1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * keyboard input driver for i2c IR remote controls
5 *
6 * Copyright (c) 2000-2003 Gerd Knorr <kraxel@bytesex.org>
7 * modified for PixelView (BT878P+W/FM) by
8 * Michal Kochanowicz <mkochano@pld.org.pl>
9 * Christoph Bartelmus <lirc@bartelmus.de>
10 * modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
11 * Ulrich Mueller <ulrich.mueller42@web.de>
12 * modified for em2820 based USB TV tuners by
13 * Markus Rechberger <mrechberger@gmail.com>
14 * modified for DViCO Fusion HDTV 5 RT GOLD by
15 * Chaogui Zhang <czhang1974@gmail.com>
16 * modified for MSI TV@nywhere Plus by
17 * Henry Wong <henry@stuffedcow.net>
18 * Mark Schultz <n9xmj@yahoo.com>
19 * Brian Rogers <brian_rogers@comcast.net>
20 * modified for AVerMedia Cardbus by
21 * Oldrich Jedlicka <oldium.pro@seznam.cz>
22 * Zilog Transmitter portions/ideas were derived from GPLv2+ sources:
23 * - drivers/char/pctv_zilogir.[ch] from Hauppauge Broadway product
24 * Copyright 2011 Hauppauge Computer works
25 * - drivers/staging/media/lirc/lirc_zilog.c
26 * Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
27 * Michal Kochanowicz <mkochano@pld.org.pl>
28 * Christoph Bartelmus <lirc@bartelmus.de>
29 * Ulrich Mueller <ulrich.mueller42@web.de>
30 * Stefan Jahn <stefan@lkcc.org>
31 * Jerome Brock <jbrock@users.sourceforge.net>
32 * Thomas Reitmayr (treitmayr@yahoo.com)
33 * Mark Weaver <mark@npsl.co.uk>
34 * Jarod Wilson <jarod@redhat.com>
35 * Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
36 */
37
38 #include <asm/unaligned.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/delay.h>
45 #include <linux/errno.h>
46 #include <linux/slab.h>
47 #include <linux/i2c.h>
48 #include <linux/workqueue.h>
49
50 #include <media/rc-core.h>
51 #include <media/i2c/ir-kbd-i2c.h>
52
53 #define FLAG_TX 1
54 #define FLAG_HDPVR 2
55
56 static bool enable_hdpvr;
57 module_param(enable_hdpvr, bool, 0644);
58
get_key_haup_common(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * ptoggle,int size)59 static int get_key_haup_common(struct IR_i2c *ir, enum rc_proto *protocol,
60 u32 *scancode, u8 *ptoggle, int size)
61 {
62 unsigned char buf[6];
63 int start, range, toggle, dev, code, ircode, vendor;
64
65 /* poll IR chip */
66 if (size != i2c_master_recv(ir->c, buf, size))
67 return -EIO;
68
69 if (buf[0] & 0x80) {
70 int offset = (size == 6) ? 3 : 0;
71
72 /* split rc5 data block ... */
73 start = (buf[offset] >> 7) & 1;
74 range = (buf[offset] >> 6) & 1;
75 toggle = (buf[offset] >> 5) & 1;
76 dev = buf[offset] & 0x1f;
77 code = (buf[offset+1] >> 2) & 0x3f;
78
79 /* rc5 has two start bits
80 * the first bit must be one
81 * the second bit defines the command range:
82 * 1 = 0-63, 0 = 64 - 127
83 */
84 if (!start)
85 /* no key pressed */
86 return 0;
87
88 /* filter out invalid key presses */
89 ircode = (start << 12) | (toggle << 11) | (dev << 6) | code;
90 if ((ircode & 0x1fff) == 0x1fff)
91 return 0;
92
93 if (!range)
94 code += 64;
95
96 dev_dbg(&ir->rc->dev,
97 "ir hauppauge (rc5): s%d r%d t%d dev=%d code=%d\n",
98 start, range, toggle, dev, code);
99
100 *protocol = RC_PROTO_RC5;
101 *scancode = RC_SCANCODE_RC5(dev, code);
102 *ptoggle = toggle;
103
104 return 1;
105 } else if (size == 6 && (buf[0] & 0x40)) {
106 code = buf[4];
107 dev = buf[3];
108 vendor = get_unaligned_be16(buf + 1);
109
110 if (vendor == 0x800f) {
111 *ptoggle = (dev & 0x80) != 0;
112 *protocol = RC_PROTO_RC6_MCE;
113 dev &= 0x7f;
114 dev_dbg(&ir->rc->dev,
115 "ir hauppauge (rc6-mce): t%d vendor=%d dev=%d code=%d\n",
116 *ptoggle, vendor, dev, code);
117 } else {
118 *ptoggle = 0;
119 *protocol = RC_PROTO_RC6_6A_32;
120 dev_dbg(&ir->rc->dev,
121 "ir hauppauge (rc6-6a-32): vendor=%d dev=%d code=%d\n",
122 vendor, dev, code);
123 }
124
125 *scancode = RC_SCANCODE_RC6_6A(vendor, dev, code);
126
127 return 1;
128 }
129
130 return 0;
131 }
132
get_key_haup(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)133 static int get_key_haup(struct IR_i2c *ir, enum rc_proto *protocol,
134 u32 *scancode, u8 *toggle)
135 {
136 return get_key_haup_common(ir, protocol, scancode, toggle, 3);
137 }
138
get_key_haup_xvr(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)139 static int get_key_haup_xvr(struct IR_i2c *ir, enum rc_proto *protocol,
140 u32 *scancode, u8 *toggle)
141 {
142 int ret;
143 unsigned char buf[1] = { 0 };
144
145 /*
146 * This is the same apparent "are you ready?" poll command observed
147 * watching Windows driver traffic and implemented in lirc_zilog. With
148 * this added, we get far saner remote behavior with z8 chips on usb
149 * connected devices, even with the default polling interval of 100ms.
150 */
151 ret = i2c_master_send(ir->c, buf, 1);
152 if (ret != 1)
153 return (ret < 0) ? ret : -EINVAL;
154
155 return get_key_haup_common(ir, protocol, scancode, toggle, 6);
156 }
157
get_key_pixelview(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)158 static int get_key_pixelview(struct IR_i2c *ir, enum rc_proto *protocol,
159 u32 *scancode, u8 *toggle)
160 {
161 int rc;
162 unsigned char b;
163
164 /* poll IR chip */
165 rc = i2c_master_recv(ir->c, &b, 1);
166 if (rc != 1) {
167 dev_dbg(&ir->rc->dev, "read error\n");
168 if (rc < 0)
169 return rc;
170 return -EIO;
171 }
172
173 *protocol = RC_PROTO_OTHER;
174 *scancode = b;
175 *toggle = 0;
176 return 1;
177 }
178
get_key_fusionhdtv(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)179 static int get_key_fusionhdtv(struct IR_i2c *ir, enum rc_proto *protocol,
180 u32 *scancode, u8 *toggle)
181 {
182 int rc;
183 unsigned char buf[4];
184
185 /* poll IR chip */
186 rc = i2c_master_recv(ir->c, buf, 4);
187 if (rc != 4) {
188 dev_dbg(&ir->rc->dev, "read error\n");
189 if (rc < 0)
190 return rc;
191 return -EIO;
192 }
193
194 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 0 || buf[3] != 0)
195 dev_dbg(&ir->rc->dev, "%s: %*ph\n", __func__, 4, buf);
196
197 /* no key pressed or signal from other ir remote */
198 if(buf[0] != 0x1 || buf[1] != 0xfe)
199 return 0;
200
201 *protocol = RC_PROTO_UNKNOWN;
202 *scancode = buf[2];
203 *toggle = 0;
204 return 1;
205 }
206
get_key_knc1(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)207 static int get_key_knc1(struct IR_i2c *ir, enum rc_proto *protocol,
208 u32 *scancode, u8 *toggle)
209 {
210 int rc;
211 unsigned char b;
212
213 /* poll IR chip */
214 rc = i2c_master_recv(ir->c, &b, 1);
215 if (rc != 1) {
216 dev_dbg(&ir->rc->dev, "read error\n");
217 if (rc < 0)
218 return rc;
219 return -EIO;
220 }
221
222 /* it seems that 0xFE indicates that a button is still hold
223 down, while 0xff indicates that no button is hold
224 down. 0xfe sequences are sometimes interrupted by 0xFF */
225
226 dev_dbg(&ir->rc->dev, "key %02x\n", b);
227
228 if (b == 0xff)
229 return 0;
230
231 if (b == 0xfe)
232 /* keep old data */
233 return 1;
234
235 *protocol = RC_PROTO_UNKNOWN;
236 *scancode = b;
237 *toggle = 0;
238 return 1;
239 }
240
get_key_geniatech(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)241 static int get_key_geniatech(struct IR_i2c *ir, enum rc_proto *protocol,
242 u32 *scancode, u8 *toggle)
243 {
244 int i, rc;
245 unsigned char b;
246
247 /* poll IR chip */
248 for (i = 0; i < 4; i++) {
249 rc = i2c_master_recv(ir->c, &b, 1);
250 if (rc == 1)
251 break;
252 msleep(20);
253 }
254 if (rc != 1) {
255 dev_dbg(&ir->rc->dev, "read error\n");
256 if (rc < 0)
257 return rc;
258 return -EIO;
259 }
260
261 /* don't repeat the key */
262 if (ir->old == b)
263 return 0;
264 ir->old = b;
265
266 /* decode to RC5 */
267 b &= 0x7f;
268 b = (b - 1) / 2;
269
270 dev_dbg(&ir->rc->dev, "key %02x\n", b);
271
272 *protocol = RC_PROTO_RC5;
273 *scancode = b;
274 *toggle = ir->old >> 7;
275 return 1;
276 }
277
get_key_avermedia_cardbus(struct IR_i2c * ir,enum rc_proto * protocol,u32 * scancode,u8 * toggle)278 static int get_key_avermedia_cardbus(struct IR_i2c *ir, enum rc_proto *protocol,
279 u32 *scancode, u8 *toggle)
280 {
281 unsigned char subaddr, key, keygroup;
282 struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0,
283 .buf = &subaddr, .len = 1},
284 { .addr = ir->c->addr, .flags = I2C_M_RD,
285 .buf = &key, .len = 1} };
286 subaddr = 0x0d;
287 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
288 dev_dbg(&ir->rc->dev, "read error\n");
289 return -EIO;
290 }
291
292 if (key == 0xff)
293 return 0;
294
295 subaddr = 0x0b;
296 msg[1].buf = &keygroup;
297 if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
298 dev_dbg(&ir->rc->dev, "read error\n");
299 return -EIO;
300 }
301
302 if (keygroup == 0xff)
303 return 0;
304
305 dev_dbg(&ir->rc->dev, "read key 0x%02x/0x%02x\n", key, keygroup);
306 if (keygroup < 2 || keygroup > 4) {
307 dev_warn(&ir->rc->dev, "warning: invalid key group 0x%02x for key 0x%02x\n",
308 keygroup, key);
309 }
310 key |= (keygroup & 1) << 6;
311
312 *protocol = RC_PROTO_UNKNOWN;
313 *scancode = key;
314 if (ir->c->addr == 0x41) /* AVerMedia EM78P153 */
315 *scancode |= keygroup << 8;
316 *toggle = 0;
317 return 1;
318 }
319
320 /* ----------------------------------------------------------------------- */
321
ir_key_poll(struct IR_i2c * ir)322 static int ir_key_poll(struct IR_i2c *ir)
323 {
324 enum rc_proto protocol;
325 u32 scancode;
326 u8 toggle;
327 int rc;
328
329 dev_dbg(&ir->rc->dev, "%s\n", __func__);
330 rc = ir->get_key(ir, &protocol, &scancode, &toggle);
331 if (rc < 0) {
332 dev_warn(&ir->rc->dev, "error %d\n", rc);
333 return rc;
334 }
335
336 if (rc) {
337 dev_dbg(&ir->rc->dev, "%s: proto = 0x%04x, scancode = 0x%08x\n",
338 __func__, protocol, scancode);
339 rc_keydown(ir->rc, protocol, scancode, toggle);
340 }
341 return 0;
342 }
343
ir_work(struct work_struct * work)344 static void ir_work(struct work_struct *work)
345 {
346 int rc;
347 struct IR_i2c *ir = container_of(work, struct IR_i2c, work.work);
348
349 /*
350 * If the transmit code is holding the lock, skip polling for
351 * IR, we'll get it to it next time round
352 */
353 if (mutex_trylock(&ir->lock)) {
354 rc = ir_key_poll(ir);
355 mutex_unlock(&ir->lock);
356 if (rc == -ENODEV) {
357 rc_unregister_device(ir->rc);
358 ir->rc = NULL;
359 return;
360 }
361 }
362
363 schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling_interval));
364 }
365
ir_open(struct rc_dev * dev)366 static int ir_open(struct rc_dev *dev)
367 {
368 struct IR_i2c *ir = dev->priv;
369
370 schedule_delayed_work(&ir->work, 0);
371
372 return 0;
373 }
374
ir_close(struct rc_dev * dev)375 static void ir_close(struct rc_dev *dev)
376 {
377 struct IR_i2c *ir = dev->priv;
378
379 cancel_delayed_work_sync(&ir->work);
380 }
381
382 /* Zilog Transmit Interface */
383 #define XTAL_FREQ 18432000
384
385 #define ZILOG_SEND 0x80
386 #define ZILOG_UIR_END 0x40
387 #define ZILOG_INIT_END 0x20
388 #define ZILOG_LIR_END 0x10
389
390 #define ZILOG_STATUS_OK 0x80
391 #define ZILOG_STATUS_TX 0x40
392 #define ZILOG_STATUS_SET 0x20
393
394 /*
395 * As you can see here, very few different lengths of pulse and space
396 * can be encoded. This means that the hardware does not work well with
397 * recorded IR. It's best to work with generated IR, like from ir-ctl or
398 * the in-kernel encoders.
399 */
400 struct code_block {
401 u8 length;
402 u16 pulse[7]; /* not aligned */
403 u8 carrier_pulse;
404 u8 carrier_space;
405 u16 space[8]; /* not aligned */
406 u8 codes[61];
407 u8 csum[2];
408 } __packed;
409
send_data_block(struct IR_i2c * ir,int cmd,struct code_block * code_block)410 static int send_data_block(struct IR_i2c *ir, int cmd,
411 struct code_block *code_block)
412 {
413 int i, j, ret;
414 u8 buf[5], *p;
415
416 p = &code_block->length;
417 for (i = 0; p < code_block->csum; i++)
418 code_block->csum[i & 1] ^= *p++;
419
420 p = &code_block->length;
421
422 for (i = 0; i < sizeof(*code_block);) {
423 int tosend = sizeof(*code_block) - i;
424
425 if (tosend > 4)
426 tosend = 4;
427 buf[0] = i + 1;
428 for (j = 0; j < tosend; ++j)
429 buf[1 + j] = p[i + j];
430 dev_dbg(&ir->rc->dev, "%*ph", tosend + 1, buf);
431 ret = i2c_master_send(ir->tx_c, buf, tosend + 1);
432 if (ret != tosend + 1) {
433 dev_dbg(&ir->rc->dev,
434 "i2c_master_send failed with %d\n", ret);
435 return ret < 0 ? ret : -EIO;
436 }
437 i += tosend;
438 }
439
440 buf[0] = 0;
441 buf[1] = cmd;
442 ret = i2c_master_send(ir->tx_c, buf, 2);
443 if (ret != 2) {
444 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
445 return ret < 0 ? ret : -EIO;
446 }
447
448 usleep_range(2000, 5000);
449
450 ret = i2c_master_send(ir->tx_c, buf, 1);
451 if (ret != 1) {
452 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
453 return ret < 0 ? ret : -EIO;
454 }
455
456 return 0;
457 }
458
zilog_init(struct IR_i2c * ir)459 static int zilog_init(struct IR_i2c *ir)
460 {
461 struct code_block code_block = { .length = sizeof(code_block) };
462 u8 buf[4];
463 int ret;
464
465 put_unaligned_be16(0x1000, &code_block.pulse[3]);
466
467 ret = send_data_block(ir, ZILOG_INIT_END, &code_block);
468 if (ret)
469 return ret;
470
471 ret = i2c_master_recv(ir->tx_c, buf, 4);
472 if (ret != 4) {
473 dev_err(&ir->c->dev, "failed to retrieve firmware version: %d\n",
474 ret);
475 return ret < 0 ? ret : -EIO;
476 }
477
478 dev_info(&ir->c->dev, "Zilog/Hauppauge IR blaster firmware version %d.%d.%d\n",
479 buf[1], buf[2], buf[3]);
480
481 return 0;
482 }
483
484 /*
485 * If the last slot for pulse is the same as the current slot for pulse,
486 * then use slot no 7.
487 */
copy_codes(u8 * dst,u8 * src,unsigned int count)488 static void copy_codes(u8 *dst, u8 *src, unsigned int count)
489 {
490 u8 c, last = 0xff;
491
492 while (count--) {
493 c = *src++;
494 if ((c & 0xf0) == last) {
495 *dst++ = 0x70 | (c & 0xf);
496 } else {
497 *dst++ = c;
498 last = c & 0xf0;
499 }
500 }
501 }
502
503 /*
504 * When looking for repeats, we don't care about the trailing space. This
505 * is set to the shortest possible anyway.
506 */
cmp_no_trail(u8 * a,u8 * b,unsigned int count)507 static int cmp_no_trail(u8 *a, u8 *b, unsigned int count)
508 {
509 while (--count) {
510 if (*a++ != *b++)
511 return 1;
512 }
513
514 return (*a & 0xf0) - (*b & 0xf0);
515 }
516
find_slot(u16 * array,unsigned int size,u16 val)517 static int find_slot(u16 *array, unsigned int size, u16 val)
518 {
519 int i;
520
521 for (i = 0; i < size; i++) {
522 if (get_unaligned_be16(&array[i]) == val) {
523 return i;
524 } else if (!array[i]) {
525 put_unaligned_be16(val, &array[i]);
526 return i;
527 }
528 }
529
530 return -1;
531 }
532
zilog_ir_format(struct rc_dev * rcdev,unsigned int * txbuf,unsigned int count,struct code_block * code_block)533 static int zilog_ir_format(struct rc_dev *rcdev, unsigned int *txbuf,
534 unsigned int count, struct code_block *code_block)
535 {
536 struct IR_i2c *ir = rcdev->priv;
537 int rep, i, l, p = 0, s, c = 0;
538 bool repeating;
539 u8 codes[174];
540
541 code_block->carrier_pulse = DIV_ROUND_CLOSEST(
542 ir->duty_cycle * XTAL_FREQ / 1000, ir->carrier);
543 code_block->carrier_space = DIV_ROUND_CLOSEST(
544 (100 - ir->duty_cycle) * XTAL_FREQ / 1000, ir->carrier);
545
546 for (i = 0; i < count; i++) {
547 if (c >= ARRAY_SIZE(codes) - 1) {
548 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
549 return -EINVAL;
550 }
551
552 /*
553 * Lengths more than 142220us cannot be encoded; also
554 * this checks for multiply overflow
555 */
556 if (txbuf[i] > 142220)
557 return -EINVAL;
558
559 l = DIV_ROUND_CLOSEST((XTAL_FREQ / 1000) * txbuf[i], 40000);
560
561 if (i & 1) {
562 s = find_slot(code_block->space,
563 ARRAY_SIZE(code_block->space), l);
564 if (s == -1) {
565 dev_warn(&rcdev->dev, "Too many different lengths spaces, cannot transmit");
566 return -EINVAL;
567 }
568
569 /* We have a pulse and space */
570 codes[c++] = (p << 4) | s;
571 } else {
572 p = find_slot(code_block->pulse,
573 ARRAY_SIZE(code_block->pulse), l);
574 if (p == -1) {
575 dev_warn(&rcdev->dev, "Too many different lengths pulses, cannot transmit");
576 return -EINVAL;
577 }
578 }
579 }
580
581 /* We have to encode the trailing pulse. Find the shortest space */
582 s = 0;
583 for (i = 1; i < ARRAY_SIZE(code_block->space); i++) {
584 u16 d = get_unaligned_be16(&code_block->space[i]);
585
586 if (get_unaligned_be16(&code_block->space[s]) > d)
587 s = i;
588 }
589
590 codes[c++] = (p << 4) | s;
591
592 dev_dbg(&rcdev->dev, "generated %d codes\n", c);
593
594 /*
595 * Are the last N codes (so pulse + space) repeating 3 times?
596 * if so we can shorten the codes list and use code 0xc0 to repeat
597 * them.
598 */
599 repeating = false;
600
601 for (rep = c / 3; rep >= 1; rep--) {
602 if (!memcmp(&codes[c - rep * 3], &codes[c - rep * 2], rep) &&
603 !cmp_no_trail(&codes[c - rep], &codes[c - rep * 2], rep)) {
604 repeating = true;
605 break;
606 }
607 }
608
609 if (repeating) {
610 /* first copy any leading non-repeating */
611 int leading = c - rep * 3;
612
613 if (leading >= ARRAY_SIZE(code_block->codes) - 3 - rep) {
614 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
615 return -EINVAL;
616 }
617
618 dev_dbg(&rcdev->dev, "found trailing %d repeat\n", rep);
619 copy_codes(code_block->codes, codes, leading);
620 code_block->codes[leading] = 0x82;
621 copy_codes(code_block->codes + leading + 1, codes + leading,
622 rep);
623 c = leading + 1 + rep;
624 code_block->codes[c++] = 0xc0;
625 } else {
626 if (c >= ARRAY_SIZE(code_block->codes) - 3) {
627 dev_warn(&rcdev->dev, "IR too long, cannot transmit\n");
628 return -EINVAL;
629 }
630
631 dev_dbg(&rcdev->dev, "found no trailing repeat\n");
632 code_block->codes[0] = 0x82;
633 copy_codes(code_block->codes + 1, codes, c);
634 c++;
635 code_block->codes[c++] = 0xc4;
636 }
637
638 while (c < ARRAY_SIZE(code_block->codes))
639 code_block->codes[c++] = 0x83;
640
641 return 0;
642 }
643
zilog_tx(struct rc_dev * rcdev,unsigned int * txbuf,unsigned int count)644 static int zilog_tx(struct rc_dev *rcdev, unsigned int *txbuf,
645 unsigned int count)
646 {
647 struct IR_i2c *ir = rcdev->priv;
648 struct code_block code_block = { .length = sizeof(code_block) };
649 u8 buf[2];
650 int ret, i;
651
652 ret = zilog_ir_format(rcdev, txbuf, count, &code_block);
653 if (ret)
654 return ret;
655
656 ret = mutex_lock_interruptible(&ir->lock);
657 if (ret)
658 return ret;
659
660 ret = send_data_block(ir, ZILOG_UIR_END, &code_block);
661 if (ret)
662 goto out_unlock;
663
664 ret = i2c_master_recv(ir->tx_c, buf, 1);
665 if (ret != 1) {
666 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
667 goto out_unlock;
668 }
669
670 dev_dbg(&ir->rc->dev, "code set status: %02x\n", buf[0]);
671
672 if (buf[0] != (ZILOG_STATUS_OK | ZILOG_STATUS_SET)) {
673 dev_err(&ir->rc->dev, "unexpected IR TX response %02x\n",
674 buf[0]);
675 ret = -EIO;
676 goto out_unlock;
677 }
678
679 buf[0] = 0x00;
680 buf[1] = ZILOG_SEND;
681
682 ret = i2c_master_send(ir->tx_c, buf, 2);
683 if (ret != 2) {
684 dev_err(&ir->rc->dev, "i2c_master_send failed with %d\n", ret);
685 if (ret >= 0)
686 ret = -EIO;
687 goto out_unlock;
688 }
689
690 dev_dbg(&ir->rc->dev, "send command sent\n");
691
692 /*
693 * This bit NAKs until the device is ready, so we retry it
694 * sleeping a bit each time. This seems to be what the windows
695 * driver does, approximately.
696 * Try for up to 1s.
697 */
698 for (i = 0; i < 20; ++i) {
699 set_current_state(TASK_UNINTERRUPTIBLE);
700 schedule_timeout(msecs_to_jiffies(50));
701 ret = i2c_master_send(ir->tx_c, buf, 1);
702 if (ret == 1)
703 break;
704 dev_dbg(&ir->rc->dev,
705 "NAK expected: i2c_master_send failed with %d (try %d)\n",
706 ret, i + 1);
707 }
708
709 if (ret != 1) {
710 dev_err(&ir->rc->dev,
711 "IR TX chip never got ready: last i2c_master_send failed with %d\n",
712 ret);
713 if (ret >= 0)
714 ret = -EIO;
715 goto out_unlock;
716 }
717
718 ret = i2c_master_recv(ir->tx_c, buf, 1);
719 if (ret != 1) {
720 dev_err(&ir->rc->dev, "i2c_master_recv failed with %d\n", ret);
721 ret = -EIO;
722 goto out_unlock;
723 } else if (buf[0] != ZILOG_STATUS_OK) {
724 dev_err(&ir->rc->dev, "unexpected IR TX response #2: %02x\n",
725 buf[0]);
726 ret = -EIO;
727 goto out_unlock;
728 }
729 dev_dbg(&ir->rc->dev, "transmit complete\n");
730
731 /* Oh good, it worked */
732 ret = count;
733 out_unlock:
734 mutex_unlock(&ir->lock);
735
736 return ret;
737 }
738
zilog_tx_carrier(struct rc_dev * dev,u32 carrier)739 static int zilog_tx_carrier(struct rc_dev *dev, u32 carrier)
740 {
741 struct IR_i2c *ir = dev->priv;
742
743 if (carrier > 500000 || carrier < 20000)
744 return -EINVAL;
745
746 ir->carrier = carrier;
747
748 return 0;
749 }
750
zilog_tx_duty_cycle(struct rc_dev * dev,u32 duty_cycle)751 static int zilog_tx_duty_cycle(struct rc_dev *dev, u32 duty_cycle)
752 {
753 struct IR_i2c *ir = dev->priv;
754
755 ir->duty_cycle = duty_cycle;
756
757 return 0;
758 }
759
ir_probe(struct i2c_client * client,const struct i2c_device_id * id)760 static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
761 {
762 char *ir_codes = NULL;
763 const char *name = NULL;
764 u64 rc_proto = RC_PROTO_BIT_UNKNOWN;
765 struct IR_i2c *ir;
766 struct rc_dev *rc = NULL;
767 struct i2c_adapter *adap = client->adapter;
768 unsigned short addr = client->addr;
769 bool probe_tx = (id->driver_data & FLAG_TX) != 0;
770 int err;
771
772 if ((id->driver_data & FLAG_HDPVR) && !enable_hdpvr) {
773 dev_err(&client->dev, "IR for HDPVR is known to cause problems during recording, use enable_hdpvr modparam to enable\n");
774 return -ENODEV;
775 }
776
777 ir = devm_kzalloc(&client->dev, sizeof(*ir), GFP_KERNEL);
778 if (!ir)
779 return -ENOMEM;
780
781 ir->c = client;
782 ir->polling_interval = DEFAULT_POLLING_INTERVAL;
783 i2c_set_clientdata(client, ir);
784
785 switch(addr) {
786 case 0x64:
787 name = "Pixelview";
788 ir->get_key = get_key_pixelview;
789 rc_proto = RC_PROTO_BIT_OTHER;
790 ir_codes = RC_MAP_EMPTY;
791 break;
792 case 0x18:
793 case 0x1f:
794 case 0x1a:
795 name = "Hauppauge";
796 ir->get_key = get_key_haup;
797 rc_proto = RC_PROTO_BIT_RC5;
798 ir_codes = RC_MAP_HAUPPAUGE;
799 break;
800 case 0x30:
801 name = "KNC One";
802 ir->get_key = get_key_knc1;
803 rc_proto = RC_PROTO_BIT_OTHER;
804 ir_codes = RC_MAP_EMPTY;
805 break;
806 case 0x33:
807 name = "Geniatech";
808 ir->get_key = get_key_geniatech;
809 rc_proto = RC_PROTO_BIT_RC5;
810 ir_codes = RC_MAP_TOTAL_MEDIA_IN_HAND_02;
811 ir->old = 0xfc;
812 break;
813 case 0x6b:
814 name = "FusionHDTV";
815 ir->get_key = get_key_fusionhdtv;
816 rc_proto = RC_PROTO_BIT_UNKNOWN;
817 ir_codes = RC_MAP_FUSIONHDTV_MCE;
818 break;
819 case 0x40:
820 name = "AVerMedia Cardbus remote";
821 ir->get_key = get_key_avermedia_cardbus;
822 rc_proto = RC_PROTO_BIT_OTHER;
823 ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
824 break;
825 case 0x41:
826 name = "AVerMedia EM78P153";
827 ir->get_key = get_key_avermedia_cardbus;
828 rc_proto = RC_PROTO_BIT_OTHER;
829 /* RM-KV remote, seems to be same as RM-K6 */
830 ir_codes = RC_MAP_AVERMEDIA_M733A_RM_K6;
831 break;
832 case 0x71:
833 name = "Hauppauge/Zilog Z8";
834 ir->get_key = get_key_haup_xvr;
835 rc_proto = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
836 RC_PROTO_BIT_RC6_6A_32;
837 ir_codes = RC_MAP_HAUPPAUGE;
838 ir->polling_interval = 125;
839 probe_tx = true;
840 break;
841 }
842
843 /* Let the caller override settings */
844 if (client->dev.platform_data) {
845 const struct IR_i2c_init_data *init_data =
846 client->dev.platform_data;
847
848 ir_codes = init_data->ir_codes;
849 rc = init_data->rc_dev;
850
851 name = init_data->name;
852 if (init_data->type)
853 rc_proto = init_data->type;
854
855 if (init_data->polling_interval)
856 ir->polling_interval = init_data->polling_interval;
857
858 switch (init_data->internal_get_key_func) {
859 case IR_KBD_GET_KEY_CUSTOM:
860 /* The bridge driver provided us its own function */
861 ir->get_key = init_data->get_key;
862 break;
863 case IR_KBD_GET_KEY_PIXELVIEW:
864 ir->get_key = get_key_pixelview;
865 break;
866 case IR_KBD_GET_KEY_HAUP:
867 ir->get_key = get_key_haup;
868 break;
869 case IR_KBD_GET_KEY_KNC1:
870 ir->get_key = get_key_knc1;
871 break;
872 case IR_KBD_GET_KEY_GENIATECH:
873 ir->get_key = get_key_geniatech;
874 break;
875 case IR_KBD_GET_KEY_FUSIONHDTV:
876 ir->get_key = get_key_fusionhdtv;
877 break;
878 case IR_KBD_GET_KEY_HAUP_XVR:
879 ir->get_key = get_key_haup_xvr;
880 break;
881 case IR_KBD_GET_KEY_AVERMEDIA_CARDBUS:
882 ir->get_key = get_key_avermedia_cardbus;
883 break;
884 }
885 }
886
887 if (!rc) {
888 /*
889 * If platform_data doesn't specify rc_dev, initialize it
890 * internally
891 */
892 rc = rc_allocate_device(RC_DRIVER_SCANCODE);
893 if (!rc)
894 return -ENOMEM;
895 }
896 ir->rc = rc;
897
898 /* Make sure we are all setup before going on */
899 if (!name || !ir->get_key || !rc_proto || !ir_codes) {
900 dev_warn(&client->dev, "Unsupported device at address 0x%02x\n",
901 addr);
902 err = -ENODEV;
903 goto err_out_free;
904 }
905
906 ir->ir_codes = ir_codes;
907
908 snprintf(ir->phys, sizeof(ir->phys), "%s/%s", dev_name(&adap->dev),
909 dev_name(&client->dev));
910
911 /*
912 * Initialize input_dev fields
913 * It doesn't make sense to allow overriding them via platform_data
914 */
915 rc->input_id.bustype = BUS_I2C;
916 rc->input_phys = ir->phys;
917 rc->device_name = name;
918 rc->dev.parent = &client->dev;
919 rc->priv = ir;
920 rc->open = ir_open;
921 rc->close = ir_close;
922
923 /*
924 * Initialize the other fields of rc_dev
925 */
926 rc->map_name = ir->ir_codes;
927 rc->allowed_protocols = rc_proto;
928 if (!rc->driver_name)
929 rc->driver_name = KBUILD_MODNAME;
930
931 mutex_init(&ir->lock);
932
933 INIT_DELAYED_WORK(&ir->work, ir_work);
934
935 if (probe_tx) {
936 ir->tx_c = i2c_new_dummy_device(client->adapter, 0x70);
937 if (IS_ERR(ir->tx_c)) {
938 dev_err(&client->dev, "failed to setup tx i2c address");
939 err = PTR_ERR(ir->tx_c);
940 goto err_out_free;
941 } else if (!zilog_init(ir)) {
942 ir->carrier = 38000;
943 ir->duty_cycle = 40;
944 rc->tx_ir = zilog_tx;
945 rc->s_tx_carrier = zilog_tx_carrier;
946 rc->s_tx_duty_cycle = zilog_tx_duty_cycle;
947 }
948 }
949
950 err = rc_register_device(rc);
951 if (err)
952 goto err_out_free;
953
954 return 0;
955
956 err_out_free:
957 if (!IS_ERR(ir->tx_c))
958 i2c_unregister_device(ir->tx_c);
959
960 /* Only frees rc if it were allocated internally */
961 rc_free_device(rc);
962 return err;
963 }
964
ir_remove(struct i2c_client * client)965 static void ir_remove(struct i2c_client *client)
966 {
967 struct IR_i2c *ir = i2c_get_clientdata(client);
968
969 cancel_delayed_work_sync(&ir->work);
970
971 i2c_unregister_device(ir->tx_c);
972
973 rc_unregister_device(ir->rc);
974 }
975
976 static const struct i2c_device_id ir_kbd_id[] = {
977 /* Generic entry for any IR receiver */
978 { "ir_video", 0 },
979 /* IR device specific entries should be added here */
980 { "ir_z8f0811_haup", FLAG_TX },
981 { "ir_z8f0811_hdpvr", FLAG_TX | FLAG_HDPVR },
982 { }
983 };
984 MODULE_DEVICE_TABLE(i2c, ir_kbd_id);
985
986 static struct i2c_driver ir_kbd_driver = {
987 .driver = {
988 .name = "ir-kbd-i2c",
989 },
990 .probe = ir_probe,
991 .remove = ir_remove,
992 .id_table = ir_kbd_id,
993 };
994
995 module_i2c_driver(ir_kbd_driver);
996
997 /* ----------------------------------------------------------------------- */
998
999 MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller");
1000 MODULE_DESCRIPTION("input driver for i2c IR remote controls");
1001 MODULE_LICENSE("GPL");
1002