)1012 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1013 int nelems, enum dma_data_direction dir)
1014 {
1015 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1016 }
1017
1018 void
swiotlb_sync_sg_for_device(struct device * hwdev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)1019 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1020 int nelems, enum dma_data_direction dir)
1021 {
1022 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1023 }
1024
1025 int
swiotlb_dma_mapping_error(struct device * hwdev,dma_addr_t dma_addr)1026 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1027 {
1028 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1029 }
1030
1031 /*
1032 * Return whether the given device DMA address mask can be supported
1033 * properly. For example, if your device can only drive the low 24-bits
1034 * during bus mastering, then you would pass 0x00ffffff as the mask to
1035 * this function.
1036 */
1037 int
swiotlb_dma_supported(struct device * hwdev,u64 mask)1038 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1039 {
1040 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1041 }
1042
swiotlb_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1043 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1044 gfp_t gfp, unsigned long attrs)
1045 {
1046 void *vaddr;
1047
1048 /* temporary workaround: */
1049 if (gfp & __GFP_NOWARN)
1050 attrs |= DMA_ATTR_NO_WARN;
1051
1052 /*
1053 * Don't print a warning when the first allocation attempt fails.
1054 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1055 * allocation ultimately failed.
1056 */
1057 gfp |= __GFP_NOWARN;
1058
1059 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1060 if (!vaddr)
1061 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1062 return vaddr;
1063 }
1064
swiotlb_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_addr,unsigned long attrs)1065 void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1066 dma_addr_t dma_addr, unsigned long attrs)
1067 {
1068 if (!swiotlb_free_buffer(dev, size, dma_addr))
1069 dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1070 }
1071
1072 const struct dma_map_ops swiotlb_dma_ops = {
1073 .mapping_error = swiotlb_dma_mapping_error,
1074 .alloc = swiotlb_alloc,
1075 .free = swiotlb_free,
1076 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
1077 .sync_single_for_device = swiotlb_sync_single_for_device,
1078 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
1079 .sync_sg_for_device = swiotlb_sync_sg_for_device,
1080 .map_sg = swiotlb_map_sg_attrs,
1081 .unmap_sg = swiotlb_unmap_sg_attrs,
1082 .map_page = swiotlb_map_page,
1083 .unmap_page = swiotlb_unmap_page,
1084 .dma_supported = dma_direct_supported,
1085 };
1086 EXPORT_SYMBOL(swiotlb_dma_ops);
1087