1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the Intel SCU IPC mechanism
4 *
5 * (C) Copyright 2008-2010,2015 Intel Corporation
6 * Author: Sreedhara DS (sreedhara.ds@intel.com)
7 *
8 * SCU running in ARC processor communicates with other entity running in IA
9 * core through IPC mechanism which in turn messaging between IA core ad SCU.
10 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13 * along with other APIs.
14 */
15
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/pm.h>
23 #include <linux/sfi.h>
24
25 #include <asm/intel-mid.h>
26 #include <asm/intel_scu_ipc.h>
27
28 /* IPC defines the following message types */
29 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
30 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
31 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
32 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
33 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
34
35 /* Command id associated with message IPCMSG_PCNTRL */
36 #define IPC_CMD_PCNTRL_W 0 /* Register write */
37 #define IPC_CMD_PCNTRL_R 1 /* Register read */
38 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
39
40 /*
41 * IPC register summary
42 *
43 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
44 * To read or write information to the SCU, driver writes to IPC-1 memory
45 * mapped registers. The following is the IPC mechanism
46 *
47 * 1. IA core cDMI interface claims this transaction and converts it to a
48 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
49 *
50 * 2. South Complex cDMI block receives this message and writes it to
51 * the IPC-1 register block, causing an interrupt to the SCU
52 *
53 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
54 * message handler is called within firmware.
55 */
56
57 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
58 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
59 #define IPC_IOC 0x100 /* IPC command register IOC bit */
60
61 #define PCI_DEVICE_ID_LINCROFT 0x082a
62 #define PCI_DEVICE_ID_PENWELL 0x080e
63 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea
64 #define PCI_DEVICE_ID_TANGIER 0x11a0
65
66 /* intel scu ipc driver data */
67 struct intel_scu_ipc_pdata_t {
68 u32 i2c_base;
69 u32 i2c_len;
70 u8 irq_mode;
71 };
72
73 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
74 .i2c_base = 0xff12b000,
75 .i2c_len = 0x10,
76 .irq_mode = 0,
77 };
78
79 /* Penwell and Cloverview */
80 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
81 .i2c_base = 0xff12b000,
82 .i2c_len = 0x10,
83 .irq_mode = 1,
84 };
85
86 static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
87 .i2c_base = 0xff00d000,
88 .i2c_len = 0x10,
89 .irq_mode = 0,
90 };
91
92 struct intel_scu_ipc_dev {
93 struct device *dev;
94 void __iomem *ipc_base;
95 void __iomem *i2c_base;
96 struct completion cmd_complete;
97 u8 irq_mode;
98 };
99
100 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
101
102 /*
103 * IPC Read Buffer (Read Only):
104 * 16 byte buffer for receiving data from SCU, if IPC command
105 * processing results in response data
106 */
107 #define IPC_READ_BUFFER 0x90
108
109 #define IPC_I2C_CNTRL_ADDR 0
110 #define I2C_DATA_ADDR 0x04
111
112 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
113
114 /*
115 * Send ipc command
116 * Command Register (Write Only):
117 * A write to this register results in an interrupt to the SCU core processor
118 * Format:
119 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
120 */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)121 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
122 {
123 if (scu->irq_mode) {
124 reinit_completion(&scu->cmd_complete);
125 writel(cmd | IPC_IOC, scu->ipc_base);
126 }
127 writel(cmd, scu->ipc_base);
128 }
129
130 /*
131 * Write ipc data
132 * IPC Write Buffer (Write Only):
133 * 16-byte buffer for sending data associated with IPC command to
134 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
135 */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)136 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
137 {
138 writel(data, scu->ipc_base + 0x80 + offset);
139 }
140
141 /*
142 * Status Register (Read Only):
143 * Driver will read this register to get the ready/busy status of the IPC
144 * block and error status of the IPC command that was just processed by SCU
145 * Format:
146 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
147 */
ipc_read_status(struct intel_scu_ipc_dev * scu)148 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
149 {
150 return __raw_readl(scu->ipc_base + 0x04);
151 }
152
153 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)154 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
155 {
156 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
157 }
158
159 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)160 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
161 {
162 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
163 }
164
165 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)166 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
167 {
168 u32 status = ipc_read_status(scu);
169 u32 loop_count = 100000;
170
171 /* break if scu doesn't reset busy bit after huge retry */
172 while ((status & BIT(0)) && --loop_count) {
173 udelay(1); /* scu processing time is in few u secods */
174 status = ipc_read_status(scu);
175 }
176
177 if (status & BIT(0)) {
178 dev_err(scu->dev, "IPC timed out");
179 return -ETIMEDOUT;
180 }
181
182 if (status & BIT(1))
183 return -EIO;
184
185 return 0;
186 }
187
188 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)189 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
190 {
191 int status;
192
193 if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
194 dev_err(scu->dev, "IPC timed out\n");
195 return -ETIMEDOUT;
196 }
197
198 status = ipc_read_status(scu);
199 if (status & BIT(1))
200 return -EIO;
201
202 return 0;
203 }
204
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)205 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
206 {
207 return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
208 }
209
210 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)211 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
212 {
213 struct intel_scu_ipc_dev *scu = &ipcdev;
214 int nc;
215 u32 offset = 0;
216 int err;
217 u8 cbuf[IPC_WWBUF_SIZE];
218 u32 *wbuf = (u32 *)&cbuf;
219
220 memset(cbuf, 0, sizeof(cbuf));
221
222 mutex_lock(&ipclock);
223
224 if (scu->dev == NULL) {
225 mutex_unlock(&ipclock);
226 return -ENODEV;
227 }
228
229 for (nc = 0; nc < count; nc++, offset += 2) {
230 cbuf[offset] = addr[nc];
231 cbuf[offset + 1] = addr[nc] >> 8;
232 }
233
234 if (id == IPC_CMD_PCNTRL_R) {
235 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
236 ipc_data_writel(scu, wbuf[nc], offset);
237 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
238 } else if (id == IPC_CMD_PCNTRL_W) {
239 for (nc = 0; nc < count; nc++, offset += 1)
240 cbuf[offset] = data[nc];
241 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
242 ipc_data_writel(scu, wbuf[nc], offset);
243 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
244 } else if (id == IPC_CMD_PCNTRL_M) {
245 cbuf[offset] = data[0];
246 cbuf[offset + 1] = data[1];
247 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
248 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
249 }
250
251 err = intel_scu_ipc_check_status(scu);
252 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
253 /* Workaround: values are read as 0 without memcpy_fromio */
254 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
255 for (nc = 0; nc < count; nc++)
256 data[nc] = ipc_data_readb(scu, nc);
257 }
258 mutex_unlock(&ipclock);
259 return err;
260 }
261
262 /**
263 * intel_scu_ipc_ioread8 - read a word via the SCU
264 * @addr: register on SCU
265 * @data: return pointer for read byte
266 *
267 * Read a single register. Returns 0 on success or an error code. All
268 * locking between SCU accesses is handled for the caller.
269 *
270 * This function may sleep.
271 */
intel_scu_ipc_ioread8(u16 addr,u8 * data)272 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
273 {
274 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
275 }
276 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
277
278 /**
279 * intel_scu_ipc_ioread16 - read a word via the SCU
280 * @addr: register on SCU
281 * @data: return pointer for read word
282 *
283 * Read a register pair. Returns 0 on success or an error code. All
284 * locking between SCU accesses is handled for the caller.
285 *
286 * This function may sleep.
287 */
intel_scu_ipc_ioread16(u16 addr,u16 * data)288 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
289 {
290 u16 x[2] = {addr, addr + 1};
291 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
292 }
293 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
294
295 /**
296 * intel_scu_ipc_ioread32 - read a dword via the SCU
297 * @addr: register on SCU
298 * @data: return pointer for read dword
299 *
300 * Read four registers. Returns 0 on success or an error code. All
301 * locking between SCU accesses is handled for the caller.
302 *
303 * This function may sleep.
304 */
intel_scu_ipc_ioread32(u16 addr,u32 * data)305 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
306 {
307 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
308 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
309 }
310 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
311
312 /**
313 * intel_scu_ipc_iowrite8 - write a byte via the SCU
314 * @addr: register on SCU
315 * @data: byte to write
316 *
317 * Write a single register. Returns 0 on success or an error code. All
318 * locking between SCU accesses is handled for the caller.
319 *
320 * This function may sleep.
321 */
intel_scu_ipc_iowrite8(u16 addr,u8 data)322 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
323 {
324 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
325 }
326 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
327
328 /**
329 * intel_scu_ipc_iowrite16 - write a word via the SCU
330 * @addr: register on SCU
331 * @data: word to write
332 *
333 * Write two registers. Returns 0 on success or an error code. All
334 * locking between SCU accesses is handled for the caller.
335 *
336 * This function may sleep.
337 */
intel_scu_ipc_iowrite16(u16 addr,u16 data)338 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
339 {
340 u16 x[2] = {addr, addr + 1};
341 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
342 }
343 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
344
345 /**
346 * intel_scu_ipc_iowrite32 - write a dword via the SCU
347 * @addr: register on SCU
348 * @data: dword to write
349 *
350 * Write four registers. Returns 0 on success or an error code. All
351 * locking between SCU accesses is handled for the caller.
352 *
353 * This function may sleep.
354 */
intel_scu_ipc_iowrite32(u16 addr,u32 data)355 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
356 {
357 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
358 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
359 }
360 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
361
362 /**
363 * intel_scu_ipc_readvv - read a set of registers
364 * @addr: register list
365 * @data: bytes to return
366 * @len: length of array
367 *
368 * Read registers. Returns 0 on success or an error code. All
369 * locking between SCU accesses is handled for the caller.
370 *
371 * The largest array length permitted by the hardware is 5 items.
372 *
373 * This function may sleep.
374 */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)375 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
376 {
377 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
378 }
379 EXPORT_SYMBOL(intel_scu_ipc_readv);
380
381 /**
382 * intel_scu_ipc_writev - write a set of registers
383 * @addr: register list
384 * @data: bytes to write
385 * @len: length of array
386 *
387 * Write registers. Returns 0 on success or an error code. All
388 * locking between SCU accesses is handled for the caller.
389 *
390 * The largest array length permitted by the hardware is 5 items.
391 *
392 * This function may sleep.
393 *
394 */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)395 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
396 {
397 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
398 }
399 EXPORT_SYMBOL(intel_scu_ipc_writev);
400
401 /**
402 * intel_scu_ipc_update_register - r/m/w a register
403 * @addr: register address
404 * @bits: bits to update
405 * @mask: mask of bits to update
406 *
407 * Read-modify-write power control unit register. The first data argument
408 * must be register value and second is mask value
409 * mask is a bitmap that indicates which bits to update.
410 * 0 = masked. Don't modify this bit, 1 = modify this bit.
411 * returns 0 on success or an error code.
412 *
413 * This function may sleep. Locking between SCU accesses is handled
414 * for the caller.
415 */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)416 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
417 {
418 u8 data[2] = { bits, mask };
419 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
420 }
421 EXPORT_SYMBOL(intel_scu_ipc_update_register);
422
423 /**
424 * intel_scu_ipc_simple_command - send a simple command
425 * @cmd: command
426 * @sub: sub type
427 *
428 * Issue a simple command to the SCU. Do not use this interface if
429 * you must then access data as any data values may be overwritten
430 * by another SCU access by the time this function returns.
431 *
432 * This function may sleep. Locking for SCU accesses is handled for
433 * the caller.
434 */
intel_scu_ipc_simple_command(int cmd,int sub)435 int intel_scu_ipc_simple_command(int cmd, int sub)
436 {
437 struct intel_scu_ipc_dev *scu = &ipcdev;
438 int err;
439
440 mutex_lock(&ipclock);
441 if (scu->dev == NULL) {
442 mutex_unlock(&ipclock);
443 return -ENODEV;
444 }
445 ipc_command(scu, sub << 12 | cmd);
446 err = intel_scu_ipc_check_status(scu);
447 mutex_unlock(&ipclock);
448 return err;
449 }
450 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
451
452 /**
453 * intel_scu_ipc_command - command with data
454 * @cmd: command
455 * @sub: sub type
456 * @in: input data
457 * @inlen: input length in dwords
458 * @out: output data
459 * @outlein: output length in dwords
460 *
461 * Issue a command to the SCU which involves data transfers. Do the
462 * data copies under the lock but leave it for the caller to interpret
463 */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)464 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
465 u32 *out, int outlen)
466 {
467 struct intel_scu_ipc_dev *scu = &ipcdev;
468 int i, err;
469
470 mutex_lock(&ipclock);
471 if (scu->dev == NULL) {
472 mutex_unlock(&ipclock);
473 return -ENODEV;
474 }
475
476 for (i = 0; i < inlen; i++)
477 ipc_data_writel(scu, *in++, 4 * i);
478
479 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
480 err = intel_scu_ipc_check_status(scu);
481
482 if (!err) {
483 for (i = 0; i < outlen; i++)
484 *out++ = ipc_data_readl(scu, 4 * i);
485 }
486
487 mutex_unlock(&ipclock);
488 return err;
489 }
490 EXPORT_SYMBOL(intel_scu_ipc_command);
491
492 #define IPC_SPTR 0x08
493 #define IPC_DPTR 0x0C
494
495 /**
496 * intel_scu_ipc_raw_command() - IPC command with data and pointers
497 * @cmd: IPC command code.
498 * @sub: IPC command sub type.
499 * @in: input data of this IPC command.
500 * @inlen: input data length in dwords.
501 * @out: output data of this IPC command.
502 * @outlen: output data length in dwords.
503 * @sptr: data writing to SPTR register.
504 * @dptr: data writing to DPTR register.
505 *
506 * Send an IPC command to SCU with input/output data and source/dest pointers.
507 *
508 * Return: an IPC error code or 0 on success.
509 */
intel_scu_ipc_raw_command(int cmd,int sub,u8 * in,int inlen,u32 * out,int outlen,u32 dptr,u32 sptr)510 int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
511 u32 *out, int outlen, u32 dptr, u32 sptr)
512 {
513 struct intel_scu_ipc_dev *scu = &ipcdev;
514 int inbuflen = DIV_ROUND_UP(inlen, 4);
515 u32 inbuf[4];
516 int i, err;
517
518 /* Up to 16 bytes */
519 if (inbuflen > 4)
520 return -EINVAL;
521
522 mutex_lock(&ipclock);
523 if (scu->dev == NULL) {
524 mutex_unlock(&ipclock);
525 return -ENODEV;
526 }
527
528 writel(dptr, scu->ipc_base + IPC_DPTR);
529 writel(sptr, scu->ipc_base + IPC_SPTR);
530
531 /*
532 * SRAM controller doesn't support 8-bit writes, it only
533 * supports 32-bit writes, so we have to copy input data into
534 * the temporary buffer, and SCU FW will use the inlen to
535 * determine the actual input data length in the temporary
536 * buffer.
537 */
538 memcpy(inbuf, in, inlen);
539
540 for (i = 0; i < inbuflen; i++)
541 ipc_data_writel(scu, inbuf[i], 4 * i);
542
543 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
544 err = intel_scu_ipc_check_status(scu);
545 if (!err) {
546 for (i = 0; i < outlen; i++)
547 *out++ = ipc_data_readl(scu, 4 * i);
548 }
549
550 mutex_unlock(&ipclock);
551 return err;
552 }
553 EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);
554
555 /* I2C commands */
556 #define IPC_I2C_WRITE 1 /* I2C Write command */
557 #define IPC_I2C_READ 2 /* I2C Read command */
558
559 /**
560 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
561 * @addr: I2C address + command bits
562 * @data: data to read/write
563 *
564 * Perform an an I2C read/write operation via the SCU. All locking is
565 * handled for the caller. This function may sleep.
566 *
567 * Returns an error code or 0 on success.
568 *
569 * This has to be in the IPC driver for the locking.
570 */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)571 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
572 {
573 struct intel_scu_ipc_dev *scu = &ipcdev;
574 u32 cmd = 0;
575
576 mutex_lock(&ipclock);
577 if (scu->dev == NULL) {
578 mutex_unlock(&ipclock);
579 return -ENODEV;
580 }
581 cmd = (addr >> 24) & 0xFF;
582 if (cmd == IPC_I2C_READ) {
583 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
584 /* Write not getting updated without delay */
585 usleep_range(1000, 2000);
586 *data = readl(scu->i2c_base + I2C_DATA_ADDR);
587 } else if (cmd == IPC_I2C_WRITE) {
588 writel(*data, scu->i2c_base + I2C_DATA_ADDR);
589 usleep_range(1000, 2000);
590 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
591 } else {
592 dev_err(scu->dev,
593 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
594
595 mutex_unlock(&ipclock);
596 return -EIO;
597 }
598 mutex_unlock(&ipclock);
599 return 0;
600 }
601 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
602
603 /*
604 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
605 * When ioc bit is set to 1, caller api must wait for interrupt handler called
606 * which in turn unlocks the caller api. Currently this is not used
607 *
608 * This is edge triggered so we need take no action to clear anything
609 */
ioc(int irq,void * dev_id)610 static irqreturn_t ioc(int irq, void *dev_id)
611 {
612 struct intel_scu_ipc_dev *scu = dev_id;
613
614 if (scu->irq_mode)
615 complete(&scu->cmd_complete);
616
617 return IRQ_HANDLED;
618 }
619
620 /**
621 * ipc_probe - probe an Intel SCU IPC
622 * @pdev: the PCI device matching
623 * @id: entry in the match table
624 *
625 * Enable and install an intel SCU IPC. This appears in the PCI space
626 * but uses some hard coded addresses as well.
627 */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)628 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
629 {
630 int err;
631 struct intel_scu_ipc_dev *scu = &ipcdev;
632 struct intel_scu_ipc_pdata_t *pdata;
633
634 if (scu->dev) /* We support only one SCU */
635 return -EBUSY;
636
637 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
638 if (!pdata)
639 return -ENODEV;
640
641 scu->irq_mode = pdata->irq_mode;
642
643 err = pcim_enable_device(pdev);
644 if (err)
645 return err;
646
647 err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
648 if (err)
649 return err;
650
651 init_completion(&scu->cmd_complete);
652
653 scu->ipc_base = pcim_iomap_table(pdev)[0];
654
655 scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
656 if (!scu->i2c_base)
657 return -ENOMEM;
658
659 err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
660 scu);
661 if (err)
662 return err;
663
664 /* Assign device at last */
665 scu->dev = &pdev->dev;
666
667 intel_scu_devices_create();
668
669 pci_set_drvdata(pdev, scu);
670 return 0;
671 }
672
673 #define SCU_DEVICE(id, pdata) {PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}
674
675 static const struct pci_device_id pci_ids[] = {
676 SCU_DEVICE(PCI_DEVICE_ID_LINCROFT, intel_scu_ipc_lincroft_pdata),
677 SCU_DEVICE(PCI_DEVICE_ID_PENWELL, intel_scu_ipc_penwell_pdata),
678 SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW, intel_scu_ipc_penwell_pdata),
679 SCU_DEVICE(PCI_DEVICE_ID_TANGIER, intel_scu_ipc_tangier_pdata),
680 {}
681 };
682
683 static struct pci_driver ipc_driver = {
684 .driver = {
685 .suppress_bind_attrs = true,
686 },
687 .name = "intel_scu_ipc",
688 .id_table = pci_ids,
689 .probe = ipc_probe,
690 };
691 builtin_pci_driver(ipc_driver);
692