1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_msghandler.c
4 *
5 * Incoming and outgoing message routing for an IPMI interface.
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 */
13
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38
39 #define IPMI_DRIVER_VERSION "39.2"
40
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 struct ipmi_smi_msg *msg);
48
49 static bool initialized;
50 static bool drvregistered;
51
52 enum ipmi_panic_event_op {
53 IPMI_SEND_PANIC_EVENT_NONE,
54 IPMI_SEND_PANIC_EVENT,
55 IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66
panic_op_write_handler(const char * val,const struct kernel_param * kp)67 static int panic_op_write_handler(const char *val,
68 const struct kernel_param *kp)
69 {
70 char valcp[16];
71 char *s;
72
73 strncpy(valcp, val, 15);
74 valcp[15] = '\0';
75
76 s = strstrip(valcp);
77
78 if (strcmp(s, "none") == 0)
79 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 else if (strcmp(s, "event") == 0)
81 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 else if (strcmp(s, "string") == 0)
83 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 else
85 return -EINVAL;
86
87 return 0;
88 }
89
panic_op_read_handler(char * buffer,const struct kernel_param * kp)90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 switch (ipmi_send_panic_event) {
93 case IPMI_SEND_PANIC_EVENT_NONE:
94 strcpy(buffer, "none\n");
95 break;
96
97 case IPMI_SEND_PANIC_EVENT:
98 strcpy(buffer, "event\n");
99 break;
100
101 case IPMI_SEND_PANIC_EVENT_STRING:
102 strcpy(buffer, "string\n");
103 break;
104
105 default:
106 strcpy(buffer, "???\n");
107 break;
108 }
109
110 return strlen(buffer);
111 }
112
113 static const struct kernel_param_ops panic_op_ops = {
114 .set = panic_op_write_handler,
115 .get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119
120
121 #define MAX_EVENTS_IN_QUEUE 25
122
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128
129 /*
130 * Don't let a message sit in a queue forever, always time it with at lest
131 * the max message timer. This is in milliseconds.
132 */
133 #define MAX_MSG_TIMEOUT 60000
134
135 /*
136 * Timeout times below are in milliseconds, and are done off a 1
137 * second timer. So setting the value to 1000 would mean anything
138 * between 0 and 1000ms. So really the only reasonable minimum
139 * setting it 2000ms, which is between 1 and 2 seconds.
140 */
141
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 "The time (milliseconds) between retry sends");
147
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 "The time (milliseconds) between retry sends in maintenance mode");
153
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 "The time (milliseconds) between retry sends in maintenance mode");
159
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME 1000
162
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
165
166 /*
167 * Request events from the queue every second (this is the number of
168 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
169 * future, IPMI will add a way to know immediately if an event is in
170 * the queue and this silliness can go away.
171 */
172 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
173
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
176
177 /*
178 * The main "user" data structure.
179 */
180 struct ipmi_user {
181 struct list_head link;
182
183 /*
184 * Set to NULL when the user is destroyed, a pointer to myself
185 * so srcu_dereference can be used on it.
186 */
187 struct ipmi_user *self;
188 struct srcu_struct release_barrier;
189
190 struct kref refcount;
191
192 /* The upper layer that handles receive messages. */
193 const struct ipmi_user_hndl *handler;
194 void *handler_data;
195
196 /* The interface this user is bound to. */
197 struct ipmi_smi *intf;
198
199 /* Does this interface receive IPMI events? */
200 bool gets_events;
201
202 /* Free must run in process context for RCU cleanup. */
203 struct work_struct remove_work;
204 };
205
acquire_ipmi_user(struct ipmi_user * user,int * index)206 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
207 __acquires(user->release_barrier)
208 {
209 struct ipmi_user *ruser;
210
211 *index = srcu_read_lock(&user->release_barrier);
212 ruser = srcu_dereference(user->self, &user->release_barrier);
213 if (!ruser)
214 srcu_read_unlock(&user->release_barrier, *index);
215 return ruser;
216 }
217
release_ipmi_user(struct ipmi_user * user,int index)218 static void release_ipmi_user(struct ipmi_user *user, int index)
219 {
220 srcu_read_unlock(&user->release_barrier, index);
221 }
222
223 struct cmd_rcvr {
224 struct list_head link;
225
226 struct ipmi_user *user;
227 unsigned char netfn;
228 unsigned char cmd;
229 unsigned int chans;
230
231 /*
232 * This is used to form a linked lised during mass deletion.
233 * Since this is in an RCU list, we cannot use the link above
234 * or change any data until the RCU period completes. So we
235 * use this next variable during mass deletion so we can have
236 * a list and don't have to wait and restart the search on
237 * every individual deletion of a command.
238 */
239 struct cmd_rcvr *next;
240 };
241
242 struct seq_table {
243 unsigned int inuse : 1;
244 unsigned int broadcast : 1;
245
246 unsigned long timeout;
247 unsigned long orig_timeout;
248 unsigned int retries_left;
249
250 /*
251 * To verify on an incoming send message response that this is
252 * the message that the response is for, we keep a sequence id
253 * and increment it every time we send a message.
254 */
255 long seqid;
256
257 /*
258 * This is held so we can properly respond to the message on a
259 * timeout, and it is used to hold the temporary data for
260 * retransmission, too.
261 */
262 struct ipmi_recv_msg *recv_msg;
263 };
264
265 /*
266 * Store the information in a msgid (long) to allow us to find a
267 * sequence table entry from the msgid.
268 */
269 #define STORE_SEQ_IN_MSGID(seq, seqid) \
270 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
271
272 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
273 do { \
274 seq = (((msgid) >> 26) & 0x3f); \
275 seqid = ((msgid) & 0x3ffffff); \
276 } while (0)
277
278 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
279
280 #define IPMI_MAX_CHANNELS 16
281 struct ipmi_channel {
282 unsigned char medium;
283 unsigned char protocol;
284 };
285
286 struct ipmi_channel_set {
287 struct ipmi_channel c[IPMI_MAX_CHANNELS];
288 };
289
290 struct ipmi_my_addrinfo {
291 /*
292 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
293 * but may be changed by the user.
294 */
295 unsigned char address;
296
297 /*
298 * My LUN. This should generally stay the SMS LUN, but just in
299 * case...
300 */
301 unsigned char lun;
302 };
303
304 /*
305 * Note that the product id, manufacturer id, guid, and device id are
306 * immutable in this structure, so dyn_mutex is not required for
307 * accessing those. If those change on a BMC, a new BMC is allocated.
308 */
309 struct bmc_device {
310 struct platform_device pdev;
311 struct list_head intfs; /* Interfaces on this BMC. */
312 struct ipmi_device_id id;
313 struct ipmi_device_id fetch_id;
314 int dyn_id_set;
315 unsigned long dyn_id_expiry;
316 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
317 guid_t guid;
318 guid_t fetch_guid;
319 int dyn_guid_set;
320 struct kref usecount;
321 struct work_struct remove_work;
322 unsigned char cc; /* completion code */
323 };
324 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
325
326 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
327 struct ipmi_device_id *id,
328 bool *guid_set, guid_t *guid);
329
330 /*
331 * Various statistics for IPMI, these index stats[] in the ipmi_smi
332 * structure.
333 */
334 enum ipmi_stat_indexes {
335 /* Commands we got from the user that were invalid. */
336 IPMI_STAT_sent_invalid_commands = 0,
337
338 /* Commands we sent to the MC. */
339 IPMI_STAT_sent_local_commands,
340
341 /* Responses from the MC that were delivered to a user. */
342 IPMI_STAT_handled_local_responses,
343
344 /* Responses from the MC that were not delivered to a user. */
345 IPMI_STAT_unhandled_local_responses,
346
347 /* Commands we sent out to the IPMB bus. */
348 IPMI_STAT_sent_ipmb_commands,
349
350 /* Commands sent on the IPMB that had errors on the SEND CMD */
351 IPMI_STAT_sent_ipmb_command_errs,
352
353 /* Each retransmit increments this count. */
354 IPMI_STAT_retransmitted_ipmb_commands,
355
356 /*
357 * When a message times out (runs out of retransmits) this is
358 * incremented.
359 */
360 IPMI_STAT_timed_out_ipmb_commands,
361
362 /*
363 * This is like above, but for broadcasts. Broadcasts are
364 * *not* included in the above count (they are expected to
365 * time out).
366 */
367 IPMI_STAT_timed_out_ipmb_broadcasts,
368
369 /* Responses I have sent to the IPMB bus. */
370 IPMI_STAT_sent_ipmb_responses,
371
372 /* The response was delivered to the user. */
373 IPMI_STAT_handled_ipmb_responses,
374
375 /* The response had invalid data in it. */
376 IPMI_STAT_invalid_ipmb_responses,
377
378 /* The response didn't have anyone waiting for it. */
379 IPMI_STAT_unhandled_ipmb_responses,
380
381 /* Commands we sent out to the IPMB bus. */
382 IPMI_STAT_sent_lan_commands,
383
384 /* Commands sent on the IPMB that had errors on the SEND CMD */
385 IPMI_STAT_sent_lan_command_errs,
386
387 /* Each retransmit increments this count. */
388 IPMI_STAT_retransmitted_lan_commands,
389
390 /*
391 * When a message times out (runs out of retransmits) this is
392 * incremented.
393 */
394 IPMI_STAT_timed_out_lan_commands,
395
396 /* Responses I have sent to the IPMB bus. */
397 IPMI_STAT_sent_lan_responses,
398
399 /* The response was delivered to the user. */
400 IPMI_STAT_handled_lan_responses,
401
402 /* The response had invalid data in it. */
403 IPMI_STAT_invalid_lan_responses,
404
405 /* The response didn't have anyone waiting for it. */
406 IPMI_STAT_unhandled_lan_responses,
407
408 /* The command was delivered to the user. */
409 IPMI_STAT_handled_commands,
410
411 /* The command had invalid data in it. */
412 IPMI_STAT_invalid_commands,
413
414 /* The command didn't have anyone waiting for it. */
415 IPMI_STAT_unhandled_commands,
416
417 /* Invalid data in an event. */
418 IPMI_STAT_invalid_events,
419
420 /* Events that were received with the proper format. */
421 IPMI_STAT_events,
422
423 /* Retransmissions on IPMB that failed. */
424 IPMI_STAT_dropped_rexmit_ipmb_commands,
425
426 /* Retransmissions on LAN that failed. */
427 IPMI_STAT_dropped_rexmit_lan_commands,
428
429 /* This *must* remain last, add new values above this. */
430 IPMI_NUM_STATS
431 };
432
433
434 #define IPMI_IPMB_NUM_SEQ 64
435 struct ipmi_smi {
436 struct module *owner;
437
438 /* What interface number are we? */
439 int intf_num;
440
441 struct kref refcount;
442
443 /* Set when the interface is being unregistered. */
444 bool in_shutdown;
445
446 /* Used for a list of interfaces. */
447 struct list_head link;
448
449 /*
450 * The list of upper layers that are using me. seq_lock write
451 * protects this. Read protection is with srcu.
452 */
453 struct list_head users;
454 struct srcu_struct users_srcu;
455
456 /* Used for wake ups at startup. */
457 wait_queue_head_t waitq;
458
459 /*
460 * Prevents the interface from being unregistered when the
461 * interface is used by being looked up through the BMC
462 * structure.
463 */
464 struct mutex bmc_reg_mutex;
465
466 struct bmc_device tmp_bmc;
467 struct bmc_device *bmc;
468 bool bmc_registered;
469 struct list_head bmc_link;
470 char *my_dev_name;
471 bool in_bmc_register; /* Handle recursive situations. Yuck. */
472 struct work_struct bmc_reg_work;
473
474 const struct ipmi_smi_handlers *handlers;
475 void *send_info;
476
477 /* Driver-model device for the system interface. */
478 struct device *si_dev;
479
480 /*
481 * A table of sequence numbers for this interface. We use the
482 * sequence numbers for IPMB messages that go out of the
483 * interface to match them up with their responses. A routine
484 * is called periodically to time the items in this list.
485 */
486 spinlock_t seq_lock;
487 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
488 int curr_seq;
489
490 /*
491 * Messages queued for delivery. If delivery fails (out of memory
492 * for instance), They will stay in here to be processed later in a
493 * periodic timer interrupt. The tasklet is for handling received
494 * messages directly from the handler.
495 */
496 spinlock_t waiting_rcv_msgs_lock;
497 struct list_head waiting_rcv_msgs;
498 atomic_t watchdog_pretimeouts_to_deliver;
499 struct tasklet_struct recv_tasklet;
500
501 spinlock_t xmit_msgs_lock;
502 struct list_head xmit_msgs;
503 struct ipmi_smi_msg *curr_msg;
504 struct list_head hp_xmit_msgs;
505
506 /*
507 * The list of command receivers that are registered for commands
508 * on this interface.
509 */
510 struct mutex cmd_rcvrs_mutex;
511 struct list_head cmd_rcvrs;
512
513 /*
514 * Events that were queues because no one was there to receive
515 * them.
516 */
517 spinlock_t events_lock; /* For dealing with event stuff. */
518 struct list_head waiting_events;
519 unsigned int waiting_events_count; /* How many events in queue? */
520 char delivering_events;
521 char event_msg_printed;
522
523 /* How many users are waiting for events? */
524 atomic_t event_waiters;
525 unsigned int ticks_to_req_ev;
526
527 spinlock_t watch_lock; /* For dealing with watch stuff below. */
528
529 /* How many users are waiting for commands? */
530 unsigned int command_waiters;
531
532 /* How many users are waiting for watchdogs? */
533 unsigned int watchdog_waiters;
534
535 /* How many users are waiting for message responses? */
536 unsigned int response_waiters;
537
538 /*
539 * Tells what the lower layer has last been asked to watch for,
540 * messages and/or watchdogs. Protected by watch_lock.
541 */
542 unsigned int last_watch_mask;
543
544 /*
545 * The event receiver for my BMC, only really used at panic
546 * shutdown as a place to store this.
547 */
548 unsigned char event_receiver;
549 unsigned char event_receiver_lun;
550 unsigned char local_sel_device;
551 unsigned char local_event_generator;
552
553 /* For handling of maintenance mode. */
554 int maintenance_mode;
555 bool maintenance_mode_enable;
556 int auto_maintenance_timeout;
557 spinlock_t maintenance_mode_lock; /* Used in a timer... */
558
559 /*
560 * If we are doing maintenance on something on IPMB, extend
561 * the timeout time to avoid timeouts writing firmware and
562 * such.
563 */
564 int ipmb_maintenance_mode_timeout;
565
566 /*
567 * A cheap hack, if this is non-null and a message to an
568 * interface comes in with a NULL user, call this routine with
569 * it. Note that the message will still be freed by the
570 * caller. This only works on the system interface.
571 *
572 * Protected by bmc_reg_mutex.
573 */
574 void (*null_user_handler)(struct ipmi_smi *intf,
575 struct ipmi_recv_msg *msg);
576
577 /*
578 * When we are scanning the channels for an SMI, this will
579 * tell which channel we are scanning.
580 */
581 int curr_channel;
582
583 /* Channel information */
584 struct ipmi_channel_set *channel_list;
585 unsigned int curr_working_cset; /* First index into the following. */
586 struct ipmi_channel_set wchannels[2];
587 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
588 bool channels_ready;
589
590 atomic_t stats[IPMI_NUM_STATS];
591
592 /*
593 * run_to_completion duplicate of smb_info, smi_info
594 * and ipmi_serial_info structures. Used to decrease numbers of
595 * parameters passed by "low" level IPMI code.
596 */
597 int run_to_completion;
598 };
599 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
600
601 static void __get_guid(struct ipmi_smi *intf);
602 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
603 static int __ipmi_bmc_register(struct ipmi_smi *intf,
604 struct ipmi_device_id *id,
605 bool guid_set, guid_t *guid, int intf_num);
606 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
607
608
609 /**
610 * The driver model view of the IPMI messaging driver.
611 */
612 static struct platform_driver ipmidriver = {
613 .driver = {
614 .name = "ipmi",
615 .bus = &platform_bus_type
616 }
617 };
618 /*
619 * This mutex keeps us from adding the same BMC twice.
620 */
621 static DEFINE_MUTEX(ipmidriver_mutex);
622
623 static LIST_HEAD(ipmi_interfaces);
624 static DEFINE_MUTEX(ipmi_interfaces_mutex);
625 #define ipmi_interfaces_mutex_held() \
626 lockdep_is_held(&ipmi_interfaces_mutex)
627 static struct srcu_struct ipmi_interfaces_srcu;
628
629 /*
630 * List of watchers that want to know when smi's are added and deleted.
631 */
632 static LIST_HEAD(smi_watchers);
633 static DEFINE_MUTEX(smi_watchers_mutex);
634
635 #define ipmi_inc_stat(intf, stat) \
636 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
637 #define ipmi_get_stat(intf, stat) \
638 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
639
640 static const char * const addr_src_to_str[] = {
641 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
642 "device-tree", "platform"
643 };
644
ipmi_addr_src_to_str(enum ipmi_addr_src src)645 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
646 {
647 if (src >= SI_LAST)
648 src = 0; /* Invalid */
649 return addr_src_to_str[src];
650 }
651 EXPORT_SYMBOL(ipmi_addr_src_to_str);
652
is_lan_addr(struct ipmi_addr * addr)653 static int is_lan_addr(struct ipmi_addr *addr)
654 {
655 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
656 }
657
is_ipmb_addr(struct ipmi_addr * addr)658 static int is_ipmb_addr(struct ipmi_addr *addr)
659 {
660 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
661 }
662
is_ipmb_bcast_addr(struct ipmi_addr * addr)663 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
664 {
665 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
666 }
667
free_recv_msg_list(struct list_head * q)668 static void free_recv_msg_list(struct list_head *q)
669 {
670 struct ipmi_recv_msg *msg, *msg2;
671
672 list_for_each_entry_safe(msg, msg2, q, link) {
673 list_del(&msg->link);
674 ipmi_free_recv_msg(msg);
675 }
676 }
677
free_smi_msg_list(struct list_head * q)678 static void free_smi_msg_list(struct list_head *q)
679 {
680 struct ipmi_smi_msg *msg, *msg2;
681
682 list_for_each_entry_safe(msg, msg2, q, link) {
683 list_del(&msg->link);
684 ipmi_free_smi_msg(msg);
685 }
686 }
687
clean_up_interface_data(struct ipmi_smi * intf)688 static void clean_up_interface_data(struct ipmi_smi *intf)
689 {
690 int i;
691 struct cmd_rcvr *rcvr, *rcvr2;
692 struct list_head list;
693
694 tasklet_kill(&intf->recv_tasklet);
695
696 free_smi_msg_list(&intf->waiting_rcv_msgs);
697 free_recv_msg_list(&intf->waiting_events);
698
699 /*
700 * Wholesale remove all the entries from the list in the
701 * interface and wait for RCU to know that none are in use.
702 */
703 mutex_lock(&intf->cmd_rcvrs_mutex);
704 INIT_LIST_HEAD(&list);
705 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
706 mutex_unlock(&intf->cmd_rcvrs_mutex);
707
708 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
709 kfree(rcvr);
710
711 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
712 if ((intf->seq_table[i].inuse)
713 && (intf->seq_table[i].recv_msg))
714 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
715 }
716 }
717
intf_free(struct kref * ref)718 static void intf_free(struct kref *ref)
719 {
720 struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
721
722 clean_up_interface_data(intf);
723 kfree(intf);
724 }
725
726 struct watcher_entry {
727 int intf_num;
728 struct ipmi_smi *intf;
729 struct list_head link;
730 };
731
ipmi_smi_watcher_register(struct ipmi_smi_watcher * watcher)732 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
733 {
734 struct ipmi_smi *intf;
735 int index, rv;
736
737 /*
738 * Make sure the driver is actually initialized, this handles
739 * problems with initialization order.
740 */
741 rv = ipmi_init_msghandler();
742 if (rv)
743 return rv;
744
745 mutex_lock(&smi_watchers_mutex);
746
747 list_add(&watcher->link, &smi_watchers);
748
749 index = srcu_read_lock(&ipmi_interfaces_srcu);
750 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
751 int intf_num = READ_ONCE(intf->intf_num);
752
753 if (intf_num == -1)
754 continue;
755 watcher->new_smi(intf_num, intf->si_dev);
756 }
757 srcu_read_unlock(&ipmi_interfaces_srcu, index);
758
759 mutex_unlock(&smi_watchers_mutex);
760
761 return 0;
762 }
763 EXPORT_SYMBOL(ipmi_smi_watcher_register);
764
ipmi_smi_watcher_unregister(struct ipmi_smi_watcher * watcher)765 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
766 {
767 mutex_lock(&smi_watchers_mutex);
768 list_del(&watcher->link);
769 mutex_unlock(&smi_watchers_mutex);
770 return 0;
771 }
772 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
773
774 /*
775 * Must be called with smi_watchers_mutex held.
776 */
777 static void
call_smi_watchers(int i,struct device * dev)778 call_smi_watchers(int i, struct device *dev)
779 {
780 struct ipmi_smi_watcher *w;
781
782 mutex_lock(&smi_watchers_mutex);
783 list_for_each_entry(w, &smi_watchers, link) {
784 if (try_module_get(w->owner)) {
785 w->new_smi(i, dev);
786 module_put(w->owner);
787 }
788 }
789 mutex_unlock(&smi_watchers_mutex);
790 }
791
792 static int
ipmi_addr_equal(struct ipmi_addr * addr1,struct ipmi_addr * addr2)793 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
794 {
795 if (addr1->addr_type != addr2->addr_type)
796 return 0;
797
798 if (addr1->channel != addr2->channel)
799 return 0;
800
801 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
802 struct ipmi_system_interface_addr *smi_addr1
803 = (struct ipmi_system_interface_addr *) addr1;
804 struct ipmi_system_interface_addr *smi_addr2
805 = (struct ipmi_system_interface_addr *) addr2;
806 return (smi_addr1->lun == smi_addr2->lun);
807 }
808
809 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
810 struct ipmi_ipmb_addr *ipmb_addr1
811 = (struct ipmi_ipmb_addr *) addr1;
812 struct ipmi_ipmb_addr *ipmb_addr2
813 = (struct ipmi_ipmb_addr *) addr2;
814
815 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
816 && (ipmb_addr1->lun == ipmb_addr2->lun));
817 }
818
819 if (is_lan_addr(addr1)) {
820 struct ipmi_lan_addr *lan_addr1
821 = (struct ipmi_lan_addr *) addr1;
822 struct ipmi_lan_addr *lan_addr2
823 = (struct ipmi_lan_addr *) addr2;
824
825 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
826 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
827 && (lan_addr1->session_handle
828 == lan_addr2->session_handle)
829 && (lan_addr1->lun == lan_addr2->lun));
830 }
831
832 return 1;
833 }
834
ipmi_validate_addr(struct ipmi_addr * addr,int len)835 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
836 {
837 if (len < sizeof(struct ipmi_system_interface_addr))
838 return -EINVAL;
839
840 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
841 if (addr->channel != IPMI_BMC_CHANNEL)
842 return -EINVAL;
843 return 0;
844 }
845
846 if ((addr->channel == IPMI_BMC_CHANNEL)
847 || (addr->channel >= IPMI_MAX_CHANNELS)
848 || (addr->channel < 0))
849 return -EINVAL;
850
851 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
852 if (len < sizeof(struct ipmi_ipmb_addr))
853 return -EINVAL;
854 return 0;
855 }
856
857 if (is_lan_addr(addr)) {
858 if (len < sizeof(struct ipmi_lan_addr))
859 return -EINVAL;
860 return 0;
861 }
862
863 return -EINVAL;
864 }
865 EXPORT_SYMBOL(ipmi_validate_addr);
866
ipmi_addr_length(int addr_type)867 unsigned int ipmi_addr_length(int addr_type)
868 {
869 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
870 return sizeof(struct ipmi_system_interface_addr);
871
872 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
873 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
874 return sizeof(struct ipmi_ipmb_addr);
875
876 if (addr_type == IPMI_LAN_ADDR_TYPE)
877 return sizeof(struct ipmi_lan_addr);
878
879 return 0;
880 }
881 EXPORT_SYMBOL(ipmi_addr_length);
882
deliver_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)883 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
884 {
885 int rv = 0;
886
887 if (!msg->user) {
888 /* Special handling for NULL users. */
889 if (intf->null_user_handler) {
890 intf->null_user_handler(intf, msg);
891 } else {
892 /* No handler, so give up. */
893 rv = -EINVAL;
894 }
895 ipmi_free_recv_msg(msg);
896 } else if (oops_in_progress) {
897 /*
898 * If we are running in the panic context, calling the
899 * receive handler doesn't much meaning and has a deadlock
900 * risk. At this moment, simply skip it in that case.
901 */
902 ipmi_free_recv_msg(msg);
903 } else {
904 int index;
905 struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
906
907 if (user) {
908 user->handler->ipmi_recv_hndl(msg, user->handler_data);
909 release_ipmi_user(user, index);
910 } else {
911 /* User went away, give up. */
912 ipmi_free_recv_msg(msg);
913 rv = -EINVAL;
914 }
915 }
916
917 return rv;
918 }
919
deliver_local_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)920 static void deliver_local_response(struct ipmi_smi *intf,
921 struct ipmi_recv_msg *msg)
922 {
923 if (deliver_response(intf, msg))
924 ipmi_inc_stat(intf, unhandled_local_responses);
925 else
926 ipmi_inc_stat(intf, handled_local_responses);
927 }
928
deliver_err_response(struct ipmi_smi * intf,struct ipmi_recv_msg * msg,int err)929 static void deliver_err_response(struct ipmi_smi *intf,
930 struct ipmi_recv_msg *msg, int err)
931 {
932 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
933 msg->msg_data[0] = err;
934 msg->msg.netfn |= 1; /* Convert to a response. */
935 msg->msg.data_len = 1;
936 msg->msg.data = msg->msg_data;
937 deliver_local_response(intf, msg);
938 }
939
smi_add_watch(struct ipmi_smi * intf,unsigned int flags)940 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
941 {
942 unsigned long iflags;
943
944 if (!intf->handlers->set_need_watch)
945 return;
946
947 spin_lock_irqsave(&intf->watch_lock, iflags);
948 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
949 intf->response_waiters++;
950
951 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
952 intf->watchdog_waiters++;
953
954 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
955 intf->command_waiters++;
956
957 if ((intf->last_watch_mask & flags) != flags) {
958 intf->last_watch_mask |= flags;
959 intf->handlers->set_need_watch(intf->send_info,
960 intf->last_watch_mask);
961 }
962 spin_unlock_irqrestore(&intf->watch_lock, iflags);
963 }
964
smi_remove_watch(struct ipmi_smi * intf,unsigned int flags)965 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
966 {
967 unsigned long iflags;
968
969 if (!intf->handlers->set_need_watch)
970 return;
971
972 spin_lock_irqsave(&intf->watch_lock, iflags);
973 if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
974 intf->response_waiters--;
975
976 if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
977 intf->watchdog_waiters--;
978
979 if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
980 intf->command_waiters--;
981
982 flags = 0;
983 if (intf->response_waiters)
984 flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
985 if (intf->watchdog_waiters)
986 flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
987 if (intf->command_waiters)
988 flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
989
990 if (intf->last_watch_mask != flags) {
991 intf->last_watch_mask = flags;
992 intf->handlers->set_need_watch(intf->send_info,
993 intf->last_watch_mask);
994 }
995 spin_unlock_irqrestore(&intf->watch_lock, iflags);
996 }
997
998 /*
999 * Find the next sequence number not being used and add the given
1000 * message with the given timeout to the sequence table. This must be
1001 * called with the interface's seq_lock held.
1002 */
intf_next_seq(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned long timeout,int retries,int broadcast,unsigned char * seq,long * seqid)1003 static int intf_next_seq(struct ipmi_smi *intf,
1004 struct ipmi_recv_msg *recv_msg,
1005 unsigned long timeout,
1006 int retries,
1007 int broadcast,
1008 unsigned char *seq,
1009 long *seqid)
1010 {
1011 int rv = 0;
1012 unsigned int i;
1013
1014 if (timeout == 0)
1015 timeout = default_retry_ms;
1016 if (retries < 0)
1017 retries = default_max_retries;
1018
1019 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1020 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1021 if (!intf->seq_table[i].inuse)
1022 break;
1023 }
1024
1025 if (!intf->seq_table[i].inuse) {
1026 intf->seq_table[i].recv_msg = recv_msg;
1027
1028 /*
1029 * Start with the maximum timeout, when the send response
1030 * comes in we will start the real timer.
1031 */
1032 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1033 intf->seq_table[i].orig_timeout = timeout;
1034 intf->seq_table[i].retries_left = retries;
1035 intf->seq_table[i].broadcast = broadcast;
1036 intf->seq_table[i].inuse = 1;
1037 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1038 *seq = i;
1039 *seqid = intf->seq_table[i].seqid;
1040 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1041 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1042 need_waiter(intf);
1043 } else {
1044 rv = -EAGAIN;
1045 }
1046
1047 return rv;
1048 }
1049
1050 /*
1051 * Return the receive message for the given sequence number and
1052 * release the sequence number so it can be reused. Some other data
1053 * is passed in to be sure the message matches up correctly (to help
1054 * guard against message coming in after their timeout and the
1055 * sequence number being reused).
1056 */
intf_find_seq(struct ipmi_smi * intf,unsigned char seq,short channel,unsigned char cmd,unsigned char netfn,struct ipmi_addr * addr,struct ipmi_recv_msg ** recv_msg)1057 static int intf_find_seq(struct ipmi_smi *intf,
1058 unsigned char seq,
1059 short channel,
1060 unsigned char cmd,
1061 unsigned char netfn,
1062 struct ipmi_addr *addr,
1063 struct ipmi_recv_msg **recv_msg)
1064 {
1065 int rv = -ENODEV;
1066 unsigned long flags;
1067
1068 if (seq >= IPMI_IPMB_NUM_SEQ)
1069 return -EINVAL;
1070
1071 spin_lock_irqsave(&intf->seq_lock, flags);
1072 if (intf->seq_table[seq].inuse) {
1073 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1074
1075 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1076 && (msg->msg.netfn == netfn)
1077 && (ipmi_addr_equal(addr, &msg->addr))) {
1078 *recv_msg = msg;
1079 intf->seq_table[seq].inuse = 0;
1080 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1081 rv = 0;
1082 }
1083 }
1084 spin_unlock_irqrestore(&intf->seq_lock, flags);
1085
1086 return rv;
1087 }
1088
1089
1090 /* Start the timer for a specific sequence table entry. */
intf_start_seq_timer(struct ipmi_smi * intf,long msgid)1091 static int intf_start_seq_timer(struct ipmi_smi *intf,
1092 long msgid)
1093 {
1094 int rv = -ENODEV;
1095 unsigned long flags;
1096 unsigned char seq;
1097 unsigned long seqid;
1098
1099
1100 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1101
1102 spin_lock_irqsave(&intf->seq_lock, flags);
1103 /*
1104 * We do this verification because the user can be deleted
1105 * while a message is outstanding.
1106 */
1107 if ((intf->seq_table[seq].inuse)
1108 && (intf->seq_table[seq].seqid == seqid)) {
1109 struct seq_table *ent = &intf->seq_table[seq];
1110 ent->timeout = ent->orig_timeout;
1111 rv = 0;
1112 }
1113 spin_unlock_irqrestore(&intf->seq_lock, flags);
1114
1115 return rv;
1116 }
1117
1118 /* Got an error for the send message for a specific sequence number. */
intf_err_seq(struct ipmi_smi * intf,long msgid,unsigned int err)1119 static int intf_err_seq(struct ipmi_smi *intf,
1120 long msgid,
1121 unsigned int err)
1122 {
1123 int rv = -ENODEV;
1124 unsigned long flags;
1125 unsigned char seq;
1126 unsigned long seqid;
1127 struct ipmi_recv_msg *msg = NULL;
1128
1129
1130 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1131
1132 spin_lock_irqsave(&intf->seq_lock, flags);
1133 /*
1134 * We do this verification because the user can be deleted
1135 * while a message is outstanding.
1136 */
1137 if ((intf->seq_table[seq].inuse)
1138 && (intf->seq_table[seq].seqid == seqid)) {
1139 struct seq_table *ent = &intf->seq_table[seq];
1140
1141 ent->inuse = 0;
1142 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1143 msg = ent->recv_msg;
1144 rv = 0;
1145 }
1146 spin_unlock_irqrestore(&intf->seq_lock, flags);
1147
1148 if (msg)
1149 deliver_err_response(intf, msg, err);
1150
1151 return rv;
1152 }
1153
free_user_work(struct work_struct * work)1154 static void free_user_work(struct work_struct *work)
1155 {
1156 struct ipmi_user *user = container_of(work, struct ipmi_user,
1157 remove_work);
1158
1159 cleanup_srcu_struct(&user->release_barrier);
1160 vfree(user);
1161 }
1162
ipmi_create_user(unsigned int if_num,const struct ipmi_user_hndl * handler,void * handler_data,struct ipmi_user ** user)1163 int ipmi_create_user(unsigned int if_num,
1164 const struct ipmi_user_hndl *handler,
1165 void *handler_data,
1166 struct ipmi_user **user)
1167 {
1168 unsigned long flags;
1169 struct ipmi_user *new_user;
1170 int rv, index;
1171 struct ipmi_smi *intf;
1172
1173 /*
1174 * There is no module usecount here, because it's not
1175 * required. Since this can only be used by and called from
1176 * other modules, they will implicitly use this module, and
1177 * thus this can't be removed unless the other modules are
1178 * removed.
1179 */
1180
1181 if (handler == NULL)
1182 return -EINVAL;
1183
1184 /*
1185 * Make sure the driver is actually initialized, this handles
1186 * problems with initialization order.
1187 */
1188 rv = ipmi_init_msghandler();
1189 if (rv)
1190 return rv;
1191
1192 new_user = vzalloc(sizeof(*new_user));
1193 if (!new_user)
1194 return -ENOMEM;
1195
1196 index = srcu_read_lock(&ipmi_interfaces_srcu);
1197 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1198 if (intf->intf_num == if_num)
1199 goto found;
1200 }
1201 /* Not found, return an error */
1202 rv = -EINVAL;
1203 goto out_kfree;
1204
1205 found:
1206 INIT_WORK(&new_user->remove_work, free_user_work);
1207
1208 rv = init_srcu_struct(&new_user->release_barrier);
1209 if (rv)
1210 goto out_kfree;
1211
1212 if (!try_module_get(intf->owner)) {
1213 rv = -ENODEV;
1214 goto out_kfree;
1215 }
1216
1217 /* Note that each existing user holds a refcount to the interface. */
1218 kref_get(&intf->refcount);
1219
1220 kref_init(&new_user->refcount);
1221 new_user->handler = handler;
1222 new_user->handler_data = handler_data;
1223 new_user->intf = intf;
1224 new_user->gets_events = false;
1225
1226 rcu_assign_pointer(new_user->self, new_user);
1227 spin_lock_irqsave(&intf->seq_lock, flags);
1228 list_add_rcu(&new_user->link, &intf->users);
1229 spin_unlock_irqrestore(&intf->seq_lock, flags);
1230 if (handler->ipmi_watchdog_pretimeout)
1231 /* User wants pretimeouts, so make sure to watch for them. */
1232 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1233 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1234 *user = new_user;
1235 return 0;
1236
1237 out_kfree:
1238 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1239 vfree(new_user);
1240 return rv;
1241 }
1242 EXPORT_SYMBOL(ipmi_create_user);
1243
ipmi_get_smi_info(int if_num,struct ipmi_smi_info * data)1244 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1245 {
1246 int rv, index;
1247 struct ipmi_smi *intf;
1248
1249 index = srcu_read_lock(&ipmi_interfaces_srcu);
1250 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1251 if (intf->intf_num == if_num)
1252 goto found;
1253 }
1254 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1255
1256 /* Not found, return an error */
1257 return -EINVAL;
1258
1259 found:
1260 if (!intf->handlers->get_smi_info)
1261 rv = -ENOTTY;
1262 else
1263 rv = intf->handlers->get_smi_info(intf->send_info, data);
1264 srcu_read_unlock(&ipmi_interfaces_srcu, index);
1265
1266 return rv;
1267 }
1268 EXPORT_SYMBOL(ipmi_get_smi_info);
1269
free_user(struct kref * ref)1270 static void free_user(struct kref *ref)
1271 {
1272 struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1273
1274 /* SRCU cleanup must happen in task context. */
1275 schedule_work(&user->remove_work);
1276 }
1277
_ipmi_destroy_user(struct ipmi_user * user)1278 static void _ipmi_destroy_user(struct ipmi_user *user)
1279 {
1280 struct ipmi_smi *intf = user->intf;
1281 int i;
1282 unsigned long flags;
1283 struct cmd_rcvr *rcvr;
1284 struct cmd_rcvr *rcvrs = NULL;
1285
1286 if (!acquire_ipmi_user(user, &i)) {
1287 /*
1288 * The user has already been cleaned up, just make sure
1289 * nothing is using it and return.
1290 */
1291 synchronize_srcu(&user->release_barrier);
1292 return;
1293 }
1294
1295 rcu_assign_pointer(user->self, NULL);
1296 release_ipmi_user(user, i);
1297
1298 synchronize_srcu(&user->release_barrier);
1299
1300 if (user->handler->shutdown)
1301 user->handler->shutdown(user->handler_data);
1302
1303 if (user->handler->ipmi_watchdog_pretimeout)
1304 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1305
1306 if (user->gets_events)
1307 atomic_dec(&intf->event_waiters);
1308
1309 /* Remove the user from the interface's sequence table. */
1310 spin_lock_irqsave(&intf->seq_lock, flags);
1311 list_del_rcu(&user->link);
1312
1313 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1314 if (intf->seq_table[i].inuse
1315 && (intf->seq_table[i].recv_msg->user == user)) {
1316 intf->seq_table[i].inuse = 0;
1317 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1318 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1319 }
1320 }
1321 spin_unlock_irqrestore(&intf->seq_lock, flags);
1322
1323 /*
1324 * Remove the user from the command receiver's table. First
1325 * we build a list of everything (not using the standard link,
1326 * since other things may be using it till we do
1327 * synchronize_srcu()) then free everything in that list.
1328 */
1329 mutex_lock(&intf->cmd_rcvrs_mutex);
1330 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1331 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1332 if (rcvr->user == user) {
1333 list_del_rcu(&rcvr->link);
1334 rcvr->next = rcvrs;
1335 rcvrs = rcvr;
1336 }
1337 }
1338 mutex_unlock(&intf->cmd_rcvrs_mutex);
1339 synchronize_rcu();
1340 while (rcvrs) {
1341 rcvr = rcvrs;
1342 rcvrs = rcvr->next;
1343 kfree(rcvr);
1344 }
1345
1346 kref_put(&intf->refcount, intf_free);
1347 module_put(intf->owner);
1348 }
1349
ipmi_destroy_user(struct ipmi_user * user)1350 int ipmi_destroy_user(struct ipmi_user *user)
1351 {
1352 _ipmi_destroy_user(user);
1353
1354 kref_put(&user->refcount, free_user);
1355
1356 return 0;
1357 }
1358 EXPORT_SYMBOL(ipmi_destroy_user);
1359
ipmi_get_version(struct ipmi_user * user,unsigned char * major,unsigned char * minor)1360 int ipmi_get_version(struct ipmi_user *user,
1361 unsigned char *major,
1362 unsigned char *minor)
1363 {
1364 struct ipmi_device_id id;
1365 int rv, index;
1366
1367 user = acquire_ipmi_user(user, &index);
1368 if (!user)
1369 return -ENODEV;
1370
1371 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1372 if (!rv) {
1373 *major = ipmi_version_major(&id);
1374 *minor = ipmi_version_minor(&id);
1375 }
1376 release_ipmi_user(user, index);
1377
1378 return rv;
1379 }
1380 EXPORT_SYMBOL(ipmi_get_version);
1381
ipmi_set_my_address(struct ipmi_user * user,unsigned int channel,unsigned char address)1382 int ipmi_set_my_address(struct ipmi_user *user,
1383 unsigned int channel,
1384 unsigned char address)
1385 {
1386 int index, rv = 0;
1387
1388 user = acquire_ipmi_user(user, &index);
1389 if (!user)
1390 return -ENODEV;
1391
1392 if (channel >= IPMI_MAX_CHANNELS) {
1393 rv = -EINVAL;
1394 } else {
1395 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1396 user->intf->addrinfo[channel].address = address;
1397 }
1398 release_ipmi_user(user, index);
1399
1400 return rv;
1401 }
1402 EXPORT_SYMBOL(ipmi_set_my_address);
1403
ipmi_get_my_address(struct ipmi_user * user,unsigned int channel,unsigned char * address)1404 int ipmi_get_my_address(struct ipmi_user *user,
1405 unsigned int channel,
1406 unsigned char *address)
1407 {
1408 int index, rv = 0;
1409
1410 user = acquire_ipmi_user(user, &index);
1411 if (!user)
1412 return -ENODEV;
1413
1414 if (channel >= IPMI_MAX_CHANNELS) {
1415 rv = -EINVAL;
1416 } else {
1417 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1418 *address = user->intf->addrinfo[channel].address;
1419 }
1420 release_ipmi_user(user, index);
1421
1422 return rv;
1423 }
1424 EXPORT_SYMBOL(ipmi_get_my_address);
1425
ipmi_set_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char LUN)1426 int ipmi_set_my_LUN(struct ipmi_user *user,
1427 unsigned int channel,
1428 unsigned char LUN)
1429 {
1430 int index, rv = 0;
1431
1432 user = acquire_ipmi_user(user, &index);
1433 if (!user)
1434 return -ENODEV;
1435
1436 if (channel >= IPMI_MAX_CHANNELS) {
1437 rv = -EINVAL;
1438 } else {
1439 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1440 user->intf->addrinfo[channel].lun = LUN & 0x3;
1441 }
1442 release_ipmi_user(user, index);
1443
1444 return rv;
1445 }
1446 EXPORT_SYMBOL(ipmi_set_my_LUN);
1447
ipmi_get_my_LUN(struct ipmi_user * user,unsigned int channel,unsigned char * address)1448 int ipmi_get_my_LUN(struct ipmi_user *user,
1449 unsigned int channel,
1450 unsigned char *address)
1451 {
1452 int index, rv = 0;
1453
1454 user = acquire_ipmi_user(user, &index);
1455 if (!user)
1456 return -ENODEV;
1457
1458 if (channel >= IPMI_MAX_CHANNELS) {
1459 rv = -EINVAL;
1460 } else {
1461 channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1462 *address = user->intf->addrinfo[channel].lun;
1463 }
1464 release_ipmi_user(user, index);
1465
1466 return rv;
1467 }
1468 EXPORT_SYMBOL(ipmi_get_my_LUN);
1469
ipmi_get_maintenance_mode(struct ipmi_user * user)1470 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1471 {
1472 int mode, index;
1473 unsigned long flags;
1474
1475 user = acquire_ipmi_user(user, &index);
1476 if (!user)
1477 return -ENODEV;
1478
1479 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1480 mode = user->intf->maintenance_mode;
1481 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1482 release_ipmi_user(user, index);
1483
1484 return mode;
1485 }
1486 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1487
maintenance_mode_update(struct ipmi_smi * intf)1488 static void maintenance_mode_update(struct ipmi_smi *intf)
1489 {
1490 if (intf->handlers->set_maintenance_mode)
1491 intf->handlers->set_maintenance_mode(
1492 intf->send_info, intf->maintenance_mode_enable);
1493 }
1494
ipmi_set_maintenance_mode(struct ipmi_user * user,int mode)1495 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1496 {
1497 int rv = 0, index;
1498 unsigned long flags;
1499 struct ipmi_smi *intf = user->intf;
1500
1501 user = acquire_ipmi_user(user, &index);
1502 if (!user)
1503 return -ENODEV;
1504
1505 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1506 if (intf->maintenance_mode != mode) {
1507 switch (mode) {
1508 case IPMI_MAINTENANCE_MODE_AUTO:
1509 intf->maintenance_mode_enable
1510 = (intf->auto_maintenance_timeout > 0);
1511 break;
1512
1513 case IPMI_MAINTENANCE_MODE_OFF:
1514 intf->maintenance_mode_enable = false;
1515 break;
1516
1517 case IPMI_MAINTENANCE_MODE_ON:
1518 intf->maintenance_mode_enable = true;
1519 break;
1520
1521 default:
1522 rv = -EINVAL;
1523 goto out_unlock;
1524 }
1525 intf->maintenance_mode = mode;
1526
1527 maintenance_mode_update(intf);
1528 }
1529 out_unlock:
1530 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1531 release_ipmi_user(user, index);
1532
1533 return rv;
1534 }
1535 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1536
ipmi_set_gets_events(struct ipmi_user * user,bool val)1537 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1538 {
1539 unsigned long flags;
1540 struct ipmi_smi *intf = user->intf;
1541 struct ipmi_recv_msg *msg, *msg2;
1542 struct list_head msgs;
1543 int index;
1544
1545 user = acquire_ipmi_user(user, &index);
1546 if (!user)
1547 return -ENODEV;
1548
1549 INIT_LIST_HEAD(&msgs);
1550
1551 spin_lock_irqsave(&intf->events_lock, flags);
1552 if (user->gets_events == val)
1553 goto out;
1554
1555 user->gets_events = val;
1556
1557 if (val) {
1558 if (atomic_inc_return(&intf->event_waiters) == 1)
1559 need_waiter(intf);
1560 } else {
1561 atomic_dec(&intf->event_waiters);
1562 }
1563
1564 if (intf->delivering_events)
1565 /*
1566 * Another thread is delivering events for this, so
1567 * let it handle any new events.
1568 */
1569 goto out;
1570
1571 /* Deliver any queued events. */
1572 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1573 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1574 list_move_tail(&msg->link, &msgs);
1575 intf->waiting_events_count = 0;
1576 if (intf->event_msg_printed) {
1577 dev_warn(intf->si_dev, "Event queue no longer full\n");
1578 intf->event_msg_printed = 0;
1579 }
1580
1581 intf->delivering_events = 1;
1582 spin_unlock_irqrestore(&intf->events_lock, flags);
1583
1584 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1585 msg->user = user;
1586 kref_get(&user->refcount);
1587 deliver_local_response(intf, msg);
1588 }
1589
1590 spin_lock_irqsave(&intf->events_lock, flags);
1591 intf->delivering_events = 0;
1592 }
1593
1594 out:
1595 spin_unlock_irqrestore(&intf->events_lock, flags);
1596 release_ipmi_user(user, index);
1597
1598 return 0;
1599 }
1600 EXPORT_SYMBOL(ipmi_set_gets_events);
1601
find_cmd_rcvr(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned char chan)1602 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1603 unsigned char netfn,
1604 unsigned char cmd,
1605 unsigned char chan)
1606 {
1607 struct cmd_rcvr *rcvr;
1608
1609 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1610 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1611 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1612 && (rcvr->chans & (1 << chan)))
1613 return rcvr;
1614 }
1615 return NULL;
1616 }
1617
is_cmd_rcvr_exclusive(struct ipmi_smi * intf,unsigned char netfn,unsigned char cmd,unsigned int chans)1618 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1619 unsigned char netfn,
1620 unsigned char cmd,
1621 unsigned int chans)
1622 {
1623 struct cmd_rcvr *rcvr;
1624
1625 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1626 lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1627 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1628 && (rcvr->chans & chans))
1629 return 0;
1630 }
1631 return 1;
1632 }
1633
ipmi_register_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1634 int ipmi_register_for_cmd(struct ipmi_user *user,
1635 unsigned char netfn,
1636 unsigned char cmd,
1637 unsigned int chans)
1638 {
1639 struct ipmi_smi *intf = user->intf;
1640 struct cmd_rcvr *rcvr;
1641 int rv = 0, index;
1642
1643 user = acquire_ipmi_user(user, &index);
1644 if (!user)
1645 return -ENODEV;
1646
1647 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1648 if (!rcvr) {
1649 rv = -ENOMEM;
1650 goto out_release;
1651 }
1652 rcvr->cmd = cmd;
1653 rcvr->netfn = netfn;
1654 rcvr->chans = chans;
1655 rcvr->user = user;
1656
1657 mutex_lock(&intf->cmd_rcvrs_mutex);
1658 /* Make sure the command/netfn is not already registered. */
1659 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1660 rv = -EBUSY;
1661 goto out_unlock;
1662 }
1663
1664 smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1665
1666 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1667
1668 out_unlock:
1669 mutex_unlock(&intf->cmd_rcvrs_mutex);
1670 if (rv)
1671 kfree(rcvr);
1672 out_release:
1673 release_ipmi_user(user, index);
1674
1675 return rv;
1676 }
1677 EXPORT_SYMBOL(ipmi_register_for_cmd);
1678
ipmi_unregister_for_cmd(struct ipmi_user * user,unsigned char netfn,unsigned char cmd,unsigned int chans)1679 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1680 unsigned char netfn,
1681 unsigned char cmd,
1682 unsigned int chans)
1683 {
1684 struct ipmi_smi *intf = user->intf;
1685 struct cmd_rcvr *rcvr;
1686 struct cmd_rcvr *rcvrs = NULL;
1687 int i, rv = -ENOENT, index;
1688
1689 user = acquire_ipmi_user(user, &index);
1690 if (!user)
1691 return -ENODEV;
1692
1693 mutex_lock(&intf->cmd_rcvrs_mutex);
1694 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1695 if (((1 << i) & chans) == 0)
1696 continue;
1697 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1698 if (rcvr == NULL)
1699 continue;
1700 if (rcvr->user == user) {
1701 rv = 0;
1702 rcvr->chans &= ~chans;
1703 if (rcvr->chans == 0) {
1704 list_del_rcu(&rcvr->link);
1705 rcvr->next = rcvrs;
1706 rcvrs = rcvr;
1707 }
1708 }
1709 }
1710 mutex_unlock(&intf->cmd_rcvrs_mutex);
1711 synchronize_rcu();
1712 release_ipmi_user(user, index);
1713 while (rcvrs) {
1714 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1715 rcvr = rcvrs;
1716 rcvrs = rcvr->next;
1717 kfree(rcvr);
1718 }
1719
1720 return rv;
1721 }
1722 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1723
1724 static unsigned char
ipmb_checksum(unsigned char * data,int size)1725 ipmb_checksum(unsigned char *data, int size)
1726 {
1727 unsigned char csum = 0;
1728
1729 for (; size > 0; size--, data++)
1730 csum += *data;
1731
1732 return -csum;
1733 }
1734
format_ipmb_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_ipmb_addr * ipmb_addr,long msgid,unsigned char ipmb_seq,int broadcast,unsigned char source_address,unsigned char source_lun)1735 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1736 struct kernel_ipmi_msg *msg,
1737 struct ipmi_ipmb_addr *ipmb_addr,
1738 long msgid,
1739 unsigned char ipmb_seq,
1740 int broadcast,
1741 unsigned char source_address,
1742 unsigned char source_lun)
1743 {
1744 int i = broadcast;
1745
1746 /* Format the IPMB header data. */
1747 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1748 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1749 smi_msg->data[2] = ipmb_addr->channel;
1750 if (broadcast)
1751 smi_msg->data[3] = 0;
1752 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1753 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1754 smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1755 smi_msg->data[i+6] = source_address;
1756 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1757 smi_msg->data[i+8] = msg->cmd;
1758
1759 /* Now tack on the data to the message. */
1760 if (msg->data_len > 0)
1761 memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1762 smi_msg->data_size = msg->data_len + 9;
1763
1764 /* Now calculate the checksum and tack it on. */
1765 smi_msg->data[i+smi_msg->data_size]
1766 = ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1767
1768 /*
1769 * Add on the checksum size and the offset from the
1770 * broadcast.
1771 */
1772 smi_msg->data_size += 1 + i;
1773
1774 smi_msg->msgid = msgid;
1775 }
1776
format_lan_msg(struct ipmi_smi_msg * smi_msg,struct kernel_ipmi_msg * msg,struct ipmi_lan_addr * lan_addr,long msgid,unsigned char ipmb_seq,unsigned char source_lun)1777 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1778 struct kernel_ipmi_msg *msg,
1779 struct ipmi_lan_addr *lan_addr,
1780 long msgid,
1781 unsigned char ipmb_seq,
1782 unsigned char source_lun)
1783 {
1784 /* Format the IPMB header data. */
1785 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1786 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1787 smi_msg->data[2] = lan_addr->channel;
1788 smi_msg->data[3] = lan_addr->session_handle;
1789 smi_msg->data[4] = lan_addr->remote_SWID;
1790 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1791 smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1792 smi_msg->data[7] = lan_addr->local_SWID;
1793 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1794 smi_msg->data[9] = msg->cmd;
1795
1796 /* Now tack on the data to the message. */
1797 if (msg->data_len > 0)
1798 memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1799 smi_msg->data_size = msg->data_len + 10;
1800
1801 /* Now calculate the checksum and tack it on. */
1802 smi_msg->data[smi_msg->data_size]
1803 = ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1804
1805 /*
1806 * Add on the checksum size and the offset from the
1807 * broadcast.
1808 */
1809 smi_msg->data_size += 1;
1810
1811 smi_msg->msgid = msgid;
1812 }
1813
smi_add_send_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * smi_msg,int priority)1814 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1815 struct ipmi_smi_msg *smi_msg,
1816 int priority)
1817 {
1818 if (intf->curr_msg) {
1819 if (priority > 0)
1820 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1821 else
1822 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1823 smi_msg = NULL;
1824 } else {
1825 intf->curr_msg = smi_msg;
1826 }
1827
1828 return smi_msg;
1829 }
1830
smi_send(struct ipmi_smi * intf,const struct ipmi_smi_handlers * handlers,struct ipmi_smi_msg * smi_msg,int priority)1831 static void smi_send(struct ipmi_smi *intf,
1832 const struct ipmi_smi_handlers *handlers,
1833 struct ipmi_smi_msg *smi_msg, int priority)
1834 {
1835 int run_to_completion = intf->run_to_completion;
1836 unsigned long flags = 0;
1837
1838 if (!run_to_completion)
1839 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1840 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1841
1842 if (!run_to_completion)
1843 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1844
1845 if (smi_msg)
1846 handlers->sender(intf->send_info, smi_msg);
1847 }
1848
is_maintenance_mode_cmd(struct kernel_ipmi_msg * msg)1849 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1850 {
1851 return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1852 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1853 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1854 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1855 }
1856
i_ipmi_req_sysintf(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,int retries,unsigned int retry_time_ms)1857 static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
1858 struct ipmi_addr *addr,
1859 long msgid,
1860 struct kernel_ipmi_msg *msg,
1861 struct ipmi_smi_msg *smi_msg,
1862 struct ipmi_recv_msg *recv_msg,
1863 int retries,
1864 unsigned int retry_time_ms)
1865 {
1866 struct ipmi_system_interface_addr *smi_addr;
1867
1868 if (msg->netfn & 1)
1869 /* Responses are not allowed to the SMI. */
1870 return -EINVAL;
1871
1872 smi_addr = (struct ipmi_system_interface_addr *) addr;
1873 if (smi_addr->lun > 3) {
1874 ipmi_inc_stat(intf, sent_invalid_commands);
1875 return -EINVAL;
1876 }
1877
1878 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1879
1880 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1881 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1882 || (msg->cmd == IPMI_GET_MSG_CMD)
1883 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1884 /*
1885 * We don't let the user do these, since we manage
1886 * the sequence numbers.
1887 */
1888 ipmi_inc_stat(intf, sent_invalid_commands);
1889 return -EINVAL;
1890 }
1891
1892 if (is_maintenance_mode_cmd(msg)) {
1893 unsigned long flags;
1894
1895 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1896 intf->auto_maintenance_timeout
1897 = maintenance_mode_timeout_ms;
1898 if (!intf->maintenance_mode
1899 && !intf->maintenance_mode_enable) {
1900 intf->maintenance_mode_enable = true;
1901 maintenance_mode_update(intf);
1902 }
1903 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1904 flags);
1905 }
1906
1907 if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1908 ipmi_inc_stat(intf, sent_invalid_commands);
1909 return -EMSGSIZE;
1910 }
1911
1912 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1913 smi_msg->data[1] = msg->cmd;
1914 smi_msg->msgid = msgid;
1915 smi_msg->user_data = recv_msg;
1916 if (msg->data_len > 0)
1917 memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1918 smi_msg->data_size = msg->data_len + 2;
1919 ipmi_inc_stat(intf, sent_local_commands);
1920
1921 return 0;
1922 }
1923
i_ipmi_req_ipmb(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)1924 static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
1925 struct ipmi_addr *addr,
1926 long msgid,
1927 struct kernel_ipmi_msg *msg,
1928 struct ipmi_smi_msg *smi_msg,
1929 struct ipmi_recv_msg *recv_msg,
1930 unsigned char source_address,
1931 unsigned char source_lun,
1932 int retries,
1933 unsigned int retry_time_ms)
1934 {
1935 struct ipmi_ipmb_addr *ipmb_addr;
1936 unsigned char ipmb_seq;
1937 long seqid;
1938 int broadcast = 0;
1939 struct ipmi_channel *chans;
1940 int rv = 0;
1941
1942 if (addr->channel >= IPMI_MAX_CHANNELS) {
1943 ipmi_inc_stat(intf, sent_invalid_commands);
1944 return -EINVAL;
1945 }
1946
1947 chans = READ_ONCE(intf->channel_list)->c;
1948
1949 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1950 ipmi_inc_stat(intf, sent_invalid_commands);
1951 return -EINVAL;
1952 }
1953
1954 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1955 /*
1956 * Broadcasts add a zero at the beginning of the
1957 * message, but otherwise is the same as an IPMB
1958 * address.
1959 */
1960 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1961 broadcast = 1;
1962 retries = 0; /* Don't retry broadcasts. */
1963 }
1964
1965 /*
1966 * 9 for the header and 1 for the checksum, plus
1967 * possibly one for the broadcast.
1968 */
1969 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1970 ipmi_inc_stat(intf, sent_invalid_commands);
1971 return -EMSGSIZE;
1972 }
1973
1974 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1975 if (ipmb_addr->lun > 3) {
1976 ipmi_inc_stat(intf, sent_invalid_commands);
1977 return -EINVAL;
1978 }
1979
1980 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1981
1982 if (recv_msg->msg.netfn & 0x1) {
1983 /*
1984 * It's a response, so use the user's sequence
1985 * from msgid.
1986 */
1987 ipmi_inc_stat(intf, sent_ipmb_responses);
1988 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1989 msgid, broadcast,
1990 source_address, source_lun);
1991
1992 /*
1993 * Save the receive message so we can use it
1994 * to deliver the response.
1995 */
1996 smi_msg->user_data = recv_msg;
1997 } else {
1998 /* It's a command, so get a sequence for it. */
1999 unsigned long flags;
2000
2001 spin_lock_irqsave(&intf->seq_lock, flags);
2002
2003 if (is_maintenance_mode_cmd(msg))
2004 intf->ipmb_maintenance_mode_timeout =
2005 maintenance_mode_timeout_ms;
2006
2007 if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2008 /* Different default in maintenance mode */
2009 retry_time_ms = default_maintenance_retry_ms;
2010
2011 /*
2012 * Create a sequence number with a 1 second
2013 * timeout and 4 retries.
2014 */
2015 rv = intf_next_seq(intf,
2016 recv_msg,
2017 retry_time_ms,
2018 retries,
2019 broadcast,
2020 &ipmb_seq,
2021 &seqid);
2022 if (rv)
2023 /*
2024 * We have used up all the sequence numbers,
2025 * probably, so abort.
2026 */
2027 goto out_err;
2028
2029 ipmi_inc_stat(intf, sent_ipmb_commands);
2030
2031 /*
2032 * Store the sequence number in the message,
2033 * so that when the send message response
2034 * comes back we can start the timer.
2035 */
2036 format_ipmb_msg(smi_msg, msg, ipmb_addr,
2037 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2038 ipmb_seq, broadcast,
2039 source_address, source_lun);
2040
2041 /*
2042 * Copy the message into the recv message data, so we
2043 * can retransmit it later if necessary.
2044 */
2045 memcpy(recv_msg->msg_data, smi_msg->data,
2046 smi_msg->data_size);
2047 recv_msg->msg.data = recv_msg->msg_data;
2048 recv_msg->msg.data_len = smi_msg->data_size;
2049
2050 /*
2051 * We don't unlock until here, because we need
2052 * to copy the completed message into the
2053 * recv_msg before we release the lock.
2054 * Otherwise, race conditions may bite us. I
2055 * know that's pretty paranoid, but I prefer
2056 * to be correct.
2057 */
2058 out_err:
2059 spin_unlock_irqrestore(&intf->seq_lock, flags);
2060 }
2061
2062 return rv;
2063 }
2064
i_ipmi_req_lan(struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,struct ipmi_smi_msg * smi_msg,struct ipmi_recv_msg * recv_msg,unsigned char source_lun,int retries,unsigned int retry_time_ms)2065 static int i_ipmi_req_lan(struct ipmi_smi *intf,
2066 struct ipmi_addr *addr,
2067 long msgid,
2068 struct kernel_ipmi_msg *msg,
2069 struct ipmi_smi_msg *smi_msg,
2070 struct ipmi_recv_msg *recv_msg,
2071 unsigned char source_lun,
2072 int retries,
2073 unsigned int retry_time_ms)
2074 {
2075 struct ipmi_lan_addr *lan_addr;
2076 unsigned char ipmb_seq;
2077 long seqid;
2078 struct ipmi_channel *chans;
2079 int rv = 0;
2080
2081 if (addr->channel >= IPMI_MAX_CHANNELS) {
2082 ipmi_inc_stat(intf, sent_invalid_commands);
2083 return -EINVAL;
2084 }
2085
2086 chans = READ_ONCE(intf->channel_list)->c;
2087
2088 if ((chans[addr->channel].medium
2089 != IPMI_CHANNEL_MEDIUM_8023LAN)
2090 && (chans[addr->channel].medium
2091 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2092 ipmi_inc_stat(intf, sent_invalid_commands);
2093 return -EINVAL;
2094 }
2095
2096 /* 11 for the header and 1 for the checksum. */
2097 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2098 ipmi_inc_stat(intf, sent_invalid_commands);
2099 return -EMSGSIZE;
2100 }
2101
2102 lan_addr = (struct ipmi_lan_addr *) addr;
2103 if (lan_addr->lun > 3) {
2104 ipmi_inc_stat(intf, sent_invalid_commands);
2105 return -EINVAL;
2106 }
2107
2108 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2109
2110 if (recv_msg->msg.netfn & 0x1) {
2111 /*
2112 * It's a response, so use the user's sequence
2113 * from msgid.
2114 */
2115 ipmi_inc_stat(intf, sent_lan_responses);
2116 format_lan_msg(smi_msg, msg, lan_addr, msgid,
2117 msgid, source_lun);
2118
2119 /*
2120 * Save the receive message so we can use it
2121 * to deliver the response.
2122 */
2123 smi_msg->user_data = recv_msg;
2124 } else {
2125 /* It's a command, so get a sequence for it. */
2126 unsigned long flags;
2127
2128 spin_lock_irqsave(&intf->seq_lock, flags);
2129
2130 /*
2131 * Create a sequence number with a 1 second
2132 * timeout and 4 retries.
2133 */
2134 rv = intf_next_seq(intf,
2135 recv_msg,
2136 retry_time_ms,
2137 retries,
2138 0,
2139 &ipmb_seq,
2140 &seqid);
2141 if (rv)
2142 /*
2143 * We have used up all the sequence numbers,
2144 * probably, so abort.
2145 */
2146 goto out_err;
2147
2148 ipmi_inc_stat(intf, sent_lan_commands);
2149
2150 /*
2151 * Store the sequence number in the message,
2152 * so that when the send message response
2153 * comes back we can start the timer.
2154 */
2155 format_lan_msg(smi_msg, msg, lan_addr,
2156 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2157 ipmb_seq, source_lun);
2158
2159 /*
2160 * Copy the message into the recv message data, so we
2161 * can retransmit it later if necessary.
2162 */
2163 memcpy(recv_msg->msg_data, smi_msg->data,
2164 smi_msg->data_size);
2165 recv_msg->msg.data = recv_msg->msg_data;
2166 recv_msg->msg.data_len = smi_msg->data_size;
2167
2168 /*
2169 * We don't unlock until here, because we need
2170 * to copy the completed message into the
2171 * recv_msg before we release the lock.
2172 * Otherwise, race conditions may bite us. I
2173 * know that's pretty paranoid, but I prefer
2174 * to be correct.
2175 */
2176 out_err:
2177 spin_unlock_irqrestore(&intf->seq_lock, flags);
2178 }
2179
2180 return rv;
2181 }
2182
2183 /*
2184 * Separate from ipmi_request so that the user does not have to be
2185 * supplied in certain circumstances (mainly at panic time). If
2186 * messages are supplied, they will be freed, even if an error
2187 * occurs.
2188 */
i_ipmi_request(struct ipmi_user * user,struct ipmi_smi * intf,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority,unsigned char source_address,unsigned char source_lun,int retries,unsigned int retry_time_ms)2189 static int i_ipmi_request(struct ipmi_user *user,
2190 struct ipmi_smi *intf,
2191 struct ipmi_addr *addr,
2192 long msgid,
2193 struct kernel_ipmi_msg *msg,
2194 void *user_msg_data,
2195 void *supplied_smi,
2196 struct ipmi_recv_msg *supplied_recv,
2197 int priority,
2198 unsigned char source_address,
2199 unsigned char source_lun,
2200 int retries,
2201 unsigned int retry_time_ms)
2202 {
2203 struct ipmi_smi_msg *smi_msg;
2204 struct ipmi_recv_msg *recv_msg;
2205 int rv = 0;
2206
2207 if (supplied_recv)
2208 recv_msg = supplied_recv;
2209 else {
2210 recv_msg = ipmi_alloc_recv_msg();
2211 if (recv_msg == NULL) {
2212 rv = -ENOMEM;
2213 goto out;
2214 }
2215 }
2216 recv_msg->user_msg_data = user_msg_data;
2217
2218 if (supplied_smi)
2219 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2220 else {
2221 smi_msg = ipmi_alloc_smi_msg();
2222 if (smi_msg == NULL) {
2223 if (!supplied_recv)
2224 ipmi_free_recv_msg(recv_msg);
2225 rv = -ENOMEM;
2226 goto out;
2227 }
2228 }
2229
2230 rcu_read_lock();
2231 if (intf->in_shutdown) {
2232 rv = -ENODEV;
2233 goto out_err;
2234 }
2235
2236 recv_msg->user = user;
2237 if (user)
2238 /* The put happens when the message is freed. */
2239 kref_get(&user->refcount);
2240 recv_msg->msgid = msgid;
2241 /*
2242 * Store the message to send in the receive message so timeout
2243 * responses can get the proper response data.
2244 */
2245 recv_msg->msg = *msg;
2246
2247 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2248 rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2249 recv_msg, retries, retry_time_ms);
2250 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2251 rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2252 source_address, source_lun,
2253 retries, retry_time_ms);
2254 } else if (is_lan_addr(addr)) {
2255 rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2256 source_lun, retries, retry_time_ms);
2257 } else {
2258 /* Unknown address type. */
2259 ipmi_inc_stat(intf, sent_invalid_commands);
2260 rv = -EINVAL;
2261 }
2262
2263 if (rv) {
2264 out_err:
2265 ipmi_free_smi_msg(smi_msg);
2266 ipmi_free_recv_msg(recv_msg);
2267 } else {
2268 pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2269
2270 smi_send(intf, intf->handlers, smi_msg, priority);
2271 }
2272 rcu_read_unlock();
2273
2274 out:
2275 return rv;
2276 }
2277
check_addr(struct ipmi_smi * intf,struct ipmi_addr * addr,unsigned char * saddr,unsigned char * lun)2278 static int check_addr(struct ipmi_smi *intf,
2279 struct ipmi_addr *addr,
2280 unsigned char *saddr,
2281 unsigned char *lun)
2282 {
2283 if (addr->channel >= IPMI_MAX_CHANNELS)
2284 return -EINVAL;
2285 addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2286 *lun = intf->addrinfo[addr->channel].lun;
2287 *saddr = intf->addrinfo[addr->channel].address;
2288 return 0;
2289 }
2290
ipmi_request_settime(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,int priority,int retries,unsigned int retry_time_ms)2291 int ipmi_request_settime(struct ipmi_user *user,
2292 struct ipmi_addr *addr,
2293 long msgid,
2294 struct kernel_ipmi_msg *msg,
2295 void *user_msg_data,
2296 int priority,
2297 int retries,
2298 unsigned int retry_time_ms)
2299 {
2300 unsigned char saddr = 0, lun = 0;
2301 int rv, index;
2302
2303 if (!user)
2304 return -EINVAL;
2305
2306 user = acquire_ipmi_user(user, &index);
2307 if (!user)
2308 return -ENODEV;
2309
2310 rv = check_addr(user->intf, addr, &saddr, &lun);
2311 if (!rv)
2312 rv = i_ipmi_request(user,
2313 user->intf,
2314 addr,
2315 msgid,
2316 msg,
2317 user_msg_data,
2318 NULL, NULL,
2319 priority,
2320 saddr,
2321 lun,
2322 retries,
2323 retry_time_ms);
2324
2325 release_ipmi_user(user, index);
2326 return rv;
2327 }
2328 EXPORT_SYMBOL(ipmi_request_settime);
2329
ipmi_request_supply_msgs(struct ipmi_user * user,struct ipmi_addr * addr,long msgid,struct kernel_ipmi_msg * msg,void * user_msg_data,void * supplied_smi,struct ipmi_recv_msg * supplied_recv,int priority)2330 int ipmi_request_supply_msgs(struct ipmi_user *user,
2331 struct ipmi_addr *addr,
2332 long msgid,
2333 struct kernel_ipmi_msg *msg,
2334 void *user_msg_data,
2335 void *supplied_smi,
2336 struct ipmi_recv_msg *supplied_recv,
2337 int priority)
2338 {
2339 unsigned char saddr = 0, lun = 0;
2340 int rv, index;
2341
2342 if (!user)
2343 return -EINVAL;
2344
2345 user = acquire_ipmi_user(user, &index);
2346 if (!user)
2347 return -ENODEV;
2348
2349 rv = check_addr(user->intf, addr, &saddr, &lun);
2350 if (!rv)
2351 rv = i_ipmi_request(user,
2352 user->intf,
2353 addr,
2354 msgid,
2355 msg,
2356 user_msg_data,
2357 supplied_smi,
2358 supplied_recv,
2359 priority,
2360 saddr,
2361 lun,
2362 -1, 0);
2363
2364 release_ipmi_user(user, index);
2365 return rv;
2366 }
2367 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2368
bmc_device_id_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)2369 static void bmc_device_id_handler(struct ipmi_smi *intf,
2370 struct ipmi_recv_msg *msg)
2371 {
2372 int rv;
2373
2374 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2375 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2376 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2377 dev_warn(intf->si_dev,
2378 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2379 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2380 return;
2381 }
2382
2383 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2384 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2385 if (rv) {
2386 dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2387 /* record completion code when error */
2388 intf->bmc->cc = msg->msg.data[0];
2389 intf->bmc->dyn_id_set = 0;
2390 } else {
2391 /*
2392 * Make sure the id data is available before setting
2393 * dyn_id_set.
2394 */
2395 smp_wmb();
2396 intf->bmc->dyn_id_set = 1;
2397 }
2398
2399 wake_up(&intf->waitq);
2400 }
2401
2402 static int
send_get_device_id_cmd(struct ipmi_smi * intf)2403 send_get_device_id_cmd(struct ipmi_smi *intf)
2404 {
2405 struct ipmi_system_interface_addr si;
2406 struct kernel_ipmi_msg msg;
2407
2408 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2409 si.channel = IPMI_BMC_CHANNEL;
2410 si.lun = 0;
2411
2412 msg.netfn = IPMI_NETFN_APP_REQUEST;
2413 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2414 msg.data = NULL;
2415 msg.data_len = 0;
2416
2417 return i_ipmi_request(NULL,
2418 intf,
2419 (struct ipmi_addr *) &si,
2420 0,
2421 &msg,
2422 intf,
2423 NULL,
2424 NULL,
2425 0,
2426 intf->addrinfo[0].address,
2427 intf->addrinfo[0].lun,
2428 -1, 0);
2429 }
2430
__get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc)2431 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2432 {
2433 int rv;
2434 unsigned int retry_count = 0;
2435
2436 intf->null_user_handler = bmc_device_id_handler;
2437
2438 retry:
2439 bmc->cc = 0;
2440 bmc->dyn_id_set = 2;
2441
2442 rv = send_get_device_id_cmd(intf);
2443 if (rv)
2444 goto out_reset_handler;
2445
2446 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2447
2448 if (!bmc->dyn_id_set) {
2449 if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2450 || bmc->cc == IPMI_DEVICE_IN_INIT_ERR
2451 || bmc->cc == IPMI_NOT_IN_MY_STATE_ERR)
2452 && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2453 msleep(500);
2454 dev_warn(intf->si_dev,
2455 "BMC returned 0x%2.2x, retry get bmc device id\n",
2456 bmc->cc);
2457 goto retry;
2458 }
2459
2460 rv = -EIO; /* Something went wrong in the fetch. */
2461 }
2462
2463 /* dyn_id_set makes the id data available. */
2464 smp_rmb();
2465
2466 out_reset_handler:
2467 intf->null_user_handler = NULL;
2468
2469 return rv;
2470 }
2471
2472 /*
2473 * Fetch the device id for the bmc/interface. You must pass in either
2474 * bmc or intf, this code will get the other one. If the data has
2475 * been recently fetched, this will just use the cached data. Otherwise
2476 * it will run a new fetch.
2477 *
2478 * Except for the first time this is called (in ipmi_add_smi()),
2479 * this will always return good data;
2480 */
__bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid,int intf_num)2481 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2482 struct ipmi_device_id *id,
2483 bool *guid_set, guid_t *guid, int intf_num)
2484 {
2485 int rv = 0;
2486 int prev_dyn_id_set, prev_guid_set;
2487 bool intf_set = intf != NULL;
2488
2489 if (!intf) {
2490 mutex_lock(&bmc->dyn_mutex);
2491 retry_bmc_lock:
2492 if (list_empty(&bmc->intfs)) {
2493 mutex_unlock(&bmc->dyn_mutex);
2494 return -ENOENT;
2495 }
2496 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2497 bmc_link);
2498 kref_get(&intf->refcount);
2499 mutex_unlock(&bmc->dyn_mutex);
2500 mutex_lock(&intf->bmc_reg_mutex);
2501 mutex_lock(&bmc->dyn_mutex);
2502 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2503 bmc_link)) {
2504 mutex_unlock(&intf->bmc_reg_mutex);
2505 kref_put(&intf->refcount, intf_free);
2506 goto retry_bmc_lock;
2507 }
2508 } else {
2509 mutex_lock(&intf->bmc_reg_mutex);
2510 bmc = intf->bmc;
2511 mutex_lock(&bmc->dyn_mutex);
2512 kref_get(&intf->refcount);
2513 }
2514
2515 /* If we have a valid and current ID, just return that. */
2516 if (intf->in_bmc_register ||
2517 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2518 goto out_noprocessing;
2519
2520 prev_guid_set = bmc->dyn_guid_set;
2521 __get_guid(intf);
2522
2523 prev_dyn_id_set = bmc->dyn_id_set;
2524 rv = __get_device_id(intf, bmc);
2525 if (rv)
2526 goto out;
2527
2528 /*
2529 * The guid, device id, manufacturer id, and product id should
2530 * not change on a BMC. If it does we have to do some dancing.
2531 */
2532 if (!intf->bmc_registered
2533 || (!prev_guid_set && bmc->dyn_guid_set)
2534 || (!prev_dyn_id_set && bmc->dyn_id_set)
2535 || (prev_guid_set && bmc->dyn_guid_set
2536 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2537 || bmc->id.device_id != bmc->fetch_id.device_id
2538 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2539 || bmc->id.product_id != bmc->fetch_id.product_id) {
2540 struct ipmi_device_id id = bmc->fetch_id;
2541 int guid_set = bmc->dyn_guid_set;
2542 guid_t guid;
2543
2544 guid = bmc->fetch_guid;
2545 mutex_unlock(&bmc->dyn_mutex);
2546
2547 __ipmi_bmc_unregister(intf);
2548 /* Fill in the temporary BMC for good measure. */
2549 intf->bmc->id = id;
2550 intf->bmc->dyn_guid_set = guid_set;
2551 intf->bmc->guid = guid;
2552 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2553 need_waiter(intf); /* Retry later on an error. */
2554 else
2555 __scan_channels(intf, &id);
2556
2557
2558 if (!intf_set) {
2559 /*
2560 * We weren't given the interface on the
2561 * command line, so restart the operation on
2562 * the next interface for the BMC.
2563 */
2564 mutex_unlock(&intf->bmc_reg_mutex);
2565 mutex_lock(&bmc->dyn_mutex);
2566 goto retry_bmc_lock;
2567 }
2568
2569 /* We have a new BMC, set it up. */
2570 bmc = intf->bmc;
2571 mutex_lock(&bmc->dyn_mutex);
2572 goto out_noprocessing;
2573 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2574 /* Version info changes, scan the channels again. */
2575 __scan_channels(intf, &bmc->fetch_id);
2576
2577 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2578
2579 out:
2580 if (rv && prev_dyn_id_set) {
2581 rv = 0; /* Ignore failures if we have previous data. */
2582 bmc->dyn_id_set = prev_dyn_id_set;
2583 }
2584 if (!rv) {
2585 bmc->id = bmc->fetch_id;
2586 if (bmc->dyn_guid_set)
2587 bmc->guid = bmc->fetch_guid;
2588 else if (prev_guid_set)
2589 /*
2590 * The guid used to be valid and it failed to fetch,
2591 * just use the cached value.
2592 */
2593 bmc->dyn_guid_set = prev_guid_set;
2594 }
2595 out_noprocessing:
2596 if (!rv) {
2597 if (id)
2598 *id = bmc->id;
2599
2600 if (guid_set)
2601 *guid_set = bmc->dyn_guid_set;
2602
2603 if (guid && bmc->dyn_guid_set)
2604 *guid = bmc->guid;
2605 }
2606
2607 mutex_unlock(&bmc->dyn_mutex);
2608 mutex_unlock(&intf->bmc_reg_mutex);
2609
2610 kref_put(&intf->refcount, intf_free);
2611 return rv;
2612 }
2613
bmc_get_device_id(struct ipmi_smi * intf,struct bmc_device * bmc,struct ipmi_device_id * id,bool * guid_set,guid_t * guid)2614 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2615 struct ipmi_device_id *id,
2616 bool *guid_set, guid_t *guid)
2617 {
2618 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2619 }
2620
device_id_show(struct device * dev,struct device_attribute * attr,char * buf)2621 static ssize_t device_id_show(struct device *dev,
2622 struct device_attribute *attr,
2623 char *buf)
2624 {
2625 struct bmc_device *bmc = to_bmc_device(dev);
2626 struct ipmi_device_id id;
2627 int rv;
2628
2629 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2630 if (rv)
2631 return rv;
2632
2633 return snprintf(buf, 10, "%u\n", id.device_id);
2634 }
2635 static DEVICE_ATTR_RO(device_id);
2636
provides_device_sdrs_show(struct device * dev,struct device_attribute * attr,char * buf)2637 static ssize_t provides_device_sdrs_show(struct device *dev,
2638 struct device_attribute *attr,
2639 char *buf)
2640 {
2641 struct bmc_device *bmc = to_bmc_device(dev);
2642 struct ipmi_device_id id;
2643 int rv;
2644
2645 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2646 if (rv)
2647 return rv;
2648
2649 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2650 }
2651 static DEVICE_ATTR_RO(provides_device_sdrs);
2652
revision_show(struct device * dev,struct device_attribute * attr,char * buf)2653 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2654 char *buf)
2655 {
2656 struct bmc_device *bmc = to_bmc_device(dev);
2657 struct ipmi_device_id id;
2658 int rv;
2659
2660 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2661 if (rv)
2662 return rv;
2663
2664 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2665 }
2666 static DEVICE_ATTR_RO(revision);
2667
firmware_revision_show(struct device * dev,struct device_attribute * attr,char * buf)2668 static ssize_t firmware_revision_show(struct device *dev,
2669 struct device_attribute *attr,
2670 char *buf)
2671 {
2672 struct bmc_device *bmc = to_bmc_device(dev);
2673 struct ipmi_device_id id;
2674 int rv;
2675
2676 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2677 if (rv)
2678 return rv;
2679
2680 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2681 id.firmware_revision_2);
2682 }
2683 static DEVICE_ATTR_RO(firmware_revision);
2684
ipmi_version_show(struct device * dev,struct device_attribute * attr,char * buf)2685 static ssize_t ipmi_version_show(struct device *dev,
2686 struct device_attribute *attr,
2687 char *buf)
2688 {
2689 struct bmc_device *bmc = to_bmc_device(dev);
2690 struct ipmi_device_id id;
2691 int rv;
2692
2693 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2694 if (rv)
2695 return rv;
2696
2697 return snprintf(buf, 20, "%u.%u\n",
2698 ipmi_version_major(&id),
2699 ipmi_version_minor(&id));
2700 }
2701 static DEVICE_ATTR_RO(ipmi_version);
2702
add_dev_support_show(struct device * dev,struct device_attribute * attr,char * buf)2703 static ssize_t add_dev_support_show(struct device *dev,
2704 struct device_attribute *attr,
2705 char *buf)
2706 {
2707 struct bmc_device *bmc = to_bmc_device(dev);
2708 struct ipmi_device_id id;
2709 int rv;
2710
2711 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2712 if (rv)
2713 return rv;
2714
2715 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2716 }
2717 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2718 NULL);
2719
manufacturer_id_show(struct device * dev,struct device_attribute * attr,char * buf)2720 static ssize_t manufacturer_id_show(struct device *dev,
2721 struct device_attribute *attr,
2722 char *buf)
2723 {
2724 struct bmc_device *bmc = to_bmc_device(dev);
2725 struct ipmi_device_id id;
2726 int rv;
2727
2728 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2729 if (rv)
2730 return rv;
2731
2732 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2733 }
2734 static DEVICE_ATTR_RO(manufacturer_id);
2735
product_id_show(struct device * dev,struct device_attribute * attr,char * buf)2736 static ssize_t product_id_show(struct device *dev,
2737 struct device_attribute *attr,
2738 char *buf)
2739 {
2740 struct bmc_device *bmc = to_bmc_device(dev);
2741 struct ipmi_device_id id;
2742 int rv;
2743
2744 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2745 if (rv)
2746 return rv;
2747
2748 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2749 }
2750 static DEVICE_ATTR_RO(product_id);
2751
aux_firmware_rev_show(struct device * dev,struct device_attribute * attr,char * buf)2752 static ssize_t aux_firmware_rev_show(struct device *dev,
2753 struct device_attribute *attr,
2754 char *buf)
2755 {
2756 struct bmc_device *bmc = to_bmc_device(dev);
2757 struct ipmi_device_id id;
2758 int rv;
2759
2760 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2761 if (rv)
2762 return rv;
2763
2764 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2765 id.aux_firmware_revision[3],
2766 id.aux_firmware_revision[2],
2767 id.aux_firmware_revision[1],
2768 id.aux_firmware_revision[0]);
2769 }
2770 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2771
guid_show(struct device * dev,struct device_attribute * attr,char * buf)2772 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2773 char *buf)
2774 {
2775 struct bmc_device *bmc = to_bmc_device(dev);
2776 bool guid_set;
2777 guid_t guid;
2778 int rv;
2779
2780 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2781 if (rv)
2782 return rv;
2783 if (!guid_set)
2784 return -ENOENT;
2785
2786 return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2787 }
2788 static DEVICE_ATTR_RO(guid);
2789
2790 static struct attribute *bmc_dev_attrs[] = {
2791 &dev_attr_device_id.attr,
2792 &dev_attr_provides_device_sdrs.attr,
2793 &dev_attr_revision.attr,
2794 &dev_attr_firmware_revision.attr,
2795 &dev_attr_ipmi_version.attr,
2796 &dev_attr_additional_device_support.attr,
2797 &dev_attr_manufacturer_id.attr,
2798 &dev_attr_product_id.attr,
2799 &dev_attr_aux_firmware_revision.attr,
2800 &dev_attr_guid.attr,
2801 NULL
2802 };
2803
bmc_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)2804 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2805 struct attribute *attr, int idx)
2806 {
2807 struct device *dev = kobj_to_dev(kobj);
2808 struct bmc_device *bmc = to_bmc_device(dev);
2809 umode_t mode = attr->mode;
2810 int rv;
2811
2812 if (attr == &dev_attr_aux_firmware_revision.attr) {
2813 struct ipmi_device_id id;
2814
2815 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2816 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2817 }
2818 if (attr == &dev_attr_guid.attr) {
2819 bool guid_set;
2820
2821 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2822 return (!rv && guid_set) ? mode : 0;
2823 }
2824 return mode;
2825 }
2826
2827 static const struct attribute_group bmc_dev_attr_group = {
2828 .attrs = bmc_dev_attrs,
2829 .is_visible = bmc_dev_attr_is_visible,
2830 };
2831
2832 static const struct attribute_group *bmc_dev_attr_groups[] = {
2833 &bmc_dev_attr_group,
2834 NULL
2835 };
2836
2837 static const struct device_type bmc_device_type = {
2838 .groups = bmc_dev_attr_groups,
2839 };
2840
__find_bmc_guid(struct device * dev,const void * data)2841 static int __find_bmc_guid(struct device *dev, const void *data)
2842 {
2843 const guid_t *guid = data;
2844 struct bmc_device *bmc;
2845 int rv;
2846
2847 if (dev->type != &bmc_device_type)
2848 return 0;
2849
2850 bmc = to_bmc_device(dev);
2851 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2852 if (rv)
2853 rv = kref_get_unless_zero(&bmc->usecount);
2854 return rv;
2855 }
2856
2857 /*
2858 * Returns with the bmc's usecount incremented, if it is non-NULL.
2859 */
ipmi_find_bmc_guid(struct device_driver * drv,guid_t * guid)2860 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2861 guid_t *guid)
2862 {
2863 struct device *dev;
2864 struct bmc_device *bmc = NULL;
2865
2866 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2867 if (dev) {
2868 bmc = to_bmc_device(dev);
2869 put_device(dev);
2870 }
2871 return bmc;
2872 }
2873
2874 struct prod_dev_id {
2875 unsigned int product_id;
2876 unsigned char device_id;
2877 };
2878
__find_bmc_prod_dev_id(struct device * dev,const void * data)2879 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2880 {
2881 const struct prod_dev_id *cid = data;
2882 struct bmc_device *bmc;
2883 int rv;
2884
2885 if (dev->type != &bmc_device_type)
2886 return 0;
2887
2888 bmc = to_bmc_device(dev);
2889 rv = (bmc->id.product_id == cid->product_id
2890 && bmc->id.device_id == cid->device_id);
2891 if (rv)
2892 rv = kref_get_unless_zero(&bmc->usecount);
2893 return rv;
2894 }
2895
2896 /*
2897 * Returns with the bmc's usecount incremented, if it is non-NULL.
2898 */
ipmi_find_bmc_prod_dev_id(struct device_driver * drv,unsigned int product_id,unsigned char device_id)2899 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2900 struct device_driver *drv,
2901 unsigned int product_id, unsigned char device_id)
2902 {
2903 struct prod_dev_id id = {
2904 .product_id = product_id,
2905 .device_id = device_id,
2906 };
2907 struct device *dev;
2908 struct bmc_device *bmc = NULL;
2909
2910 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2911 if (dev) {
2912 bmc = to_bmc_device(dev);
2913 put_device(dev);
2914 }
2915 return bmc;
2916 }
2917
2918 static DEFINE_IDA(ipmi_bmc_ida);
2919
2920 static void
release_bmc_device(struct device * dev)2921 release_bmc_device(struct device *dev)
2922 {
2923 kfree(to_bmc_device(dev));
2924 }
2925
cleanup_bmc_work(struct work_struct * work)2926 static void cleanup_bmc_work(struct work_struct *work)
2927 {
2928 struct bmc_device *bmc = container_of(work, struct bmc_device,
2929 remove_work);
2930 int id = bmc->pdev.id; /* Unregister overwrites id */
2931
2932 platform_device_unregister(&bmc->pdev);
2933 ida_simple_remove(&ipmi_bmc_ida, id);
2934 }
2935
2936 static void
cleanup_bmc_device(struct kref * ref)2937 cleanup_bmc_device(struct kref *ref)
2938 {
2939 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2940
2941 /*
2942 * Remove the platform device in a work queue to avoid issues
2943 * with removing the device attributes while reading a device
2944 * attribute.
2945 */
2946 schedule_work(&bmc->remove_work);
2947 }
2948
2949 /*
2950 * Must be called with intf->bmc_reg_mutex held.
2951 */
__ipmi_bmc_unregister(struct ipmi_smi * intf)2952 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2953 {
2954 struct bmc_device *bmc = intf->bmc;
2955
2956 if (!intf->bmc_registered)
2957 return;
2958
2959 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2960 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2961 kfree(intf->my_dev_name);
2962 intf->my_dev_name = NULL;
2963
2964 mutex_lock(&bmc->dyn_mutex);
2965 list_del(&intf->bmc_link);
2966 mutex_unlock(&bmc->dyn_mutex);
2967 intf->bmc = &intf->tmp_bmc;
2968 kref_put(&bmc->usecount, cleanup_bmc_device);
2969 intf->bmc_registered = false;
2970 }
2971
ipmi_bmc_unregister(struct ipmi_smi * intf)2972 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2973 {
2974 mutex_lock(&intf->bmc_reg_mutex);
2975 __ipmi_bmc_unregister(intf);
2976 mutex_unlock(&intf->bmc_reg_mutex);
2977 }
2978
2979 /*
2980 * Must be called with intf->bmc_reg_mutex held.
2981 */
__ipmi_bmc_register(struct ipmi_smi * intf,struct ipmi_device_id * id,bool guid_set,guid_t * guid,int intf_num)2982 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2983 struct ipmi_device_id *id,
2984 bool guid_set, guid_t *guid, int intf_num)
2985 {
2986 int rv;
2987 struct bmc_device *bmc;
2988 struct bmc_device *old_bmc;
2989
2990 /*
2991 * platform_device_register() can cause bmc_reg_mutex to
2992 * be claimed because of the is_visible functions of
2993 * the attributes. Eliminate possible recursion and
2994 * release the lock.
2995 */
2996 intf->in_bmc_register = true;
2997 mutex_unlock(&intf->bmc_reg_mutex);
2998
2999 /*
3000 * Try to find if there is an bmc_device struct
3001 * representing the interfaced BMC already
3002 */
3003 mutex_lock(&ipmidriver_mutex);
3004 if (guid_set)
3005 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3006 else
3007 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3008 id->product_id,
3009 id->device_id);
3010
3011 /*
3012 * If there is already an bmc_device, free the new one,
3013 * otherwise register the new BMC device
3014 */
3015 if (old_bmc) {
3016 bmc = old_bmc;
3017 /*
3018 * Note: old_bmc already has usecount incremented by
3019 * the BMC find functions.
3020 */
3021 intf->bmc = old_bmc;
3022 mutex_lock(&bmc->dyn_mutex);
3023 list_add_tail(&intf->bmc_link, &bmc->intfs);
3024 mutex_unlock(&bmc->dyn_mutex);
3025
3026 dev_info(intf->si_dev,
3027 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3028 bmc->id.manufacturer_id,
3029 bmc->id.product_id,
3030 bmc->id.device_id);
3031 } else {
3032 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3033 if (!bmc) {
3034 rv = -ENOMEM;
3035 goto out;
3036 }
3037 INIT_LIST_HEAD(&bmc->intfs);
3038 mutex_init(&bmc->dyn_mutex);
3039 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3040
3041 bmc->id = *id;
3042 bmc->dyn_id_set = 1;
3043 bmc->dyn_guid_set = guid_set;
3044 bmc->guid = *guid;
3045 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3046
3047 bmc->pdev.name = "ipmi_bmc";
3048
3049 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3050 if (rv < 0) {
3051 kfree(bmc);
3052 goto out;
3053 }
3054
3055 bmc->pdev.dev.driver = &ipmidriver.driver;
3056 bmc->pdev.id = rv;
3057 bmc->pdev.dev.release = release_bmc_device;
3058 bmc->pdev.dev.type = &bmc_device_type;
3059 kref_init(&bmc->usecount);
3060
3061 intf->bmc = bmc;
3062 mutex_lock(&bmc->dyn_mutex);
3063 list_add_tail(&intf->bmc_link, &bmc->intfs);
3064 mutex_unlock(&bmc->dyn_mutex);
3065
3066 rv = platform_device_register(&bmc->pdev);
3067 if (rv) {
3068 dev_err(intf->si_dev,
3069 "Unable to register bmc device: %d\n",
3070 rv);
3071 goto out_list_del;
3072 }
3073
3074 dev_info(intf->si_dev,
3075 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3076 bmc->id.manufacturer_id,
3077 bmc->id.product_id,
3078 bmc->id.device_id);
3079 }
3080
3081 /*
3082 * create symlink from system interface device to bmc device
3083 * and back.
3084 */
3085 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3086 if (rv) {
3087 dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3088 goto out_put_bmc;
3089 }
3090
3091 if (intf_num == -1)
3092 intf_num = intf->intf_num;
3093 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3094 if (!intf->my_dev_name) {
3095 rv = -ENOMEM;
3096 dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3097 rv);
3098 goto out_unlink1;
3099 }
3100
3101 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3102 intf->my_dev_name);
3103 if (rv) {
3104 dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3105 rv);
3106 goto out_free_my_dev_name;
3107 }
3108
3109 intf->bmc_registered = true;
3110
3111 out:
3112 mutex_unlock(&ipmidriver_mutex);
3113 mutex_lock(&intf->bmc_reg_mutex);
3114 intf->in_bmc_register = false;
3115 return rv;
3116
3117
3118 out_free_my_dev_name:
3119 kfree(intf->my_dev_name);
3120 intf->my_dev_name = NULL;
3121
3122 out_unlink1:
3123 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3124
3125 out_put_bmc:
3126 mutex_lock(&bmc->dyn_mutex);
3127 list_del(&intf->bmc_link);
3128 mutex_unlock(&bmc->dyn_mutex);
3129 intf->bmc = &intf->tmp_bmc;
3130 kref_put(&bmc->usecount, cleanup_bmc_device);
3131 goto out;
3132
3133 out_list_del:
3134 mutex_lock(&bmc->dyn_mutex);
3135 list_del(&intf->bmc_link);
3136 mutex_unlock(&bmc->dyn_mutex);
3137 intf->bmc = &intf->tmp_bmc;
3138 put_device(&bmc->pdev.dev);
3139 goto out;
3140 }
3141
3142 static int
send_guid_cmd(struct ipmi_smi * intf,int chan)3143 send_guid_cmd(struct ipmi_smi *intf, int chan)
3144 {
3145 struct kernel_ipmi_msg msg;
3146 struct ipmi_system_interface_addr si;
3147
3148 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3149 si.channel = IPMI_BMC_CHANNEL;
3150 si.lun = 0;
3151
3152 msg.netfn = IPMI_NETFN_APP_REQUEST;
3153 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3154 msg.data = NULL;
3155 msg.data_len = 0;
3156 return i_ipmi_request(NULL,
3157 intf,
3158 (struct ipmi_addr *) &si,
3159 0,
3160 &msg,
3161 intf,
3162 NULL,
3163 NULL,
3164 0,
3165 intf->addrinfo[0].address,
3166 intf->addrinfo[0].lun,
3167 -1, 0);
3168 }
3169
guid_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3170 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3171 {
3172 struct bmc_device *bmc = intf->bmc;
3173
3174 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3175 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3176 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3177 /* Not for me */
3178 return;
3179
3180 if (msg->msg.data[0] != 0) {
3181 /* Error from getting the GUID, the BMC doesn't have one. */
3182 bmc->dyn_guid_set = 0;
3183 goto out;
3184 }
3185
3186 if (msg->msg.data_len < UUID_SIZE + 1) {
3187 bmc->dyn_guid_set = 0;
3188 dev_warn(intf->si_dev,
3189 "The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
3190 msg->msg.data_len, UUID_SIZE + 1);
3191 goto out;
3192 }
3193
3194 import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3195 /*
3196 * Make sure the guid data is available before setting
3197 * dyn_guid_set.
3198 */
3199 smp_wmb();
3200 bmc->dyn_guid_set = 1;
3201 out:
3202 wake_up(&intf->waitq);
3203 }
3204
__get_guid(struct ipmi_smi * intf)3205 static void __get_guid(struct ipmi_smi *intf)
3206 {
3207 int rv;
3208 struct bmc_device *bmc = intf->bmc;
3209
3210 bmc->dyn_guid_set = 2;
3211 intf->null_user_handler = guid_handler;
3212 rv = send_guid_cmd(intf, 0);
3213 if (rv)
3214 /* Send failed, no GUID available. */
3215 bmc->dyn_guid_set = 0;
3216 else
3217 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3218
3219 /* dyn_guid_set makes the guid data available. */
3220 smp_rmb();
3221
3222 intf->null_user_handler = NULL;
3223 }
3224
3225 static int
send_channel_info_cmd(struct ipmi_smi * intf,int chan)3226 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3227 {
3228 struct kernel_ipmi_msg msg;
3229 unsigned char data[1];
3230 struct ipmi_system_interface_addr si;
3231
3232 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3233 si.channel = IPMI_BMC_CHANNEL;
3234 si.lun = 0;
3235
3236 msg.netfn = IPMI_NETFN_APP_REQUEST;
3237 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3238 msg.data = data;
3239 msg.data_len = 1;
3240 data[0] = chan;
3241 return i_ipmi_request(NULL,
3242 intf,
3243 (struct ipmi_addr *) &si,
3244 0,
3245 &msg,
3246 intf,
3247 NULL,
3248 NULL,
3249 0,
3250 intf->addrinfo[0].address,
3251 intf->addrinfo[0].lun,
3252 -1, 0);
3253 }
3254
3255 static void
channel_handler(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)3256 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3257 {
3258 int rv = 0;
3259 int ch;
3260 unsigned int set = intf->curr_working_cset;
3261 struct ipmi_channel *chans;
3262
3263 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3264 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3265 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3266 /* It's the one we want */
3267 if (msg->msg.data[0] != 0) {
3268 /* Got an error from the channel, just go on. */
3269 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3270 /*
3271 * If the MC does not support this
3272 * command, that is legal. We just
3273 * assume it has one IPMB at channel
3274 * zero.
3275 */
3276 intf->wchannels[set].c[0].medium
3277 = IPMI_CHANNEL_MEDIUM_IPMB;
3278 intf->wchannels[set].c[0].protocol
3279 = IPMI_CHANNEL_PROTOCOL_IPMB;
3280
3281 intf->channel_list = intf->wchannels + set;
3282 intf->channels_ready = true;
3283 wake_up(&intf->waitq);
3284 goto out;
3285 }
3286 goto next_channel;
3287 }
3288 if (msg->msg.data_len < 4) {
3289 /* Message not big enough, just go on. */
3290 goto next_channel;
3291 }
3292 ch = intf->curr_channel;
3293 chans = intf->wchannels[set].c;
3294 chans[ch].medium = msg->msg.data[2] & 0x7f;
3295 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3296
3297 next_channel:
3298 intf->curr_channel++;
3299 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3300 intf->channel_list = intf->wchannels + set;
3301 intf->channels_ready = true;
3302 wake_up(&intf->waitq);
3303 } else {
3304 intf->channel_list = intf->wchannels + set;
3305 intf->channels_ready = true;
3306 rv = send_channel_info_cmd(intf, intf->curr_channel);
3307 }
3308
3309 if (rv) {
3310 /* Got an error somehow, just give up. */
3311 dev_warn(intf->si_dev,
3312 "Error sending channel information for channel %d: %d\n",
3313 intf->curr_channel, rv);
3314
3315 intf->channel_list = intf->wchannels + set;
3316 intf->channels_ready = true;
3317 wake_up(&intf->waitq);
3318 }
3319 }
3320 out:
3321 return;
3322 }
3323
3324 /*
3325 * Must be holding intf->bmc_reg_mutex to call this.
3326 */
__scan_channels(struct ipmi_smi * intf,struct ipmi_device_id * id)3327 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3328 {
3329 int rv;
3330
3331 if (ipmi_version_major(id) > 1
3332 || (ipmi_version_major(id) == 1
3333 && ipmi_version_minor(id) >= 5)) {
3334 unsigned int set;
3335
3336 /*
3337 * Start scanning the channels to see what is
3338 * available.
3339 */
3340 set = !intf->curr_working_cset;
3341 intf->curr_working_cset = set;
3342 memset(&intf->wchannels[set], 0,
3343 sizeof(struct ipmi_channel_set));
3344
3345 intf->null_user_handler = channel_handler;
3346 intf->curr_channel = 0;
3347 rv = send_channel_info_cmd(intf, 0);
3348 if (rv) {
3349 dev_warn(intf->si_dev,
3350 "Error sending channel information for channel 0, %d\n",
3351 rv);
3352 intf->null_user_handler = NULL;
3353 return -EIO;
3354 }
3355
3356 /* Wait for the channel info to be read. */
3357 wait_event(intf->waitq, intf->channels_ready);
3358 intf->null_user_handler = NULL;
3359 } else {
3360 unsigned int set = intf->curr_working_cset;
3361
3362 /* Assume a single IPMB channel at zero. */
3363 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3364 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3365 intf->channel_list = intf->wchannels + set;
3366 intf->channels_ready = true;
3367 }
3368
3369 return 0;
3370 }
3371
ipmi_poll(struct ipmi_smi * intf)3372 static void ipmi_poll(struct ipmi_smi *intf)
3373 {
3374 if (intf->handlers->poll)
3375 intf->handlers->poll(intf->send_info);
3376 /* In case something came in */
3377 handle_new_recv_msgs(intf);
3378 }
3379
ipmi_poll_interface(struct ipmi_user * user)3380 void ipmi_poll_interface(struct ipmi_user *user)
3381 {
3382 ipmi_poll(user->intf);
3383 }
3384 EXPORT_SYMBOL(ipmi_poll_interface);
3385
redo_bmc_reg(struct work_struct * work)3386 static void redo_bmc_reg(struct work_struct *work)
3387 {
3388 struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3389 bmc_reg_work);
3390
3391 if (!intf->in_shutdown)
3392 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3393
3394 kref_put(&intf->refcount, intf_free);
3395 }
3396
ipmi_add_smi(struct module * owner,const struct ipmi_smi_handlers * handlers,void * send_info,struct device * si_dev,unsigned char slave_addr)3397 int ipmi_add_smi(struct module *owner,
3398 const struct ipmi_smi_handlers *handlers,
3399 void *send_info,
3400 struct device *si_dev,
3401 unsigned char slave_addr)
3402 {
3403 int i, j;
3404 int rv;
3405 struct ipmi_smi *intf, *tintf;
3406 struct list_head *link;
3407 struct ipmi_device_id id;
3408
3409 /*
3410 * Make sure the driver is actually initialized, this handles
3411 * problems with initialization order.
3412 */
3413 rv = ipmi_init_msghandler();
3414 if (rv)
3415 return rv;
3416
3417 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3418 if (!intf)
3419 return -ENOMEM;
3420
3421 rv = init_srcu_struct(&intf->users_srcu);
3422 if (rv) {
3423 kfree(intf);
3424 return rv;
3425 }
3426
3427 intf->owner = owner;
3428 intf->bmc = &intf->tmp_bmc;
3429 INIT_LIST_HEAD(&intf->bmc->intfs);
3430 mutex_init(&intf->bmc->dyn_mutex);
3431 INIT_LIST_HEAD(&intf->bmc_link);
3432 mutex_init(&intf->bmc_reg_mutex);
3433 intf->intf_num = -1; /* Mark it invalid for now. */
3434 kref_init(&intf->refcount);
3435 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3436 intf->si_dev = si_dev;
3437 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3438 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3439 intf->addrinfo[j].lun = 2;
3440 }
3441 if (slave_addr != 0)
3442 intf->addrinfo[0].address = slave_addr;
3443 INIT_LIST_HEAD(&intf->users);
3444 intf->handlers = handlers;
3445 intf->send_info = send_info;
3446 spin_lock_init(&intf->seq_lock);
3447 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3448 intf->seq_table[j].inuse = 0;
3449 intf->seq_table[j].seqid = 0;
3450 }
3451 intf->curr_seq = 0;
3452 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3453 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3454 tasklet_setup(&intf->recv_tasklet,
3455 smi_recv_tasklet);
3456 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3457 spin_lock_init(&intf->xmit_msgs_lock);
3458 INIT_LIST_HEAD(&intf->xmit_msgs);
3459 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3460 spin_lock_init(&intf->events_lock);
3461 spin_lock_init(&intf->watch_lock);
3462 atomic_set(&intf->event_waiters, 0);
3463 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3464 INIT_LIST_HEAD(&intf->waiting_events);
3465 intf->waiting_events_count = 0;
3466 mutex_init(&intf->cmd_rcvrs_mutex);
3467 spin_lock_init(&intf->maintenance_mode_lock);
3468 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3469 init_waitqueue_head(&intf->waitq);
3470 for (i = 0; i < IPMI_NUM_STATS; i++)
3471 atomic_set(&intf->stats[i], 0);
3472
3473 mutex_lock(&ipmi_interfaces_mutex);
3474 /* Look for a hole in the numbers. */
3475 i = 0;
3476 link = &ipmi_interfaces;
3477 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3478 ipmi_interfaces_mutex_held()) {
3479 if (tintf->intf_num != i) {
3480 link = &tintf->link;
3481 break;
3482 }
3483 i++;
3484 }
3485 /* Add the new interface in numeric order. */
3486 if (i == 0)
3487 list_add_rcu(&intf->link, &ipmi_interfaces);
3488 else
3489 list_add_tail_rcu(&intf->link, link);
3490
3491 rv = handlers->start_processing(send_info, intf);
3492 if (rv)
3493 goto out_err;
3494
3495 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3496 if (rv) {
3497 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3498 goto out_err_started;
3499 }
3500
3501 mutex_lock(&intf->bmc_reg_mutex);
3502 rv = __scan_channels(intf, &id);
3503 mutex_unlock(&intf->bmc_reg_mutex);
3504 if (rv)
3505 goto out_err_bmc_reg;
3506
3507 /*
3508 * Keep memory order straight for RCU readers. Make
3509 * sure everything else is committed to memory before
3510 * setting intf_num to mark the interface valid.
3511 */
3512 smp_wmb();
3513 intf->intf_num = i;
3514 mutex_unlock(&ipmi_interfaces_mutex);
3515
3516 /* After this point the interface is legal to use. */
3517 call_smi_watchers(i, intf->si_dev);
3518
3519 return 0;
3520
3521 out_err_bmc_reg:
3522 ipmi_bmc_unregister(intf);
3523 out_err_started:
3524 if (intf->handlers->shutdown)
3525 intf->handlers->shutdown(intf->send_info);
3526 out_err:
3527 list_del_rcu(&intf->link);
3528 mutex_unlock(&ipmi_interfaces_mutex);
3529 synchronize_srcu(&ipmi_interfaces_srcu);
3530 cleanup_srcu_struct(&intf->users_srcu);
3531 kref_put(&intf->refcount, intf_free);
3532
3533 return rv;
3534 }
3535 EXPORT_SYMBOL(ipmi_add_smi);
3536
deliver_smi_err_response(struct ipmi_smi * intf,struct ipmi_smi_msg * msg,unsigned char err)3537 static void deliver_smi_err_response(struct ipmi_smi *intf,
3538 struct ipmi_smi_msg *msg,
3539 unsigned char err)
3540 {
3541 msg->rsp[0] = msg->data[0] | 4;
3542 msg->rsp[1] = msg->data[1];
3543 msg->rsp[2] = err;
3544 msg->rsp_size = 3;
3545 /* It's an error, so it will never requeue, no need to check return. */
3546 handle_one_recv_msg(intf, msg);
3547 }
3548
cleanup_smi_msgs(struct ipmi_smi * intf)3549 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3550 {
3551 int i;
3552 struct seq_table *ent;
3553 struct ipmi_smi_msg *msg;
3554 struct list_head *entry;
3555 struct list_head tmplist;
3556
3557 /* Clear out our transmit queues and hold the messages. */
3558 INIT_LIST_HEAD(&tmplist);
3559 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3560 list_splice_tail(&intf->xmit_msgs, &tmplist);
3561
3562 /* Current message first, to preserve order */
3563 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3564 /* Wait for the message to clear out. */
3565 schedule_timeout(1);
3566 }
3567
3568 /* No need for locks, the interface is down. */
3569
3570 /*
3571 * Return errors for all pending messages in queue and in the
3572 * tables waiting for remote responses.
3573 */
3574 while (!list_empty(&tmplist)) {
3575 entry = tmplist.next;
3576 list_del(entry);
3577 msg = list_entry(entry, struct ipmi_smi_msg, link);
3578 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3579 }
3580
3581 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3582 ent = &intf->seq_table[i];
3583 if (!ent->inuse)
3584 continue;
3585 deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3586 }
3587 }
3588
ipmi_unregister_smi(struct ipmi_smi * intf)3589 void ipmi_unregister_smi(struct ipmi_smi *intf)
3590 {
3591 struct ipmi_smi_watcher *w;
3592 int intf_num = intf->intf_num, index;
3593
3594 mutex_lock(&ipmi_interfaces_mutex);
3595 intf->intf_num = -1;
3596 intf->in_shutdown = true;
3597 list_del_rcu(&intf->link);
3598 mutex_unlock(&ipmi_interfaces_mutex);
3599 synchronize_srcu(&ipmi_interfaces_srcu);
3600
3601 /* At this point no users can be added to the interface. */
3602
3603 /*
3604 * Call all the watcher interfaces to tell them that
3605 * an interface is going away.
3606 */
3607 mutex_lock(&smi_watchers_mutex);
3608 list_for_each_entry(w, &smi_watchers, link)
3609 w->smi_gone(intf_num);
3610 mutex_unlock(&smi_watchers_mutex);
3611
3612 index = srcu_read_lock(&intf->users_srcu);
3613 while (!list_empty(&intf->users)) {
3614 struct ipmi_user *user =
3615 container_of(list_next_rcu(&intf->users),
3616 struct ipmi_user, link);
3617
3618 _ipmi_destroy_user(user);
3619 }
3620 srcu_read_unlock(&intf->users_srcu, index);
3621
3622 if (intf->handlers->shutdown)
3623 intf->handlers->shutdown(intf->send_info);
3624
3625 cleanup_smi_msgs(intf);
3626
3627 ipmi_bmc_unregister(intf);
3628
3629 cleanup_srcu_struct(&intf->users_srcu);
3630 kref_put(&intf->refcount, intf_free);
3631 }
3632 EXPORT_SYMBOL(ipmi_unregister_smi);
3633
handle_ipmb_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3634 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3635 struct ipmi_smi_msg *msg)
3636 {
3637 struct ipmi_ipmb_addr ipmb_addr;
3638 struct ipmi_recv_msg *recv_msg;
3639
3640 /*
3641 * This is 11, not 10, because the response must contain a
3642 * completion code.
3643 */
3644 if (msg->rsp_size < 11) {
3645 /* Message not big enough, just ignore it. */
3646 ipmi_inc_stat(intf, invalid_ipmb_responses);
3647 return 0;
3648 }
3649
3650 if (msg->rsp[2] != 0) {
3651 /* An error getting the response, just ignore it. */
3652 return 0;
3653 }
3654
3655 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3656 ipmb_addr.slave_addr = msg->rsp[6];
3657 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3658 ipmb_addr.lun = msg->rsp[7] & 3;
3659
3660 /*
3661 * It's a response from a remote entity. Look up the sequence
3662 * number and handle the response.
3663 */
3664 if (intf_find_seq(intf,
3665 msg->rsp[7] >> 2,
3666 msg->rsp[3] & 0x0f,
3667 msg->rsp[8],
3668 (msg->rsp[4] >> 2) & (~1),
3669 (struct ipmi_addr *) &ipmb_addr,
3670 &recv_msg)) {
3671 /*
3672 * We were unable to find the sequence number,
3673 * so just nuke the message.
3674 */
3675 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3676 return 0;
3677 }
3678
3679 memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3680 /*
3681 * The other fields matched, so no need to set them, except
3682 * for netfn, which needs to be the response that was
3683 * returned, not the request value.
3684 */
3685 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3686 recv_msg->msg.data = recv_msg->msg_data;
3687 recv_msg->msg.data_len = msg->rsp_size - 10;
3688 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3689 if (deliver_response(intf, recv_msg))
3690 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3691 else
3692 ipmi_inc_stat(intf, handled_ipmb_responses);
3693
3694 return 0;
3695 }
3696
handle_ipmb_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3697 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3698 struct ipmi_smi_msg *msg)
3699 {
3700 struct cmd_rcvr *rcvr;
3701 int rv = 0;
3702 unsigned char netfn;
3703 unsigned char cmd;
3704 unsigned char chan;
3705 struct ipmi_user *user = NULL;
3706 struct ipmi_ipmb_addr *ipmb_addr;
3707 struct ipmi_recv_msg *recv_msg;
3708
3709 if (msg->rsp_size < 10) {
3710 /* Message not big enough, just ignore it. */
3711 ipmi_inc_stat(intf, invalid_commands);
3712 return 0;
3713 }
3714
3715 if (msg->rsp[2] != 0) {
3716 /* An error getting the response, just ignore it. */
3717 return 0;
3718 }
3719
3720 netfn = msg->rsp[4] >> 2;
3721 cmd = msg->rsp[8];
3722 chan = msg->rsp[3] & 0xf;
3723
3724 rcu_read_lock();
3725 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3726 if (rcvr) {
3727 user = rcvr->user;
3728 kref_get(&user->refcount);
3729 } else
3730 user = NULL;
3731 rcu_read_unlock();
3732
3733 if (user == NULL) {
3734 /* We didn't find a user, deliver an error response. */
3735 ipmi_inc_stat(intf, unhandled_commands);
3736
3737 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3738 msg->data[1] = IPMI_SEND_MSG_CMD;
3739 msg->data[2] = msg->rsp[3];
3740 msg->data[3] = msg->rsp[6];
3741 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3742 msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3743 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3744 /* rqseq/lun */
3745 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3746 msg->data[8] = msg->rsp[8]; /* cmd */
3747 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3748 msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3749 msg->data_size = 11;
3750
3751 pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3752
3753 rcu_read_lock();
3754 if (!intf->in_shutdown) {
3755 smi_send(intf, intf->handlers, msg, 0);
3756 /*
3757 * We used the message, so return the value
3758 * that causes it to not be freed or
3759 * queued.
3760 */
3761 rv = -1;
3762 }
3763 rcu_read_unlock();
3764 } else {
3765 recv_msg = ipmi_alloc_recv_msg();
3766 if (!recv_msg) {
3767 /*
3768 * We couldn't allocate memory for the
3769 * message, so requeue it for handling
3770 * later.
3771 */
3772 rv = 1;
3773 kref_put(&user->refcount, free_user);
3774 } else {
3775 /* Extract the source address from the data. */
3776 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3777 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3778 ipmb_addr->slave_addr = msg->rsp[6];
3779 ipmb_addr->lun = msg->rsp[7] & 3;
3780 ipmb_addr->channel = msg->rsp[3] & 0xf;
3781
3782 /*
3783 * Extract the rest of the message information
3784 * from the IPMB header.
3785 */
3786 recv_msg->user = user;
3787 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3788 recv_msg->msgid = msg->rsp[7] >> 2;
3789 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3790 recv_msg->msg.cmd = msg->rsp[8];
3791 recv_msg->msg.data = recv_msg->msg_data;
3792
3793 /*
3794 * We chop off 10, not 9 bytes because the checksum
3795 * at the end also needs to be removed.
3796 */
3797 recv_msg->msg.data_len = msg->rsp_size - 10;
3798 memcpy(recv_msg->msg_data, &msg->rsp[9],
3799 msg->rsp_size - 10);
3800 if (deliver_response(intf, recv_msg))
3801 ipmi_inc_stat(intf, unhandled_commands);
3802 else
3803 ipmi_inc_stat(intf, handled_commands);
3804 }
3805 }
3806
3807 return rv;
3808 }
3809
handle_lan_get_msg_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3810 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3811 struct ipmi_smi_msg *msg)
3812 {
3813 struct ipmi_lan_addr lan_addr;
3814 struct ipmi_recv_msg *recv_msg;
3815
3816
3817 /*
3818 * This is 13, not 12, because the response must contain a
3819 * completion code.
3820 */
3821 if (msg->rsp_size < 13) {
3822 /* Message not big enough, just ignore it. */
3823 ipmi_inc_stat(intf, invalid_lan_responses);
3824 return 0;
3825 }
3826
3827 if (msg->rsp[2] != 0) {
3828 /* An error getting the response, just ignore it. */
3829 return 0;
3830 }
3831
3832 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3833 lan_addr.session_handle = msg->rsp[4];
3834 lan_addr.remote_SWID = msg->rsp[8];
3835 lan_addr.local_SWID = msg->rsp[5];
3836 lan_addr.channel = msg->rsp[3] & 0x0f;
3837 lan_addr.privilege = msg->rsp[3] >> 4;
3838 lan_addr.lun = msg->rsp[9] & 3;
3839
3840 /*
3841 * It's a response from a remote entity. Look up the sequence
3842 * number and handle the response.
3843 */
3844 if (intf_find_seq(intf,
3845 msg->rsp[9] >> 2,
3846 msg->rsp[3] & 0x0f,
3847 msg->rsp[10],
3848 (msg->rsp[6] >> 2) & (~1),
3849 (struct ipmi_addr *) &lan_addr,
3850 &recv_msg)) {
3851 /*
3852 * We were unable to find the sequence number,
3853 * so just nuke the message.
3854 */
3855 ipmi_inc_stat(intf, unhandled_lan_responses);
3856 return 0;
3857 }
3858
3859 memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3860 /*
3861 * The other fields matched, so no need to set them, except
3862 * for netfn, which needs to be the response that was
3863 * returned, not the request value.
3864 */
3865 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3866 recv_msg->msg.data = recv_msg->msg_data;
3867 recv_msg->msg.data_len = msg->rsp_size - 12;
3868 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3869 if (deliver_response(intf, recv_msg))
3870 ipmi_inc_stat(intf, unhandled_lan_responses);
3871 else
3872 ipmi_inc_stat(intf, handled_lan_responses);
3873
3874 return 0;
3875 }
3876
handle_lan_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3877 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3878 struct ipmi_smi_msg *msg)
3879 {
3880 struct cmd_rcvr *rcvr;
3881 int rv = 0;
3882 unsigned char netfn;
3883 unsigned char cmd;
3884 unsigned char chan;
3885 struct ipmi_user *user = NULL;
3886 struct ipmi_lan_addr *lan_addr;
3887 struct ipmi_recv_msg *recv_msg;
3888
3889 if (msg->rsp_size < 12) {
3890 /* Message not big enough, just ignore it. */
3891 ipmi_inc_stat(intf, invalid_commands);
3892 return 0;
3893 }
3894
3895 if (msg->rsp[2] != 0) {
3896 /* An error getting the response, just ignore it. */
3897 return 0;
3898 }
3899
3900 netfn = msg->rsp[6] >> 2;
3901 cmd = msg->rsp[10];
3902 chan = msg->rsp[3] & 0xf;
3903
3904 rcu_read_lock();
3905 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3906 if (rcvr) {
3907 user = rcvr->user;
3908 kref_get(&user->refcount);
3909 } else
3910 user = NULL;
3911 rcu_read_unlock();
3912
3913 if (user == NULL) {
3914 /* We didn't find a user, just give up. */
3915 ipmi_inc_stat(intf, unhandled_commands);
3916
3917 /*
3918 * Don't do anything with these messages, just allow
3919 * them to be freed.
3920 */
3921 rv = 0;
3922 } else {
3923 recv_msg = ipmi_alloc_recv_msg();
3924 if (!recv_msg) {
3925 /*
3926 * We couldn't allocate memory for the
3927 * message, so requeue it for handling later.
3928 */
3929 rv = 1;
3930 kref_put(&user->refcount, free_user);
3931 } else {
3932 /* Extract the source address from the data. */
3933 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3934 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3935 lan_addr->session_handle = msg->rsp[4];
3936 lan_addr->remote_SWID = msg->rsp[8];
3937 lan_addr->local_SWID = msg->rsp[5];
3938 lan_addr->lun = msg->rsp[9] & 3;
3939 lan_addr->channel = msg->rsp[3] & 0xf;
3940 lan_addr->privilege = msg->rsp[3] >> 4;
3941
3942 /*
3943 * Extract the rest of the message information
3944 * from the IPMB header.
3945 */
3946 recv_msg->user = user;
3947 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3948 recv_msg->msgid = msg->rsp[9] >> 2;
3949 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3950 recv_msg->msg.cmd = msg->rsp[10];
3951 recv_msg->msg.data = recv_msg->msg_data;
3952
3953 /*
3954 * We chop off 12, not 11 bytes because the checksum
3955 * at the end also needs to be removed.
3956 */
3957 recv_msg->msg.data_len = msg->rsp_size - 12;
3958 memcpy(recv_msg->msg_data, &msg->rsp[11],
3959 msg->rsp_size - 12);
3960 if (deliver_response(intf, recv_msg))
3961 ipmi_inc_stat(intf, unhandled_commands);
3962 else
3963 ipmi_inc_stat(intf, handled_commands);
3964 }
3965 }
3966
3967 return rv;
3968 }
3969
3970 /*
3971 * This routine will handle "Get Message" command responses with
3972 * channels that use an OEM Medium. The message format belongs to
3973 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3974 * Chapter 22, sections 22.6 and 22.24 for more details.
3975 */
handle_oem_get_msg_cmd(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)3976 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3977 struct ipmi_smi_msg *msg)
3978 {
3979 struct cmd_rcvr *rcvr;
3980 int rv = 0;
3981 unsigned char netfn;
3982 unsigned char cmd;
3983 unsigned char chan;
3984 struct ipmi_user *user = NULL;
3985 struct ipmi_system_interface_addr *smi_addr;
3986 struct ipmi_recv_msg *recv_msg;
3987
3988 /*
3989 * We expect the OEM SW to perform error checking
3990 * so we just do some basic sanity checks
3991 */
3992 if (msg->rsp_size < 4) {
3993 /* Message not big enough, just ignore it. */
3994 ipmi_inc_stat(intf, invalid_commands);
3995 return 0;
3996 }
3997
3998 if (msg->rsp[2] != 0) {
3999 /* An error getting the response, just ignore it. */
4000 return 0;
4001 }
4002
4003 /*
4004 * This is an OEM Message so the OEM needs to know how
4005 * handle the message. We do no interpretation.
4006 */
4007 netfn = msg->rsp[0] >> 2;
4008 cmd = msg->rsp[1];
4009 chan = msg->rsp[3] & 0xf;
4010
4011 rcu_read_lock();
4012 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4013 if (rcvr) {
4014 user = rcvr->user;
4015 kref_get(&user->refcount);
4016 } else
4017 user = NULL;
4018 rcu_read_unlock();
4019
4020 if (user == NULL) {
4021 /* We didn't find a user, just give up. */
4022 ipmi_inc_stat(intf, unhandled_commands);
4023
4024 /*
4025 * Don't do anything with these messages, just allow
4026 * them to be freed.
4027 */
4028
4029 rv = 0;
4030 } else {
4031 recv_msg = ipmi_alloc_recv_msg();
4032 if (!recv_msg) {
4033 /*
4034 * We couldn't allocate memory for the
4035 * message, so requeue it for handling
4036 * later.
4037 */
4038 rv = 1;
4039 kref_put(&user->refcount, free_user);
4040 } else {
4041 /*
4042 * OEM Messages are expected to be delivered via
4043 * the system interface to SMS software. We might
4044 * need to visit this again depending on OEM
4045 * requirements
4046 */
4047 smi_addr = ((struct ipmi_system_interface_addr *)
4048 &recv_msg->addr);
4049 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4050 smi_addr->channel = IPMI_BMC_CHANNEL;
4051 smi_addr->lun = msg->rsp[0] & 3;
4052
4053 recv_msg->user = user;
4054 recv_msg->user_msg_data = NULL;
4055 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4056 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4057 recv_msg->msg.cmd = msg->rsp[1];
4058 recv_msg->msg.data = recv_msg->msg_data;
4059
4060 /*
4061 * The message starts at byte 4 which follows the
4062 * the Channel Byte in the "GET MESSAGE" command
4063 */
4064 recv_msg->msg.data_len = msg->rsp_size - 4;
4065 memcpy(recv_msg->msg_data, &msg->rsp[4],
4066 msg->rsp_size - 4);
4067 if (deliver_response(intf, recv_msg))
4068 ipmi_inc_stat(intf, unhandled_commands);
4069 else
4070 ipmi_inc_stat(intf, handled_commands);
4071 }
4072 }
4073
4074 return rv;
4075 }
4076
copy_event_into_recv_msg(struct ipmi_recv_msg * recv_msg,struct ipmi_smi_msg * msg)4077 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4078 struct ipmi_smi_msg *msg)
4079 {
4080 struct ipmi_system_interface_addr *smi_addr;
4081
4082 recv_msg->msgid = 0;
4083 smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4084 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4085 smi_addr->channel = IPMI_BMC_CHANNEL;
4086 smi_addr->lun = msg->rsp[0] & 3;
4087 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4088 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4089 recv_msg->msg.cmd = msg->rsp[1];
4090 memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4091 recv_msg->msg.data = recv_msg->msg_data;
4092 recv_msg->msg.data_len = msg->rsp_size - 3;
4093 }
4094
handle_read_event_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4095 static int handle_read_event_rsp(struct ipmi_smi *intf,
4096 struct ipmi_smi_msg *msg)
4097 {
4098 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4099 struct list_head msgs;
4100 struct ipmi_user *user;
4101 int rv = 0, deliver_count = 0, index;
4102 unsigned long flags;
4103
4104 if (msg->rsp_size < 19) {
4105 /* Message is too small to be an IPMB event. */
4106 ipmi_inc_stat(intf, invalid_events);
4107 return 0;
4108 }
4109
4110 if (msg->rsp[2] != 0) {
4111 /* An error getting the event, just ignore it. */
4112 return 0;
4113 }
4114
4115 INIT_LIST_HEAD(&msgs);
4116
4117 spin_lock_irqsave(&intf->events_lock, flags);
4118
4119 ipmi_inc_stat(intf, events);
4120
4121 /*
4122 * Allocate and fill in one message for every user that is
4123 * getting events.
4124 */
4125 index = srcu_read_lock(&intf->users_srcu);
4126 list_for_each_entry_rcu(user, &intf->users, link) {
4127 if (!user->gets_events)
4128 continue;
4129
4130 recv_msg = ipmi_alloc_recv_msg();
4131 if (!recv_msg) {
4132 rcu_read_unlock();
4133 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4134 link) {
4135 list_del(&recv_msg->link);
4136 ipmi_free_recv_msg(recv_msg);
4137 }
4138 /*
4139 * We couldn't allocate memory for the
4140 * message, so requeue it for handling
4141 * later.
4142 */
4143 rv = 1;
4144 goto out;
4145 }
4146
4147 deliver_count++;
4148
4149 copy_event_into_recv_msg(recv_msg, msg);
4150 recv_msg->user = user;
4151 kref_get(&user->refcount);
4152 list_add_tail(&recv_msg->link, &msgs);
4153 }
4154 srcu_read_unlock(&intf->users_srcu, index);
4155
4156 if (deliver_count) {
4157 /* Now deliver all the messages. */
4158 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4159 list_del(&recv_msg->link);
4160 deliver_local_response(intf, recv_msg);
4161 }
4162 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4163 /*
4164 * No one to receive the message, put it in queue if there's
4165 * not already too many things in the queue.
4166 */
4167 recv_msg = ipmi_alloc_recv_msg();
4168 if (!recv_msg) {
4169 /*
4170 * We couldn't allocate memory for the
4171 * message, so requeue it for handling
4172 * later.
4173 */
4174 rv = 1;
4175 goto out;
4176 }
4177
4178 copy_event_into_recv_msg(recv_msg, msg);
4179 list_add_tail(&recv_msg->link, &intf->waiting_events);
4180 intf->waiting_events_count++;
4181 } else if (!intf->event_msg_printed) {
4182 /*
4183 * There's too many things in the queue, discard this
4184 * message.
4185 */
4186 dev_warn(intf->si_dev,
4187 "Event queue full, discarding incoming events\n");
4188 intf->event_msg_printed = 1;
4189 }
4190
4191 out:
4192 spin_unlock_irqrestore(&intf->events_lock, flags);
4193
4194 return rv;
4195 }
4196
handle_bmc_rsp(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4197 static int handle_bmc_rsp(struct ipmi_smi *intf,
4198 struct ipmi_smi_msg *msg)
4199 {
4200 struct ipmi_recv_msg *recv_msg;
4201 struct ipmi_system_interface_addr *smi_addr;
4202
4203 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4204 if (recv_msg == NULL) {
4205 dev_warn(intf->si_dev,
4206 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
4207 return 0;
4208 }
4209
4210 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4211 recv_msg->msgid = msg->msgid;
4212 smi_addr = ((struct ipmi_system_interface_addr *)
4213 &recv_msg->addr);
4214 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4215 smi_addr->channel = IPMI_BMC_CHANNEL;
4216 smi_addr->lun = msg->rsp[0] & 3;
4217 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4218 recv_msg->msg.cmd = msg->rsp[1];
4219 memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4220 recv_msg->msg.data = recv_msg->msg_data;
4221 recv_msg->msg.data_len = msg->rsp_size - 2;
4222 deliver_local_response(intf, recv_msg);
4223
4224 return 0;
4225 }
4226
4227 /*
4228 * Handle a received message. Return 1 if the message should be requeued,
4229 * 0 if the message should be freed, or -1 if the message should not
4230 * be freed or requeued.
4231 */
handle_one_recv_msg(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4232 static int handle_one_recv_msg(struct ipmi_smi *intf,
4233 struct ipmi_smi_msg *msg)
4234 {
4235 int requeue;
4236 int chan;
4237
4238 pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4239
4240 if ((msg->data_size >= 2)
4241 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4242 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4243 && (msg->user_data == NULL)) {
4244
4245 if (intf->in_shutdown)
4246 goto free_msg;
4247
4248 /*
4249 * This is the local response to a command send, start
4250 * the timer for these. The user_data will not be
4251 * NULL if this is a response send, and we will let
4252 * response sends just go through.
4253 */
4254
4255 /*
4256 * Check for errors, if we get certain errors (ones
4257 * that mean basically we can try again later), we
4258 * ignore them and start the timer. Otherwise we
4259 * report the error immediately.
4260 */
4261 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4262 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4263 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4264 && (msg->rsp[2] != IPMI_BUS_ERR)
4265 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4266 int ch = msg->rsp[3] & 0xf;
4267 struct ipmi_channel *chans;
4268
4269 /* Got an error sending the message, handle it. */
4270
4271 chans = READ_ONCE(intf->channel_list)->c;
4272 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4273 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4274 ipmi_inc_stat(intf, sent_lan_command_errs);
4275 else
4276 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4277 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4278 } else
4279 /* The message was sent, start the timer. */
4280 intf_start_seq_timer(intf, msg->msgid);
4281 free_msg:
4282 requeue = 0;
4283 goto out;
4284
4285 } else if (msg->rsp_size < 2) {
4286 /* Message is too small to be correct. */
4287 dev_warn(intf->si_dev,
4288 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4289 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4290
4291 /* Generate an error response for the message. */
4292 msg->rsp[0] = msg->data[0] | (1 << 2);
4293 msg->rsp[1] = msg->data[1];
4294 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4295 msg->rsp_size = 3;
4296 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4297 || (msg->rsp[1] != msg->data[1])) {
4298 /*
4299 * The NetFN and Command in the response is not even
4300 * marginally correct.
4301 */
4302 dev_warn(intf->si_dev,
4303 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4304 (msg->data[0] >> 2) | 1, msg->data[1],
4305 msg->rsp[0] >> 2, msg->rsp[1]);
4306
4307 /* Generate an error response for the message. */
4308 msg->rsp[0] = msg->data[0] | (1 << 2);
4309 msg->rsp[1] = msg->data[1];
4310 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4311 msg->rsp_size = 3;
4312 }
4313
4314 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4315 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4316 && (msg->user_data != NULL)) {
4317 /*
4318 * It's a response to a response we sent. For this we
4319 * deliver a send message response to the user.
4320 */
4321 struct ipmi_recv_msg *recv_msg = msg->user_data;
4322
4323 requeue = 0;
4324 if (msg->rsp_size < 2)
4325 /* Message is too small to be correct. */
4326 goto out;
4327
4328 chan = msg->data[2] & 0x0f;
4329 if (chan >= IPMI_MAX_CHANNELS)
4330 /* Invalid channel number */
4331 goto out;
4332
4333 if (!recv_msg)
4334 goto out;
4335
4336 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4337 recv_msg->msg.data = recv_msg->msg_data;
4338 recv_msg->msg.data_len = 1;
4339 recv_msg->msg_data[0] = msg->rsp[2];
4340 deliver_local_response(intf, recv_msg);
4341 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4342 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4343 struct ipmi_channel *chans;
4344
4345 /* It's from the receive queue. */
4346 chan = msg->rsp[3] & 0xf;
4347 if (chan >= IPMI_MAX_CHANNELS) {
4348 /* Invalid channel number */
4349 requeue = 0;
4350 goto out;
4351 }
4352
4353 /*
4354 * We need to make sure the channels have been initialized.
4355 * The channel_handler routine will set the "curr_channel"
4356 * equal to or greater than IPMI_MAX_CHANNELS when all the
4357 * channels for this interface have been initialized.
4358 */
4359 if (!intf->channels_ready) {
4360 requeue = 0; /* Throw the message away */
4361 goto out;
4362 }
4363
4364 chans = READ_ONCE(intf->channel_list)->c;
4365
4366 switch (chans[chan].medium) {
4367 case IPMI_CHANNEL_MEDIUM_IPMB:
4368 if (msg->rsp[4] & 0x04) {
4369 /*
4370 * It's a response, so find the
4371 * requesting message and send it up.
4372 */
4373 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4374 } else {
4375 /*
4376 * It's a command to the SMS from some other
4377 * entity. Handle that.
4378 */
4379 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4380 }
4381 break;
4382
4383 case IPMI_CHANNEL_MEDIUM_8023LAN:
4384 case IPMI_CHANNEL_MEDIUM_ASYNC:
4385 if (msg->rsp[6] & 0x04) {
4386 /*
4387 * It's a response, so find the
4388 * requesting message and send it up.
4389 */
4390 requeue = handle_lan_get_msg_rsp(intf, msg);
4391 } else {
4392 /*
4393 * It's a command to the SMS from some other
4394 * entity. Handle that.
4395 */
4396 requeue = handle_lan_get_msg_cmd(intf, msg);
4397 }
4398 break;
4399
4400 default:
4401 /* Check for OEM Channels. Clients had better
4402 register for these commands. */
4403 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4404 && (chans[chan].medium
4405 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4406 requeue = handle_oem_get_msg_cmd(intf, msg);
4407 } else {
4408 /*
4409 * We don't handle the channel type, so just
4410 * free the message.
4411 */
4412 requeue = 0;
4413 }
4414 }
4415
4416 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4417 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4418 /* It's an asynchronous event. */
4419 requeue = handle_read_event_rsp(intf, msg);
4420 } else {
4421 /* It's a response from the local BMC. */
4422 requeue = handle_bmc_rsp(intf, msg);
4423 }
4424
4425 out:
4426 return requeue;
4427 }
4428
4429 /*
4430 * If there are messages in the queue or pretimeouts, handle them.
4431 */
handle_new_recv_msgs(struct ipmi_smi * intf)4432 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4433 {
4434 struct ipmi_smi_msg *smi_msg;
4435 unsigned long flags = 0;
4436 int rv;
4437 int run_to_completion = intf->run_to_completion;
4438
4439 /* See if any waiting messages need to be processed. */
4440 if (!run_to_completion)
4441 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4442 while (!list_empty(&intf->waiting_rcv_msgs)) {
4443 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4444 struct ipmi_smi_msg, link);
4445 list_del(&smi_msg->link);
4446 if (!run_to_completion)
4447 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4448 flags);
4449 rv = handle_one_recv_msg(intf, smi_msg);
4450 if (!run_to_completion)
4451 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4452 if (rv > 0) {
4453 /*
4454 * To preserve message order, quit if we
4455 * can't handle a message. Add the message
4456 * back at the head, this is safe because this
4457 * tasklet is the only thing that pulls the
4458 * messages.
4459 */
4460 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4461 break;
4462 } else {
4463 if (rv == 0)
4464 /* Message handled */
4465 ipmi_free_smi_msg(smi_msg);
4466 /* If rv < 0, fatal error, del but don't free. */
4467 }
4468 }
4469 if (!run_to_completion)
4470 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4471
4472 /*
4473 * If the pretimout count is non-zero, decrement one from it and
4474 * deliver pretimeouts to all the users.
4475 */
4476 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4477 struct ipmi_user *user;
4478 int index;
4479
4480 index = srcu_read_lock(&intf->users_srcu);
4481 list_for_each_entry_rcu(user, &intf->users, link) {
4482 if (user->handler->ipmi_watchdog_pretimeout)
4483 user->handler->ipmi_watchdog_pretimeout(
4484 user->handler_data);
4485 }
4486 srcu_read_unlock(&intf->users_srcu, index);
4487 }
4488 }
4489
smi_recv_tasklet(struct tasklet_struct * t)4490 static void smi_recv_tasklet(struct tasklet_struct *t)
4491 {
4492 unsigned long flags = 0; /* keep us warning-free. */
4493 struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4494 int run_to_completion = intf->run_to_completion;
4495 struct ipmi_smi_msg *newmsg = NULL;
4496
4497 /*
4498 * Start the next message if available.
4499 *
4500 * Do this here, not in the actual receiver, because we may deadlock
4501 * because the lower layer is allowed to hold locks while calling
4502 * message delivery.
4503 */
4504
4505 rcu_read_lock();
4506
4507 if (!run_to_completion)
4508 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4509 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4510 struct list_head *entry = NULL;
4511
4512 /* Pick the high priority queue first. */
4513 if (!list_empty(&intf->hp_xmit_msgs))
4514 entry = intf->hp_xmit_msgs.next;
4515 else if (!list_empty(&intf->xmit_msgs))
4516 entry = intf->xmit_msgs.next;
4517
4518 if (entry) {
4519 list_del(entry);
4520 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4521 intf->curr_msg = newmsg;
4522 }
4523 }
4524
4525 if (!run_to_completion)
4526 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4527 if (newmsg)
4528 intf->handlers->sender(intf->send_info, newmsg);
4529
4530 rcu_read_unlock();
4531
4532 handle_new_recv_msgs(intf);
4533 }
4534
4535 /* Handle a new message from the lower layer. */
ipmi_smi_msg_received(struct ipmi_smi * intf,struct ipmi_smi_msg * msg)4536 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4537 struct ipmi_smi_msg *msg)
4538 {
4539 unsigned long flags = 0; /* keep us warning-free. */
4540 int run_to_completion = intf->run_to_completion;
4541
4542 /*
4543 * To preserve message order, we keep a queue and deliver from
4544 * a tasklet.
4545 */
4546 if (!run_to_completion)
4547 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4548 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4549 if (!run_to_completion)
4550 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4551 flags);
4552
4553 if (!run_to_completion)
4554 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4555 /*
4556 * We can get an asynchronous event or receive message in addition
4557 * to commands we send.
4558 */
4559 if (msg == intf->curr_msg)
4560 intf->curr_msg = NULL;
4561 if (!run_to_completion)
4562 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4563
4564 if (run_to_completion)
4565 smi_recv_tasklet(&intf->recv_tasklet);
4566 else
4567 tasklet_schedule(&intf->recv_tasklet);
4568 }
4569 EXPORT_SYMBOL(ipmi_smi_msg_received);
4570
ipmi_smi_watchdog_pretimeout(struct ipmi_smi * intf)4571 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4572 {
4573 if (intf->in_shutdown)
4574 return;
4575
4576 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4577 tasklet_schedule(&intf->recv_tasklet);
4578 }
4579 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4580
4581 static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi * intf,struct ipmi_recv_msg * recv_msg,unsigned char seq,long seqid)4582 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4583 unsigned char seq, long seqid)
4584 {
4585 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4586 if (!smi_msg)
4587 /*
4588 * If we can't allocate the message, then just return, we
4589 * get 4 retries, so this should be ok.
4590 */
4591 return NULL;
4592
4593 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4594 smi_msg->data_size = recv_msg->msg.data_len;
4595 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4596
4597 pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4598
4599 return smi_msg;
4600 }
4601
check_msg_timeout(struct ipmi_smi * intf,struct seq_table * ent,struct list_head * timeouts,unsigned long timeout_period,int slot,unsigned long * flags,bool * need_timer)4602 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4603 struct list_head *timeouts,
4604 unsigned long timeout_period,
4605 int slot, unsigned long *flags,
4606 bool *need_timer)
4607 {
4608 struct ipmi_recv_msg *msg;
4609
4610 if (intf->in_shutdown)
4611 return;
4612
4613 if (!ent->inuse)
4614 return;
4615
4616 if (timeout_period < ent->timeout) {
4617 ent->timeout -= timeout_period;
4618 *need_timer = true;
4619 return;
4620 }
4621
4622 if (ent->retries_left == 0) {
4623 /* The message has used all its retries. */
4624 ent->inuse = 0;
4625 smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4626 msg = ent->recv_msg;
4627 list_add_tail(&msg->link, timeouts);
4628 if (ent->broadcast)
4629 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4630 else if (is_lan_addr(&ent->recv_msg->addr))
4631 ipmi_inc_stat(intf, timed_out_lan_commands);
4632 else
4633 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4634 } else {
4635 struct ipmi_smi_msg *smi_msg;
4636 /* More retries, send again. */
4637
4638 *need_timer = true;
4639
4640 /*
4641 * Start with the max timer, set to normal timer after
4642 * the message is sent.
4643 */
4644 ent->timeout = MAX_MSG_TIMEOUT;
4645 ent->retries_left--;
4646 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4647 ent->seqid);
4648 if (!smi_msg) {
4649 if (is_lan_addr(&ent->recv_msg->addr))
4650 ipmi_inc_stat(intf,
4651 dropped_rexmit_lan_commands);
4652 else
4653 ipmi_inc_stat(intf,
4654 dropped_rexmit_ipmb_commands);
4655 return;
4656 }
4657
4658 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4659
4660 /*
4661 * Send the new message. We send with a zero
4662 * priority. It timed out, I doubt time is that
4663 * critical now, and high priority messages are really
4664 * only for messages to the local MC, which don't get
4665 * resent.
4666 */
4667 if (intf->handlers) {
4668 if (is_lan_addr(&ent->recv_msg->addr))
4669 ipmi_inc_stat(intf,
4670 retransmitted_lan_commands);
4671 else
4672 ipmi_inc_stat(intf,
4673 retransmitted_ipmb_commands);
4674
4675 smi_send(intf, intf->handlers, smi_msg, 0);
4676 } else
4677 ipmi_free_smi_msg(smi_msg);
4678
4679 spin_lock_irqsave(&intf->seq_lock, *flags);
4680 }
4681 }
4682
ipmi_timeout_handler(struct ipmi_smi * intf,unsigned long timeout_period)4683 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4684 unsigned long timeout_period)
4685 {
4686 struct list_head timeouts;
4687 struct ipmi_recv_msg *msg, *msg2;
4688 unsigned long flags;
4689 int i;
4690 bool need_timer = false;
4691
4692 if (!intf->bmc_registered) {
4693 kref_get(&intf->refcount);
4694 if (!schedule_work(&intf->bmc_reg_work)) {
4695 kref_put(&intf->refcount, intf_free);
4696 need_timer = true;
4697 }
4698 }
4699
4700 /*
4701 * Go through the seq table and find any messages that
4702 * have timed out, putting them in the timeouts
4703 * list.
4704 */
4705 INIT_LIST_HEAD(&timeouts);
4706 spin_lock_irqsave(&intf->seq_lock, flags);
4707 if (intf->ipmb_maintenance_mode_timeout) {
4708 if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4709 intf->ipmb_maintenance_mode_timeout = 0;
4710 else
4711 intf->ipmb_maintenance_mode_timeout -= timeout_period;
4712 }
4713 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4714 check_msg_timeout(intf, &intf->seq_table[i],
4715 &timeouts, timeout_period, i,
4716 &flags, &need_timer);
4717 spin_unlock_irqrestore(&intf->seq_lock, flags);
4718
4719 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4720 deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4721
4722 /*
4723 * Maintenance mode handling. Check the timeout
4724 * optimistically before we claim the lock. It may
4725 * mean a timeout gets missed occasionally, but that
4726 * only means the timeout gets extended by one period
4727 * in that case. No big deal, and it avoids the lock
4728 * most of the time.
4729 */
4730 if (intf->auto_maintenance_timeout > 0) {
4731 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4732 if (intf->auto_maintenance_timeout > 0) {
4733 intf->auto_maintenance_timeout
4734 -= timeout_period;
4735 if (!intf->maintenance_mode
4736 && (intf->auto_maintenance_timeout <= 0)) {
4737 intf->maintenance_mode_enable = false;
4738 maintenance_mode_update(intf);
4739 }
4740 }
4741 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4742 flags);
4743 }
4744
4745 tasklet_schedule(&intf->recv_tasklet);
4746
4747 return need_timer;
4748 }
4749
ipmi_request_event(struct ipmi_smi * intf)4750 static void ipmi_request_event(struct ipmi_smi *intf)
4751 {
4752 /* No event requests when in maintenance mode. */
4753 if (intf->maintenance_mode_enable)
4754 return;
4755
4756 if (!intf->in_shutdown)
4757 intf->handlers->request_events(intf->send_info);
4758 }
4759
4760 static struct timer_list ipmi_timer;
4761
4762 static atomic_t stop_operation;
4763
ipmi_timeout(struct timer_list * unused)4764 static void ipmi_timeout(struct timer_list *unused)
4765 {
4766 struct ipmi_smi *intf;
4767 bool need_timer = false;
4768 int index;
4769
4770 if (atomic_read(&stop_operation))
4771 return;
4772
4773 index = srcu_read_lock(&ipmi_interfaces_srcu);
4774 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4775 if (atomic_read(&intf->event_waiters)) {
4776 intf->ticks_to_req_ev--;
4777 if (intf->ticks_to_req_ev == 0) {
4778 ipmi_request_event(intf);
4779 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4780 }
4781 need_timer = true;
4782 }
4783
4784 need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4785 }
4786 srcu_read_unlock(&ipmi_interfaces_srcu, index);
4787
4788 if (need_timer)
4789 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4790 }
4791
need_waiter(struct ipmi_smi * intf)4792 static void need_waiter(struct ipmi_smi *intf)
4793 {
4794 /* Racy, but worst case we start the timer twice. */
4795 if (!timer_pending(&ipmi_timer))
4796 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4797 }
4798
4799 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4800 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4801
free_smi_msg(struct ipmi_smi_msg * msg)4802 static void free_smi_msg(struct ipmi_smi_msg *msg)
4803 {
4804 atomic_dec(&smi_msg_inuse_count);
4805 kfree(msg);
4806 }
4807
ipmi_alloc_smi_msg(void)4808 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4809 {
4810 struct ipmi_smi_msg *rv;
4811 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4812 if (rv) {
4813 rv->done = free_smi_msg;
4814 rv->user_data = NULL;
4815 atomic_inc(&smi_msg_inuse_count);
4816 }
4817 return rv;
4818 }
4819 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4820
free_recv_msg(struct ipmi_recv_msg * msg)4821 static void free_recv_msg(struct ipmi_recv_msg *msg)
4822 {
4823 atomic_dec(&recv_msg_inuse_count);
4824 kfree(msg);
4825 }
4826
ipmi_alloc_recv_msg(void)4827 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4828 {
4829 struct ipmi_recv_msg *rv;
4830
4831 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4832 if (rv) {
4833 rv->user = NULL;
4834 rv->done = free_recv_msg;
4835 atomic_inc(&recv_msg_inuse_count);
4836 }
4837 return rv;
4838 }
4839
ipmi_free_recv_msg(struct ipmi_recv_msg * msg)4840 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4841 {
4842 if (msg->user)
4843 kref_put(&msg->user->refcount, free_user);
4844 msg->done(msg);
4845 }
4846 EXPORT_SYMBOL(ipmi_free_recv_msg);
4847
4848 static atomic_t panic_done_count = ATOMIC_INIT(0);
4849
dummy_smi_done_handler(struct ipmi_smi_msg * msg)4850 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4851 {
4852 atomic_dec(&panic_done_count);
4853 }
4854
dummy_recv_done_handler(struct ipmi_recv_msg * msg)4855 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4856 {
4857 atomic_dec(&panic_done_count);
4858 }
4859
4860 /*
4861 * Inside a panic, send a message and wait for a response.
4862 */
ipmi_panic_request_and_wait(struct ipmi_smi * intf,struct ipmi_addr * addr,struct kernel_ipmi_msg * msg)4863 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4864 struct ipmi_addr *addr,
4865 struct kernel_ipmi_msg *msg)
4866 {
4867 struct ipmi_smi_msg smi_msg;
4868 struct ipmi_recv_msg recv_msg;
4869 int rv;
4870
4871 smi_msg.done = dummy_smi_done_handler;
4872 recv_msg.done = dummy_recv_done_handler;
4873 atomic_add(2, &panic_done_count);
4874 rv = i_ipmi_request(NULL,
4875 intf,
4876 addr,
4877 0,
4878 msg,
4879 intf,
4880 &smi_msg,
4881 &recv_msg,
4882 0,
4883 intf->addrinfo[0].address,
4884 intf->addrinfo[0].lun,
4885 0, 1); /* Don't retry, and don't wait. */
4886 if (rv)
4887 atomic_sub(2, &panic_done_count);
4888 else if (intf->handlers->flush_messages)
4889 intf->handlers->flush_messages(intf->send_info);
4890
4891 while (atomic_read(&panic_done_count) != 0)
4892 ipmi_poll(intf);
4893 }
4894
event_receiver_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4895 static void event_receiver_fetcher(struct ipmi_smi *intf,
4896 struct ipmi_recv_msg *msg)
4897 {
4898 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4899 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4900 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4901 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4902 /* A get event receiver command, save it. */
4903 intf->event_receiver = msg->msg.data[1];
4904 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4905 }
4906 }
4907
device_id_fetcher(struct ipmi_smi * intf,struct ipmi_recv_msg * msg)4908 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4909 {
4910 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4911 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4912 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4913 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4914 /*
4915 * A get device id command, save if we are an event
4916 * receiver or generator.
4917 */
4918 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4919 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4920 }
4921 }
4922
send_panic_events(struct ipmi_smi * intf,char * str)4923 static void send_panic_events(struct ipmi_smi *intf, char *str)
4924 {
4925 struct kernel_ipmi_msg msg;
4926 unsigned char data[16];
4927 struct ipmi_system_interface_addr *si;
4928 struct ipmi_addr addr;
4929 char *p = str;
4930 struct ipmi_ipmb_addr *ipmb;
4931 int j;
4932
4933 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4934 return;
4935
4936 si = (struct ipmi_system_interface_addr *) &addr;
4937 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4938 si->channel = IPMI_BMC_CHANNEL;
4939 si->lun = 0;
4940
4941 /* Fill in an event telling that we have failed. */
4942 msg.netfn = 0x04; /* Sensor or Event. */
4943 msg.cmd = 2; /* Platform event command. */
4944 msg.data = data;
4945 msg.data_len = 8;
4946 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4947 data[1] = 0x03; /* This is for IPMI 1.0. */
4948 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4949 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4950 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4951
4952 /*
4953 * Put a few breadcrumbs in. Hopefully later we can add more things
4954 * to make the panic events more useful.
4955 */
4956 if (str) {
4957 data[3] = str[0];
4958 data[6] = str[1];
4959 data[7] = str[2];
4960 }
4961
4962 /* Send the event announcing the panic. */
4963 ipmi_panic_request_and_wait(intf, &addr, &msg);
4964
4965 /*
4966 * On every interface, dump a bunch of OEM event holding the
4967 * string.
4968 */
4969 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4970 return;
4971
4972 /*
4973 * intf_num is used as an marker to tell if the
4974 * interface is valid. Thus we need a read barrier to
4975 * make sure data fetched before checking intf_num
4976 * won't be used.
4977 */
4978 smp_rmb();
4979
4980 /*
4981 * First job here is to figure out where to send the
4982 * OEM events. There's no way in IPMI to send OEM
4983 * events using an event send command, so we have to
4984 * find the SEL to put them in and stick them in
4985 * there.
4986 */
4987
4988 /* Get capabilities from the get device id. */
4989 intf->local_sel_device = 0;
4990 intf->local_event_generator = 0;
4991 intf->event_receiver = 0;
4992
4993 /* Request the device info from the local MC. */
4994 msg.netfn = IPMI_NETFN_APP_REQUEST;
4995 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4996 msg.data = NULL;
4997 msg.data_len = 0;
4998 intf->null_user_handler = device_id_fetcher;
4999 ipmi_panic_request_and_wait(intf, &addr, &msg);
5000
5001 if (intf->local_event_generator) {
5002 /* Request the event receiver from the local MC. */
5003 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5004 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5005 msg.data = NULL;
5006 msg.data_len = 0;
5007 intf->null_user_handler = event_receiver_fetcher;
5008 ipmi_panic_request_and_wait(intf, &addr, &msg);
5009 }
5010 intf->null_user_handler = NULL;
5011
5012 /*
5013 * Validate the event receiver. The low bit must not
5014 * be 1 (it must be a valid IPMB address), it cannot
5015 * be zero, and it must not be my address.
5016 */
5017 if (((intf->event_receiver & 1) == 0)
5018 && (intf->event_receiver != 0)
5019 && (intf->event_receiver != intf->addrinfo[0].address)) {
5020 /*
5021 * The event receiver is valid, send an IPMB
5022 * message.
5023 */
5024 ipmb = (struct ipmi_ipmb_addr *) &addr;
5025 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5026 ipmb->channel = 0; /* FIXME - is this right? */
5027 ipmb->lun = intf->event_receiver_lun;
5028 ipmb->slave_addr = intf->event_receiver;
5029 } else if (intf->local_sel_device) {
5030 /*
5031 * The event receiver was not valid (or was
5032 * me), but I am an SEL device, just dump it
5033 * in my SEL.
5034 */
5035 si = (struct ipmi_system_interface_addr *) &addr;
5036 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5037 si->channel = IPMI_BMC_CHANNEL;
5038 si->lun = 0;
5039 } else
5040 return; /* No where to send the event. */
5041
5042 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5043 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5044 msg.data = data;
5045 msg.data_len = 16;
5046
5047 j = 0;
5048 while (*p) {
5049 int size = strlen(p);
5050
5051 if (size > 11)
5052 size = 11;
5053 data[0] = 0;
5054 data[1] = 0;
5055 data[2] = 0xf0; /* OEM event without timestamp. */
5056 data[3] = intf->addrinfo[0].address;
5057 data[4] = j++; /* sequence # */
5058 /*
5059 * Always give 11 bytes, so strncpy will fill
5060 * it with zeroes for me.
5061 */
5062 strncpy(data+5, p, 11);
5063 p += size;
5064
5065 ipmi_panic_request_and_wait(intf, &addr, &msg);
5066 }
5067 }
5068
5069 static int has_panicked;
5070
panic_event(struct notifier_block * this,unsigned long event,void * ptr)5071 static int panic_event(struct notifier_block *this,
5072 unsigned long event,
5073 void *ptr)
5074 {
5075 struct ipmi_smi *intf;
5076 struct ipmi_user *user;
5077
5078 if (has_panicked)
5079 return NOTIFY_DONE;
5080 has_panicked = 1;
5081
5082 /* For every registered interface, set it to run to completion. */
5083 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5084 if (!intf->handlers || intf->intf_num == -1)
5085 /* Interface is not ready. */
5086 continue;
5087
5088 if (!intf->handlers->poll)
5089 continue;
5090
5091 /*
5092 * If we were interrupted while locking xmit_msgs_lock or
5093 * waiting_rcv_msgs_lock, the corresponding list may be
5094 * corrupted. In this case, drop items on the list for
5095 * the safety.
5096 */
5097 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5098 INIT_LIST_HEAD(&intf->xmit_msgs);
5099 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5100 } else
5101 spin_unlock(&intf->xmit_msgs_lock);
5102
5103 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5104 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5105 else
5106 spin_unlock(&intf->waiting_rcv_msgs_lock);
5107
5108 intf->run_to_completion = 1;
5109 if (intf->handlers->set_run_to_completion)
5110 intf->handlers->set_run_to_completion(intf->send_info,
5111 1);
5112
5113 list_for_each_entry_rcu(user, &intf->users, link) {
5114 if (user->handler->ipmi_panic_handler)
5115 user->handler->ipmi_panic_handler(
5116 user->handler_data);
5117 }
5118
5119 send_panic_events(intf, ptr);
5120 }
5121
5122 return NOTIFY_DONE;
5123 }
5124
5125 /* Must be called with ipmi_interfaces_mutex held. */
ipmi_register_driver(void)5126 static int ipmi_register_driver(void)
5127 {
5128 int rv;
5129
5130 if (drvregistered)
5131 return 0;
5132
5133 rv = driver_register(&ipmidriver.driver);
5134 if (rv)
5135 pr_err("Could not register IPMI driver\n");
5136 else
5137 drvregistered = true;
5138 return rv;
5139 }
5140
5141 static struct notifier_block panic_block = {
5142 .notifier_call = panic_event,
5143 .next = NULL,
5144 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5145 };
5146
ipmi_init_msghandler(void)5147 static int ipmi_init_msghandler(void)
5148 {
5149 int rv;
5150
5151 mutex_lock(&ipmi_interfaces_mutex);
5152 rv = ipmi_register_driver();
5153 if (rv)
5154 goto out;
5155 if (initialized)
5156 goto out;
5157
5158 init_srcu_struct(&ipmi_interfaces_srcu);
5159
5160 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5161 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5162
5163 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5164
5165 initialized = true;
5166
5167 out:
5168 mutex_unlock(&ipmi_interfaces_mutex);
5169 return rv;
5170 }
5171
ipmi_init_msghandler_mod(void)5172 static int __init ipmi_init_msghandler_mod(void)
5173 {
5174 int rv;
5175
5176 pr_info("version " IPMI_DRIVER_VERSION "\n");
5177
5178 mutex_lock(&ipmi_interfaces_mutex);
5179 rv = ipmi_register_driver();
5180 mutex_unlock(&ipmi_interfaces_mutex);
5181
5182 return rv;
5183 }
5184
cleanup_ipmi(void)5185 static void __exit cleanup_ipmi(void)
5186 {
5187 int count;
5188
5189 if (initialized) {
5190 atomic_notifier_chain_unregister(&panic_notifier_list,
5191 &panic_block);
5192
5193 /*
5194 * This can't be called if any interfaces exist, so no worry
5195 * about shutting down the interfaces.
5196 */
5197
5198 /*
5199 * Tell the timer to stop, then wait for it to stop. This
5200 * avoids problems with race conditions removing the timer
5201 * here.
5202 */
5203 atomic_set(&stop_operation, 1);
5204 del_timer_sync(&ipmi_timer);
5205
5206 initialized = false;
5207
5208 /* Check for buffer leaks. */
5209 count = atomic_read(&smi_msg_inuse_count);
5210 if (count != 0)
5211 pr_warn("SMI message count %d at exit\n", count);
5212 count = atomic_read(&recv_msg_inuse_count);
5213 if (count != 0)
5214 pr_warn("recv message count %d at exit\n", count);
5215
5216 cleanup_srcu_struct(&ipmi_interfaces_srcu);
5217 }
5218 if (drvregistered)
5219 driver_unregister(&ipmidriver.driver);
5220 }
5221 module_exit(cleanup_ipmi);
5222
5223 module_init(ipmi_init_msghandler_mod);
5224 MODULE_LICENSE("GPL");
5225 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5226 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5227 " interface.");
5228 MODULE_VERSION(IPMI_DRIVER_VERSION);
5229 MODULE_SOFTDEP("post: ipmi_devintf");
5230