1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69
70 /* See "Frequency meter" comments, below. */
71
72 struct fmeter {
73 int cnt; /* unprocessed events count */
74 int val; /* most recent output value */
75 time64_t time; /* clock (secs) when val computed */
76 spinlock_t lock; /* guards read or write of above */
77 };
78
79 struct cpuset {
80 struct cgroup_subsys_state css;
81
82 unsigned long flags; /* "unsigned long" so bitops work */
83
84 /*
85 * On default hierarchy:
86 *
87 * The user-configured masks can only be changed by writing to
88 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 * parent masks.
90 *
91 * The effective masks is the real masks that apply to the tasks
92 * in the cpuset. They may be changed if the configured masks are
93 * changed or hotplug happens.
94 *
95 * effective_mask == configured_mask & parent's effective_mask,
96 * and if it ends up empty, it will inherit the parent's mask.
97 *
98 *
99 * On legacy hierachy:
100 *
101 * The user-configured masks are always the same with effective masks.
102 */
103
104 /* user-configured CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t cpus_allowed;
106 nodemask_t mems_allowed;
107
108 /* effective CPUs and Memory Nodes allow to tasks */
109 cpumask_var_t effective_cpus;
110 nodemask_t effective_mems;
111
112 /*
113 * This is old Memory Nodes tasks took on.
114 *
115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
116 * - A new cpuset's old_mems_allowed is initialized when some
117 * task is moved into it.
118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
119 * cpuset.mems_allowed and have tasks' nodemask updated, and
120 * then old_mems_allowed is updated to mems_allowed.
121 */
122 nodemask_t old_mems_allowed;
123
124 struct fmeter fmeter; /* memory_pressure filter */
125
126 /*
127 * Tasks are being attached to this cpuset. Used to prevent
128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 */
130 int attach_in_progress;
131
132 /* partition number for rebuild_sched_domains() */
133 int pn;
134
135 /* for custom sched domain */
136 int relax_domain_level;
137 };
138
css_cs(struct cgroup_subsys_state * css)139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140 {
141 return css ? container_of(css, struct cpuset, css) : NULL;
142 }
143
144 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)145 static inline struct cpuset *task_cs(struct task_struct *task)
146 {
147 return css_cs(task_css(task, cpuset_cgrp_id));
148 }
149
parent_cs(struct cpuset * cs)150 static inline struct cpuset *parent_cs(struct cpuset *cs)
151 {
152 return css_cs(cs->css.parent);
153 }
154
155 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)156 static inline bool task_has_mempolicy(struct task_struct *task)
157 {
158 return task->mempolicy;
159 }
160 #else
task_has_mempolicy(struct task_struct * task)161 static inline bool task_has_mempolicy(struct task_struct *task)
162 {
163 return false;
164 }
165 #endif
166
167
168 /* bits in struct cpuset flags field */
169 typedef enum {
170 CS_ONLINE,
171 CS_CPU_EXCLUSIVE,
172 CS_MEM_EXCLUSIVE,
173 CS_MEM_HARDWALL,
174 CS_MEMORY_MIGRATE,
175 CS_SCHED_LOAD_BALANCE,
176 CS_SPREAD_PAGE,
177 CS_SPREAD_SLAB,
178 } cpuset_flagbits_t;
179
180 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)181 static inline bool is_cpuset_online(struct cpuset *cs)
182 {
183 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
184 }
185
is_cpu_exclusive(const struct cpuset * cs)186 static inline int is_cpu_exclusive(const struct cpuset *cs)
187 {
188 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
189 }
190
is_mem_exclusive(const struct cpuset * cs)191 static inline int is_mem_exclusive(const struct cpuset *cs)
192 {
193 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
194 }
195
is_mem_hardwall(const struct cpuset * cs)196 static inline int is_mem_hardwall(const struct cpuset *cs)
197 {
198 return test_bit(CS_MEM_HARDWALL, &cs->flags);
199 }
200
is_sched_load_balance(const struct cpuset * cs)201 static inline int is_sched_load_balance(const struct cpuset *cs)
202 {
203 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
204 }
205
is_memory_migrate(const struct cpuset * cs)206 static inline int is_memory_migrate(const struct cpuset *cs)
207 {
208 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 }
210
is_spread_page(const struct cpuset * cs)211 static inline int is_spread_page(const struct cpuset *cs)
212 {
213 return test_bit(CS_SPREAD_PAGE, &cs->flags);
214 }
215
is_spread_slab(const struct cpuset * cs)216 static inline int is_spread_slab(const struct cpuset *cs)
217 {
218 return test_bit(CS_SPREAD_SLAB, &cs->flags);
219 }
220
221 static struct cpuset top_cpuset = {
222 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
223 (1 << CS_MEM_EXCLUSIVE)),
224 };
225
226 /**
227 * cpuset_for_each_child - traverse online children of a cpuset
228 * @child_cs: loop cursor pointing to the current child
229 * @pos_css: used for iteration
230 * @parent_cs: target cpuset to walk children of
231 *
232 * Walk @child_cs through the online children of @parent_cs. Must be used
233 * with RCU read locked.
234 */
235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
236 css_for_each_child((pos_css), &(parent_cs)->css) \
237 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238
239 /**
240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
241 * @des_cs: loop cursor pointing to the current descendant
242 * @pos_css: used for iteration
243 * @root_cs: target cpuset to walk ancestor of
244 *
245 * Walk @des_cs through the online descendants of @root_cs. Must be used
246 * with RCU read locked. The caller may modify @pos_css by calling
247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
248 * iteration and the first node to be visited.
249 */
250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
252 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253
254 /*
255 * There are two global locks guarding cpuset structures - cpuset_mutex and
256 * callback_lock. We also require taking task_lock() when dereferencing a
257 * task's cpuset pointer. See "The task_lock() exception", at the end of this
258 * comment.
259 *
260 * A task must hold both locks to modify cpusets. If a task holds
261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262 * is the only task able to also acquire callback_lock and be able to
263 * modify cpusets. It can perform various checks on the cpuset structure
264 * first, knowing nothing will change. It can also allocate memory while
265 * just holding cpuset_mutex. While it is performing these checks, various
266 * callback routines can briefly acquire callback_lock to query cpusets.
267 * Once it is ready to make the changes, it takes callback_lock, blocking
268 * everyone else.
269 *
270 * Calls to the kernel memory allocator can not be made while holding
271 * callback_lock, as that would risk double tripping on callback_lock
272 * from one of the callbacks into the cpuset code from within
273 * __alloc_pages().
274 *
275 * If a task is only holding callback_lock, then it has read-only
276 * access to cpusets.
277 *
278 * Now, the task_struct fields mems_allowed and mempolicy may be changed
279 * by other task, we use alloc_lock in the task_struct fields to protect
280 * them.
281 *
282 * The cpuset_common_file_read() handlers only hold callback_lock across
283 * small pieces of code, such as when reading out possibly multi-word
284 * cpumasks and nodemasks.
285 *
286 * Accessing a task's cpuset should be done in accordance with the
287 * guidelines for accessing subsystem state in kernel/cgroup.c
288 */
289
290 static DEFINE_MUTEX(cpuset_mutex);
291 static DEFINE_SPINLOCK(callback_lock);
292
293 static struct workqueue_struct *cpuset_migrate_mm_wq;
294
295 /*
296 * CPU / memory hotplug is handled asynchronously.
297 */
298 static void cpuset_hotplug_workfn(struct work_struct *work);
299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
300
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302
303 /*
304 * Cgroup v2 behavior is used when on default hierarchy or the
305 * cgroup_v2_mode flag is set.
306 */
is_in_v2_mode(void)307 static inline bool is_in_v2_mode(void)
308 {
309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
310 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
311 }
312
313 /*
314 * This is ugly, but preserves the userspace API for existing cpuset
315 * users. If someone tries to mount the "cpuset" filesystem, we
316 * silently switch it to mount "cgroup" instead
317 */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)318 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
319 int flags, const char *unused_dev_name, void *data)
320 {
321 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
322 struct dentry *ret = ERR_PTR(-ENODEV);
323 if (cgroup_fs) {
324 char mountopts[] =
325 "cpuset,noprefix,"
326 "release_agent=/sbin/cpuset_release_agent";
327 ret = cgroup_fs->mount(cgroup_fs, flags,
328 unused_dev_name, mountopts);
329 put_filesystem(cgroup_fs);
330 }
331 return ret;
332 }
333
334 static struct file_system_type cpuset_fs_type = {
335 .name = "cpuset",
336 .mount = cpuset_mount,
337 };
338
339 /*
340 * Return in pmask the portion of a cpusets's cpus_allowed that
341 * are online. If none are online, walk up the cpuset hierarchy
342 * until we find one that does have some online cpus.
343 *
344 * One way or another, we guarantee to return some non-empty subset
345 * of cpu_online_mask.
346 *
347 * Call with callback_lock or cpuset_mutex held.
348 */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
350 {
351 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
352 cs = parent_cs(cs);
353 if (unlikely(!cs)) {
354 /*
355 * The top cpuset doesn't have any online cpu as a
356 * consequence of a race between cpuset_hotplug_work
357 * and cpu hotplug notifier. But we know the top
358 * cpuset's effective_cpus is on its way to to be
359 * identical to cpu_online_mask.
360 */
361 cpumask_copy(pmask, cpu_online_mask);
362 return;
363 }
364 }
365 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
366 }
367
368 /*
369 * Return in *pmask the portion of a cpusets's mems_allowed that
370 * are online, with memory. If none are online with memory, walk
371 * up the cpuset hierarchy until we find one that does have some
372 * online mems. The top cpuset always has some mems online.
373 *
374 * One way or another, we guarantee to return some non-empty subset
375 * of node_states[N_MEMORY].
376 *
377 * Call with callback_lock or cpuset_mutex held.
378 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
380 {
381 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
382 cs = parent_cs(cs);
383 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
384 }
385
386 /*
387 * update task's spread flag if cpuset's page/slab spread flag is set
388 *
389 * Call with callback_lock or cpuset_mutex held.
390 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)391 static void cpuset_update_task_spread_flag(struct cpuset *cs,
392 struct task_struct *tsk)
393 {
394 if (is_spread_page(cs))
395 task_set_spread_page(tsk);
396 else
397 task_clear_spread_page(tsk);
398
399 if (is_spread_slab(cs))
400 task_set_spread_slab(tsk);
401 else
402 task_clear_spread_slab(tsk);
403 }
404
405 /*
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407 *
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
410 * are only set if the other's are set. Call holding cpuset_mutex.
411 */
412
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414 {
415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
416 nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 is_mem_exclusive(p) <= is_mem_exclusive(q);
419 }
420
421 /**
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
424 */
alloc_trial_cpuset(struct cpuset * cs)425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426 {
427 struct cpuset *trial;
428
429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 if (!trial)
431 return NULL;
432
433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
434 goto free_cs;
435 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
436 goto free_cpus;
437
438 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
439 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440 return trial;
441
442 free_cpus:
443 free_cpumask_var(trial->cpus_allowed);
444 free_cs:
445 kfree(trial);
446 return NULL;
447 }
448
449 /**
450 * free_trial_cpuset - free the trial cpuset
451 * @trial: the trial cpuset to be freed
452 */
free_trial_cpuset(struct cpuset * trial)453 static void free_trial_cpuset(struct cpuset *trial)
454 {
455 free_cpumask_var(trial->effective_cpus);
456 free_cpumask_var(trial->cpus_allowed);
457 kfree(trial);
458 }
459
460 /*
461 * validate_change() - Used to validate that any proposed cpuset change
462 * follows the structural rules for cpusets.
463 *
464 * If we replaced the flag and mask values of the current cpuset
465 * (cur) with those values in the trial cpuset (trial), would
466 * our various subset and exclusive rules still be valid? Presumes
467 * cpuset_mutex held.
468 *
469 * 'cur' is the address of an actual, in-use cpuset. Operations
470 * such as list traversal that depend on the actual address of the
471 * cpuset in the list must use cur below, not trial.
472 *
473 * 'trial' is the address of bulk structure copy of cur, with
474 * perhaps one or more of the fields cpus_allowed, mems_allowed,
475 * or flags changed to new, trial values.
476 *
477 * Return 0 if valid, -errno if not.
478 */
479
validate_change(struct cpuset * cur,struct cpuset * trial)480 static int validate_change(struct cpuset *cur, struct cpuset *trial)
481 {
482 struct cgroup_subsys_state *css;
483 struct cpuset *c, *par;
484 int ret;
485
486 rcu_read_lock();
487
488 /* Each of our child cpusets must be a subset of us */
489 ret = -EBUSY;
490 cpuset_for_each_child(c, css, cur)
491 if (!is_cpuset_subset(c, trial))
492 goto out;
493
494 /* Remaining checks don't apply to root cpuset */
495 ret = 0;
496 if (cur == &top_cpuset)
497 goto out;
498
499 par = parent_cs(cur);
500
501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
502 ret = -EACCES;
503 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504 goto out;
505
506 /*
507 * If either I or some sibling (!= me) is exclusive, we can't
508 * overlap
509 */
510 ret = -EINVAL;
511 cpuset_for_each_child(c, css, par) {
512 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
513 c != cur &&
514 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515 goto out;
516 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
517 c != cur &&
518 nodes_intersects(trial->mems_allowed, c->mems_allowed))
519 goto out;
520 }
521
522 /*
523 * Cpusets with tasks - existing or newly being attached - can't
524 * be changed to have empty cpus_allowed or mems_allowed.
525 */
526 ret = -ENOSPC;
527 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 if (!cpumask_empty(cur->cpus_allowed) &&
529 cpumask_empty(trial->cpus_allowed))
530 goto out;
531 if (!nodes_empty(cur->mems_allowed) &&
532 nodes_empty(trial->mems_allowed))
533 goto out;
534 }
535
536 /*
537 * We can't shrink if we won't have enough room for SCHED_DEADLINE
538 * tasks.
539 */
540 ret = -EBUSY;
541 if (is_cpu_exclusive(cur) &&
542 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
543 trial->cpus_allowed))
544 goto out;
545
546 ret = 0;
547 out:
548 rcu_read_unlock();
549 return ret;
550 }
551
552 #ifdef CONFIG_SMP
553 /*
554 * Helper routine for generate_sched_domains().
555 * Do cpusets a, b have overlapping effective cpus_allowed masks?
556 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
558 {
559 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
560 }
561
562 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
564 {
565 if (dattr->relax_domain_level < c->relax_domain_level)
566 dattr->relax_domain_level = c->relax_domain_level;
567 return;
568 }
569
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)570 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
571 struct cpuset *root_cs)
572 {
573 struct cpuset *cp;
574 struct cgroup_subsys_state *pos_css;
575
576 rcu_read_lock();
577 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 /* skip the whole subtree if @cp doesn't have any CPU */
579 if (cpumask_empty(cp->cpus_allowed)) {
580 pos_css = css_rightmost_descendant(pos_css);
581 continue;
582 }
583
584 if (is_sched_load_balance(cp))
585 update_domain_attr(dattr, cp);
586 }
587 rcu_read_unlock();
588 }
589
590 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)591 static inline int nr_cpusets(void)
592 {
593 /* jump label reference count + the top-level cpuset */
594 return static_key_count(&cpusets_enabled_key.key) + 1;
595 }
596
597 /*
598 * generate_sched_domains()
599 *
600 * This function builds a partial partition of the systems CPUs
601 * A 'partial partition' is a set of non-overlapping subsets whose
602 * union is a subset of that set.
603 * The output of this function needs to be passed to kernel/sched/core.c
604 * partition_sched_domains() routine, which will rebuild the scheduler's
605 * load balancing domains (sched domains) as specified by that partial
606 * partition.
607 *
608 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
609 * for a background explanation of this.
610 *
611 * Does not return errors, on the theory that the callers of this
612 * routine would rather not worry about failures to rebuild sched
613 * domains when operating in the severe memory shortage situations
614 * that could cause allocation failures below.
615 *
616 * Must be called with cpuset_mutex held.
617 *
618 * The three key local variables below are:
619 * q - a linked-list queue of cpuset pointers, used to implement a
620 * top-down scan of all cpusets. This scan loads a pointer
621 * to each cpuset marked is_sched_load_balance into the
622 * array 'csa'. For our purposes, rebuilding the schedulers
623 * sched domains, we can ignore !is_sched_load_balance cpusets.
624 * csa - (for CpuSet Array) Array of pointers to all the cpusets
625 * that need to be load balanced, for convenient iterative
626 * access by the subsequent code that finds the best partition,
627 * i.e the set of domains (subsets) of CPUs such that the
628 * cpus_allowed of every cpuset marked is_sched_load_balance
629 * is a subset of one of these domains, while there are as
630 * many such domains as possible, each as small as possible.
631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
632 * the kernel/sched/core.c routine partition_sched_domains() in a
633 * convenient format, that can be easily compared to the prior
634 * value to determine what partition elements (sched domains)
635 * were changed (added or removed.)
636 *
637 * Finding the best partition (set of domains):
638 * The triple nested loops below over i, j, k scan over the
639 * load balanced cpusets (using the array of cpuset pointers in
640 * csa[]) looking for pairs of cpusets that have overlapping
641 * cpus_allowed, but which don't have the same 'pn' partition
642 * number and gives them in the same partition number. It keeps
643 * looping on the 'restart' label until it can no longer find
644 * any such pairs.
645 *
646 * The union of the cpus_allowed masks from the set of
647 * all cpusets having the same 'pn' value then form the one
648 * element of the partition (one sched domain) to be passed to
649 * partition_sched_domains().
650 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)651 static int generate_sched_domains(cpumask_var_t **domains,
652 struct sched_domain_attr **attributes)
653 {
654 struct cpuset *cp; /* scans q */
655 struct cpuset **csa; /* array of all cpuset ptrs */
656 int csn; /* how many cpuset ptrs in csa so far */
657 int i, j, k; /* indices for partition finding loops */
658 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
659 struct sched_domain_attr *dattr; /* attributes for custom domains */
660 int ndoms = 0; /* number of sched domains in result */
661 int nslot; /* next empty doms[] struct cpumask slot */
662 struct cgroup_subsys_state *pos_css;
663
664 doms = NULL;
665 dattr = NULL;
666 csa = NULL;
667
668 /* Special case for the 99% of systems with one, full, sched domain */
669 if (is_sched_load_balance(&top_cpuset)) {
670 ndoms = 1;
671 doms = alloc_sched_domains(ndoms);
672 if (!doms)
673 goto done;
674
675 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
676 if (dattr) {
677 *dattr = SD_ATTR_INIT;
678 update_domain_attr_tree(dattr, &top_cpuset);
679 }
680 cpumask_and(doms[0], top_cpuset.effective_cpus,
681 housekeeping_cpumask(HK_FLAG_DOMAIN));
682
683 goto done;
684 }
685
686 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
687 if (!csa)
688 goto done;
689 csn = 0;
690
691 rcu_read_lock();
692 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
693 if (cp == &top_cpuset)
694 continue;
695 /*
696 * Continue traversing beyond @cp iff @cp has some CPUs and
697 * isn't load balancing. The former is obvious. The
698 * latter: All child cpusets contain a subset of the
699 * parent's cpus, so just skip them, and then we call
700 * update_domain_attr_tree() to calc relax_domain_level of
701 * the corresponding sched domain.
702 */
703 if (!cpumask_empty(cp->cpus_allowed) &&
704 !(is_sched_load_balance(cp) &&
705 cpumask_intersects(cp->cpus_allowed,
706 housekeeping_cpumask(HK_FLAG_DOMAIN))))
707 continue;
708
709 if (is_sched_load_balance(cp))
710 csa[csn++] = cp;
711
712 /* skip @cp's subtree */
713 pos_css = css_rightmost_descendant(pos_css);
714 }
715 rcu_read_unlock();
716
717 for (i = 0; i < csn; i++)
718 csa[i]->pn = i;
719 ndoms = csn;
720
721 restart:
722 /* Find the best partition (set of sched domains) */
723 for (i = 0; i < csn; i++) {
724 struct cpuset *a = csa[i];
725 int apn = a->pn;
726
727 for (j = 0; j < csn; j++) {
728 struct cpuset *b = csa[j];
729 int bpn = b->pn;
730
731 if (apn != bpn && cpusets_overlap(a, b)) {
732 for (k = 0; k < csn; k++) {
733 struct cpuset *c = csa[k];
734
735 if (c->pn == bpn)
736 c->pn = apn;
737 }
738 ndoms--; /* one less element */
739 goto restart;
740 }
741 }
742 }
743
744 /*
745 * Now we know how many domains to create.
746 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
747 */
748 doms = alloc_sched_domains(ndoms);
749 if (!doms)
750 goto done;
751
752 /*
753 * The rest of the code, including the scheduler, can deal with
754 * dattr==NULL case. No need to abort if alloc fails.
755 */
756 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
757 GFP_KERNEL);
758
759 for (nslot = 0, i = 0; i < csn; i++) {
760 struct cpuset *a = csa[i];
761 struct cpumask *dp;
762 int apn = a->pn;
763
764 if (apn < 0) {
765 /* Skip completed partitions */
766 continue;
767 }
768
769 dp = doms[nslot];
770
771 if (nslot == ndoms) {
772 static int warnings = 10;
773 if (warnings) {
774 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
775 nslot, ndoms, csn, i, apn);
776 warnings--;
777 }
778 continue;
779 }
780
781 cpumask_clear(dp);
782 if (dattr)
783 *(dattr + nslot) = SD_ATTR_INIT;
784 for (j = i; j < csn; j++) {
785 struct cpuset *b = csa[j];
786
787 if (apn == b->pn) {
788 cpumask_or(dp, dp, b->effective_cpus);
789 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
790 if (dattr)
791 update_domain_attr_tree(dattr + nslot, b);
792
793 /* Done with this partition */
794 b->pn = -1;
795 }
796 }
797 nslot++;
798 }
799 BUG_ON(nslot != ndoms);
800
801 done:
802 kfree(csa);
803
804 /*
805 * Fallback to the default domain if kmalloc() failed.
806 * See comments in partition_sched_domains().
807 */
808 if (doms == NULL)
809 ndoms = 1;
810
811 *domains = doms;
812 *attributes = dattr;
813 return ndoms;
814 }
815
816 /*
817 * Rebuild scheduler domains.
818 *
819 * If the flag 'sched_load_balance' of any cpuset with non-empty
820 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
821 * which has that flag enabled, or if any cpuset with a non-empty
822 * 'cpus' is removed, then call this routine to rebuild the
823 * scheduler's dynamic sched domains.
824 *
825 * Call with cpuset_mutex held. Takes get_online_cpus().
826 */
rebuild_sched_domains_locked(void)827 static void rebuild_sched_domains_locked(void)
828 {
829 struct sched_domain_attr *attr;
830 cpumask_var_t *doms;
831 int ndoms;
832
833 lockdep_assert_held(&cpuset_mutex);
834 get_online_cpus();
835
836 /*
837 * We have raced with CPU hotplug. Don't do anything to avoid
838 * passing doms with offlined cpu to partition_sched_domains().
839 * Anyways, hotplug work item will rebuild sched domains.
840 */
841 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
842 goto out;
843
844 /* Generate domain masks and attrs */
845 ndoms = generate_sched_domains(&doms, &attr);
846
847 /* Have scheduler rebuild the domains */
848 partition_sched_domains(ndoms, doms, attr);
849 out:
850 put_online_cpus();
851 }
852 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)853 static void rebuild_sched_domains_locked(void)
854 {
855 }
856 #endif /* CONFIG_SMP */
857
rebuild_sched_domains(void)858 void rebuild_sched_domains(void)
859 {
860 mutex_lock(&cpuset_mutex);
861 rebuild_sched_domains_locked();
862 mutex_unlock(&cpuset_mutex);
863 }
864
865 /**
866 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
867 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
868 *
869 * Iterate through each task of @cs updating its cpus_allowed to the
870 * effective cpuset's. As this function is called with cpuset_mutex held,
871 * cpuset membership stays stable.
872 */
update_tasks_cpumask(struct cpuset * cs)873 static void update_tasks_cpumask(struct cpuset *cs)
874 {
875 struct css_task_iter it;
876 struct task_struct *task;
877
878 css_task_iter_start(&cs->css, 0, &it);
879 while ((task = css_task_iter_next(&it)))
880 set_cpus_allowed_ptr(task, cs->effective_cpus);
881 css_task_iter_end(&it);
882 }
883
884 /*
885 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
886 * @cs: the cpuset to consider
887 * @new_cpus: temp variable for calculating new effective_cpus
888 *
889 * When congifured cpumask is changed, the effective cpumasks of this cpuset
890 * and all its descendants need to be updated.
891 *
892 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
893 *
894 * Called with cpuset_mutex held
895 */
update_cpumasks_hier(struct cpuset * cs,struct cpumask * new_cpus)896 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
897 {
898 struct cpuset *cp;
899 struct cgroup_subsys_state *pos_css;
900 bool need_rebuild_sched_domains = false;
901
902 rcu_read_lock();
903 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
904 struct cpuset *parent = parent_cs(cp);
905
906 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
907
908 /*
909 * If it becomes empty, inherit the effective mask of the
910 * parent, which is guaranteed to have some CPUs.
911 */
912 if (is_in_v2_mode() && cpumask_empty(new_cpus))
913 cpumask_copy(new_cpus, parent->effective_cpus);
914
915 /* Skip the whole subtree if the cpumask remains the same. */
916 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
917 pos_css = css_rightmost_descendant(pos_css);
918 continue;
919 }
920
921 if (!css_tryget_online(&cp->css))
922 continue;
923 rcu_read_unlock();
924
925 spin_lock_irq(&callback_lock);
926 cpumask_copy(cp->effective_cpus, new_cpus);
927 spin_unlock_irq(&callback_lock);
928
929 WARN_ON(!is_in_v2_mode() &&
930 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
931
932 update_tasks_cpumask(cp);
933
934 /*
935 * If the effective cpumask of any non-empty cpuset is changed,
936 * we need to rebuild sched domains.
937 */
938 if (!cpumask_empty(cp->cpus_allowed) &&
939 is_sched_load_balance(cp))
940 need_rebuild_sched_domains = true;
941
942 rcu_read_lock();
943 css_put(&cp->css);
944 }
945 rcu_read_unlock();
946
947 if (need_rebuild_sched_domains)
948 rebuild_sched_domains_locked();
949 }
950
951 /**
952 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
953 * @cs: the cpuset to consider
954 * @trialcs: trial cpuset
955 * @buf: buffer of cpu numbers written to this cpuset
956 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)957 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
958 const char *buf)
959 {
960 int retval;
961
962 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
963 if (cs == &top_cpuset)
964 return -EACCES;
965
966 /*
967 * An empty cpus_allowed is ok only if the cpuset has no tasks.
968 * Since cpulist_parse() fails on an empty mask, we special case
969 * that parsing. The validate_change() call ensures that cpusets
970 * with tasks have cpus.
971 */
972 if (!*buf) {
973 cpumask_clear(trialcs->cpus_allowed);
974 } else {
975 retval = cpulist_parse(buf, trialcs->cpus_allowed);
976 if (retval < 0)
977 return retval;
978
979 if (!cpumask_subset(trialcs->cpus_allowed,
980 top_cpuset.cpus_allowed))
981 return -EINVAL;
982 }
983
984 /* Nothing to do if the cpus didn't change */
985 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
986 return 0;
987
988 retval = validate_change(cs, trialcs);
989 if (retval < 0)
990 return retval;
991
992 spin_lock_irq(&callback_lock);
993 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
994 spin_unlock_irq(&callback_lock);
995
996 /* use trialcs->cpus_allowed as a temp variable */
997 update_cpumasks_hier(cs, trialcs->cpus_allowed);
998 return 0;
999 }
1000
1001 /*
1002 * Migrate memory region from one set of nodes to another. This is
1003 * performed asynchronously as it can be called from process migration path
1004 * holding locks involved in process management. All mm migrations are
1005 * performed in the queued order and can be waited for by flushing
1006 * cpuset_migrate_mm_wq.
1007 */
1008
1009 struct cpuset_migrate_mm_work {
1010 struct work_struct work;
1011 struct mm_struct *mm;
1012 nodemask_t from;
1013 nodemask_t to;
1014 };
1015
cpuset_migrate_mm_workfn(struct work_struct * work)1016 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1017 {
1018 struct cpuset_migrate_mm_work *mwork =
1019 container_of(work, struct cpuset_migrate_mm_work, work);
1020
1021 /* on a wq worker, no need to worry about %current's mems_allowed */
1022 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1023 mmput(mwork->mm);
1024 kfree(mwork);
1025 }
1026
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1027 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1028 const nodemask_t *to)
1029 {
1030 struct cpuset_migrate_mm_work *mwork;
1031
1032 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1033 if (mwork) {
1034 mwork->mm = mm;
1035 mwork->from = *from;
1036 mwork->to = *to;
1037 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1038 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1039 } else {
1040 mmput(mm);
1041 }
1042 }
1043
cpuset_post_attach(void)1044 static void cpuset_post_attach(void)
1045 {
1046 flush_workqueue(cpuset_migrate_mm_wq);
1047 }
1048
1049 /*
1050 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1051 * @tsk: the task to change
1052 * @newmems: new nodes that the task will be set
1053 *
1054 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1055 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1056 * parallel, it might temporarily see an empty intersection, which results in
1057 * a seqlock check and retry before OOM or allocation failure.
1058 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1059 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1060 nodemask_t *newmems)
1061 {
1062 task_lock(tsk);
1063
1064 local_irq_disable();
1065 write_seqcount_begin(&tsk->mems_allowed_seq);
1066
1067 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1068 mpol_rebind_task(tsk, newmems);
1069 tsk->mems_allowed = *newmems;
1070
1071 write_seqcount_end(&tsk->mems_allowed_seq);
1072 local_irq_enable();
1073
1074 task_unlock(tsk);
1075 }
1076
1077 static void *cpuset_being_rebound;
1078
1079 /**
1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1082 *
1083 * Iterate through each task of @cs updating its mems_allowed to the
1084 * effective cpuset's. As this function is called with cpuset_mutex held,
1085 * cpuset membership stays stable.
1086 */
update_tasks_nodemask(struct cpuset * cs)1087 static void update_tasks_nodemask(struct cpuset *cs)
1088 {
1089 static nodemask_t newmems; /* protected by cpuset_mutex */
1090 struct css_task_iter it;
1091 struct task_struct *task;
1092
1093 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1094
1095 guarantee_online_mems(cs, &newmems);
1096
1097 /*
1098 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1099 * take while holding tasklist_lock. Forks can happen - the
1100 * mpol_dup() cpuset_being_rebound check will catch such forks,
1101 * and rebind their vma mempolicies too. Because we still hold
1102 * the global cpuset_mutex, we know that no other rebind effort
1103 * will be contending for the global variable cpuset_being_rebound.
1104 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105 * is idempotent. Also migrate pages in each mm to new nodes.
1106 */
1107 css_task_iter_start(&cs->css, 0, &it);
1108 while ((task = css_task_iter_next(&it))) {
1109 struct mm_struct *mm;
1110 bool migrate;
1111
1112 cpuset_change_task_nodemask(task, &newmems);
1113
1114 mm = get_task_mm(task);
1115 if (!mm)
1116 continue;
1117
1118 migrate = is_memory_migrate(cs);
1119
1120 mpol_rebind_mm(mm, &cs->mems_allowed);
1121 if (migrate)
1122 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1123 else
1124 mmput(mm);
1125 }
1126 css_task_iter_end(&it);
1127
1128 /*
1129 * All the tasks' nodemasks have been updated, update
1130 * cs->old_mems_allowed.
1131 */
1132 cs->old_mems_allowed = newmems;
1133
1134 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135 cpuset_being_rebound = NULL;
1136 }
1137
1138 /*
1139 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1140 * @cs: the cpuset to consider
1141 * @new_mems: a temp variable for calculating new effective_mems
1142 *
1143 * When configured nodemask is changed, the effective nodemasks of this cpuset
1144 * and all its descendants need to be updated.
1145 *
1146 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1147 *
1148 * Called with cpuset_mutex held
1149 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1150 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1151 {
1152 struct cpuset *cp;
1153 struct cgroup_subsys_state *pos_css;
1154
1155 rcu_read_lock();
1156 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1157 struct cpuset *parent = parent_cs(cp);
1158
1159 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1160
1161 /*
1162 * If it becomes empty, inherit the effective mask of the
1163 * parent, which is guaranteed to have some MEMs.
1164 */
1165 if (is_in_v2_mode() && nodes_empty(*new_mems))
1166 *new_mems = parent->effective_mems;
1167
1168 /* Skip the whole subtree if the nodemask remains the same. */
1169 if (nodes_equal(*new_mems, cp->effective_mems)) {
1170 pos_css = css_rightmost_descendant(pos_css);
1171 continue;
1172 }
1173
1174 if (!css_tryget_online(&cp->css))
1175 continue;
1176 rcu_read_unlock();
1177
1178 spin_lock_irq(&callback_lock);
1179 cp->effective_mems = *new_mems;
1180 spin_unlock_irq(&callback_lock);
1181
1182 WARN_ON(!is_in_v2_mode() &&
1183 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1184
1185 update_tasks_nodemask(cp);
1186
1187 rcu_read_lock();
1188 css_put(&cp->css);
1189 }
1190 rcu_read_unlock();
1191 }
1192
1193 /*
1194 * Handle user request to change the 'mems' memory placement
1195 * of a cpuset. Needs to validate the request, update the
1196 * cpusets mems_allowed, and for each task in the cpuset,
1197 * update mems_allowed and rebind task's mempolicy and any vma
1198 * mempolicies and if the cpuset is marked 'memory_migrate',
1199 * migrate the tasks pages to the new memory.
1200 *
1201 * Call with cpuset_mutex held. May take callback_lock during call.
1202 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1203 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1204 * their mempolicies to the cpusets new mems_allowed.
1205 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1206 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1207 const char *buf)
1208 {
1209 int retval;
1210
1211 /*
1212 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1213 * it's read-only
1214 */
1215 if (cs == &top_cpuset) {
1216 retval = -EACCES;
1217 goto done;
1218 }
1219
1220 /*
1221 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1222 * Since nodelist_parse() fails on an empty mask, we special case
1223 * that parsing. The validate_change() call ensures that cpusets
1224 * with tasks have memory.
1225 */
1226 if (!*buf) {
1227 nodes_clear(trialcs->mems_allowed);
1228 } else {
1229 retval = nodelist_parse(buf, trialcs->mems_allowed);
1230 if (retval < 0)
1231 goto done;
1232
1233 if (!nodes_subset(trialcs->mems_allowed,
1234 top_cpuset.mems_allowed)) {
1235 retval = -EINVAL;
1236 goto done;
1237 }
1238 }
1239
1240 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1241 retval = 0; /* Too easy - nothing to do */
1242 goto done;
1243 }
1244 retval = validate_change(cs, trialcs);
1245 if (retval < 0)
1246 goto done;
1247
1248 spin_lock_irq(&callback_lock);
1249 cs->mems_allowed = trialcs->mems_allowed;
1250 spin_unlock_irq(&callback_lock);
1251
1252 /* use trialcs->mems_allowed as a temp variable */
1253 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1254 done:
1255 return retval;
1256 }
1257
current_cpuset_is_being_rebound(void)1258 bool current_cpuset_is_being_rebound(void)
1259 {
1260 bool ret;
1261
1262 rcu_read_lock();
1263 ret = task_cs(current) == cpuset_being_rebound;
1264 rcu_read_unlock();
1265
1266 return ret;
1267 }
1268
update_relax_domain_level(struct cpuset * cs,s64 val)1269 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1270 {
1271 #ifdef CONFIG_SMP
1272 if (val < -1 || val >= sched_domain_level_max)
1273 return -EINVAL;
1274 #endif
1275
1276 if (val != cs->relax_domain_level) {
1277 cs->relax_domain_level = val;
1278 if (!cpumask_empty(cs->cpus_allowed) &&
1279 is_sched_load_balance(cs))
1280 rebuild_sched_domains_locked();
1281 }
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1288 * @cs: the cpuset in which each task's spread flags needs to be changed
1289 *
1290 * Iterate through each task of @cs updating its spread flags. As this
1291 * function is called with cpuset_mutex held, cpuset membership stays
1292 * stable.
1293 */
update_tasks_flags(struct cpuset * cs)1294 static void update_tasks_flags(struct cpuset *cs)
1295 {
1296 struct css_task_iter it;
1297 struct task_struct *task;
1298
1299 css_task_iter_start(&cs->css, 0, &it);
1300 while ((task = css_task_iter_next(&it)))
1301 cpuset_update_task_spread_flag(cs, task);
1302 css_task_iter_end(&it);
1303 }
1304
1305 /*
1306 * update_flag - read a 0 or a 1 in a file and update associated flag
1307 * bit: the bit to update (see cpuset_flagbits_t)
1308 * cs: the cpuset to update
1309 * turning_on: whether the flag is being set or cleared
1310 *
1311 * Call with cpuset_mutex held.
1312 */
1313
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1314 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1315 int turning_on)
1316 {
1317 struct cpuset *trialcs;
1318 int balance_flag_changed;
1319 int spread_flag_changed;
1320 int err;
1321
1322 trialcs = alloc_trial_cpuset(cs);
1323 if (!trialcs)
1324 return -ENOMEM;
1325
1326 if (turning_on)
1327 set_bit(bit, &trialcs->flags);
1328 else
1329 clear_bit(bit, &trialcs->flags);
1330
1331 err = validate_change(cs, trialcs);
1332 if (err < 0)
1333 goto out;
1334
1335 balance_flag_changed = (is_sched_load_balance(cs) !=
1336 is_sched_load_balance(trialcs));
1337
1338 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1339 || (is_spread_page(cs) != is_spread_page(trialcs)));
1340
1341 spin_lock_irq(&callback_lock);
1342 cs->flags = trialcs->flags;
1343 spin_unlock_irq(&callback_lock);
1344
1345 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1346 rebuild_sched_domains_locked();
1347
1348 if (spread_flag_changed)
1349 update_tasks_flags(cs);
1350 out:
1351 free_trial_cpuset(trialcs);
1352 return err;
1353 }
1354
1355 /*
1356 * Frequency meter - How fast is some event occurring?
1357 *
1358 * These routines manage a digitally filtered, constant time based,
1359 * event frequency meter. There are four routines:
1360 * fmeter_init() - initialize a frequency meter.
1361 * fmeter_markevent() - called each time the event happens.
1362 * fmeter_getrate() - returns the recent rate of such events.
1363 * fmeter_update() - internal routine used to update fmeter.
1364 *
1365 * A common data structure is passed to each of these routines,
1366 * which is used to keep track of the state required to manage the
1367 * frequency meter and its digital filter.
1368 *
1369 * The filter works on the number of events marked per unit time.
1370 * The filter is single-pole low-pass recursive (IIR). The time unit
1371 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1372 * simulate 3 decimal digits of precision (multiplied by 1000).
1373 *
1374 * With an FM_COEF of 933, and a time base of 1 second, the filter
1375 * has a half-life of 10 seconds, meaning that if the events quit
1376 * happening, then the rate returned from the fmeter_getrate()
1377 * will be cut in half each 10 seconds, until it converges to zero.
1378 *
1379 * It is not worth doing a real infinitely recursive filter. If more
1380 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1381 * just compute FM_MAXTICKS ticks worth, by which point the level
1382 * will be stable.
1383 *
1384 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1385 * arithmetic overflow in the fmeter_update() routine.
1386 *
1387 * Given the simple 32 bit integer arithmetic used, this meter works
1388 * best for reporting rates between one per millisecond (msec) and
1389 * one per 32 (approx) seconds. At constant rates faster than one
1390 * per msec it maxes out at values just under 1,000,000. At constant
1391 * rates between one per msec, and one per second it will stabilize
1392 * to a value N*1000, where N is the rate of events per second.
1393 * At constant rates between one per second and one per 32 seconds,
1394 * it will be choppy, moving up on the seconds that have an event,
1395 * and then decaying until the next event. At rates slower than
1396 * about one in 32 seconds, it decays all the way back to zero between
1397 * each event.
1398 */
1399
1400 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1401 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1402 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1403 #define FM_SCALE 1000 /* faux fixed point scale */
1404
1405 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1406 static void fmeter_init(struct fmeter *fmp)
1407 {
1408 fmp->cnt = 0;
1409 fmp->val = 0;
1410 fmp->time = 0;
1411 spin_lock_init(&fmp->lock);
1412 }
1413
1414 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1415 static void fmeter_update(struct fmeter *fmp)
1416 {
1417 time64_t now;
1418 u32 ticks;
1419
1420 now = ktime_get_seconds();
1421 ticks = now - fmp->time;
1422
1423 if (ticks == 0)
1424 return;
1425
1426 ticks = min(FM_MAXTICKS, ticks);
1427 while (ticks-- > 0)
1428 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1429 fmp->time = now;
1430
1431 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1432 fmp->cnt = 0;
1433 }
1434
1435 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1436 static void fmeter_markevent(struct fmeter *fmp)
1437 {
1438 spin_lock(&fmp->lock);
1439 fmeter_update(fmp);
1440 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1441 spin_unlock(&fmp->lock);
1442 }
1443
1444 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1445 static int fmeter_getrate(struct fmeter *fmp)
1446 {
1447 int val;
1448
1449 spin_lock(&fmp->lock);
1450 fmeter_update(fmp);
1451 val = fmp->val;
1452 spin_unlock(&fmp->lock);
1453 return val;
1454 }
1455
1456 static struct cpuset *cpuset_attach_old_cs;
1457
1458 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)1459 static int cpuset_can_attach(struct cgroup_taskset *tset)
1460 {
1461 struct cgroup_subsys_state *css;
1462 struct cpuset *cs;
1463 struct task_struct *task;
1464 int ret;
1465
1466 /* used later by cpuset_attach() */
1467 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1468 cs = css_cs(css);
1469
1470 mutex_lock(&cpuset_mutex);
1471
1472 /* allow moving tasks into an empty cpuset if on default hierarchy */
1473 ret = -ENOSPC;
1474 if (!is_in_v2_mode() &&
1475 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1476 goto out_unlock;
1477
1478 cgroup_taskset_for_each(task, css, tset) {
1479 ret = task_can_attach(task, cs->cpus_allowed);
1480 if (ret)
1481 goto out_unlock;
1482 ret = security_task_setscheduler(task);
1483 if (ret)
1484 goto out_unlock;
1485 }
1486
1487 /*
1488 * Mark attach is in progress. This makes validate_change() fail
1489 * changes which zero cpus/mems_allowed.
1490 */
1491 cs->attach_in_progress++;
1492 ret = 0;
1493 out_unlock:
1494 mutex_unlock(&cpuset_mutex);
1495 return ret;
1496 }
1497
cpuset_cancel_attach(struct cgroup_taskset * tset)1498 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1499 {
1500 struct cgroup_subsys_state *css;
1501 struct cpuset *cs;
1502
1503 cgroup_taskset_first(tset, &css);
1504 cs = css_cs(css);
1505
1506 mutex_lock(&cpuset_mutex);
1507 css_cs(css)->attach_in_progress--;
1508 mutex_unlock(&cpuset_mutex);
1509 }
1510
1511 /*
1512 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1513 * but we can't allocate it dynamically there. Define it global and
1514 * allocate from cpuset_init().
1515 */
1516 static cpumask_var_t cpus_attach;
1517
cpuset_attach(struct cgroup_taskset * tset)1518 static void cpuset_attach(struct cgroup_taskset *tset)
1519 {
1520 /* static buf protected by cpuset_mutex */
1521 static nodemask_t cpuset_attach_nodemask_to;
1522 struct task_struct *task;
1523 struct task_struct *leader;
1524 struct cgroup_subsys_state *css;
1525 struct cpuset *cs;
1526 struct cpuset *oldcs = cpuset_attach_old_cs;
1527
1528 cgroup_taskset_first(tset, &css);
1529 cs = css_cs(css);
1530
1531 mutex_lock(&cpuset_mutex);
1532
1533 /* prepare for attach */
1534 if (cs == &top_cpuset)
1535 cpumask_copy(cpus_attach, cpu_possible_mask);
1536 else
1537 guarantee_online_cpus(cs, cpus_attach);
1538
1539 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1540
1541 cgroup_taskset_for_each(task, css, tset) {
1542 /*
1543 * can_attach beforehand should guarantee that this doesn't
1544 * fail. TODO: have a better way to handle failure here
1545 */
1546 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1547
1548 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1549 cpuset_update_task_spread_flag(cs, task);
1550 }
1551
1552 /*
1553 * Change mm for all threadgroup leaders. This is expensive and may
1554 * sleep and should be moved outside migration path proper.
1555 */
1556 cpuset_attach_nodemask_to = cs->effective_mems;
1557 cgroup_taskset_for_each_leader(leader, css, tset) {
1558 struct mm_struct *mm = get_task_mm(leader);
1559
1560 if (mm) {
1561 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1562
1563 /*
1564 * old_mems_allowed is the same with mems_allowed
1565 * here, except if this task is being moved
1566 * automatically due to hotplug. In that case
1567 * @mems_allowed has been updated and is empty, so
1568 * @old_mems_allowed is the right nodesets that we
1569 * migrate mm from.
1570 */
1571 if (is_memory_migrate(cs))
1572 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1573 &cpuset_attach_nodemask_to);
1574 else
1575 mmput(mm);
1576 }
1577 }
1578
1579 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1580
1581 cs->attach_in_progress--;
1582 if (!cs->attach_in_progress)
1583 wake_up(&cpuset_attach_wq);
1584
1585 mutex_unlock(&cpuset_mutex);
1586 }
1587
1588 /* The various types of files and directories in a cpuset file system */
1589
1590 typedef enum {
1591 FILE_MEMORY_MIGRATE,
1592 FILE_CPULIST,
1593 FILE_MEMLIST,
1594 FILE_EFFECTIVE_CPULIST,
1595 FILE_EFFECTIVE_MEMLIST,
1596 FILE_CPU_EXCLUSIVE,
1597 FILE_MEM_EXCLUSIVE,
1598 FILE_MEM_HARDWALL,
1599 FILE_SCHED_LOAD_BALANCE,
1600 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1601 FILE_MEMORY_PRESSURE_ENABLED,
1602 FILE_MEMORY_PRESSURE,
1603 FILE_SPREAD_PAGE,
1604 FILE_SPREAD_SLAB,
1605 } cpuset_filetype_t;
1606
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1607 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1608 u64 val)
1609 {
1610 struct cpuset *cs = css_cs(css);
1611 cpuset_filetype_t type = cft->private;
1612 int retval = 0;
1613
1614 mutex_lock(&cpuset_mutex);
1615 if (!is_cpuset_online(cs)) {
1616 retval = -ENODEV;
1617 goto out_unlock;
1618 }
1619
1620 switch (type) {
1621 case FILE_CPU_EXCLUSIVE:
1622 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1623 break;
1624 case FILE_MEM_EXCLUSIVE:
1625 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1626 break;
1627 case FILE_MEM_HARDWALL:
1628 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1629 break;
1630 case FILE_SCHED_LOAD_BALANCE:
1631 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1632 break;
1633 case FILE_MEMORY_MIGRATE:
1634 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1635 break;
1636 case FILE_MEMORY_PRESSURE_ENABLED:
1637 cpuset_memory_pressure_enabled = !!val;
1638 break;
1639 case FILE_SPREAD_PAGE:
1640 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1641 break;
1642 case FILE_SPREAD_SLAB:
1643 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1644 break;
1645 default:
1646 retval = -EINVAL;
1647 break;
1648 }
1649 out_unlock:
1650 mutex_unlock(&cpuset_mutex);
1651 return retval;
1652 }
1653
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)1654 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1655 s64 val)
1656 {
1657 struct cpuset *cs = css_cs(css);
1658 cpuset_filetype_t type = cft->private;
1659 int retval = -ENODEV;
1660
1661 mutex_lock(&cpuset_mutex);
1662 if (!is_cpuset_online(cs))
1663 goto out_unlock;
1664
1665 switch (type) {
1666 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1667 retval = update_relax_domain_level(cs, val);
1668 break;
1669 default:
1670 retval = -EINVAL;
1671 break;
1672 }
1673 out_unlock:
1674 mutex_unlock(&cpuset_mutex);
1675 return retval;
1676 }
1677
1678 /*
1679 * Common handling for a write to a "cpus" or "mems" file.
1680 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1681 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1682 char *buf, size_t nbytes, loff_t off)
1683 {
1684 struct cpuset *cs = css_cs(of_css(of));
1685 struct cpuset *trialcs;
1686 int retval = -ENODEV;
1687
1688 buf = strstrip(buf);
1689
1690 /*
1691 * CPU or memory hotunplug may leave @cs w/o any execution
1692 * resources, in which case the hotplug code asynchronously updates
1693 * configuration and transfers all tasks to the nearest ancestor
1694 * which can execute.
1695 *
1696 * As writes to "cpus" or "mems" may restore @cs's execution
1697 * resources, wait for the previously scheduled operations before
1698 * proceeding, so that we don't end up keep removing tasks added
1699 * after execution capability is restored.
1700 *
1701 * cpuset_hotplug_work calls back into cgroup core via
1702 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1703 * operation like this one can lead to a deadlock through kernfs
1704 * active_ref protection. Let's break the protection. Losing the
1705 * protection is okay as we check whether @cs is online after
1706 * grabbing cpuset_mutex anyway. This only happens on the legacy
1707 * hierarchies.
1708 */
1709 css_get(&cs->css);
1710 kernfs_break_active_protection(of->kn);
1711 flush_work(&cpuset_hotplug_work);
1712
1713 mutex_lock(&cpuset_mutex);
1714 if (!is_cpuset_online(cs))
1715 goto out_unlock;
1716
1717 trialcs = alloc_trial_cpuset(cs);
1718 if (!trialcs) {
1719 retval = -ENOMEM;
1720 goto out_unlock;
1721 }
1722
1723 switch (of_cft(of)->private) {
1724 case FILE_CPULIST:
1725 retval = update_cpumask(cs, trialcs, buf);
1726 break;
1727 case FILE_MEMLIST:
1728 retval = update_nodemask(cs, trialcs, buf);
1729 break;
1730 default:
1731 retval = -EINVAL;
1732 break;
1733 }
1734
1735 free_trial_cpuset(trialcs);
1736 out_unlock:
1737 mutex_unlock(&cpuset_mutex);
1738 kernfs_unbreak_active_protection(of->kn);
1739 css_put(&cs->css);
1740 flush_workqueue(cpuset_migrate_mm_wq);
1741 return retval ?: nbytes;
1742 }
1743
1744 /*
1745 * These ascii lists should be read in a single call, by using a user
1746 * buffer large enough to hold the entire map. If read in smaller
1747 * chunks, there is no guarantee of atomicity. Since the display format
1748 * used, list of ranges of sequential numbers, is variable length,
1749 * and since these maps can change value dynamically, one could read
1750 * gibberish by doing partial reads while a list was changing.
1751 */
cpuset_common_seq_show(struct seq_file * sf,void * v)1752 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1753 {
1754 struct cpuset *cs = css_cs(seq_css(sf));
1755 cpuset_filetype_t type = seq_cft(sf)->private;
1756 int ret = 0;
1757
1758 spin_lock_irq(&callback_lock);
1759
1760 switch (type) {
1761 case FILE_CPULIST:
1762 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1763 break;
1764 case FILE_MEMLIST:
1765 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1766 break;
1767 case FILE_EFFECTIVE_CPULIST:
1768 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1769 break;
1770 case FILE_EFFECTIVE_MEMLIST:
1771 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1772 break;
1773 default:
1774 ret = -EINVAL;
1775 }
1776
1777 spin_unlock_irq(&callback_lock);
1778 return ret;
1779 }
1780
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1781 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1782 {
1783 struct cpuset *cs = css_cs(css);
1784 cpuset_filetype_t type = cft->private;
1785 switch (type) {
1786 case FILE_CPU_EXCLUSIVE:
1787 return is_cpu_exclusive(cs);
1788 case FILE_MEM_EXCLUSIVE:
1789 return is_mem_exclusive(cs);
1790 case FILE_MEM_HARDWALL:
1791 return is_mem_hardwall(cs);
1792 case FILE_SCHED_LOAD_BALANCE:
1793 return is_sched_load_balance(cs);
1794 case FILE_MEMORY_MIGRATE:
1795 return is_memory_migrate(cs);
1796 case FILE_MEMORY_PRESSURE_ENABLED:
1797 return cpuset_memory_pressure_enabled;
1798 case FILE_MEMORY_PRESSURE:
1799 return fmeter_getrate(&cs->fmeter);
1800 case FILE_SPREAD_PAGE:
1801 return is_spread_page(cs);
1802 case FILE_SPREAD_SLAB:
1803 return is_spread_slab(cs);
1804 default:
1805 BUG();
1806 }
1807
1808 /* Unreachable but makes gcc happy */
1809 return 0;
1810 }
1811
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)1812 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1813 {
1814 struct cpuset *cs = css_cs(css);
1815 cpuset_filetype_t type = cft->private;
1816 switch (type) {
1817 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1818 return cs->relax_domain_level;
1819 default:
1820 BUG();
1821 }
1822
1823 /* Unrechable but makes gcc happy */
1824 return 0;
1825 }
1826
1827
1828 /*
1829 * for the common functions, 'private' gives the type of file
1830 */
1831
1832 static struct cftype files[] = {
1833 {
1834 .name = "cpus",
1835 .seq_show = cpuset_common_seq_show,
1836 .write = cpuset_write_resmask,
1837 .max_write_len = (100U + 6 * NR_CPUS),
1838 .private = FILE_CPULIST,
1839 },
1840
1841 {
1842 .name = "mems",
1843 .seq_show = cpuset_common_seq_show,
1844 .write = cpuset_write_resmask,
1845 .max_write_len = (100U + 6 * MAX_NUMNODES),
1846 .private = FILE_MEMLIST,
1847 },
1848
1849 {
1850 .name = "effective_cpus",
1851 .seq_show = cpuset_common_seq_show,
1852 .private = FILE_EFFECTIVE_CPULIST,
1853 },
1854
1855 {
1856 .name = "effective_mems",
1857 .seq_show = cpuset_common_seq_show,
1858 .private = FILE_EFFECTIVE_MEMLIST,
1859 },
1860
1861 {
1862 .name = "cpu_exclusive",
1863 .read_u64 = cpuset_read_u64,
1864 .write_u64 = cpuset_write_u64,
1865 .private = FILE_CPU_EXCLUSIVE,
1866 },
1867
1868 {
1869 .name = "mem_exclusive",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_MEM_EXCLUSIVE,
1873 },
1874
1875 {
1876 .name = "mem_hardwall",
1877 .read_u64 = cpuset_read_u64,
1878 .write_u64 = cpuset_write_u64,
1879 .private = FILE_MEM_HARDWALL,
1880 },
1881
1882 {
1883 .name = "sched_load_balance",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_SCHED_LOAD_BALANCE,
1887 },
1888
1889 {
1890 .name = "sched_relax_domain_level",
1891 .read_s64 = cpuset_read_s64,
1892 .write_s64 = cpuset_write_s64,
1893 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1894 },
1895
1896 {
1897 .name = "memory_migrate",
1898 .read_u64 = cpuset_read_u64,
1899 .write_u64 = cpuset_write_u64,
1900 .private = FILE_MEMORY_MIGRATE,
1901 },
1902
1903 {
1904 .name = "memory_pressure",
1905 .read_u64 = cpuset_read_u64,
1906 .private = FILE_MEMORY_PRESSURE,
1907 },
1908
1909 {
1910 .name = "memory_spread_page",
1911 .read_u64 = cpuset_read_u64,
1912 .write_u64 = cpuset_write_u64,
1913 .private = FILE_SPREAD_PAGE,
1914 },
1915
1916 {
1917 .name = "memory_spread_slab",
1918 .read_u64 = cpuset_read_u64,
1919 .write_u64 = cpuset_write_u64,
1920 .private = FILE_SPREAD_SLAB,
1921 },
1922
1923 {
1924 .name = "memory_pressure_enabled",
1925 .flags = CFTYPE_ONLY_ON_ROOT,
1926 .read_u64 = cpuset_read_u64,
1927 .write_u64 = cpuset_write_u64,
1928 .private = FILE_MEMORY_PRESSURE_ENABLED,
1929 },
1930
1931 { } /* terminate */
1932 };
1933
1934 /*
1935 * cpuset_css_alloc - allocate a cpuset css
1936 * cgrp: control group that the new cpuset will be part of
1937 */
1938
1939 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)1940 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1941 {
1942 struct cpuset *cs;
1943
1944 if (!parent_css)
1945 return &top_cpuset.css;
1946
1947 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1948 if (!cs)
1949 return ERR_PTR(-ENOMEM);
1950 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1951 goto free_cs;
1952 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1953 goto free_cpus;
1954
1955 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1956 cpumask_clear(cs->cpus_allowed);
1957 nodes_clear(cs->mems_allowed);
1958 cpumask_clear(cs->effective_cpus);
1959 nodes_clear(cs->effective_mems);
1960 fmeter_init(&cs->fmeter);
1961 cs->relax_domain_level = -1;
1962
1963 return &cs->css;
1964
1965 free_cpus:
1966 free_cpumask_var(cs->cpus_allowed);
1967 free_cs:
1968 kfree(cs);
1969 return ERR_PTR(-ENOMEM);
1970 }
1971
cpuset_css_online(struct cgroup_subsys_state * css)1972 static int cpuset_css_online(struct cgroup_subsys_state *css)
1973 {
1974 struct cpuset *cs = css_cs(css);
1975 struct cpuset *parent = parent_cs(cs);
1976 struct cpuset *tmp_cs;
1977 struct cgroup_subsys_state *pos_css;
1978
1979 if (!parent)
1980 return 0;
1981
1982 mutex_lock(&cpuset_mutex);
1983
1984 set_bit(CS_ONLINE, &cs->flags);
1985 if (is_spread_page(parent))
1986 set_bit(CS_SPREAD_PAGE, &cs->flags);
1987 if (is_spread_slab(parent))
1988 set_bit(CS_SPREAD_SLAB, &cs->flags);
1989
1990 cpuset_inc();
1991
1992 spin_lock_irq(&callback_lock);
1993 if (is_in_v2_mode()) {
1994 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1995 cs->effective_mems = parent->effective_mems;
1996 }
1997 spin_unlock_irq(&callback_lock);
1998
1999 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2000 goto out_unlock;
2001
2002 /*
2003 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2004 * set. This flag handling is implemented in cgroup core for
2005 * histrical reasons - the flag may be specified during mount.
2006 *
2007 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2008 * refuse to clone the configuration - thereby refusing the task to
2009 * be entered, and as a result refusing the sys_unshare() or
2010 * clone() which initiated it. If this becomes a problem for some
2011 * users who wish to allow that scenario, then this could be
2012 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2013 * (and likewise for mems) to the new cgroup.
2014 */
2015 rcu_read_lock();
2016 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2017 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2018 rcu_read_unlock();
2019 goto out_unlock;
2020 }
2021 }
2022 rcu_read_unlock();
2023
2024 spin_lock_irq(&callback_lock);
2025 cs->mems_allowed = parent->mems_allowed;
2026 cs->effective_mems = parent->mems_allowed;
2027 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2028 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2029 spin_unlock_irq(&callback_lock);
2030 out_unlock:
2031 mutex_unlock(&cpuset_mutex);
2032 return 0;
2033 }
2034
2035 /*
2036 * If the cpuset being removed has its flag 'sched_load_balance'
2037 * enabled, then simulate turning sched_load_balance off, which
2038 * will call rebuild_sched_domains_locked().
2039 */
2040
cpuset_css_offline(struct cgroup_subsys_state * css)2041 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2042 {
2043 struct cpuset *cs = css_cs(css);
2044
2045 mutex_lock(&cpuset_mutex);
2046
2047 if (is_sched_load_balance(cs))
2048 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2049
2050 cpuset_dec();
2051 clear_bit(CS_ONLINE, &cs->flags);
2052
2053 mutex_unlock(&cpuset_mutex);
2054 }
2055
cpuset_css_free(struct cgroup_subsys_state * css)2056 static void cpuset_css_free(struct cgroup_subsys_state *css)
2057 {
2058 struct cpuset *cs = css_cs(css);
2059
2060 free_cpumask_var(cs->effective_cpus);
2061 free_cpumask_var(cs->cpus_allowed);
2062 kfree(cs);
2063 }
2064
cpuset_bind(struct cgroup_subsys_state * root_css)2065 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2066 {
2067 mutex_lock(&cpuset_mutex);
2068 spin_lock_irq(&callback_lock);
2069
2070 if (is_in_v2_mode()) {
2071 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2072 top_cpuset.mems_allowed = node_possible_map;
2073 } else {
2074 cpumask_copy(top_cpuset.cpus_allowed,
2075 top_cpuset.effective_cpus);
2076 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2077 }
2078
2079 spin_unlock_irq(&callback_lock);
2080 mutex_unlock(&cpuset_mutex);
2081 }
2082
2083 /*
2084 * Make sure the new task conform to the current state of its parent,
2085 * which could have been changed by cpuset just after it inherits the
2086 * state from the parent and before it sits on the cgroup's task list.
2087 */
cpuset_fork(struct task_struct * task)2088 static void cpuset_fork(struct task_struct *task)
2089 {
2090 if (task_css_is_root(task, cpuset_cgrp_id))
2091 return;
2092
2093 set_cpus_allowed_ptr(task, ¤t->cpus_allowed);
2094 task->mems_allowed = current->mems_allowed;
2095 }
2096
2097 struct cgroup_subsys cpuset_cgrp_subsys = {
2098 .css_alloc = cpuset_css_alloc,
2099 .css_online = cpuset_css_online,
2100 .css_offline = cpuset_css_offline,
2101 .css_free = cpuset_css_free,
2102 .can_attach = cpuset_can_attach,
2103 .cancel_attach = cpuset_cancel_attach,
2104 .attach = cpuset_attach,
2105 .post_attach = cpuset_post_attach,
2106 .bind = cpuset_bind,
2107 .fork = cpuset_fork,
2108 .legacy_cftypes = files,
2109 .early_init = true,
2110 };
2111
2112 /**
2113 * cpuset_init - initialize cpusets at system boot
2114 *
2115 * Description: Initialize top_cpuset and the cpuset internal file system,
2116 **/
2117
cpuset_init(void)2118 int __init cpuset_init(void)
2119 {
2120 int err = 0;
2121
2122 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2123 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2124
2125 cpumask_setall(top_cpuset.cpus_allowed);
2126 nodes_setall(top_cpuset.mems_allowed);
2127 cpumask_setall(top_cpuset.effective_cpus);
2128 nodes_setall(top_cpuset.effective_mems);
2129
2130 fmeter_init(&top_cpuset.fmeter);
2131 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2132 top_cpuset.relax_domain_level = -1;
2133
2134 err = register_filesystem(&cpuset_fs_type);
2135 if (err < 0)
2136 return err;
2137
2138 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2145 * or memory nodes, we need to walk over the cpuset hierarchy,
2146 * removing that CPU or node from all cpusets. If this removes the
2147 * last CPU or node from a cpuset, then move the tasks in the empty
2148 * cpuset to its next-highest non-empty parent.
2149 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2150 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2151 {
2152 struct cpuset *parent;
2153
2154 /*
2155 * Find its next-highest non-empty parent, (top cpuset
2156 * has online cpus, so can't be empty).
2157 */
2158 parent = parent_cs(cs);
2159 while (cpumask_empty(parent->cpus_allowed) ||
2160 nodes_empty(parent->mems_allowed))
2161 parent = parent_cs(parent);
2162
2163 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2164 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2165 pr_cont_cgroup_name(cs->css.cgroup);
2166 pr_cont("\n");
2167 }
2168 }
2169
2170 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2171 hotplug_update_tasks_legacy(struct cpuset *cs,
2172 struct cpumask *new_cpus, nodemask_t *new_mems,
2173 bool cpus_updated, bool mems_updated)
2174 {
2175 bool is_empty;
2176
2177 spin_lock_irq(&callback_lock);
2178 cpumask_copy(cs->cpus_allowed, new_cpus);
2179 cpumask_copy(cs->effective_cpus, new_cpus);
2180 cs->mems_allowed = *new_mems;
2181 cs->effective_mems = *new_mems;
2182 spin_unlock_irq(&callback_lock);
2183
2184 /*
2185 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2186 * as the tasks will be migratecd to an ancestor.
2187 */
2188 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2189 update_tasks_cpumask(cs);
2190 if (mems_updated && !nodes_empty(cs->mems_allowed))
2191 update_tasks_nodemask(cs);
2192
2193 is_empty = cpumask_empty(cs->cpus_allowed) ||
2194 nodes_empty(cs->mems_allowed);
2195
2196 mutex_unlock(&cpuset_mutex);
2197
2198 /*
2199 * Move tasks to the nearest ancestor with execution resources,
2200 * This is full cgroup operation which will also call back into
2201 * cpuset. Should be done outside any lock.
2202 */
2203 if (is_empty)
2204 remove_tasks_in_empty_cpuset(cs);
2205
2206 mutex_lock(&cpuset_mutex);
2207 }
2208
2209 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2210 hotplug_update_tasks(struct cpuset *cs,
2211 struct cpumask *new_cpus, nodemask_t *new_mems,
2212 bool cpus_updated, bool mems_updated)
2213 {
2214 if (cpumask_empty(new_cpus))
2215 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2216 if (nodes_empty(*new_mems))
2217 *new_mems = parent_cs(cs)->effective_mems;
2218
2219 spin_lock_irq(&callback_lock);
2220 cpumask_copy(cs->effective_cpus, new_cpus);
2221 cs->effective_mems = *new_mems;
2222 spin_unlock_irq(&callback_lock);
2223
2224 if (cpus_updated)
2225 update_tasks_cpumask(cs);
2226 if (mems_updated)
2227 update_tasks_nodemask(cs);
2228 }
2229
2230 /**
2231 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2232 * @cs: cpuset in interest
2233 *
2234 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2235 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2236 * all its tasks are moved to the nearest ancestor with both resources.
2237 */
cpuset_hotplug_update_tasks(struct cpuset * cs)2238 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2239 {
2240 static cpumask_t new_cpus;
2241 static nodemask_t new_mems;
2242 bool cpus_updated;
2243 bool mems_updated;
2244 retry:
2245 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2246
2247 mutex_lock(&cpuset_mutex);
2248
2249 /*
2250 * We have raced with task attaching. We wait until attaching
2251 * is finished, so we won't attach a task to an empty cpuset.
2252 */
2253 if (cs->attach_in_progress) {
2254 mutex_unlock(&cpuset_mutex);
2255 goto retry;
2256 }
2257
2258 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2259 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2260
2261 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2262 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2263
2264 if (is_in_v2_mode())
2265 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2266 cpus_updated, mems_updated);
2267 else
2268 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2269 cpus_updated, mems_updated);
2270
2271 mutex_unlock(&cpuset_mutex);
2272 }
2273
2274 static bool force_rebuild;
2275
cpuset_force_rebuild(void)2276 void cpuset_force_rebuild(void)
2277 {
2278 force_rebuild = true;
2279 }
2280
2281 /**
2282 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2283 *
2284 * This function is called after either CPU or memory configuration has
2285 * changed and updates cpuset accordingly. The top_cpuset is always
2286 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2287 * order to make cpusets transparent (of no affect) on systems that are
2288 * actively using CPU hotplug but making no active use of cpusets.
2289 *
2290 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2291 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2292 * all descendants.
2293 *
2294 * Note that CPU offlining during suspend is ignored. We don't modify
2295 * cpusets across suspend/resume cycles at all.
2296 */
cpuset_hotplug_workfn(struct work_struct * work)2297 static void cpuset_hotplug_workfn(struct work_struct *work)
2298 {
2299 static cpumask_t new_cpus;
2300 static nodemask_t new_mems;
2301 bool cpus_updated, mems_updated;
2302 bool on_dfl = is_in_v2_mode();
2303
2304 mutex_lock(&cpuset_mutex);
2305
2306 /* fetch the available cpus/mems and find out which changed how */
2307 cpumask_copy(&new_cpus, cpu_active_mask);
2308 new_mems = node_states[N_MEMORY];
2309
2310 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2311 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2312
2313 /* synchronize cpus_allowed to cpu_active_mask */
2314 if (cpus_updated) {
2315 spin_lock_irq(&callback_lock);
2316 if (!on_dfl)
2317 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2318 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2319 spin_unlock_irq(&callback_lock);
2320 /* we don't mess with cpumasks of tasks in top_cpuset */
2321 }
2322
2323 /* synchronize mems_allowed to N_MEMORY */
2324 if (mems_updated) {
2325 spin_lock_irq(&callback_lock);
2326 if (!on_dfl)
2327 top_cpuset.mems_allowed = new_mems;
2328 top_cpuset.effective_mems = new_mems;
2329 spin_unlock_irq(&callback_lock);
2330 update_tasks_nodemask(&top_cpuset);
2331 }
2332
2333 mutex_unlock(&cpuset_mutex);
2334
2335 /* if cpus or mems changed, we need to propagate to descendants */
2336 if (cpus_updated || mems_updated) {
2337 struct cpuset *cs;
2338 struct cgroup_subsys_state *pos_css;
2339
2340 rcu_read_lock();
2341 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2342 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2343 continue;
2344 rcu_read_unlock();
2345
2346 cpuset_hotplug_update_tasks(cs);
2347
2348 rcu_read_lock();
2349 css_put(&cs->css);
2350 }
2351 rcu_read_unlock();
2352 }
2353
2354 /* rebuild sched domains if cpus_allowed has changed */
2355 if (cpus_updated || force_rebuild) {
2356 force_rebuild = false;
2357 rebuild_sched_domains();
2358 }
2359 }
2360
cpuset_update_active_cpus(void)2361 void cpuset_update_active_cpus(void)
2362 {
2363 /*
2364 * We're inside cpu hotplug critical region which usually nests
2365 * inside cgroup synchronization. Bounce actual hotplug processing
2366 * to a work item to avoid reverse locking order.
2367 */
2368 schedule_work(&cpuset_hotplug_work);
2369 }
2370
cpuset_wait_for_hotplug(void)2371 void cpuset_wait_for_hotplug(void)
2372 {
2373 flush_work(&cpuset_hotplug_work);
2374 }
2375
2376 /*
2377 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2378 * Call this routine anytime after node_states[N_MEMORY] changes.
2379 * See cpuset_update_active_cpus() for CPU hotplug handling.
2380 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2381 static int cpuset_track_online_nodes(struct notifier_block *self,
2382 unsigned long action, void *arg)
2383 {
2384 schedule_work(&cpuset_hotplug_work);
2385 return NOTIFY_OK;
2386 }
2387
2388 static struct notifier_block cpuset_track_online_nodes_nb = {
2389 .notifier_call = cpuset_track_online_nodes,
2390 .priority = 10, /* ??! */
2391 };
2392
2393 /**
2394 * cpuset_init_smp - initialize cpus_allowed
2395 *
2396 * Description: Finish top cpuset after cpu, node maps are initialized
2397 */
cpuset_init_smp(void)2398 void __init cpuset_init_smp(void)
2399 {
2400 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2401 top_cpuset.mems_allowed = node_states[N_MEMORY];
2402 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2403
2404 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2405 top_cpuset.effective_mems = node_states[N_MEMORY];
2406
2407 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2408
2409 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2410 BUG_ON(!cpuset_migrate_mm_wq);
2411 }
2412
2413 /**
2414 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2415 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2416 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2417 *
2418 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2419 * attached to the specified @tsk. Guaranteed to return some non-empty
2420 * subset of cpu_online_mask, even if this means going outside the
2421 * tasks cpuset.
2422 **/
2423
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2424 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2425 {
2426 unsigned long flags;
2427
2428 spin_lock_irqsave(&callback_lock, flags);
2429 rcu_read_lock();
2430 guarantee_online_cpus(task_cs(tsk), pmask);
2431 rcu_read_unlock();
2432 spin_unlock_irqrestore(&callback_lock, flags);
2433 }
2434
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2435 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2436 {
2437 rcu_read_lock();
2438 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2439 rcu_read_unlock();
2440
2441 /*
2442 * We own tsk->cpus_allowed, nobody can change it under us.
2443 *
2444 * But we used cs && cs->cpus_allowed lockless and thus can
2445 * race with cgroup_attach_task() or update_cpumask() and get
2446 * the wrong tsk->cpus_allowed. However, both cases imply the
2447 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2448 * which takes task_rq_lock().
2449 *
2450 * If we are called after it dropped the lock we must see all
2451 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2452 * set any mask even if it is not right from task_cs() pov,
2453 * the pending set_cpus_allowed_ptr() will fix things.
2454 *
2455 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2456 * if required.
2457 */
2458 }
2459
cpuset_init_current_mems_allowed(void)2460 void __init cpuset_init_current_mems_allowed(void)
2461 {
2462 nodes_setall(current->mems_allowed);
2463 }
2464
2465 /**
2466 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2467 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2468 *
2469 * Description: Returns the nodemask_t mems_allowed of the cpuset
2470 * attached to the specified @tsk. Guaranteed to return some non-empty
2471 * subset of node_states[N_MEMORY], even if this means going outside the
2472 * tasks cpuset.
2473 **/
2474
cpuset_mems_allowed(struct task_struct * tsk)2475 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2476 {
2477 nodemask_t mask;
2478 unsigned long flags;
2479
2480 spin_lock_irqsave(&callback_lock, flags);
2481 rcu_read_lock();
2482 guarantee_online_mems(task_cs(tsk), &mask);
2483 rcu_read_unlock();
2484 spin_unlock_irqrestore(&callback_lock, flags);
2485
2486 return mask;
2487 }
2488
2489 /**
2490 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2491 * @nodemask: the nodemask to be checked
2492 *
2493 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2494 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2495 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2496 {
2497 return nodes_intersects(*nodemask, current->mems_allowed);
2498 }
2499
2500 /*
2501 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2502 * mem_hardwall ancestor to the specified cpuset. Call holding
2503 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2504 * (an unusual configuration), then returns the root cpuset.
2505 */
nearest_hardwall_ancestor(struct cpuset * cs)2506 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2507 {
2508 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2509 cs = parent_cs(cs);
2510 return cs;
2511 }
2512
2513 /**
2514 * cpuset_node_allowed - Can we allocate on a memory node?
2515 * @node: is this an allowed node?
2516 * @gfp_mask: memory allocation flags
2517 *
2518 * If we're in interrupt, yes, we can always allocate. If @node is set in
2519 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2520 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2521 * yes. If current has access to memory reserves as an oom victim, yes.
2522 * Otherwise, no.
2523 *
2524 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2525 * and do not allow allocations outside the current tasks cpuset
2526 * unless the task has been OOM killed.
2527 * GFP_KERNEL allocations are not so marked, so can escape to the
2528 * nearest enclosing hardwalled ancestor cpuset.
2529 *
2530 * Scanning up parent cpusets requires callback_lock. The
2531 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2532 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2533 * current tasks mems_allowed came up empty on the first pass over
2534 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2535 * cpuset are short of memory, might require taking the callback_lock.
2536 *
2537 * The first call here from mm/page_alloc:get_page_from_freelist()
2538 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2539 * so no allocation on a node outside the cpuset is allowed (unless
2540 * in interrupt, of course).
2541 *
2542 * The second pass through get_page_from_freelist() doesn't even call
2543 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2544 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2545 * in alloc_flags. That logic and the checks below have the combined
2546 * affect that:
2547 * in_interrupt - any node ok (current task context irrelevant)
2548 * GFP_ATOMIC - any node ok
2549 * tsk_is_oom_victim - any node ok
2550 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2551 * GFP_USER - only nodes in current tasks mems allowed ok.
2552 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)2553 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2554 {
2555 struct cpuset *cs; /* current cpuset ancestors */
2556 int allowed; /* is allocation in zone z allowed? */
2557 unsigned long flags;
2558
2559 if (in_interrupt())
2560 return true;
2561 if (node_isset(node, current->mems_allowed))
2562 return true;
2563 /*
2564 * Allow tasks that have access to memory reserves because they have
2565 * been OOM killed to get memory anywhere.
2566 */
2567 if (unlikely(tsk_is_oom_victim(current)))
2568 return true;
2569 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2570 return false;
2571
2572 if (current->flags & PF_EXITING) /* Let dying task have memory */
2573 return true;
2574
2575 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2576 spin_lock_irqsave(&callback_lock, flags);
2577
2578 rcu_read_lock();
2579 cs = nearest_hardwall_ancestor(task_cs(current));
2580 allowed = node_isset(node, cs->mems_allowed);
2581 rcu_read_unlock();
2582
2583 spin_unlock_irqrestore(&callback_lock, flags);
2584 return allowed;
2585 }
2586
2587 /**
2588 * cpuset_mem_spread_node() - On which node to begin search for a file page
2589 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2590 *
2591 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2592 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2593 * and if the memory allocation used cpuset_mem_spread_node()
2594 * to determine on which node to start looking, as it will for
2595 * certain page cache or slab cache pages such as used for file
2596 * system buffers and inode caches, then instead of starting on the
2597 * local node to look for a free page, rather spread the starting
2598 * node around the tasks mems_allowed nodes.
2599 *
2600 * We don't have to worry about the returned node being offline
2601 * because "it can't happen", and even if it did, it would be ok.
2602 *
2603 * The routines calling guarantee_online_mems() are careful to
2604 * only set nodes in task->mems_allowed that are online. So it
2605 * should not be possible for the following code to return an
2606 * offline node. But if it did, that would be ok, as this routine
2607 * is not returning the node where the allocation must be, only
2608 * the node where the search should start. The zonelist passed to
2609 * __alloc_pages() will include all nodes. If the slab allocator
2610 * is passed an offline node, it will fall back to the local node.
2611 * See kmem_cache_alloc_node().
2612 */
2613
cpuset_spread_node(int * rotor)2614 static int cpuset_spread_node(int *rotor)
2615 {
2616 return *rotor = next_node_in(*rotor, current->mems_allowed);
2617 }
2618
cpuset_mem_spread_node(void)2619 int cpuset_mem_spread_node(void)
2620 {
2621 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2622 current->cpuset_mem_spread_rotor =
2623 node_random(¤t->mems_allowed);
2624
2625 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
2626 }
2627
cpuset_slab_spread_node(void)2628 int cpuset_slab_spread_node(void)
2629 {
2630 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2631 current->cpuset_slab_spread_rotor =
2632 node_random(¤t->mems_allowed);
2633
2634 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
2635 }
2636
2637 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2638
2639 /**
2640 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2641 * @tsk1: pointer to task_struct of some task.
2642 * @tsk2: pointer to task_struct of some other task.
2643 *
2644 * Description: Return true if @tsk1's mems_allowed intersects the
2645 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2646 * one of the task's memory usage might impact the memory available
2647 * to the other.
2648 **/
2649
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2650 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2651 const struct task_struct *tsk2)
2652 {
2653 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2654 }
2655
2656 /**
2657 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2658 *
2659 * Description: Prints current's name, cpuset name, and cached copy of its
2660 * mems_allowed to the kernel log.
2661 */
cpuset_print_current_mems_allowed(void)2662 void cpuset_print_current_mems_allowed(void)
2663 {
2664 struct cgroup *cgrp;
2665
2666 rcu_read_lock();
2667
2668 cgrp = task_cs(current)->css.cgroup;
2669 pr_info("%s cpuset=", current->comm);
2670 pr_cont_cgroup_name(cgrp);
2671 pr_cont(" mems_allowed=%*pbl\n",
2672 nodemask_pr_args(¤t->mems_allowed));
2673
2674 rcu_read_unlock();
2675 }
2676
2677 /*
2678 * Collection of memory_pressure is suppressed unless
2679 * this flag is enabled by writing "1" to the special
2680 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2681 */
2682
2683 int cpuset_memory_pressure_enabled __read_mostly;
2684
2685 /**
2686 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2687 *
2688 * Keep a running average of the rate of synchronous (direct)
2689 * page reclaim efforts initiated by tasks in each cpuset.
2690 *
2691 * This represents the rate at which some task in the cpuset
2692 * ran low on memory on all nodes it was allowed to use, and
2693 * had to enter the kernels page reclaim code in an effort to
2694 * create more free memory by tossing clean pages or swapping
2695 * or writing dirty pages.
2696 *
2697 * Display to user space in the per-cpuset read-only file
2698 * "memory_pressure". Value displayed is an integer
2699 * representing the recent rate of entry into the synchronous
2700 * (direct) page reclaim by any task attached to the cpuset.
2701 **/
2702
__cpuset_memory_pressure_bump(void)2703 void __cpuset_memory_pressure_bump(void)
2704 {
2705 rcu_read_lock();
2706 fmeter_markevent(&task_cs(current)->fmeter);
2707 rcu_read_unlock();
2708 }
2709
2710 #ifdef CONFIG_PROC_PID_CPUSET
2711 /*
2712 * proc_cpuset_show()
2713 * - Print tasks cpuset path into seq_file.
2714 * - Used for /proc/<pid>/cpuset.
2715 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2716 * doesn't really matter if tsk->cpuset changes after we read it,
2717 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2718 * anyway.
2719 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)2720 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2721 struct pid *pid, struct task_struct *tsk)
2722 {
2723 char *buf;
2724 struct cgroup_subsys_state *css;
2725 int retval;
2726
2727 retval = -ENOMEM;
2728 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2729 if (!buf)
2730 goto out;
2731
2732 css = task_get_css(tsk, cpuset_cgrp_id);
2733 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2734 current->nsproxy->cgroup_ns);
2735 css_put(css);
2736 if (retval >= PATH_MAX)
2737 retval = -ENAMETOOLONG;
2738 if (retval < 0)
2739 goto out_free;
2740 seq_puts(m, buf);
2741 seq_putc(m, '\n');
2742 retval = 0;
2743 out_free:
2744 kfree(buf);
2745 out:
2746 return retval;
2747 }
2748 #endif /* CONFIG_PROC_PID_CPUSET */
2749
2750 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2751 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2752 {
2753 seq_printf(m, "Mems_allowed:\t%*pb\n",
2754 nodemask_pr_args(&task->mems_allowed));
2755 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2756 nodemask_pr_args(&task->mems_allowed));
2757 }
2758