1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/mempolicy.h>
32 #include <linux/mm.h>
33 #include <linux/memory.h>
34 #include <linux/export.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/sched/deadline.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/task.h>
40 #include <linux/security.h>
41 #include <linux/spinlock.h>
42 #include <linux/oom.h>
43 #include <linux/sched/isolation.h>
44 #include <linux/cgroup.h>
45 #include <linux/wait.h>
46 
47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
49 
50 /*
51  * There could be abnormal cpuset configurations for cpu or memory
52  * node binding, add this key to provide a quick low-cost judgment
53  * of the situation.
54  */
55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
56 
57 /* See "Frequency meter" comments, below. */
58 
59 struct fmeter {
60 	int cnt;		/* unprocessed events count */
61 	int val;		/* most recent output value */
62 	time64_t time;		/* clock (secs) when val computed */
63 	spinlock_t lock;	/* guards read or write of above */
64 };
65 
66 /*
67  * Invalid partition error code
68  */
69 enum prs_errcode {
70 	PERR_NONE = 0,
71 	PERR_INVCPUS,
72 	PERR_INVPARENT,
73 	PERR_NOTPART,
74 	PERR_NOTEXCL,
75 	PERR_NOCPUS,
76 	PERR_HOTPLUG,
77 	PERR_CPUSEMPTY,
78 };
79 
80 static const char * const perr_strings[] = {
81 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
82 	[PERR_INVPARENT] = "Parent is an invalid partition root",
83 	[PERR_NOTPART]   = "Parent is not a partition root",
84 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
85 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
86 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
87 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
88 };
89 
90 struct cpuset {
91 	struct cgroup_subsys_state css;
92 
93 	unsigned long flags;		/* "unsigned long" so bitops work */
94 
95 	/*
96 	 * On default hierarchy:
97 	 *
98 	 * The user-configured masks can only be changed by writing to
99 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
100 	 * parent masks.
101 	 *
102 	 * The effective masks is the real masks that apply to the tasks
103 	 * in the cpuset. They may be changed if the configured masks are
104 	 * changed or hotplug happens.
105 	 *
106 	 * effective_mask == configured_mask & parent's effective_mask,
107 	 * and if it ends up empty, it will inherit the parent's mask.
108 	 *
109 	 *
110 	 * On legacy hierarchy:
111 	 *
112 	 * The user-configured masks are always the same with effective masks.
113 	 */
114 
115 	/* user-configured CPUs and Memory Nodes allow to tasks */
116 	cpumask_var_t cpus_allowed;
117 	nodemask_t mems_allowed;
118 
119 	/* effective CPUs and Memory Nodes allow to tasks */
120 	cpumask_var_t effective_cpus;
121 	nodemask_t effective_mems;
122 
123 	/*
124 	 * CPUs allocated to child sub-partitions (default hierarchy only)
125 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
126 	 * - effective_cpus and subparts_cpus are mutually exclusive.
127 	 *
128 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
129 	 * may have offlined ones.
130 	 */
131 	cpumask_var_t subparts_cpus;
132 
133 	/*
134 	 * This is old Memory Nodes tasks took on.
135 	 *
136 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
137 	 * - A new cpuset's old_mems_allowed is initialized when some
138 	 *   task is moved into it.
139 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
140 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
141 	 *   then old_mems_allowed is updated to mems_allowed.
142 	 */
143 	nodemask_t old_mems_allowed;
144 
145 	struct fmeter fmeter;		/* memory_pressure filter */
146 
147 	/*
148 	 * Tasks are being attached to this cpuset.  Used to prevent
149 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
150 	 */
151 	int attach_in_progress;
152 
153 	/* partition number for rebuild_sched_domains() */
154 	int pn;
155 
156 	/* for custom sched domain */
157 	int relax_domain_level;
158 
159 	/* number of CPUs in subparts_cpus */
160 	int nr_subparts_cpus;
161 
162 	/* partition root state */
163 	int partition_root_state;
164 
165 	/*
166 	 * Default hierarchy only:
167 	 * use_parent_ecpus - set if using parent's effective_cpus
168 	 * child_ecpus_count - # of children with use_parent_ecpus set
169 	 */
170 	int use_parent_ecpus;
171 	int child_ecpus_count;
172 
173 	/*
174 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
175 	 * know when to rebuild associated root domain bandwidth information.
176 	 */
177 	int nr_deadline_tasks;
178 	int nr_migrate_dl_tasks;
179 	u64 sum_migrate_dl_bw;
180 
181 	/* Invalid partition error code, not lock protected */
182 	enum prs_errcode prs_err;
183 
184 	/* Handle for cpuset.cpus.partition */
185 	struct cgroup_file partition_file;
186 };
187 
188 /*
189  * Partition root states:
190  *
191  *   0 - member (not a partition root)
192  *   1 - partition root
193  *   2 - partition root without load balancing (isolated)
194  *  -1 - invalid partition root
195  *  -2 - invalid isolated partition root
196  */
197 #define PRS_MEMBER		0
198 #define PRS_ROOT		1
199 #define PRS_ISOLATED		2
200 #define PRS_INVALID_ROOT	-1
201 #define PRS_INVALID_ISOLATED	-2
202 
is_prs_invalid(int prs_state)203 static inline bool is_prs_invalid(int prs_state)
204 {
205 	return prs_state < 0;
206 }
207 
208 /*
209  * Temporary cpumasks for working with partitions that are passed among
210  * functions to avoid memory allocation in inner functions.
211  */
212 struct tmpmasks {
213 	cpumask_var_t addmask, delmask;	/* For partition root */
214 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
215 };
216 
css_cs(struct cgroup_subsys_state * css)217 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
218 {
219 	return css ? container_of(css, struct cpuset, css) : NULL;
220 }
221 
222 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)223 static inline struct cpuset *task_cs(struct task_struct *task)
224 {
225 	return css_cs(task_css(task, cpuset_cgrp_id));
226 }
227 
parent_cs(struct cpuset * cs)228 static inline struct cpuset *parent_cs(struct cpuset *cs)
229 {
230 	return css_cs(cs->css.parent);
231 }
232 
inc_dl_tasks_cs(struct task_struct * p)233 void inc_dl_tasks_cs(struct task_struct *p)
234 {
235 	struct cpuset *cs = task_cs(p);
236 
237 	cs->nr_deadline_tasks++;
238 }
239 
dec_dl_tasks_cs(struct task_struct * p)240 void dec_dl_tasks_cs(struct task_struct *p)
241 {
242 	struct cpuset *cs = task_cs(p);
243 
244 	cs->nr_deadline_tasks--;
245 }
246 
247 /* bits in struct cpuset flags field */
248 typedef enum {
249 	CS_ONLINE,
250 	CS_CPU_EXCLUSIVE,
251 	CS_MEM_EXCLUSIVE,
252 	CS_MEM_HARDWALL,
253 	CS_MEMORY_MIGRATE,
254 	CS_SCHED_LOAD_BALANCE,
255 	CS_SPREAD_PAGE,
256 	CS_SPREAD_SLAB,
257 } cpuset_flagbits_t;
258 
259 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)260 static inline bool is_cpuset_online(struct cpuset *cs)
261 {
262 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
263 }
264 
is_cpu_exclusive(const struct cpuset * cs)265 static inline int is_cpu_exclusive(const struct cpuset *cs)
266 {
267 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
268 }
269 
is_mem_exclusive(const struct cpuset * cs)270 static inline int is_mem_exclusive(const struct cpuset *cs)
271 {
272 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
273 }
274 
is_mem_hardwall(const struct cpuset * cs)275 static inline int is_mem_hardwall(const struct cpuset *cs)
276 {
277 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
278 }
279 
is_sched_load_balance(const struct cpuset * cs)280 static inline int is_sched_load_balance(const struct cpuset *cs)
281 {
282 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
283 }
284 
is_memory_migrate(const struct cpuset * cs)285 static inline int is_memory_migrate(const struct cpuset *cs)
286 {
287 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
288 }
289 
is_spread_page(const struct cpuset * cs)290 static inline int is_spread_page(const struct cpuset *cs)
291 {
292 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
293 }
294 
is_spread_slab(const struct cpuset * cs)295 static inline int is_spread_slab(const struct cpuset *cs)
296 {
297 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
298 }
299 
is_partition_valid(const struct cpuset * cs)300 static inline int is_partition_valid(const struct cpuset *cs)
301 {
302 	return cs->partition_root_state > 0;
303 }
304 
is_partition_invalid(const struct cpuset * cs)305 static inline int is_partition_invalid(const struct cpuset *cs)
306 {
307 	return cs->partition_root_state < 0;
308 }
309 
310 /*
311  * Callers should hold callback_lock to modify partition_root_state.
312  */
make_partition_invalid(struct cpuset * cs)313 static inline void make_partition_invalid(struct cpuset *cs)
314 {
315 	if (is_partition_valid(cs))
316 		cs->partition_root_state = -cs->partition_root_state;
317 }
318 
319 /*
320  * Send notification event of whenever partition_root_state changes.
321  */
notify_partition_change(struct cpuset * cs,int old_prs)322 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
323 {
324 	if (old_prs == cs->partition_root_state)
325 		return;
326 	cgroup_file_notify(&cs->partition_file);
327 
328 	/* Reset prs_err if not invalid */
329 	if (is_partition_valid(cs))
330 		WRITE_ONCE(cs->prs_err, PERR_NONE);
331 }
332 
333 static struct cpuset top_cpuset = {
334 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
335 		  (1 << CS_MEM_EXCLUSIVE)),
336 	.partition_root_state = PRS_ROOT,
337 };
338 
339 /**
340  * cpuset_for_each_child - traverse online children of a cpuset
341  * @child_cs: loop cursor pointing to the current child
342  * @pos_css: used for iteration
343  * @parent_cs: target cpuset to walk children of
344  *
345  * Walk @child_cs through the online children of @parent_cs.  Must be used
346  * with RCU read locked.
347  */
348 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
349 	css_for_each_child((pos_css), &(parent_cs)->css)		\
350 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
351 
352 /**
353  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
354  * @des_cs: loop cursor pointing to the current descendant
355  * @pos_css: used for iteration
356  * @root_cs: target cpuset to walk ancestor of
357  *
358  * Walk @des_cs through the online descendants of @root_cs.  Must be used
359  * with RCU read locked.  The caller may modify @pos_css by calling
360  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
361  * iteration and the first node to be visited.
362  */
363 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
364 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
365 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
366 
367 /*
368  * There are two global locks guarding cpuset structures - cpuset_mutex and
369  * callback_lock. We also require taking task_lock() when dereferencing a
370  * task's cpuset pointer. See "The task_lock() exception", at the end of this
371  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
372  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
373  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
374  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
375  * correctness.
376  *
377  * A task must hold both locks to modify cpusets.  If a task holds
378  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
379  * also acquire callback_lock and be able to modify cpusets.  It can perform
380  * various checks on the cpuset structure first, knowing nothing will change.
381  * It can also allocate memory while just holding cpuset_mutex.  While it is
382  * performing these checks, various callback routines can briefly acquire
383  * callback_lock to query cpusets.  Once it is ready to make the changes, it
384  * takes callback_lock, blocking everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 static DEFINE_MUTEX(cpuset_mutex);
407 
cpuset_lock(void)408 void cpuset_lock(void)
409 {
410 	mutex_lock(&cpuset_mutex);
411 }
412 
cpuset_unlock(void)413 void cpuset_unlock(void)
414 {
415 	mutex_unlock(&cpuset_mutex);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
check_insane_mems_config(nodemask_t * nodes)430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
is_in_v2_mode(void)449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
partition_is_populated(struct cpuset * cs,struct cpuset * excluded_child)464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_mutex held.
500  */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_mutex held.
542  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_mutex held. The check can be skipped
554  * if on default hierarchy.
555  */
cpuset_update_task_spread_flags(struct cpuset * cs,struct task_struct * tsk)556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_mutex.
579  */
580 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
alloc_trial_cpuset(struct cpuset * cs)652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
free_cpuset(struct cpuset * cs)674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
validate_change_legacy(struct cpuset * cur,struct cpuset * trial)684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_mutex held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
validate_change(struct cpuset * cur,struct cpuset * trial)729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_mutex held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
dl_update_tasks_root_domain(struct cpuset * cs)1069 static void dl_update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	if (cs->nr_deadline_tasks == 0)
1075 		return;
1076 
1077 	css_task_iter_start(&cs->css, 0, &it);
1078 
1079 	while ((task = css_task_iter_next(&it)))
1080 		dl_add_task_root_domain(task);
1081 
1082 	css_task_iter_end(&it);
1083 }
1084 
dl_rebuild_rd_accounting(void)1085 static void dl_rebuild_rd_accounting(void)
1086 {
1087 	struct cpuset *cs = NULL;
1088 	struct cgroup_subsys_state *pos_css;
1089 
1090 	lockdep_assert_held(&cpuset_mutex);
1091 	lockdep_assert_cpus_held();
1092 	lockdep_assert_held(&sched_domains_mutex);
1093 
1094 	rcu_read_lock();
1095 
1096 	/*
1097 	 * Clear default root domain DL accounting, it will be computed again
1098 	 * if a task belongs to it.
1099 	 */
1100 	dl_clear_root_domain(&def_root_domain);
1101 
1102 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1103 
1104 		if (cpumask_empty(cs->effective_cpus)) {
1105 			pos_css = css_rightmost_descendant(pos_css);
1106 			continue;
1107 		}
1108 
1109 		css_get(&cs->css);
1110 
1111 		rcu_read_unlock();
1112 
1113 		dl_update_tasks_root_domain(cs);
1114 
1115 		rcu_read_lock();
1116 		css_put(&cs->css);
1117 	}
1118 	rcu_read_unlock();
1119 }
1120 
1121 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1122 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1123 				    struct sched_domain_attr *dattr_new)
1124 {
1125 	mutex_lock(&sched_domains_mutex);
1126 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1127 	dl_rebuild_rd_accounting();
1128 	mutex_unlock(&sched_domains_mutex);
1129 }
1130 
1131 /*
1132  * Rebuild scheduler domains.
1133  *
1134  * If the flag 'sched_load_balance' of any cpuset with non-empty
1135  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1136  * which has that flag enabled, or if any cpuset with a non-empty
1137  * 'cpus' is removed, then call this routine to rebuild the
1138  * scheduler's dynamic sched domains.
1139  *
1140  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1141  */
rebuild_sched_domains_locked(void)1142 static void rebuild_sched_domains_locked(void)
1143 {
1144 	struct cgroup_subsys_state *pos_css;
1145 	struct sched_domain_attr *attr;
1146 	cpumask_var_t *doms;
1147 	struct cpuset *cs;
1148 	int ndoms;
1149 
1150 	lockdep_assert_cpus_held();
1151 	lockdep_assert_held(&cpuset_mutex);
1152 
1153 	/*
1154 	 * If we have raced with CPU hotplug, return early to avoid
1155 	 * passing doms with offlined cpu to partition_sched_domains().
1156 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1157 	 *
1158 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1159 	 * should be the same as the active CPUs, so checking only top_cpuset
1160 	 * is enough to detect racing CPU offlines.
1161 	 */
1162 	if (!top_cpuset.nr_subparts_cpus &&
1163 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1164 		return;
1165 
1166 	/*
1167 	 * With subpartition CPUs, however, the effective CPUs of a partition
1168 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1169 	 * partition root could be offlined, all must be checked.
1170 	 */
1171 	if (top_cpuset.nr_subparts_cpus) {
1172 		rcu_read_lock();
1173 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1174 			if (!is_partition_valid(cs)) {
1175 				pos_css = css_rightmost_descendant(pos_css);
1176 				continue;
1177 			}
1178 			if (!cpumask_subset(cs->effective_cpus,
1179 					    cpu_active_mask)) {
1180 				rcu_read_unlock();
1181 				return;
1182 			}
1183 		}
1184 		rcu_read_unlock();
1185 	}
1186 
1187 	/* Generate domain masks and attrs */
1188 	ndoms = generate_sched_domains(&doms, &attr);
1189 
1190 	/* Have scheduler rebuild the domains */
1191 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1192 }
1193 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1194 static void rebuild_sched_domains_locked(void)
1195 {
1196 }
1197 #endif /* CONFIG_SMP */
1198 
rebuild_sched_domains(void)1199 void rebuild_sched_domains(void)
1200 {
1201 	cpus_read_lock();
1202 	mutex_lock(&cpuset_mutex);
1203 	rebuild_sched_domains_locked();
1204 	mutex_unlock(&cpuset_mutex);
1205 	cpus_read_unlock();
1206 }
1207 
1208 /**
1209  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1210  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1211  * @new_cpus: the temp variable for the new effective_cpus mask
1212  *
1213  * Iterate through each task of @cs updating its cpus_allowed to the
1214  * effective cpuset's.  As this function is called with cpuset_mutex held,
1215  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1216  * is used instead of effective_cpus to make sure all offline CPUs are also
1217  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1218  */
update_tasks_cpumask(struct cpuset * cs,struct cpumask * new_cpus)1219 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1220 {
1221 	struct css_task_iter it;
1222 	struct task_struct *task;
1223 	bool top_cs = cs == &top_cpuset;
1224 
1225 	css_task_iter_start(&cs->css, 0, &it);
1226 	while ((task = css_task_iter_next(&it))) {
1227 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1228 
1229 		if (top_cs) {
1230 			/*
1231 			 * Percpu kthreads in top_cpuset are ignored
1232 			 */
1233 			if (kthread_is_per_cpu(task))
1234 				continue;
1235 			cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus);
1236 		} else {
1237 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1238 		}
1239 		set_cpus_allowed_ptr(task, new_cpus);
1240 	}
1241 	css_task_iter_end(&it);
1242 }
1243 
1244 /**
1245  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1246  * @new_cpus: the temp variable for the new effective_cpus mask
1247  * @cs: the cpuset the need to recompute the new effective_cpus mask
1248  * @parent: the parent cpuset
1249  *
1250  * If the parent has subpartition CPUs, include them in the list of
1251  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1252  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1253  * to mask those out.
1254  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1255 static void compute_effective_cpumask(struct cpumask *new_cpus,
1256 				      struct cpuset *cs, struct cpuset *parent)
1257 {
1258 	if (parent->nr_subparts_cpus && is_partition_valid(cs)) {
1259 		cpumask_or(new_cpus, parent->effective_cpus,
1260 			   parent->subparts_cpus);
1261 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1262 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1263 	} else {
1264 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1265 	}
1266 }
1267 
1268 /*
1269  * Commands for update_parent_subparts_cpumask
1270  */
1271 enum subparts_cmd {
1272 	partcmd_enable,		/* Enable partition root	 */
1273 	partcmd_disable,	/* Disable partition root	 */
1274 	partcmd_update,		/* Update parent's subparts_cpus */
1275 	partcmd_invalidate,	/* Make partition invalid	 */
1276 };
1277 
1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1279 		       int turning_on);
1280 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1281 				    struct tmpmasks *tmp);
1282 
1283 /*
1284  * Update partition exclusive flag
1285  *
1286  * Return: 0 if successful, an error code otherwise
1287  */
update_partition_exclusive(struct cpuset * cs,int new_prs)1288 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1289 {
1290 	bool exclusive = (new_prs > 0);
1291 
1292 	if (exclusive && !is_cpu_exclusive(cs)) {
1293 		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1294 			return PERR_NOTEXCL;
1295 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1296 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1297 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1298 	}
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Update partition load balance flag and/or rebuild sched domain
1304  *
1305  * Changing load balance flag will automatically call
1306  * rebuild_sched_domains_locked().
1307  */
update_partition_sd_lb(struct cpuset * cs,int old_prs)1308 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1309 {
1310 	int new_prs = cs->partition_root_state;
1311 	bool new_lb = (new_prs != PRS_ISOLATED);
1312 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1313 
1314 	if (new_lb != !!is_sched_load_balance(cs)) {
1315 		rebuild_domains = true;
1316 		if (new_lb)
1317 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1318 		else
1319 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1320 	}
1321 
1322 	if (rebuild_domains)
1323 		rebuild_sched_domains_locked();
1324 }
1325 
1326 /**
1327  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1328  * @cs:      The cpuset that requests change in partition root state
1329  * @cmd:     Partition root state change command
1330  * @newmask: Optional new cpumask for partcmd_update
1331  * @tmp:     Temporary addmask and delmask
1332  * Return:   0 or a partition root state error code
1333  *
1334  * For partcmd_enable, the cpuset is being transformed from a non-partition
1335  * root to a partition root. The cpus_allowed mask of the given cpuset will
1336  * be put into parent's subparts_cpus and taken away from parent's
1337  * effective_cpus. The function will return 0 if all the CPUs listed in
1338  * cpus_allowed can be granted or an error code will be returned.
1339  *
1340  * For partcmd_disable, the cpuset is being transformed from a partition
1341  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1342  * parent's subparts_cpus will be taken away from that cpumask and put back
1343  * into parent's effective_cpus. 0 will always be returned.
1344  *
1345  * For partcmd_update, if the optional newmask is specified, the cpu list is
1346  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1347  * assumed to remain the same. The cpuset should either be a valid or invalid
1348  * partition root. The partition root state may change from valid to invalid
1349  * or vice versa. An error code will only be returned if transitioning from
1350  * invalid to valid violates the exclusivity rule.
1351  *
1352  * For partcmd_invalidate, the current partition will be made invalid.
1353  *
1354  * The partcmd_enable and partcmd_disable commands are used by
1355  * update_prstate(). An error code may be returned and the caller will check
1356  * for error.
1357  *
1358  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1359  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1360  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1361  * check for error and so partition_root_state and prs_error will be updated
1362  * directly.
1363  */
update_parent_subparts_cpumask(struct cpuset * cs,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1364 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1365 					  struct cpumask *newmask,
1366 					  struct tmpmasks *tmp)
1367 {
1368 	struct cpuset *parent = parent_cs(cs);
1369 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1370 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1371 	int old_prs, new_prs;
1372 	int part_error = PERR_NONE;	/* Partition error? */
1373 
1374 	lockdep_assert_held(&cpuset_mutex);
1375 
1376 	/*
1377 	 * The parent must be a partition root.
1378 	 * The new cpumask, if present, or the current cpus_allowed must
1379 	 * not be empty.
1380 	 */
1381 	if (!is_partition_valid(parent)) {
1382 		return is_partition_invalid(parent)
1383 		       ? PERR_INVPARENT : PERR_NOTPART;
1384 	}
1385 	if (!newmask && cpumask_empty(cs->cpus_allowed))
1386 		return PERR_CPUSEMPTY;
1387 
1388 	/*
1389 	 * new_prs will only be changed for the partcmd_update and
1390 	 * partcmd_invalidate commands.
1391 	 */
1392 	adding = deleting = false;
1393 	old_prs = new_prs = cs->partition_root_state;
1394 	if (cmd == partcmd_enable) {
1395 		/*
1396 		 * Enabling partition root is not allowed if cpus_allowed
1397 		 * doesn't overlap parent's cpus_allowed.
1398 		 */
1399 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1400 			return PERR_INVCPUS;
1401 
1402 		/*
1403 		 * A parent can be left with no CPU as long as there is no
1404 		 * task directly associated with the parent partition.
1405 		 */
1406 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1407 		    partition_is_populated(parent, cs))
1408 			return PERR_NOCPUS;
1409 
1410 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1411 		adding = true;
1412 	} else if (cmd == partcmd_disable) {
1413 		/*
1414 		 * Need to remove cpus from parent's subparts_cpus for valid
1415 		 * partition root.
1416 		 */
1417 		deleting = !is_prs_invalid(old_prs) &&
1418 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1419 				       parent->subparts_cpus);
1420 	} else if (cmd == partcmd_invalidate) {
1421 		if (is_prs_invalid(old_prs))
1422 			return 0;
1423 
1424 		/*
1425 		 * Make the current partition invalid. It is assumed that
1426 		 * invalidation is caused by violating cpu exclusivity rule.
1427 		 */
1428 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1429 				       parent->subparts_cpus);
1430 		if (old_prs > 0) {
1431 			new_prs = -old_prs;
1432 			part_error = PERR_NOTEXCL;
1433 		}
1434 	} else if (newmask) {
1435 		/*
1436 		 * partcmd_update with newmask:
1437 		 *
1438 		 * Compute add/delete mask to/from subparts_cpus
1439 		 *
1440 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1441 		 * addmask = newmask & parent->cpus_allowed
1442 		 *		     & ~parent->subparts_cpus
1443 		 */
1444 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1445 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1446 				       parent->subparts_cpus);
1447 
1448 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1449 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1450 					parent->subparts_cpus);
1451 		/*
1452 		 * Empty cpumask is not allowed
1453 		 */
1454 		if (cpumask_empty(newmask)) {
1455 			part_error = PERR_CPUSEMPTY;
1456 		/*
1457 		 * Make partition invalid if parent's effective_cpus could
1458 		 * become empty and there are tasks in the parent.
1459 		 */
1460 		} else if (adding &&
1461 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1462 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1463 		    partition_is_populated(parent, cs)) {
1464 			part_error = PERR_NOCPUS;
1465 			adding = false;
1466 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1467 					       parent->subparts_cpus);
1468 		}
1469 	} else {
1470 		/*
1471 		 * partcmd_update w/o newmask:
1472 		 *
1473 		 * delmask = cpus_allowed & parent->subparts_cpus
1474 		 * addmask = cpus_allowed & parent->cpus_allowed
1475 		 *			  & ~parent->subparts_cpus
1476 		 *
1477 		 * This gets invoked either due to a hotplug event or from
1478 		 * update_cpumasks_hier(). This can cause the state of a
1479 		 * partition root to transition from valid to invalid or vice
1480 		 * versa. So we still need to compute the addmask and delmask.
1481 
1482 		 * A partition error happens when:
1483 		 * 1) Cpuset is valid partition, but parent does not distribute
1484 		 *    out any CPUs.
1485 		 * 2) Parent has tasks and all its effective CPUs will have
1486 		 *    to be distributed out.
1487 		 */
1488 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1489 					  parent->cpus_allowed);
1490 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1491 					parent->subparts_cpus);
1492 
1493 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1494 		    (adding &&
1495 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1496 		     partition_is_populated(parent, cs))) {
1497 			part_error = PERR_NOCPUS;
1498 			adding = false;
1499 		}
1500 
1501 		if (part_error && is_partition_valid(cs) &&
1502 		    parent->nr_subparts_cpus)
1503 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1504 					       parent->subparts_cpus);
1505 	}
1506 	if (part_error)
1507 		WRITE_ONCE(cs->prs_err, part_error);
1508 
1509 	if (cmd == partcmd_update) {
1510 		/*
1511 		 * Check for possible transition between valid and invalid
1512 		 * partition root.
1513 		 */
1514 		switch (cs->partition_root_state) {
1515 		case PRS_ROOT:
1516 		case PRS_ISOLATED:
1517 			if (part_error)
1518 				new_prs = -old_prs;
1519 			break;
1520 		case PRS_INVALID_ROOT:
1521 		case PRS_INVALID_ISOLATED:
1522 			if (!part_error)
1523 				new_prs = -old_prs;
1524 			break;
1525 		}
1526 	}
1527 
1528 	if (!adding && !deleting && (new_prs == old_prs))
1529 		return 0;
1530 
1531 	/*
1532 	 * Transitioning between invalid to valid or vice versa may require
1533 	 * changing CS_CPU_EXCLUSIVE.
1534 	 */
1535 	if (old_prs != new_prs) {
1536 		int err = update_partition_exclusive(cs, new_prs);
1537 
1538 		if (err)
1539 			return err;
1540 	}
1541 
1542 	/*
1543 	 * Change the parent's subparts_cpus.
1544 	 * Newly added CPUs will be removed from effective_cpus and
1545 	 * newly deleted ones will be added back to effective_cpus.
1546 	 */
1547 	spin_lock_irq(&callback_lock);
1548 	if (adding) {
1549 		cpumask_or(parent->subparts_cpus,
1550 			   parent->subparts_cpus, tmp->addmask);
1551 		cpumask_andnot(parent->effective_cpus,
1552 			       parent->effective_cpus, tmp->addmask);
1553 	}
1554 	if (deleting) {
1555 		cpumask_andnot(parent->subparts_cpus,
1556 			       parent->subparts_cpus, tmp->delmask);
1557 		/*
1558 		 * Some of the CPUs in subparts_cpus might have been offlined.
1559 		 */
1560 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1561 		cpumask_or(parent->effective_cpus,
1562 			   parent->effective_cpus, tmp->delmask);
1563 	}
1564 
1565 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1566 
1567 	if (old_prs != new_prs)
1568 		cs->partition_root_state = new_prs;
1569 
1570 	spin_unlock_irq(&callback_lock);
1571 
1572 	if (adding || deleting) {
1573 		update_tasks_cpumask(parent, tmp->addmask);
1574 		if (parent->child_ecpus_count)
1575 			update_sibling_cpumasks(parent, cs, tmp);
1576 	}
1577 
1578 	/*
1579 	 * For partcmd_update without newmask, it is being called from
1580 	 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
1581 	 * Update the load balance flag and scheduling domain if
1582 	 * cpus_read_trylock() is successful.
1583 	 */
1584 	if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
1585 		update_partition_sd_lb(cs, old_prs);
1586 		cpus_read_unlock();
1587 	}
1588 
1589 	notify_partition_change(cs, old_prs);
1590 	return 0;
1591 }
1592 
1593 /*
1594  * update_cpumasks_hier() flags
1595  */
1596 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
1597 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
1598 
1599 /*
1600  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1601  * @cs:  the cpuset to consider
1602  * @tmp: temp variables for calculating effective_cpus & partition setup
1603  * @force: don't skip any descendant cpusets if set
1604  *
1605  * When configured cpumask is changed, the effective cpumasks of this cpuset
1606  * and all its descendants need to be updated.
1607  *
1608  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1609  *
1610  * Called with cpuset_mutex held
1611  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp,int flags)1612 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1613 				 int flags)
1614 {
1615 	struct cpuset *cp;
1616 	struct cgroup_subsys_state *pos_css;
1617 	bool need_rebuild_sched_domains = false;
1618 	int old_prs, new_prs;
1619 
1620 	rcu_read_lock();
1621 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1622 		struct cpuset *parent = parent_cs(cp);
1623 		bool update_parent = false;
1624 
1625 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1626 
1627 		/*
1628 		 * If it becomes empty, inherit the effective mask of the
1629 		 * parent, which is guaranteed to have some CPUs unless
1630 		 * it is a partition root that has explicitly distributed
1631 		 * out all its CPUs.
1632 		 */
1633 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1634 			if (is_partition_valid(cp) &&
1635 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1636 				goto update_parent_subparts;
1637 
1638 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1639 			if (!cp->use_parent_ecpus) {
1640 				cp->use_parent_ecpus = true;
1641 				parent->child_ecpus_count++;
1642 			}
1643 		} else if (cp->use_parent_ecpus) {
1644 			cp->use_parent_ecpus = false;
1645 			WARN_ON_ONCE(!parent->child_ecpus_count);
1646 			parent->child_ecpus_count--;
1647 		}
1648 
1649 		/*
1650 		 * Skip the whole subtree if
1651 		 * 1) the cpumask remains the same,
1652 		 * 2) has no partition root state,
1653 		 * 3) HIER_CHECKALL flag not set, and
1654 		 * 4) for v2 load balance state same as its parent.
1655 		 */
1656 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
1657 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
1658 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1659 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
1660 			pos_css = css_rightmost_descendant(pos_css);
1661 			continue;
1662 		}
1663 
1664 update_parent_subparts:
1665 		/*
1666 		 * update_parent_subparts_cpumask() should have been called
1667 		 * for cs already in update_cpumask(). We should also call
1668 		 * update_tasks_cpumask() again for tasks in the parent
1669 		 * cpuset if the parent's subparts_cpus changes.
1670 		 */
1671 		old_prs = new_prs = cp->partition_root_state;
1672 		if ((cp != cs) && old_prs) {
1673 			switch (parent->partition_root_state) {
1674 			case PRS_ROOT:
1675 			case PRS_ISOLATED:
1676 				update_parent = true;
1677 				break;
1678 
1679 			default:
1680 				/*
1681 				 * When parent is not a partition root or is
1682 				 * invalid, child partition roots become
1683 				 * invalid too.
1684 				 */
1685 				if (is_partition_valid(cp))
1686 					new_prs = -cp->partition_root_state;
1687 				WRITE_ONCE(cp->prs_err,
1688 					   is_partition_invalid(parent)
1689 					   ? PERR_INVPARENT : PERR_NOTPART);
1690 				break;
1691 			}
1692 		}
1693 
1694 		if (!css_tryget_online(&cp->css))
1695 			continue;
1696 		rcu_read_unlock();
1697 
1698 		if (update_parent) {
1699 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1700 						       tmp);
1701 			/*
1702 			 * The cpuset partition_root_state may become
1703 			 * invalid. Capture it.
1704 			 */
1705 			new_prs = cp->partition_root_state;
1706 		}
1707 
1708 		spin_lock_irq(&callback_lock);
1709 
1710 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1711 			/*
1712 			 * Put all active subparts_cpus back to effective_cpus.
1713 			 */
1714 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1715 				   cp->subparts_cpus);
1716 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1717 				   cpu_active_mask);
1718 			cp->nr_subparts_cpus = 0;
1719 			cpumask_clear(cp->subparts_cpus);
1720 		}
1721 
1722 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1723 		if (cp->nr_subparts_cpus) {
1724 			/*
1725 			 * Make sure that effective_cpus & subparts_cpus
1726 			 * are mutually exclusive.
1727 			 */
1728 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1729 				       cp->subparts_cpus);
1730 		}
1731 
1732 		cp->partition_root_state = new_prs;
1733 		spin_unlock_irq(&callback_lock);
1734 
1735 		notify_partition_change(cp, old_prs);
1736 
1737 		WARN_ON(!is_in_v2_mode() &&
1738 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1739 
1740 		update_tasks_cpumask(cp, tmp->new_cpus);
1741 
1742 		/*
1743 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
1744 		 * from parent if current cpuset isn't a valid partition root
1745 		 * and their load balance states differ.
1746 		 */
1747 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1748 		    !is_partition_valid(cp) &&
1749 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
1750 			if (is_sched_load_balance(parent))
1751 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1752 			else
1753 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
1754 		}
1755 
1756 		/*
1757 		 * On legacy hierarchy, if the effective cpumask of any non-
1758 		 * empty cpuset is changed, we need to rebuild sched domains.
1759 		 * On default hierarchy, the cpuset needs to be a partition
1760 		 * root as well.
1761 		 */
1762 		if (!cpumask_empty(cp->cpus_allowed) &&
1763 		    is_sched_load_balance(cp) &&
1764 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1765 		    is_partition_valid(cp)))
1766 			need_rebuild_sched_domains = true;
1767 
1768 		rcu_read_lock();
1769 		css_put(&cp->css);
1770 	}
1771 	rcu_read_unlock();
1772 
1773 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
1774 		rebuild_sched_domains_locked();
1775 }
1776 
1777 /**
1778  * update_sibling_cpumasks - Update siblings cpumasks
1779  * @parent:  Parent cpuset
1780  * @cs:      Current cpuset
1781  * @tmp:     Temp variables
1782  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1783 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1784 				    struct tmpmasks *tmp)
1785 {
1786 	struct cpuset *sibling;
1787 	struct cgroup_subsys_state *pos_css;
1788 
1789 	lockdep_assert_held(&cpuset_mutex);
1790 
1791 	/*
1792 	 * Check all its siblings and call update_cpumasks_hier()
1793 	 * if their use_parent_ecpus flag is set in order for them
1794 	 * to use the right effective_cpus value.
1795 	 *
1796 	 * The update_cpumasks_hier() function may sleep. So we have to
1797 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
1798 	 * flag is used to suppress rebuild of sched domains as the callers
1799 	 * will take care of that.
1800 	 */
1801 	rcu_read_lock();
1802 	cpuset_for_each_child(sibling, pos_css, parent) {
1803 		if (sibling == cs)
1804 			continue;
1805 		if (!sibling->use_parent_ecpus)
1806 			continue;
1807 		if (!css_tryget_online(&sibling->css))
1808 			continue;
1809 
1810 		rcu_read_unlock();
1811 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
1812 		rcu_read_lock();
1813 		css_put(&sibling->css);
1814 	}
1815 	rcu_read_unlock();
1816 }
1817 
1818 /**
1819  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1820  * @cs: the cpuset to consider
1821  * @trialcs: trial cpuset
1822  * @buf: buffer of cpu numbers written to this cpuset
1823  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1824 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1825 			  const char *buf)
1826 {
1827 	int retval;
1828 	struct tmpmasks tmp;
1829 	bool invalidate = false;
1830 	int old_prs = cs->partition_root_state;
1831 
1832 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1833 	if (cs == &top_cpuset)
1834 		return -EACCES;
1835 
1836 	/*
1837 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1838 	 * Since cpulist_parse() fails on an empty mask, we special case
1839 	 * that parsing.  The validate_change() call ensures that cpusets
1840 	 * with tasks have cpus.
1841 	 */
1842 	if (!*buf) {
1843 		cpumask_clear(trialcs->cpus_allowed);
1844 	} else {
1845 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1846 		if (retval < 0)
1847 			return retval;
1848 
1849 		if (!cpumask_subset(trialcs->cpus_allowed,
1850 				    top_cpuset.cpus_allowed))
1851 			return -EINVAL;
1852 	}
1853 
1854 	/* Nothing to do if the cpus didn't change */
1855 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1856 		return 0;
1857 
1858 	if (alloc_cpumasks(NULL, &tmp))
1859 		return -ENOMEM;
1860 
1861 	retval = validate_change(cs, trialcs);
1862 
1863 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1864 		struct cpuset *cp, *parent;
1865 		struct cgroup_subsys_state *css;
1866 
1867 		/*
1868 		 * The -EINVAL error code indicates that partition sibling
1869 		 * CPU exclusivity rule has been violated. We still allow
1870 		 * the cpumask change to proceed while invalidating the
1871 		 * partition. However, any conflicting sibling partitions
1872 		 * have to be marked as invalid too.
1873 		 */
1874 		invalidate = true;
1875 		rcu_read_lock();
1876 		parent = parent_cs(cs);
1877 		cpuset_for_each_child(cp, css, parent)
1878 			if (is_partition_valid(cp) &&
1879 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1880 				rcu_read_unlock();
1881 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1882 				rcu_read_lock();
1883 			}
1884 		rcu_read_unlock();
1885 		retval = 0;
1886 	}
1887 	if (retval < 0)
1888 		goto out_free;
1889 
1890 	if (cs->partition_root_state) {
1891 		if (invalidate)
1892 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1893 						       NULL, &tmp);
1894 		else
1895 			update_parent_subparts_cpumask(cs, partcmd_update,
1896 						trialcs->cpus_allowed, &tmp);
1897 	}
1898 
1899 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1900 				  parent_cs(cs));
1901 	spin_lock_irq(&callback_lock);
1902 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1903 
1904 	/*
1905 	 * Make sure that subparts_cpus, if not empty, is a subset of
1906 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1907 	 * empty effective cpus with tasks.
1908 	 */
1909 	if (cs->nr_subparts_cpus) {
1910 		if (!is_partition_valid(cs) ||
1911 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1912 		    partition_is_populated(cs, NULL))) {
1913 			cs->nr_subparts_cpus = 0;
1914 			cpumask_clear(cs->subparts_cpus);
1915 		} else {
1916 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1917 				    cs->cpus_allowed);
1918 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1919 		}
1920 	}
1921 	spin_unlock_irq(&callback_lock);
1922 
1923 	/* effective_cpus will be updated here */
1924 	update_cpumasks_hier(cs, &tmp, 0);
1925 
1926 	if (cs->partition_root_state) {
1927 		struct cpuset *parent = parent_cs(cs);
1928 
1929 		/*
1930 		 * For partition root, update the cpumasks of sibling
1931 		 * cpusets if they use parent's effective_cpus.
1932 		 */
1933 		if (parent->child_ecpus_count)
1934 			update_sibling_cpumasks(parent, cs, &tmp);
1935 
1936 		/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */
1937 		update_partition_sd_lb(cs, old_prs);
1938 	}
1939 out_free:
1940 	free_cpumasks(NULL, &tmp);
1941 	return 0;
1942 }
1943 
1944 /*
1945  * Migrate memory region from one set of nodes to another.  This is
1946  * performed asynchronously as it can be called from process migration path
1947  * holding locks involved in process management.  All mm migrations are
1948  * performed in the queued order and can be waited for by flushing
1949  * cpuset_migrate_mm_wq.
1950  */
1951 
1952 struct cpuset_migrate_mm_work {
1953 	struct work_struct	work;
1954 	struct mm_struct	*mm;
1955 	nodemask_t		from;
1956 	nodemask_t		to;
1957 };
1958 
cpuset_migrate_mm_workfn(struct work_struct * work)1959 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1960 {
1961 	struct cpuset_migrate_mm_work *mwork =
1962 		container_of(work, struct cpuset_migrate_mm_work, work);
1963 
1964 	/* on a wq worker, no need to worry about %current's mems_allowed */
1965 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1966 	mmput(mwork->mm);
1967 	kfree(mwork);
1968 }
1969 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1970 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1971 							const nodemask_t *to)
1972 {
1973 	struct cpuset_migrate_mm_work *mwork;
1974 
1975 	if (nodes_equal(*from, *to)) {
1976 		mmput(mm);
1977 		return;
1978 	}
1979 
1980 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1981 	if (mwork) {
1982 		mwork->mm = mm;
1983 		mwork->from = *from;
1984 		mwork->to = *to;
1985 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1986 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1987 	} else {
1988 		mmput(mm);
1989 	}
1990 }
1991 
cpuset_post_attach(void)1992 static void cpuset_post_attach(void)
1993 {
1994 	flush_workqueue(cpuset_migrate_mm_wq);
1995 }
1996 
1997 /*
1998  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1999  * @tsk: the task to change
2000  * @newmems: new nodes that the task will be set
2001  *
2002  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2003  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2004  * parallel, it might temporarily see an empty intersection, which results in
2005  * a seqlock check and retry before OOM or allocation failure.
2006  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)2007 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2008 					nodemask_t *newmems)
2009 {
2010 	task_lock(tsk);
2011 
2012 	local_irq_disable();
2013 	write_seqcount_begin(&tsk->mems_allowed_seq);
2014 
2015 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2016 	mpol_rebind_task(tsk, newmems);
2017 	tsk->mems_allowed = *newmems;
2018 
2019 	write_seqcount_end(&tsk->mems_allowed_seq);
2020 	local_irq_enable();
2021 
2022 	task_unlock(tsk);
2023 }
2024 
2025 static void *cpuset_being_rebound;
2026 
2027 /**
2028  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2029  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2030  *
2031  * Iterate through each task of @cs updating its mems_allowed to the
2032  * effective cpuset's.  As this function is called with cpuset_mutex held,
2033  * cpuset membership stays stable.
2034  */
update_tasks_nodemask(struct cpuset * cs)2035 static void update_tasks_nodemask(struct cpuset *cs)
2036 {
2037 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2038 	struct css_task_iter it;
2039 	struct task_struct *task;
2040 
2041 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2042 
2043 	guarantee_online_mems(cs, &newmems);
2044 
2045 	/*
2046 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2047 	 * take while holding tasklist_lock.  Forks can happen - the
2048 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2049 	 * and rebind their vma mempolicies too.  Because we still hold
2050 	 * the global cpuset_mutex, we know that no other rebind effort
2051 	 * will be contending for the global variable cpuset_being_rebound.
2052 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2053 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2054 	 */
2055 	css_task_iter_start(&cs->css, 0, &it);
2056 	while ((task = css_task_iter_next(&it))) {
2057 		struct mm_struct *mm;
2058 		bool migrate;
2059 
2060 		cpuset_change_task_nodemask(task, &newmems);
2061 
2062 		mm = get_task_mm(task);
2063 		if (!mm)
2064 			continue;
2065 
2066 		migrate = is_memory_migrate(cs);
2067 
2068 		mpol_rebind_mm(mm, &cs->mems_allowed);
2069 		if (migrate)
2070 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2071 		else
2072 			mmput(mm);
2073 	}
2074 	css_task_iter_end(&it);
2075 
2076 	/*
2077 	 * All the tasks' nodemasks have been updated, update
2078 	 * cs->old_mems_allowed.
2079 	 */
2080 	cs->old_mems_allowed = newmems;
2081 
2082 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2083 	cpuset_being_rebound = NULL;
2084 }
2085 
2086 /*
2087  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2088  * @cs: the cpuset to consider
2089  * @new_mems: a temp variable for calculating new effective_mems
2090  *
2091  * When configured nodemask is changed, the effective nodemasks of this cpuset
2092  * and all its descendants need to be updated.
2093  *
2094  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2095  *
2096  * Called with cpuset_mutex held
2097  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)2098 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2099 {
2100 	struct cpuset *cp;
2101 	struct cgroup_subsys_state *pos_css;
2102 
2103 	rcu_read_lock();
2104 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2105 		struct cpuset *parent = parent_cs(cp);
2106 
2107 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2108 
2109 		/*
2110 		 * If it becomes empty, inherit the effective mask of the
2111 		 * parent, which is guaranteed to have some MEMs.
2112 		 */
2113 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2114 			*new_mems = parent->effective_mems;
2115 
2116 		/* Skip the whole subtree if the nodemask remains the same. */
2117 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2118 			pos_css = css_rightmost_descendant(pos_css);
2119 			continue;
2120 		}
2121 
2122 		if (!css_tryget_online(&cp->css))
2123 			continue;
2124 		rcu_read_unlock();
2125 
2126 		spin_lock_irq(&callback_lock);
2127 		cp->effective_mems = *new_mems;
2128 		spin_unlock_irq(&callback_lock);
2129 
2130 		WARN_ON(!is_in_v2_mode() &&
2131 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2132 
2133 		update_tasks_nodemask(cp);
2134 
2135 		rcu_read_lock();
2136 		css_put(&cp->css);
2137 	}
2138 	rcu_read_unlock();
2139 }
2140 
2141 /*
2142  * Handle user request to change the 'mems' memory placement
2143  * of a cpuset.  Needs to validate the request, update the
2144  * cpusets mems_allowed, and for each task in the cpuset,
2145  * update mems_allowed and rebind task's mempolicy and any vma
2146  * mempolicies and if the cpuset is marked 'memory_migrate',
2147  * migrate the tasks pages to the new memory.
2148  *
2149  * Call with cpuset_mutex held. May take callback_lock during call.
2150  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2151  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2152  * their mempolicies to the cpusets new mems_allowed.
2153  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)2154 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2155 			   const char *buf)
2156 {
2157 	int retval;
2158 
2159 	/*
2160 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2161 	 * it's read-only
2162 	 */
2163 	if (cs == &top_cpuset) {
2164 		retval = -EACCES;
2165 		goto done;
2166 	}
2167 
2168 	/*
2169 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2170 	 * Since nodelist_parse() fails on an empty mask, we special case
2171 	 * that parsing.  The validate_change() call ensures that cpusets
2172 	 * with tasks have memory.
2173 	 */
2174 	if (!*buf) {
2175 		nodes_clear(trialcs->mems_allowed);
2176 	} else {
2177 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2178 		if (retval < 0)
2179 			goto done;
2180 
2181 		if (!nodes_subset(trialcs->mems_allowed,
2182 				  top_cpuset.mems_allowed)) {
2183 			retval = -EINVAL;
2184 			goto done;
2185 		}
2186 	}
2187 
2188 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2189 		retval = 0;		/* Too easy - nothing to do */
2190 		goto done;
2191 	}
2192 	retval = validate_change(cs, trialcs);
2193 	if (retval < 0)
2194 		goto done;
2195 
2196 	check_insane_mems_config(&trialcs->mems_allowed);
2197 
2198 	spin_lock_irq(&callback_lock);
2199 	cs->mems_allowed = trialcs->mems_allowed;
2200 	spin_unlock_irq(&callback_lock);
2201 
2202 	/* use trialcs->mems_allowed as a temp variable */
2203 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2204 done:
2205 	return retval;
2206 }
2207 
current_cpuset_is_being_rebound(void)2208 bool current_cpuset_is_being_rebound(void)
2209 {
2210 	bool ret;
2211 
2212 	rcu_read_lock();
2213 	ret = task_cs(current) == cpuset_being_rebound;
2214 	rcu_read_unlock();
2215 
2216 	return ret;
2217 }
2218 
update_relax_domain_level(struct cpuset * cs,s64 val)2219 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2220 {
2221 #ifdef CONFIG_SMP
2222 	if (val < -1 || val >= sched_domain_level_max)
2223 		return -EINVAL;
2224 #endif
2225 
2226 	if (val != cs->relax_domain_level) {
2227 		cs->relax_domain_level = val;
2228 		if (!cpumask_empty(cs->cpus_allowed) &&
2229 		    is_sched_load_balance(cs))
2230 			rebuild_sched_domains_locked();
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2238  * @cs: the cpuset in which each task's spread flags needs to be changed
2239  *
2240  * Iterate through each task of @cs updating its spread flags.  As this
2241  * function is called with cpuset_mutex held, cpuset membership stays
2242  * stable.
2243  */
update_tasks_flags(struct cpuset * cs)2244 static void update_tasks_flags(struct cpuset *cs)
2245 {
2246 	struct css_task_iter it;
2247 	struct task_struct *task;
2248 
2249 	css_task_iter_start(&cs->css, 0, &it);
2250 	while ((task = css_task_iter_next(&it)))
2251 		cpuset_update_task_spread_flags(cs, task);
2252 	css_task_iter_end(&it);
2253 }
2254 
2255 /*
2256  * update_flag - read a 0 or a 1 in a file and update associated flag
2257  * bit:		the bit to update (see cpuset_flagbits_t)
2258  * cs:		the cpuset to update
2259  * turning_on: 	whether the flag is being set or cleared
2260  *
2261  * Call with cpuset_mutex held.
2262  */
2263 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2264 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2265 		       int turning_on)
2266 {
2267 	struct cpuset *trialcs;
2268 	int balance_flag_changed;
2269 	int spread_flag_changed;
2270 	int err;
2271 
2272 	trialcs = alloc_trial_cpuset(cs);
2273 	if (!trialcs)
2274 		return -ENOMEM;
2275 
2276 	if (turning_on)
2277 		set_bit(bit, &trialcs->flags);
2278 	else
2279 		clear_bit(bit, &trialcs->flags);
2280 
2281 	err = validate_change(cs, trialcs);
2282 	if (err < 0)
2283 		goto out;
2284 
2285 	balance_flag_changed = (is_sched_load_balance(cs) !=
2286 				is_sched_load_balance(trialcs));
2287 
2288 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2289 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2290 
2291 	spin_lock_irq(&callback_lock);
2292 	cs->flags = trialcs->flags;
2293 	spin_unlock_irq(&callback_lock);
2294 
2295 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2296 		rebuild_sched_domains_locked();
2297 
2298 	if (spread_flag_changed)
2299 		update_tasks_flags(cs);
2300 out:
2301 	free_cpuset(trialcs);
2302 	return err;
2303 }
2304 
2305 /**
2306  * update_prstate - update partition_root_state
2307  * @cs: the cpuset to update
2308  * @new_prs: new partition root state
2309  * Return: 0 if successful, != 0 if error
2310  *
2311  * Call with cpuset_mutex held.
2312  */
update_prstate(struct cpuset * cs,int new_prs)2313 static int update_prstate(struct cpuset *cs, int new_prs)
2314 {
2315 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2316 	struct cpuset *parent = parent_cs(cs);
2317 	struct tmpmasks tmpmask;
2318 
2319 	if (old_prs == new_prs)
2320 		return 0;
2321 
2322 	/*
2323 	 * For a previously invalid partition root, leave it at being
2324 	 * invalid if new_prs is not "member".
2325 	 */
2326 	if (new_prs && is_prs_invalid(old_prs)) {
2327 		cs->partition_root_state = -new_prs;
2328 		return 0;
2329 	}
2330 
2331 	if (alloc_cpumasks(NULL, &tmpmask))
2332 		return -ENOMEM;
2333 
2334 	err = update_partition_exclusive(cs, new_prs);
2335 	if (err)
2336 		goto out;
2337 
2338 	if (!old_prs) {
2339 		/*
2340 		 * cpus_allowed cannot be empty.
2341 		 */
2342 		if (cpumask_empty(cs->cpus_allowed)) {
2343 			err = PERR_CPUSEMPTY;
2344 			goto out;
2345 		}
2346 
2347 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2348 						     NULL, &tmpmask);
2349 	} else if (old_prs && new_prs) {
2350 		/*
2351 		 * A change in load balance state only, no change in cpumasks.
2352 		 */
2353 		;
2354 	} else {
2355 		/*
2356 		 * Switching back to member is always allowed even if it
2357 		 * disables child partitions.
2358 		 */
2359 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2360 					       &tmpmask);
2361 
2362 		/*
2363 		 * If there are child partitions, they will all become invalid.
2364 		 */
2365 		if (unlikely(cs->nr_subparts_cpus)) {
2366 			spin_lock_irq(&callback_lock);
2367 			cs->nr_subparts_cpus = 0;
2368 			cpumask_clear(cs->subparts_cpus);
2369 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2370 			spin_unlock_irq(&callback_lock);
2371 		}
2372 	}
2373 out:
2374 	/*
2375 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2376 	 * happens.
2377 	 */
2378 	if (err) {
2379 		new_prs = -new_prs;
2380 		update_partition_exclusive(cs, new_prs);
2381 	}
2382 
2383 	spin_lock_irq(&callback_lock);
2384 	cs->partition_root_state = new_prs;
2385 	WRITE_ONCE(cs->prs_err, err);
2386 	spin_unlock_irq(&callback_lock);
2387 
2388 	/*
2389 	 * Update child cpusets, if present.
2390 	 * Force update if switching back to member.
2391 	 */
2392 	if (!list_empty(&cs->css.children))
2393 		update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
2394 
2395 	/* Update sched domains and load balance flag */
2396 	update_partition_sd_lb(cs, old_prs);
2397 
2398 	notify_partition_change(cs, old_prs);
2399 	free_cpumasks(NULL, &tmpmask);
2400 	return 0;
2401 }
2402 
2403 /*
2404  * Frequency meter - How fast is some event occurring?
2405  *
2406  * These routines manage a digitally filtered, constant time based,
2407  * event frequency meter.  There are four routines:
2408  *   fmeter_init() - initialize a frequency meter.
2409  *   fmeter_markevent() - called each time the event happens.
2410  *   fmeter_getrate() - returns the recent rate of such events.
2411  *   fmeter_update() - internal routine used to update fmeter.
2412  *
2413  * A common data structure is passed to each of these routines,
2414  * which is used to keep track of the state required to manage the
2415  * frequency meter and its digital filter.
2416  *
2417  * The filter works on the number of events marked per unit time.
2418  * The filter is single-pole low-pass recursive (IIR).  The time unit
2419  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2420  * simulate 3 decimal digits of precision (multiplied by 1000).
2421  *
2422  * With an FM_COEF of 933, and a time base of 1 second, the filter
2423  * has a half-life of 10 seconds, meaning that if the events quit
2424  * happening, then the rate returned from the fmeter_getrate()
2425  * will be cut in half each 10 seconds, until it converges to zero.
2426  *
2427  * It is not worth doing a real infinitely recursive filter.  If more
2428  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2429  * just compute FM_MAXTICKS ticks worth, by which point the level
2430  * will be stable.
2431  *
2432  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2433  * arithmetic overflow in the fmeter_update() routine.
2434  *
2435  * Given the simple 32 bit integer arithmetic used, this meter works
2436  * best for reporting rates between one per millisecond (msec) and
2437  * one per 32 (approx) seconds.  At constant rates faster than one
2438  * per msec it maxes out at values just under 1,000,000.  At constant
2439  * rates between one per msec, and one per second it will stabilize
2440  * to a value N*1000, where N is the rate of events per second.
2441  * At constant rates between one per second and one per 32 seconds,
2442  * it will be choppy, moving up on the seconds that have an event,
2443  * and then decaying until the next event.  At rates slower than
2444  * about one in 32 seconds, it decays all the way back to zero between
2445  * each event.
2446  */
2447 
2448 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2449 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2450 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2451 #define FM_SCALE 1000		/* faux fixed point scale */
2452 
2453 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2454 static void fmeter_init(struct fmeter *fmp)
2455 {
2456 	fmp->cnt = 0;
2457 	fmp->val = 0;
2458 	fmp->time = 0;
2459 	spin_lock_init(&fmp->lock);
2460 }
2461 
2462 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2463 static void fmeter_update(struct fmeter *fmp)
2464 {
2465 	time64_t now;
2466 	u32 ticks;
2467 
2468 	now = ktime_get_seconds();
2469 	ticks = now - fmp->time;
2470 
2471 	if (ticks == 0)
2472 		return;
2473 
2474 	ticks = min(FM_MAXTICKS, ticks);
2475 	while (ticks-- > 0)
2476 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2477 	fmp->time = now;
2478 
2479 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2480 	fmp->cnt = 0;
2481 }
2482 
2483 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2484 static void fmeter_markevent(struct fmeter *fmp)
2485 {
2486 	spin_lock(&fmp->lock);
2487 	fmeter_update(fmp);
2488 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2489 	spin_unlock(&fmp->lock);
2490 }
2491 
2492 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2493 static int fmeter_getrate(struct fmeter *fmp)
2494 {
2495 	int val;
2496 
2497 	spin_lock(&fmp->lock);
2498 	fmeter_update(fmp);
2499 	val = fmp->val;
2500 	spin_unlock(&fmp->lock);
2501 	return val;
2502 }
2503 
2504 static struct cpuset *cpuset_attach_old_cs;
2505 
2506 /*
2507  * Check to see if a cpuset can accept a new task
2508  * For v1, cpus_allowed and mems_allowed can't be empty.
2509  * For v2, effective_cpus can't be empty.
2510  * Note that in v1, effective_cpus = cpus_allowed.
2511  */
cpuset_can_attach_check(struct cpuset * cs)2512 static int cpuset_can_attach_check(struct cpuset *cs)
2513 {
2514 	if (cpumask_empty(cs->effective_cpus) ||
2515 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2516 		return -ENOSPC;
2517 	return 0;
2518 }
2519 
reset_migrate_dl_data(struct cpuset * cs)2520 static void reset_migrate_dl_data(struct cpuset *cs)
2521 {
2522 	cs->nr_migrate_dl_tasks = 0;
2523 	cs->sum_migrate_dl_bw = 0;
2524 }
2525 
2526 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2527 static int cpuset_can_attach(struct cgroup_taskset *tset)
2528 {
2529 	struct cgroup_subsys_state *css;
2530 	struct cpuset *cs, *oldcs;
2531 	struct task_struct *task;
2532 	bool cpus_updated, mems_updated;
2533 	int ret;
2534 
2535 	/* used later by cpuset_attach() */
2536 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2537 	oldcs = cpuset_attach_old_cs;
2538 	cs = css_cs(css);
2539 
2540 	mutex_lock(&cpuset_mutex);
2541 
2542 	/* Check to see if task is allowed in the cpuset */
2543 	ret = cpuset_can_attach_check(cs);
2544 	if (ret)
2545 		goto out_unlock;
2546 
2547 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2548 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2549 
2550 	cgroup_taskset_for_each(task, css, tset) {
2551 		ret = task_can_attach(task);
2552 		if (ret)
2553 			goto out_unlock;
2554 
2555 		/*
2556 		 * Skip rights over task check in v2 when nothing changes,
2557 		 * migration permission derives from hierarchy ownership in
2558 		 * cgroup_procs_write_permission()).
2559 		 */
2560 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2561 		    (cpus_updated || mems_updated)) {
2562 			ret = security_task_setscheduler(task);
2563 			if (ret)
2564 				goto out_unlock;
2565 		}
2566 
2567 		if (dl_task(task)) {
2568 			cs->nr_migrate_dl_tasks++;
2569 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2570 		}
2571 	}
2572 
2573 	if (!cs->nr_migrate_dl_tasks)
2574 		goto out_success;
2575 
2576 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2577 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2578 
2579 		if (unlikely(cpu >= nr_cpu_ids)) {
2580 			reset_migrate_dl_data(cs);
2581 			ret = -EINVAL;
2582 			goto out_unlock;
2583 		}
2584 
2585 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2586 		if (ret) {
2587 			reset_migrate_dl_data(cs);
2588 			goto out_unlock;
2589 		}
2590 	}
2591 
2592 out_success:
2593 	/*
2594 	 * Mark attach is in progress.  This makes validate_change() fail
2595 	 * changes which zero cpus/mems_allowed.
2596 	 */
2597 	cs->attach_in_progress++;
2598 out_unlock:
2599 	mutex_unlock(&cpuset_mutex);
2600 	return ret;
2601 }
2602 
cpuset_cancel_attach(struct cgroup_taskset * tset)2603 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2604 {
2605 	struct cgroup_subsys_state *css;
2606 	struct cpuset *cs;
2607 
2608 	cgroup_taskset_first(tset, &css);
2609 	cs = css_cs(css);
2610 
2611 	mutex_lock(&cpuset_mutex);
2612 	cs->attach_in_progress--;
2613 	if (!cs->attach_in_progress)
2614 		wake_up(&cpuset_attach_wq);
2615 
2616 	if (cs->nr_migrate_dl_tasks) {
2617 		int cpu = cpumask_any(cs->effective_cpus);
2618 
2619 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2620 		reset_migrate_dl_data(cs);
2621 	}
2622 
2623 	mutex_unlock(&cpuset_mutex);
2624 }
2625 
2626 /*
2627  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
2628  * but we can't allocate it dynamically there.  Define it global and
2629  * allocate from cpuset_init().
2630  */
2631 static cpumask_var_t cpus_attach;
2632 static nodemask_t cpuset_attach_nodemask_to;
2633 
cpuset_attach_task(struct cpuset * cs,struct task_struct * task)2634 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2635 {
2636 	lockdep_assert_held(&cpuset_mutex);
2637 
2638 	if (cs != &top_cpuset)
2639 		guarantee_online_cpus(task, cpus_attach);
2640 	else
2641 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2642 			       cs->subparts_cpus);
2643 	/*
2644 	 * can_attach beforehand should guarantee that this doesn't
2645 	 * fail.  TODO: have a better way to handle failure here
2646 	 */
2647 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2648 
2649 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2650 	cpuset_update_task_spread_flags(cs, task);
2651 }
2652 
cpuset_attach(struct cgroup_taskset * tset)2653 static void cpuset_attach(struct cgroup_taskset *tset)
2654 {
2655 	struct task_struct *task;
2656 	struct task_struct *leader;
2657 	struct cgroup_subsys_state *css;
2658 	struct cpuset *cs;
2659 	struct cpuset *oldcs = cpuset_attach_old_cs;
2660 	bool cpus_updated, mems_updated;
2661 
2662 	cgroup_taskset_first(tset, &css);
2663 	cs = css_cs(css);
2664 
2665 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2666 	mutex_lock(&cpuset_mutex);
2667 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2668 				      oldcs->effective_cpus);
2669 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2670 
2671 	/*
2672 	 * In the default hierarchy, enabling cpuset in the child cgroups
2673 	 * will trigger a number of cpuset_attach() calls with no change
2674 	 * in effective cpus and mems. In that case, we can optimize out
2675 	 * by skipping the task iteration and update.
2676 	 */
2677 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2678 	    !cpus_updated && !mems_updated) {
2679 		cpuset_attach_nodemask_to = cs->effective_mems;
2680 		goto out;
2681 	}
2682 
2683 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2684 
2685 	cgroup_taskset_for_each(task, css, tset)
2686 		cpuset_attach_task(cs, task);
2687 
2688 	/*
2689 	 * Change mm for all threadgroup leaders. This is expensive and may
2690 	 * sleep and should be moved outside migration path proper. Skip it
2691 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2692 	 * not set.
2693 	 */
2694 	cpuset_attach_nodemask_to = cs->effective_mems;
2695 	if (!is_memory_migrate(cs) && !mems_updated)
2696 		goto out;
2697 
2698 	cgroup_taskset_for_each_leader(leader, css, tset) {
2699 		struct mm_struct *mm = get_task_mm(leader);
2700 
2701 		if (mm) {
2702 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2703 
2704 			/*
2705 			 * old_mems_allowed is the same with mems_allowed
2706 			 * here, except if this task is being moved
2707 			 * automatically due to hotplug.  In that case
2708 			 * @mems_allowed has been updated and is empty, so
2709 			 * @old_mems_allowed is the right nodesets that we
2710 			 * migrate mm from.
2711 			 */
2712 			if (is_memory_migrate(cs))
2713 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2714 						  &cpuset_attach_nodemask_to);
2715 			else
2716 				mmput(mm);
2717 		}
2718 	}
2719 
2720 out:
2721 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2722 
2723 	if (cs->nr_migrate_dl_tasks) {
2724 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2725 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2726 		reset_migrate_dl_data(cs);
2727 	}
2728 
2729 	cs->attach_in_progress--;
2730 	if (!cs->attach_in_progress)
2731 		wake_up(&cpuset_attach_wq);
2732 
2733 	mutex_unlock(&cpuset_mutex);
2734 }
2735 
2736 /* The various types of files and directories in a cpuset file system */
2737 
2738 typedef enum {
2739 	FILE_MEMORY_MIGRATE,
2740 	FILE_CPULIST,
2741 	FILE_MEMLIST,
2742 	FILE_EFFECTIVE_CPULIST,
2743 	FILE_EFFECTIVE_MEMLIST,
2744 	FILE_SUBPARTS_CPULIST,
2745 	FILE_CPU_EXCLUSIVE,
2746 	FILE_MEM_EXCLUSIVE,
2747 	FILE_MEM_HARDWALL,
2748 	FILE_SCHED_LOAD_BALANCE,
2749 	FILE_PARTITION_ROOT,
2750 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2751 	FILE_MEMORY_PRESSURE_ENABLED,
2752 	FILE_MEMORY_PRESSURE,
2753 	FILE_SPREAD_PAGE,
2754 	FILE_SPREAD_SLAB,
2755 } cpuset_filetype_t;
2756 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2757 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2758 			    u64 val)
2759 {
2760 	struct cpuset *cs = css_cs(css);
2761 	cpuset_filetype_t type = cft->private;
2762 	int retval = 0;
2763 
2764 	cpus_read_lock();
2765 	mutex_lock(&cpuset_mutex);
2766 	if (!is_cpuset_online(cs)) {
2767 		retval = -ENODEV;
2768 		goto out_unlock;
2769 	}
2770 
2771 	switch (type) {
2772 	case FILE_CPU_EXCLUSIVE:
2773 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2774 		break;
2775 	case FILE_MEM_EXCLUSIVE:
2776 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2777 		break;
2778 	case FILE_MEM_HARDWALL:
2779 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2780 		break;
2781 	case FILE_SCHED_LOAD_BALANCE:
2782 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2783 		break;
2784 	case FILE_MEMORY_MIGRATE:
2785 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2786 		break;
2787 	case FILE_MEMORY_PRESSURE_ENABLED:
2788 		cpuset_memory_pressure_enabled = !!val;
2789 		break;
2790 	case FILE_SPREAD_PAGE:
2791 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2792 		break;
2793 	case FILE_SPREAD_SLAB:
2794 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2795 		break;
2796 	default:
2797 		retval = -EINVAL;
2798 		break;
2799 	}
2800 out_unlock:
2801 	mutex_unlock(&cpuset_mutex);
2802 	cpus_read_unlock();
2803 	return retval;
2804 }
2805 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2806 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2807 			    s64 val)
2808 {
2809 	struct cpuset *cs = css_cs(css);
2810 	cpuset_filetype_t type = cft->private;
2811 	int retval = -ENODEV;
2812 
2813 	cpus_read_lock();
2814 	mutex_lock(&cpuset_mutex);
2815 	if (!is_cpuset_online(cs))
2816 		goto out_unlock;
2817 
2818 	switch (type) {
2819 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2820 		retval = update_relax_domain_level(cs, val);
2821 		break;
2822 	default:
2823 		retval = -EINVAL;
2824 		break;
2825 	}
2826 out_unlock:
2827 	mutex_unlock(&cpuset_mutex);
2828 	cpus_read_unlock();
2829 	return retval;
2830 }
2831 
2832 /*
2833  * Common handling for a write to a "cpus" or "mems" file.
2834  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2835 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2836 				    char *buf, size_t nbytes, loff_t off)
2837 {
2838 	struct cpuset *cs = css_cs(of_css(of));
2839 	struct cpuset *trialcs;
2840 	int retval = -ENODEV;
2841 
2842 	buf = strstrip(buf);
2843 
2844 	/*
2845 	 * CPU or memory hotunplug may leave @cs w/o any execution
2846 	 * resources, in which case the hotplug code asynchronously updates
2847 	 * configuration and transfers all tasks to the nearest ancestor
2848 	 * which can execute.
2849 	 *
2850 	 * As writes to "cpus" or "mems" may restore @cs's execution
2851 	 * resources, wait for the previously scheduled operations before
2852 	 * proceeding, so that we don't end up keep removing tasks added
2853 	 * after execution capability is restored.
2854 	 *
2855 	 * cpuset_hotplug_work calls back into cgroup core via
2856 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2857 	 * operation like this one can lead to a deadlock through kernfs
2858 	 * active_ref protection.  Let's break the protection.  Losing the
2859 	 * protection is okay as we check whether @cs is online after
2860 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2861 	 * hierarchies.
2862 	 */
2863 	css_get(&cs->css);
2864 	kernfs_break_active_protection(of->kn);
2865 	flush_work(&cpuset_hotplug_work);
2866 
2867 	cpus_read_lock();
2868 	mutex_lock(&cpuset_mutex);
2869 	if (!is_cpuset_online(cs))
2870 		goto out_unlock;
2871 
2872 	trialcs = alloc_trial_cpuset(cs);
2873 	if (!trialcs) {
2874 		retval = -ENOMEM;
2875 		goto out_unlock;
2876 	}
2877 
2878 	switch (of_cft(of)->private) {
2879 	case FILE_CPULIST:
2880 		retval = update_cpumask(cs, trialcs, buf);
2881 		break;
2882 	case FILE_MEMLIST:
2883 		retval = update_nodemask(cs, trialcs, buf);
2884 		break;
2885 	default:
2886 		retval = -EINVAL;
2887 		break;
2888 	}
2889 
2890 	free_cpuset(trialcs);
2891 out_unlock:
2892 	mutex_unlock(&cpuset_mutex);
2893 	cpus_read_unlock();
2894 	kernfs_unbreak_active_protection(of->kn);
2895 	css_put(&cs->css);
2896 	flush_workqueue(cpuset_migrate_mm_wq);
2897 	return retval ?: nbytes;
2898 }
2899 
2900 /*
2901  * These ascii lists should be read in a single call, by using a user
2902  * buffer large enough to hold the entire map.  If read in smaller
2903  * chunks, there is no guarantee of atomicity.  Since the display format
2904  * used, list of ranges of sequential numbers, is variable length,
2905  * and since these maps can change value dynamically, one could read
2906  * gibberish by doing partial reads while a list was changing.
2907  */
cpuset_common_seq_show(struct seq_file * sf,void * v)2908 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2909 {
2910 	struct cpuset *cs = css_cs(seq_css(sf));
2911 	cpuset_filetype_t type = seq_cft(sf)->private;
2912 	int ret = 0;
2913 
2914 	spin_lock_irq(&callback_lock);
2915 
2916 	switch (type) {
2917 	case FILE_CPULIST:
2918 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2919 		break;
2920 	case FILE_MEMLIST:
2921 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2922 		break;
2923 	case FILE_EFFECTIVE_CPULIST:
2924 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2925 		break;
2926 	case FILE_EFFECTIVE_MEMLIST:
2927 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2928 		break;
2929 	case FILE_SUBPARTS_CPULIST:
2930 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2931 		break;
2932 	default:
2933 		ret = -EINVAL;
2934 	}
2935 
2936 	spin_unlock_irq(&callback_lock);
2937 	return ret;
2938 }
2939 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2940 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2941 {
2942 	struct cpuset *cs = css_cs(css);
2943 	cpuset_filetype_t type = cft->private;
2944 	switch (type) {
2945 	case FILE_CPU_EXCLUSIVE:
2946 		return is_cpu_exclusive(cs);
2947 	case FILE_MEM_EXCLUSIVE:
2948 		return is_mem_exclusive(cs);
2949 	case FILE_MEM_HARDWALL:
2950 		return is_mem_hardwall(cs);
2951 	case FILE_SCHED_LOAD_BALANCE:
2952 		return is_sched_load_balance(cs);
2953 	case FILE_MEMORY_MIGRATE:
2954 		return is_memory_migrate(cs);
2955 	case FILE_MEMORY_PRESSURE_ENABLED:
2956 		return cpuset_memory_pressure_enabled;
2957 	case FILE_MEMORY_PRESSURE:
2958 		return fmeter_getrate(&cs->fmeter);
2959 	case FILE_SPREAD_PAGE:
2960 		return is_spread_page(cs);
2961 	case FILE_SPREAD_SLAB:
2962 		return is_spread_slab(cs);
2963 	default:
2964 		BUG();
2965 	}
2966 
2967 	/* Unreachable but makes gcc happy */
2968 	return 0;
2969 }
2970 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2971 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2972 {
2973 	struct cpuset *cs = css_cs(css);
2974 	cpuset_filetype_t type = cft->private;
2975 	switch (type) {
2976 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2977 		return cs->relax_domain_level;
2978 	default:
2979 		BUG();
2980 	}
2981 
2982 	/* Unreachable but makes gcc happy */
2983 	return 0;
2984 }
2985 
sched_partition_show(struct seq_file * seq,void * v)2986 static int sched_partition_show(struct seq_file *seq, void *v)
2987 {
2988 	struct cpuset *cs = css_cs(seq_css(seq));
2989 	const char *err, *type = NULL;
2990 
2991 	switch (cs->partition_root_state) {
2992 	case PRS_ROOT:
2993 		seq_puts(seq, "root\n");
2994 		break;
2995 	case PRS_ISOLATED:
2996 		seq_puts(seq, "isolated\n");
2997 		break;
2998 	case PRS_MEMBER:
2999 		seq_puts(seq, "member\n");
3000 		break;
3001 	case PRS_INVALID_ROOT:
3002 		type = "root";
3003 		fallthrough;
3004 	case PRS_INVALID_ISOLATED:
3005 		if (!type)
3006 			type = "isolated";
3007 		err = perr_strings[READ_ONCE(cs->prs_err)];
3008 		if (err)
3009 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3010 		else
3011 			seq_printf(seq, "%s invalid\n", type);
3012 		break;
3013 	}
3014 	return 0;
3015 }
3016 
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3017 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3018 				     size_t nbytes, loff_t off)
3019 {
3020 	struct cpuset *cs = css_cs(of_css(of));
3021 	int val;
3022 	int retval = -ENODEV;
3023 
3024 	buf = strstrip(buf);
3025 
3026 	/*
3027 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3028 	 */
3029 	if (!strcmp(buf, "root"))
3030 		val = PRS_ROOT;
3031 	else if (!strcmp(buf, "member"))
3032 		val = PRS_MEMBER;
3033 	else if (!strcmp(buf, "isolated"))
3034 		val = PRS_ISOLATED;
3035 	else
3036 		return -EINVAL;
3037 
3038 	css_get(&cs->css);
3039 	cpus_read_lock();
3040 	mutex_lock(&cpuset_mutex);
3041 	if (!is_cpuset_online(cs))
3042 		goto out_unlock;
3043 
3044 	retval = update_prstate(cs, val);
3045 out_unlock:
3046 	mutex_unlock(&cpuset_mutex);
3047 	cpus_read_unlock();
3048 	css_put(&cs->css);
3049 	return retval ?: nbytes;
3050 }
3051 
3052 /*
3053  * for the common functions, 'private' gives the type of file
3054  */
3055 
3056 static struct cftype legacy_files[] = {
3057 	{
3058 		.name = "cpus",
3059 		.seq_show = cpuset_common_seq_show,
3060 		.write = cpuset_write_resmask,
3061 		.max_write_len = (100U + 6 * NR_CPUS),
3062 		.private = FILE_CPULIST,
3063 	},
3064 
3065 	{
3066 		.name = "mems",
3067 		.seq_show = cpuset_common_seq_show,
3068 		.write = cpuset_write_resmask,
3069 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3070 		.private = FILE_MEMLIST,
3071 	},
3072 
3073 	{
3074 		.name = "effective_cpus",
3075 		.seq_show = cpuset_common_seq_show,
3076 		.private = FILE_EFFECTIVE_CPULIST,
3077 	},
3078 
3079 	{
3080 		.name = "effective_mems",
3081 		.seq_show = cpuset_common_seq_show,
3082 		.private = FILE_EFFECTIVE_MEMLIST,
3083 	},
3084 
3085 	{
3086 		.name = "cpu_exclusive",
3087 		.read_u64 = cpuset_read_u64,
3088 		.write_u64 = cpuset_write_u64,
3089 		.private = FILE_CPU_EXCLUSIVE,
3090 	},
3091 
3092 	{
3093 		.name = "mem_exclusive",
3094 		.read_u64 = cpuset_read_u64,
3095 		.write_u64 = cpuset_write_u64,
3096 		.private = FILE_MEM_EXCLUSIVE,
3097 	},
3098 
3099 	{
3100 		.name = "mem_hardwall",
3101 		.read_u64 = cpuset_read_u64,
3102 		.write_u64 = cpuset_write_u64,
3103 		.private = FILE_MEM_HARDWALL,
3104 	},
3105 
3106 	{
3107 		.name = "sched_load_balance",
3108 		.read_u64 = cpuset_read_u64,
3109 		.write_u64 = cpuset_write_u64,
3110 		.private = FILE_SCHED_LOAD_BALANCE,
3111 	},
3112 
3113 	{
3114 		.name = "sched_relax_domain_level",
3115 		.read_s64 = cpuset_read_s64,
3116 		.write_s64 = cpuset_write_s64,
3117 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3118 	},
3119 
3120 	{
3121 		.name = "memory_migrate",
3122 		.read_u64 = cpuset_read_u64,
3123 		.write_u64 = cpuset_write_u64,
3124 		.private = FILE_MEMORY_MIGRATE,
3125 	},
3126 
3127 	{
3128 		.name = "memory_pressure",
3129 		.read_u64 = cpuset_read_u64,
3130 		.private = FILE_MEMORY_PRESSURE,
3131 	},
3132 
3133 	{
3134 		.name = "memory_spread_page",
3135 		.read_u64 = cpuset_read_u64,
3136 		.write_u64 = cpuset_write_u64,
3137 		.private = FILE_SPREAD_PAGE,
3138 	},
3139 
3140 	{
3141 		.name = "memory_spread_slab",
3142 		.read_u64 = cpuset_read_u64,
3143 		.write_u64 = cpuset_write_u64,
3144 		.private = FILE_SPREAD_SLAB,
3145 	},
3146 
3147 	{
3148 		.name = "memory_pressure_enabled",
3149 		.flags = CFTYPE_ONLY_ON_ROOT,
3150 		.read_u64 = cpuset_read_u64,
3151 		.write_u64 = cpuset_write_u64,
3152 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3153 	},
3154 
3155 	{ }	/* terminate */
3156 };
3157 
3158 /*
3159  * This is currently a minimal set for the default hierarchy. It can be
3160  * expanded later on by migrating more features and control files from v1.
3161  */
3162 static struct cftype dfl_files[] = {
3163 	{
3164 		.name = "cpus",
3165 		.seq_show = cpuset_common_seq_show,
3166 		.write = cpuset_write_resmask,
3167 		.max_write_len = (100U + 6 * NR_CPUS),
3168 		.private = FILE_CPULIST,
3169 		.flags = CFTYPE_NOT_ON_ROOT,
3170 	},
3171 
3172 	{
3173 		.name = "mems",
3174 		.seq_show = cpuset_common_seq_show,
3175 		.write = cpuset_write_resmask,
3176 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3177 		.private = FILE_MEMLIST,
3178 		.flags = CFTYPE_NOT_ON_ROOT,
3179 	},
3180 
3181 	{
3182 		.name = "cpus.effective",
3183 		.seq_show = cpuset_common_seq_show,
3184 		.private = FILE_EFFECTIVE_CPULIST,
3185 	},
3186 
3187 	{
3188 		.name = "mems.effective",
3189 		.seq_show = cpuset_common_seq_show,
3190 		.private = FILE_EFFECTIVE_MEMLIST,
3191 	},
3192 
3193 	{
3194 		.name = "cpus.partition",
3195 		.seq_show = sched_partition_show,
3196 		.write = sched_partition_write,
3197 		.private = FILE_PARTITION_ROOT,
3198 		.flags = CFTYPE_NOT_ON_ROOT,
3199 		.file_offset = offsetof(struct cpuset, partition_file),
3200 	},
3201 
3202 	{
3203 		.name = "cpus.subpartitions",
3204 		.seq_show = cpuset_common_seq_show,
3205 		.private = FILE_SUBPARTS_CPULIST,
3206 		.flags = CFTYPE_DEBUG,
3207 	},
3208 
3209 	{ }	/* terminate */
3210 };
3211 
3212 
3213 /**
3214  * cpuset_css_alloc - Allocate a cpuset css
3215  * @parent_css: Parent css of the control group that the new cpuset will be
3216  *              part of
3217  * Return: cpuset css on success, -ENOMEM on failure.
3218  *
3219  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3220  * top cpuset css otherwise.
3221  */
3222 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)3223 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3224 {
3225 	struct cpuset *cs;
3226 
3227 	if (!parent_css)
3228 		return &top_cpuset.css;
3229 
3230 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3231 	if (!cs)
3232 		return ERR_PTR(-ENOMEM);
3233 
3234 	if (alloc_cpumasks(cs, NULL)) {
3235 		kfree(cs);
3236 		return ERR_PTR(-ENOMEM);
3237 	}
3238 
3239 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3240 	nodes_clear(cs->mems_allowed);
3241 	nodes_clear(cs->effective_mems);
3242 	fmeter_init(&cs->fmeter);
3243 	cs->relax_domain_level = -1;
3244 
3245 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3246 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3247 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3248 
3249 	return &cs->css;
3250 }
3251 
cpuset_css_online(struct cgroup_subsys_state * css)3252 static int cpuset_css_online(struct cgroup_subsys_state *css)
3253 {
3254 	struct cpuset *cs = css_cs(css);
3255 	struct cpuset *parent = parent_cs(cs);
3256 	struct cpuset *tmp_cs;
3257 	struct cgroup_subsys_state *pos_css;
3258 
3259 	if (!parent)
3260 		return 0;
3261 
3262 	cpus_read_lock();
3263 	mutex_lock(&cpuset_mutex);
3264 
3265 	set_bit(CS_ONLINE, &cs->flags);
3266 	if (is_spread_page(parent))
3267 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3268 	if (is_spread_slab(parent))
3269 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3270 
3271 	cpuset_inc();
3272 
3273 	spin_lock_irq(&callback_lock);
3274 	if (is_in_v2_mode()) {
3275 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3276 		cs->effective_mems = parent->effective_mems;
3277 		cs->use_parent_ecpus = true;
3278 		parent->child_ecpus_count++;
3279 	}
3280 
3281 	/*
3282 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3283 	 */
3284 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3285 	    !is_sched_load_balance(parent))
3286 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3287 
3288 	spin_unlock_irq(&callback_lock);
3289 
3290 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3291 		goto out_unlock;
3292 
3293 	/*
3294 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3295 	 * set.  This flag handling is implemented in cgroup core for
3296 	 * historical reasons - the flag may be specified during mount.
3297 	 *
3298 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3299 	 * refuse to clone the configuration - thereby refusing the task to
3300 	 * be entered, and as a result refusing the sys_unshare() or
3301 	 * clone() which initiated it.  If this becomes a problem for some
3302 	 * users who wish to allow that scenario, then this could be
3303 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3304 	 * (and likewise for mems) to the new cgroup.
3305 	 */
3306 	rcu_read_lock();
3307 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3308 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3309 			rcu_read_unlock();
3310 			goto out_unlock;
3311 		}
3312 	}
3313 	rcu_read_unlock();
3314 
3315 	spin_lock_irq(&callback_lock);
3316 	cs->mems_allowed = parent->mems_allowed;
3317 	cs->effective_mems = parent->mems_allowed;
3318 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3319 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3320 	spin_unlock_irq(&callback_lock);
3321 out_unlock:
3322 	mutex_unlock(&cpuset_mutex);
3323 	cpus_read_unlock();
3324 	return 0;
3325 }
3326 
3327 /*
3328  * If the cpuset being removed has its flag 'sched_load_balance'
3329  * enabled, then simulate turning sched_load_balance off, which
3330  * will call rebuild_sched_domains_locked(). That is not needed
3331  * in the default hierarchy where only changes in partition
3332  * will cause repartitioning.
3333  *
3334  * If the cpuset has the 'sched.partition' flag enabled, simulate
3335  * turning 'sched.partition" off.
3336  */
3337 
cpuset_css_offline(struct cgroup_subsys_state * css)3338 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3339 {
3340 	struct cpuset *cs = css_cs(css);
3341 
3342 	cpus_read_lock();
3343 	mutex_lock(&cpuset_mutex);
3344 
3345 	if (is_partition_valid(cs))
3346 		update_prstate(cs, 0);
3347 
3348 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3349 	    is_sched_load_balance(cs))
3350 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3351 
3352 	if (cs->use_parent_ecpus) {
3353 		struct cpuset *parent = parent_cs(cs);
3354 
3355 		cs->use_parent_ecpus = false;
3356 		parent->child_ecpus_count--;
3357 	}
3358 
3359 	cpuset_dec();
3360 	clear_bit(CS_ONLINE, &cs->flags);
3361 
3362 	mutex_unlock(&cpuset_mutex);
3363 	cpus_read_unlock();
3364 }
3365 
cpuset_css_free(struct cgroup_subsys_state * css)3366 static void cpuset_css_free(struct cgroup_subsys_state *css)
3367 {
3368 	struct cpuset *cs = css_cs(css);
3369 
3370 	free_cpuset(cs);
3371 }
3372 
cpuset_bind(struct cgroup_subsys_state * root_css)3373 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3374 {
3375 	mutex_lock(&cpuset_mutex);
3376 	spin_lock_irq(&callback_lock);
3377 
3378 	if (is_in_v2_mode()) {
3379 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3380 		top_cpuset.mems_allowed = node_possible_map;
3381 	} else {
3382 		cpumask_copy(top_cpuset.cpus_allowed,
3383 			     top_cpuset.effective_cpus);
3384 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3385 	}
3386 
3387 	spin_unlock_irq(&callback_lock);
3388 	mutex_unlock(&cpuset_mutex);
3389 }
3390 
3391 /*
3392  * In case the child is cloned into a cpuset different from its parent,
3393  * additional checks are done to see if the move is allowed.
3394  */
cpuset_can_fork(struct task_struct * task,struct css_set * cset)3395 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3396 {
3397 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3398 	bool same_cs;
3399 	int ret;
3400 
3401 	rcu_read_lock();
3402 	same_cs = (cs == task_cs(current));
3403 	rcu_read_unlock();
3404 
3405 	if (same_cs)
3406 		return 0;
3407 
3408 	lockdep_assert_held(&cgroup_mutex);
3409 	mutex_lock(&cpuset_mutex);
3410 
3411 	/* Check to see if task is allowed in the cpuset */
3412 	ret = cpuset_can_attach_check(cs);
3413 	if (ret)
3414 		goto out_unlock;
3415 
3416 	ret = task_can_attach(task);
3417 	if (ret)
3418 		goto out_unlock;
3419 
3420 	ret = security_task_setscheduler(task);
3421 	if (ret)
3422 		goto out_unlock;
3423 
3424 	/*
3425 	 * Mark attach is in progress.  This makes validate_change() fail
3426 	 * changes which zero cpus/mems_allowed.
3427 	 */
3428 	cs->attach_in_progress++;
3429 out_unlock:
3430 	mutex_unlock(&cpuset_mutex);
3431 	return ret;
3432 }
3433 
cpuset_cancel_fork(struct task_struct * task,struct css_set * cset)3434 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3435 {
3436 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3437 	bool same_cs;
3438 
3439 	rcu_read_lock();
3440 	same_cs = (cs == task_cs(current));
3441 	rcu_read_unlock();
3442 
3443 	if (same_cs)
3444 		return;
3445 
3446 	mutex_lock(&cpuset_mutex);
3447 	cs->attach_in_progress--;
3448 	if (!cs->attach_in_progress)
3449 		wake_up(&cpuset_attach_wq);
3450 	mutex_unlock(&cpuset_mutex);
3451 }
3452 
3453 /*
3454  * Make sure the new task conform to the current state of its parent,
3455  * which could have been changed by cpuset just after it inherits the
3456  * state from the parent and before it sits on the cgroup's task list.
3457  */
cpuset_fork(struct task_struct * task)3458 static void cpuset_fork(struct task_struct *task)
3459 {
3460 	struct cpuset *cs;
3461 	bool same_cs;
3462 
3463 	rcu_read_lock();
3464 	cs = task_cs(task);
3465 	same_cs = (cs == task_cs(current));
3466 	rcu_read_unlock();
3467 
3468 	if (same_cs) {
3469 		if (cs == &top_cpuset)
3470 			return;
3471 
3472 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3473 		task->mems_allowed = current->mems_allowed;
3474 		return;
3475 	}
3476 
3477 	/* CLONE_INTO_CGROUP */
3478 	mutex_lock(&cpuset_mutex);
3479 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3480 	cpuset_attach_task(cs, task);
3481 
3482 	cs->attach_in_progress--;
3483 	if (!cs->attach_in_progress)
3484 		wake_up(&cpuset_attach_wq);
3485 
3486 	mutex_unlock(&cpuset_mutex);
3487 }
3488 
3489 struct cgroup_subsys cpuset_cgrp_subsys = {
3490 	.css_alloc	= cpuset_css_alloc,
3491 	.css_online	= cpuset_css_online,
3492 	.css_offline	= cpuset_css_offline,
3493 	.css_free	= cpuset_css_free,
3494 	.can_attach	= cpuset_can_attach,
3495 	.cancel_attach	= cpuset_cancel_attach,
3496 	.attach		= cpuset_attach,
3497 	.post_attach	= cpuset_post_attach,
3498 	.bind		= cpuset_bind,
3499 	.can_fork	= cpuset_can_fork,
3500 	.cancel_fork	= cpuset_cancel_fork,
3501 	.fork		= cpuset_fork,
3502 	.legacy_cftypes	= legacy_files,
3503 	.dfl_cftypes	= dfl_files,
3504 	.early_init	= true,
3505 	.threaded	= true,
3506 };
3507 
3508 /**
3509  * cpuset_init - initialize cpusets at system boot
3510  *
3511  * Description: Initialize top_cpuset
3512  **/
3513 
cpuset_init(void)3514 int __init cpuset_init(void)
3515 {
3516 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3517 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3518 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3519 
3520 	cpumask_setall(top_cpuset.cpus_allowed);
3521 	nodes_setall(top_cpuset.mems_allowed);
3522 	cpumask_setall(top_cpuset.effective_cpus);
3523 	nodes_setall(top_cpuset.effective_mems);
3524 
3525 	fmeter_init(&top_cpuset.fmeter);
3526 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3527 	top_cpuset.relax_domain_level = -1;
3528 
3529 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3536  * or memory nodes, we need to walk over the cpuset hierarchy,
3537  * removing that CPU or node from all cpusets.  If this removes the
3538  * last CPU or node from a cpuset, then move the tasks in the empty
3539  * cpuset to its next-highest non-empty parent.
3540  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3541 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3542 {
3543 	struct cpuset *parent;
3544 
3545 	/*
3546 	 * Find its next-highest non-empty parent, (top cpuset
3547 	 * has online cpus, so can't be empty).
3548 	 */
3549 	parent = parent_cs(cs);
3550 	while (cpumask_empty(parent->cpus_allowed) ||
3551 			nodes_empty(parent->mems_allowed))
3552 		parent = parent_cs(parent);
3553 
3554 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3555 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3556 		pr_cont_cgroup_name(cs->css.cgroup);
3557 		pr_cont("\n");
3558 	}
3559 }
3560 
3561 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3562 hotplug_update_tasks_legacy(struct cpuset *cs,
3563 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3564 			    bool cpus_updated, bool mems_updated)
3565 {
3566 	bool is_empty;
3567 
3568 	spin_lock_irq(&callback_lock);
3569 	cpumask_copy(cs->cpus_allowed, new_cpus);
3570 	cpumask_copy(cs->effective_cpus, new_cpus);
3571 	cs->mems_allowed = *new_mems;
3572 	cs->effective_mems = *new_mems;
3573 	spin_unlock_irq(&callback_lock);
3574 
3575 	/*
3576 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3577 	 * as the tasks will be migrated to an ancestor.
3578 	 */
3579 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3580 		update_tasks_cpumask(cs, new_cpus);
3581 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3582 		update_tasks_nodemask(cs);
3583 
3584 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3585 		   nodes_empty(cs->mems_allowed);
3586 
3587 	/*
3588 	 * Move tasks to the nearest ancestor with execution resources,
3589 	 * This is full cgroup operation which will also call back into
3590 	 * cpuset. Should be done outside any lock.
3591 	 */
3592 	if (is_empty) {
3593 		mutex_unlock(&cpuset_mutex);
3594 		remove_tasks_in_empty_cpuset(cs);
3595 		mutex_lock(&cpuset_mutex);
3596 	}
3597 }
3598 
3599 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3600 hotplug_update_tasks(struct cpuset *cs,
3601 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3602 		     bool cpus_updated, bool mems_updated)
3603 {
3604 	/* A partition root is allowed to have empty effective cpus */
3605 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3606 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3607 	if (nodes_empty(*new_mems))
3608 		*new_mems = parent_cs(cs)->effective_mems;
3609 
3610 	spin_lock_irq(&callback_lock);
3611 	cpumask_copy(cs->effective_cpus, new_cpus);
3612 	cs->effective_mems = *new_mems;
3613 	spin_unlock_irq(&callback_lock);
3614 
3615 	if (cpus_updated)
3616 		update_tasks_cpumask(cs, new_cpus);
3617 	if (mems_updated)
3618 		update_tasks_nodemask(cs);
3619 }
3620 
3621 static bool force_rebuild;
3622 
cpuset_force_rebuild(void)3623 void cpuset_force_rebuild(void)
3624 {
3625 	force_rebuild = true;
3626 }
3627 
3628 /**
3629  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3630  * @cs: cpuset in interest
3631  * @tmp: the tmpmasks structure pointer
3632  *
3633  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3634  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3635  * all its tasks are moved to the nearest ancestor with both resources.
3636  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3637 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3638 {
3639 	static cpumask_t new_cpus;
3640 	static nodemask_t new_mems;
3641 	bool cpus_updated;
3642 	bool mems_updated;
3643 	struct cpuset *parent;
3644 retry:
3645 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3646 
3647 	mutex_lock(&cpuset_mutex);
3648 
3649 	/*
3650 	 * We have raced with task attaching. We wait until attaching
3651 	 * is finished, so we won't attach a task to an empty cpuset.
3652 	 */
3653 	if (cs->attach_in_progress) {
3654 		mutex_unlock(&cpuset_mutex);
3655 		goto retry;
3656 	}
3657 
3658 	parent = parent_cs(cs);
3659 	compute_effective_cpumask(&new_cpus, cs, parent);
3660 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3661 
3662 	if (cs->nr_subparts_cpus)
3663 		/*
3664 		 * Make sure that CPUs allocated to child partitions
3665 		 * do not show up in effective_cpus.
3666 		 */
3667 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3668 
3669 	if (!tmp || !cs->partition_root_state)
3670 		goto update_tasks;
3671 
3672 	/*
3673 	 * In the unlikely event that a partition root has empty
3674 	 * effective_cpus with tasks, we will have to invalidate child
3675 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3676 	 * reclaim their cpus.
3677 	 */
3678 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3679 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3680 		spin_lock_irq(&callback_lock);
3681 		cs->nr_subparts_cpus = 0;
3682 		cpumask_clear(cs->subparts_cpus);
3683 		spin_unlock_irq(&callback_lock);
3684 		compute_effective_cpumask(&new_cpus, cs, parent);
3685 	}
3686 
3687 	/*
3688 	 * Force the partition to become invalid if either one of
3689 	 * the following conditions hold:
3690 	 * 1) empty effective cpus but not valid empty partition.
3691 	 * 2) parent is invalid or doesn't grant any cpus to child
3692 	 *    partitions.
3693 	 */
3694 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3695 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3696 		int old_prs, parent_prs;
3697 
3698 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3699 		if (cs->nr_subparts_cpus) {
3700 			spin_lock_irq(&callback_lock);
3701 			cs->nr_subparts_cpus = 0;
3702 			cpumask_clear(cs->subparts_cpus);
3703 			spin_unlock_irq(&callback_lock);
3704 			compute_effective_cpumask(&new_cpus, cs, parent);
3705 		}
3706 
3707 		old_prs = cs->partition_root_state;
3708 		parent_prs = parent->partition_root_state;
3709 		if (is_partition_valid(cs)) {
3710 			spin_lock_irq(&callback_lock);
3711 			make_partition_invalid(cs);
3712 			spin_unlock_irq(&callback_lock);
3713 			if (is_prs_invalid(parent_prs))
3714 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3715 			else if (!parent_prs)
3716 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3717 			else
3718 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3719 			notify_partition_change(cs, old_prs);
3720 		}
3721 		cpuset_force_rebuild();
3722 	}
3723 
3724 	/*
3725 	 * On the other hand, an invalid partition root may be transitioned
3726 	 * back to a regular one.
3727 	 */
3728 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3729 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3730 		if (is_partition_valid(cs))
3731 			cpuset_force_rebuild();
3732 	}
3733 
3734 update_tasks:
3735 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3736 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3737 	if (!cpus_updated && !mems_updated)
3738 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3739 
3740 	if (mems_updated)
3741 		check_insane_mems_config(&new_mems);
3742 
3743 	if (is_in_v2_mode())
3744 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3745 				     cpus_updated, mems_updated);
3746 	else
3747 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3748 					    cpus_updated, mems_updated);
3749 
3750 unlock:
3751 	mutex_unlock(&cpuset_mutex);
3752 }
3753 
3754 /**
3755  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3756  * @work: unused
3757  *
3758  * This function is called after either CPU or memory configuration has
3759  * changed and updates cpuset accordingly.  The top_cpuset is always
3760  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3761  * order to make cpusets transparent (of no affect) on systems that are
3762  * actively using CPU hotplug but making no active use of cpusets.
3763  *
3764  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3765  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3766  * all descendants.
3767  *
3768  * Note that CPU offlining during suspend is ignored.  We don't modify
3769  * cpusets across suspend/resume cycles at all.
3770  */
cpuset_hotplug_workfn(struct work_struct * work)3771 static void cpuset_hotplug_workfn(struct work_struct *work)
3772 {
3773 	static cpumask_t new_cpus;
3774 	static nodemask_t new_mems;
3775 	bool cpus_updated, mems_updated;
3776 	bool on_dfl = is_in_v2_mode();
3777 	struct tmpmasks tmp, *ptmp = NULL;
3778 
3779 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3780 		ptmp = &tmp;
3781 
3782 	mutex_lock(&cpuset_mutex);
3783 
3784 	/* fetch the available cpus/mems and find out which changed how */
3785 	cpumask_copy(&new_cpus, cpu_active_mask);
3786 	new_mems = node_states[N_MEMORY];
3787 
3788 	/*
3789 	 * If subparts_cpus is populated, it is likely that the check below
3790 	 * will produce a false positive on cpus_updated when the cpu list
3791 	 * isn't changed. It is extra work, but it is better to be safe.
3792 	 */
3793 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3794 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3795 
3796 	/*
3797 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3798 	 * we assumed that cpus are updated.
3799 	 */
3800 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3801 		cpus_updated = true;
3802 
3803 	/* synchronize cpus_allowed to cpu_active_mask */
3804 	if (cpus_updated) {
3805 		spin_lock_irq(&callback_lock);
3806 		if (!on_dfl)
3807 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3808 		/*
3809 		 * Make sure that CPUs allocated to child partitions
3810 		 * do not show up in effective_cpus. If no CPU is left,
3811 		 * we clear the subparts_cpus & let the child partitions
3812 		 * fight for the CPUs again.
3813 		 */
3814 		if (top_cpuset.nr_subparts_cpus) {
3815 			if (cpumask_subset(&new_cpus,
3816 					   top_cpuset.subparts_cpus)) {
3817 				top_cpuset.nr_subparts_cpus = 0;
3818 				cpumask_clear(top_cpuset.subparts_cpus);
3819 			} else {
3820 				cpumask_andnot(&new_cpus, &new_cpus,
3821 					       top_cpuset.subparts_cpus);
3822 			}
3823 		}
3824 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3825 		spin_unlock_irq(&callback_lock);
3826 		/* we don't mess with cpumasks of tasks in top_cpuset */
3827 	}
3828 
3829 	/* synchronize mems_allowed to N_MEMORY */
3830 	if (mems_updated) {
3831 		spin_lock_irq(&callback_lock);
3832 		if (!on_dfl)
3833 			top_cpuset.mems_allowed = new_mems;
3834 		top_cpuset.effective_mems = new_mems;
3835 		spin_unlock_irq(&callback_lock);
3836 		update_tasks_nodemask(&top_cpuset);
3837 	}
3838 
3839 	mutex_unlock(&cpuset_mutex);
3840 
3841 	/* if cpus or mems changed, we need to propagate to descendants */
3842 	if (cpus_updated || mems_updated) {
3843 		struct cpuset *cs;
3844 		struct cgroup_subsys_state *pos_css;
3845 
3846 		rcu_read_lock();
3847 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3848 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3849 				continue;
3850 			rcu_read_unlock();
3851 
3852 			cpuset_hotplug_update_tasks(cs, ptmp);
3853 
3854 			rcu_read_lock();
3855 			css_put(&cs->css);
3856 		}
3857 		rcu_read_unlock();
3858 	}
3859 
3860 	/* rebuild sched domains if cpus_allowed has changed */
3861 	if (cpus_updated || force_rebuild) {
3862 		force_rebuild = false;
3863 		rebuild_sched_domains();
3864 	}
3865 
3866 	free_cpumasks(NULL, ptmp);
3867 }
3868 
cpuset_update_active_cpus(void)3869 void cpuset_update_active_cpus(void)
3870 {
3871 	/*
3872 	 * We're inside cpu hotplug critical region which usually nests
3873 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3874 	 * to a work item to avoid reverse locking order.
3875 	 */
3876 	schedule_work(&cpuset_hotplug_work);
3877 }
3878 
cpuset_wait_for_hotplug(void)3879 void cpuset_wait_for_hotplug(void)
3880 {
3881 	flush_work(&cpuset_hotplug_work);
3882 }
3883 
3884 /*
3885  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3886  * Call this routine anytime after node_states[N_MEMORY] changes.
3887  * See cpuset_update_active_cpus() for CPU hotplug handling.
3888  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3889 static int cpuset_track_online_nodes(struct notifier_block *self,
3890 				unsigned long action, void *arg)
3891 {
3892 	schedule_work(&cpuset_hotplug_work);
3893 	return NOTIFY_OK;
3894 }
3895 
3896 /**
3897  * cpuset_init_smp - initialize cpus_allowed
3898  *
3899  * Description: Finish top cpuset after cpu, node maps are initialized
3900  */
cpuset_init_smp(void)3901 void __init cpuset_init_smp(void)
3902 {
3903 	/*
3904 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3905 	 * cpuset_bind() call will be reset to v1 values in another
3906 	 * cpuset_bind() call when v1 cpuset is mounted.
3907 	 */
3908 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3909 
3910 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3911 	top_cpuset.effective_mems = node_states[N_MEMORY];
3912 
3913 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3914 
3915 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3916 	BUG_ON(!cpuset_migrate_mm_wq);
3917 }
3918 
3919 /**
3920  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3921  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3922  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3923  *
3924  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3925  * attached to the specified @tsk.  Guaranteed to return some non-empty
3926  * subset of cpu_online_mask, even if this means going outside the
3927  * tasks cpuset, except when the task is in the top cpuset.
3928  **/
3929 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3930 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3931 {
3932 	unsigned long flags;
3933 	struct cpuset *cs;
3934 
3935 	spin_lock_irqsave(&callback_lock, flags);
3936 	rcu_read_lock();
3937 
3938 	cs = task_cs(tsk);
3939 	if (cs != &top_cpuset)
3940 		guarantee_online_cpus(tsk, pmask);
3941 	/*
3942 	 * Tasks in the top cpuset won't get update to their cpumasks
3943 	 * when a hotplug online/offline event happens. So we include all
3944 	 * offline cpus in the allowed cpu list.
3945 	 */
3946 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3947 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3948 
3949 		/*
3950 		 * We first exclude cpus allocated to partitions. If there is no
3951 		 * allowable online cpu left, we fall back to all possible cpus.
3952 		 */
3953 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3954 		if (!cpumask_intersects(pmask, cpu_online_mask))
3955 			cpumask_copy(pmask, possible_mask);
3956 	}
3957 
3958 	rcu_read_unlock();
3959 	spin_unlock_irqrestore(&callback_lock, flags);
3960 }
3961 
3962 /**
3963  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3964  * @tsk: pointer to task_struct with which the scheduler is struggling
3965  *
3966  * Description: In the case that the scheduler cannot find an allowed cpu in
3967  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3968  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3969  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3970  * This is the absolute last resort for the scheduler and it is only used if
3971  * _every_ other avenue has been traveled.
3972  *
3973  * Returns true if the affinity of @tsk was changed, false otherwise.
3974  **/
3975 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3976 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3977 {
3978 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3979 	const struct cpumask *cs_mask;
3980 	bool changed = false;
3981 
3982 	rcu_read_lock();
3983 	cs_mask = task_cs(tsk)->cpus_allowed;
3984 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3985 		do_set_cpus_allowed(tsk, cs_mask);
3986 		changed = true;
3987 	}
3988 	rcu_read_unlock();
3989 
3990 	/*
3991 	 * We own tsk->cpus_allowed, nobody can change it under us.
3992 	 *
3993 	 * But we used cs && cs->cpus_allowed lockless and thus can
3994 	 * race with cgroup_attach_task() or update_cpumask() and get
3995 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3996 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3997 	 * which takes task_rq_lock().
3998 	 *
3999 	 * If we are called after it dropped the lock we must see all
4000 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4001 	 * set any mask even if it is not right from task_cs() pov,
4002 	 * the pending set_cpus_allowed_ptr() will fix things.
4003 	 *
4004 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4005 	 * if required.
4006 	 */
4007 	return changed;
4008 }
4009 
cpuset_init_current_mems_allowed(void)4010 void __init cpuset_init_current_mems_allowed(void)
4011 {
4012 	nodes_setall(current->mems_allowed);
4013 }
4014 
4015 /**
4016  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4017  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4018  *
4019  * Description: Returns the nodemask_t mems_allowed of the cpuset
4020  * attached to the specified @tsk.  Guaranteed to return some non-empty
4021  * subset of node_states[N_MEMORY], even if this means going outside the
4022  * tasks cpuset.
4023  **/
4024 
cpuset_mems_allowed(struct task_struct * tsk)4025 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4026 {
4027 	nodemask_t mask;
4028 	unsigned long flags;
4029 
4030 	spin_lock_irqsave(&callback_lock, flags);
4031 	rcu_read_lock();
4032 	guarantee_online_mems(task_cs(tsk), &mask);
4033 	rcu_read_unlock();
4034 	spin_unlock_irqrestore(&callback_lock, flags);
4035 
4036 	return mask;
4037 }
4038 
4039 /**
4040  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4041  * @nodemask: the nodemask to be checked
4042  *
4043  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4044  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)4045 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4046 {
4047 	return nodes_intersects(*nodemask, current->mems_allowed);
4048 }
4049 
4050 /*
4051  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4052  * mem_hardwall ancestor to the specified cpuset.  Call holding
4053  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4054  * (an unusual configuration), then returns the root cpuset.
4055  */
nearest_hardwall_ancestor(struct cpuset * cs)4056 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4057 {
4058 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4059 		cs = parent_cs(cs);
4060 	return cs;
4061 }
4062 
4063 /*
4064  * cpuset_node_allowed - Can we allocate on a memory node?
4065  * @node: is this an allowed node?
4066  * @gfp_mask: memory allocation flags
4067  *
4068  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4069  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4070  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4071  * yes.  If current has access to memory reserves as an oom victim, yes.
4072  * Otherwise, no.
4073  *
4074  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4075  * and do not allow allocations outside the current tasks cpuset
4076  * unless the task has been OOM killed.
4077  * GFP_KERNEL allocations are not so marked, so can escape to the
4078  * nearest enclosing hardwalled ancestor cpuset.
4079  *
4080  * Scanning up parent cpusets requires callback_lock.  The
4081  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4082  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4083  * current tasks mems_allowed came up empty on the first pass over
4084  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4085  * cpuset are short of memory, might require taking the callback_lock.
4086  *
4087  * The first call here from mm/page_alloc:get_page_from_freelist()
4088  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4089  * so no allocation on a node outside the cpuset is allowed (unless
4090  * in interrupt, of course).
4091  *
4092  * The second pass through get_page_from_freelist() doesn't even call
4093  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4094  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4095  * in alloc_flags.  That logic and the checks below have the combined
4096  * affect that:
4097  *	in_interrupt - any node ok (current task context irrelevant)
4098  *	GFP_ATOMIC   - any node ok
4099  *	tsk_is_oom_victim   - any node ok
4100  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4101  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4102  */
cpuset_node_allowed(int node,gfp_t gfp_mask)4103 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4104 {
4105 	struct cpuset *cs;		/* current cpuset ancestors */
4106 	bool allowed;			/* is allocation in zone z allowed? */
4107 	unsigned long flags;
4108 
4109 	if (in_interrupt())
4110 		return true;
4111 	if (node_isset(node, current->mems_allowed))
4112 		return true;
4113 	/*
4114 	 * Allow tasks that have access to memory reserves because they have
4115 	 * been OOM killed to get memory anywhere.
4116 	 */
4117 	if (unlikely(tsk_is_oom_victim(current)))
4118 		return true;
4119 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4120 		return false;
4121 
4122 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4123 		return true;
4124 
4125 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4126 	spin_lock_irqsave(&callback_lock, flags);
4127 
4128 	rcu_read_lock();
4129 	cs = nearest_hardwall_ancestor(task_cs(current));
4130 	allowed = node_isset(node, cs->mems_allowed);
4131 	rcu_read_unlock();
4132 
4133 	spin_unlock_irqrestore(&callback_lock, flags);
4134 	return allowed;
4135 }
4136 
4137 /**
4138  * cpuset_spread_node() - On which node to begin search for a page
4139  * @rotor: round robin rotor
4140  *
4141  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4142  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4143  * and if the memory allocation used cpuset_mem_spread_node()
4144  * to determine on which node to start looking, as it will for
4145  * certain page cache or slab cache pages such as used for file
4146  * system buffers and inode caches, then instead of starting on the
4147  * local node to look for a free page, rather spread the starting
4148  * node around the tasks mems_allowed nodes.
4149  *
4150  * We don't have to worry about the returned node being offline
4151  * because "it can't happen", and even if it did, it would be ok.
4152  *
4153  * The routines calling guarantee_online_mems() are careful to
4154  * only set nodes in task->mems_allowed that are online.  So it
4155  * should not be possible for the following code to return an
4156  * offline node.  But if it did, that would be ok, as this routine
4157  * is not returning the node where the allocation must be, only
4158  * the node where the search should start.  The zonelist passed to
4159  * __alloc_pages() will include all nodes.  If the slab allocator
4160  * is passed an offline node, it will fall back to the local node.
4161  * See kmem_cache_alloc_node().
4162  */
cpuset_spread_node(int * rotor)4163 static int cpuset_spread_node(int *rotor)
4164 {
4165 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4166 }
4167 
4168 /**
4169  * cpuset_mem_spread_node() - On which node to begin search for a file page
4170  */
cpuset_mem_spread_node(void)4171 int cpuset_mem_spread_node(void)
4172 {
4173 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4174 		current->cpuset_mem_spread_rotor =
4175 			node_random(&current->mems_allowed);
4176 
4177 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4178 }
4179 
4180 /**
4181  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4182  */
cpuset_slab_spread_node(void)4183 int cpuset_slab_spread_node(void)
4184 {
4185 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4186 		current->cpuset_slab_spread_rotor =
4187 			node_random(&current->mems_allowed);
4188 
4189 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4190 }
4191 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4192 
4193 /**
4194  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4195  * @tsk1: pointer to task_struct of some task.
4196  * @tsk2: pointer to task_struct of some other task.
4197  *
4198  * Description: Return true if @tsk1's mems_allowed intersects the
4199  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4200  * one of the task's memory usage might impact the memory available
4201  * to the other.
4202  **/
4203 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)4204 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4205 				   const struct task_struct *tsk2)
4206 {
4207 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4208 }
4209 
4210 /**
4211  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4212  *
4213  * Description: Prints current's name, cpuset name, and cached copy of its
4214  * mems_allowed to the kernel log.
4215  */
cpuset_print_current_mems_allowed(void)4216 void cpuset_print_current_mems_allowed(void)
4217 {
4218 	struct cgroup *cgrp;
4219 
4220 	rcu_read_lock();
4221 
4222 	cgrp = task_cs(current)->css.cgroup;
4223 	pr_cont(",cpuset=");
4224 	pr_cont_cgroup_name(cgrp);
4225 	pr_cont(",mems_allowed=%*pbl",
4226 		nodemask_pr_args(&current->mems_allowed));
4227 
4228 	rcu_read_unlock();
4229 }
4230 
4231 /*
4232  * Collection of memory_pressure is suppressed unless
4233  * this flag is enabled by writing "1" to the special
4234  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4235  */
4236 
4237 int cpuset_memory_pressure_enabled __read_mostly;
4238 
4239 /*
4240  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4241  *
4242  * Keep a running average of the rate of synchronous (direct)
4243  * page reclaim efforts initiated by tasks in each cpuset.
4244  *
4245  * This represents the rate at which some task in the cpuset
4246  * ran low on memory on all nodes it was allowed to use, and
4247  * had to enter the kernels page reclaim code in an effort to
4248  * create more free memory by tossing clean pages or swapping
4249  * or writing dirty pages.
4250  *
4251  * Display to user space in the per-cpuset read-only file
4252  * "memory_pressure".  Value displayed is an integer
4253  * representing the recent rate of entry into the synchronous
4254  * (direct) page reclaim by any task attached to the cpuset.
4255  */
4256 
__cpuset_memory_pressure_bump(void)4257 void __cpuset_memory_pressure_bump(void)
4258 {
4259 	rcu_read_lock();
4260 	fmeter_markevent(&task_cs(current)->fmeter);
4261 	rcu_read_unlock();
4262 }
4263 
4264 #ifdef CONFIG_PROC_PID_CPUSET
4265 /*
4266  * proc_cpuset_show()
4267  *  - Print tasks cpuset path into seq_file.
4268  *  - Used for /proc/<pid>/cpuset.
4269  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4270  *    doesn't really matter if tsk->cpuset changes after we read it,
4271  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4272  *    anyway.
4273  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)4274 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4275 		     struct pid *pid, struct task_struct *tsk)
4276 {
4277 	char *buf;
4278 	struct cgroup_subsys_state *css;
4279 	int retval;
4280 
4281 	retval = -ENOMEM;
4282 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4283 	if (!buf)
4284 		goto out;
4285 
4286 	css = task_get_css(tsk, cpuset_cgrp_id);
4287 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4288 				current->nsproxy->cgroup_ns);
4289 	css_put(css);
4290 	if (retval >= PATH_MAX)
4291 		retval = -ENAMETOOLONG;
4292 	if (retval < 0)
4293 		goto out_free;
4294 	seq_puts(m, buf);
4295 	seq_putc(m, '\n');
4296 	retval = 0;
4297 out_free:
4298 	kfree(buf);
4299 out:
4300 	return retval;
4301 }
4302 #endif /* CONFIG_PROC_PID_CPUSET */
4303 
4304 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)4305 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4306 {
4307 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4308 		   nodemask_pr_args(&task->mems_allowed));
4309 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4310 		   nodemask_pr_args(&task->mems_allowed));
4311 }
4312