1 /*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "intel_drv.h"
25
26 /**
27 * DOC: DPIO
28 *
29 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30 * ports. DPIO is the name given to such a display PHY. These PHYs
31 * don't follow the standard programming model using direct MMIO
32 * registers, and instead their registers must be accessed trough IOSF
33 * sideband. VLV has one such PHY for driving ports B and C, and CHV
34 * adds another PHY for driving port D. Each PHY responds to specific
35 * IOSF-SB port.
36 *
37 * Each display PHY is made up of one or two channels. Each channel
38 * houses a common lane part which contains the PLL and other common
39 * logic. CH0 common lane also contains the IOSF-SB logic for the
40 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41 * must be running when any DPIO registers are accessed.
42 *
43 * In addition to having their own registers, the PHYs are also
44 * controlled through some dedicated signals from the display
45 * controller. These include PLL reference clock enable, PLL enable,
46 * and CRI clock selection, for example.
47 *
48 * Eeach channel also has two splines (also called data lanes), and
49 * each spline is made up of one Physical Access Coding Sub-Layer
50 * (PCS) block and two TX lanes. So each channel has two PCS blocks
51 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52 * data/clock pairs depending on the output type.
53 *
54 * Additionally the PHY also contains an AUX lane with AUX blocks
55 * for each channel. This is used for DP AUX communication, but
56 * this fact isn't really relevant for the driver since AUX is
57 * controlled from the display controller side. No DPIO registers
58 * need to be accessed during AUX communication,
59 *
60 * Generally on VLV/CHV the common lane corresponds to the pipe and
61 * the spline (PCS/TX) corresponds to the port.
62 *
63 * For dual channel PHY (VLV/CHV):
64 *
65 * pipe A == CMN/PLL/REF CH0
66 *
67 * pipe B == CMN/PLL/REF CH1
68 *
69 * port B == PCS/TX CH0
70 *
71 * port C == PCS/TX CH1
72 *
73 * This is especially important when we cross the streams
74 * ie. drive port B with pipe B, or port C with pipe A.
75 *
76 * For single channel PHY (CHV):
77 *
78 * pipe C == CMN/PLL/REF CH0
79 *
80 * port D == PCS/TX CH0
81 *
82 * On BXT the entire PHY channel corresponds to the port. That means
83 * the PLL is also now associated with the port rather than the pipe,
84 * and so the clock needs to be routed to the appropriate transcoder.
85 * Port A PLL is directly connected to transcoder EDP and port B/C
86 * PLLs can be routed to any transcoder A/B/C.
87 *
88 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89 * digital port D (CHV) or port A (BXT). ::
90 *
91 *
92 * Dual channel PHY (VLV/CHV/BXT)
93 * ---------------------------------
94 * | CH0 | CH1 |
95 * | CMN/PLL/REF | CMN/PLL/REF |
96 * |---------------|---------------| Display PHY
97 * | PCS01 | PCS23 | PCS01 | PCS23 |
98 * |-------|-------|-------|-------|
99 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100 * ---------------------------------
101 * | DDI0 | DDI1 | DP/HDMI ports
102 * ---------------------------------
103 *
104 * Single channel PHY (CHV/BXT)
105 * -----------------
106 * | CH0 |
107 * | CMN/PLL/REF |
108 * |---------------| Display PHY
109 * | PCS01 | PCS23 |
110 * |-------|-------|
111 * |TX0|TX1|TX2|TX3|
112 * -----------------
113 * | DDI2 | DP/HDMI port
114 * -----------------
115 */
116
117 /**
118 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
119 */
120 struct bxt_ddi_phy_info {
121 /**
122 * @dual_channel: true if this phy has a second channel.
123 */
124 bool dual_channel;
125
126 /**
127 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 * Otherwise the GRC value will be copied from the phy indicated by
129 * this field.
130 */
131 enum dpio_phy rcomp_phy;
132
133 /**
134 * @reset_delay: delay in us to wait before setting the common reset
135 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
136 */
137 int reset_delay;
138
139 /**
140 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
142 */
143 u32 pwron_mask;
144
145 /**
146 * @channel: struct containing per channel information.
147 */
148 struct {
149 /**
150 * @channel.port: which port maps to this channel.
151 */
152 enum port port;
153 } channel[2];
154 };
155
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
157 [DPIO_PHY0] = {
158 .dual_channel = true,
159 .rcomp_phy = DPIO_PHY1,
160 .pwron_mask = BIT(0),
161
162 .channel = {
163 [DPIO_CH0] = { .port = PORT_B },
164 [DPIO_CH1] = { .port = PORT_C },
165 }
166 },
167 [DPIO_PHY1] = {
168 .dual_channel = false,
169 .rcomp_phy = -1,
170 .pwron_mask = BIT(1),
171
172 .channel = {
173 [DPIO_CH0] = { .port = PORT_A },
174 }
175 },
176 };
177
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
179 [DPIO_PHY0] = {
180 .dual_channel = false,
181 .rcomp_phy = DPIO_PHY1,
182 .pwron_mask = BIT(0),
183 .reset_delay = 20,
184
185 .channel = {
186 [DPIO_CH0] = { .port = PORT_B },
187 }
188 },
189 [DPIO_PHY1] = {
190 .dual_channel = false,
191 .rcomp_phy = -1,
192 .pwron_mask = BIT(3),
193 .reset_delay = 20,
194
195 .channel = {
196 [DPIO_CH0] = { .port = PORT_A },
197 }
198 },
199 [DPIO_PHY2] = {
200 .dual_channel = false,
201 .rcomp_phy = DPIO_PHY1,
202 .pwron_mask = BIT(1),
203 .reset_delay = 20,
204
205 .channel = {
206 [DPIO_CH0] = { .port = PORT_C },
207 }
208 },
209 };
210
211 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)212 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
213 {
214 if (IS_GEMINILAKE(dev_priv)) {
215 *count = ARRAY_SIZE(glk_ddi_phy_info);
216 return glk_ddi_phy_info;
217 } else {
218 *count = ARRAY_SIZE(bxt_ddi_phy_info);
219 return bxt_ddi_phy_info;
220 }
221 }
222
223 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)224 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
225 {
226 int count;
227 const struct bxt_ddi_phy_info *phy_list =
228 bxt_get_phy_list(dev_priv, &count);
229
230 return &phy_list[phy];
231 }
232
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)233 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
234 enum dpio_phy *phy, enum dpio_channel *ch)
235 {
236 const struct bxt_ddi_phy_info *phy_info, *phys;
237 int i, count;
238
239 phys = bxt_get_phy_list(dev_priv, &count);
240
241 for (i = 0; i < count; i++) {
242 phy_info = &phys[i];
243
244 if (port == phy_info->channel[DPIO_CH0].port) {
245 *phy = i;
246 *ch = DPIO_CH0;
247 return;
248 }
249
250 if (phy_info->dual_channel &&
251 port == phy_info->channel[DPIO_CH1].port) {
252 *phy = i;
253 *ch = DPIO_CH1;
254 return;
255 }
256 }
257
258 WARN(1, "PHY not found for PORT %c", port_name(port));
259 *phy = DPIO_PHY0;
260 *ch = DPIO_CH0;
261 }
262
bxt_ddi_phy_set_signal_level(struct drm_i915_private * dev_priv,enum port port,u32 margin,u32 scale,u32 enable,u32 deemphasis)263 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
264 enum port port, u32 margin, u32 scale,
265 u32 enable, u32 deemphasis)
266 {
267 u32 val;
268 enum dpio_phy phy;
269 enum dpio_channel ch;
270
271 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
272
273 /*
274 * While we write to the group register to program all lanes at once we
275 * can read only lane registers and we pick lanes 0/1 for that.
276 */
277 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
278 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
279 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
280
281 val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
282 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
283 val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
284 I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
285
286 val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
287 val &= ~SCALE_DCOMP_METHOD;
288 if (enable)
289 val |= SCALE_DCOMP_METHOD;
290
291 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
292 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
293
294 I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
295
296 val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
297 val &= ~DE_EMPHASIS;
298 val |= deemphasis << DEEMPH_SHIFT;
299 I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
300
301 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
302 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
303 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
304 }
305
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)306 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
307 enum dpio_phy phy)
308 {
309 const struct bxt_ddi_phy_info *phy_info;
310
311 phy_info = bxt_get_phy_info(dev_priv, phy);
312
313 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
314 return false;
315
316 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
317 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
318 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
319 phy);
320
321 return false;
322 }
323
324 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
325 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
326 phy);
327
328 return false;
329 }
330
331 return true;
332 }
333
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)334 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
335 {
336 u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
337
338 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
339 }
340
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)341 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
342 enum dpio_phy phy)
343 {
344 if (intel_wait_for_register(dev_priv,
345 BXT_PORT_REF_DW3(phy),
346 GRC_DONE, GRC_DONE,
347 10))
348 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
349 }
350
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)351 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
352 enum dpio_phy phy)
353 {
354 const struct bxt_ddi_phy_info *phy_info;
355 u32 val;
356
357 phy_info = bxt_get_phy_info(dev_priv, phy);
358
359 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
360 /* Still read out the GRC value for state verification */
361 if (phy_info->rcomp_phy != -1)
362 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
363
364 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
365 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
366 "won't reprogram it\n", phy);
367 return;
368 }
369
370 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
371 "force reprogramming it\n", phy);
372 }
373
374 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
375 val |= phy_info->pwron_mask;
376 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
377
378 /*
379 * The PHY registers start out inaccessible and respond to reads with
380 * all 1s. Eventually they become accessible as they power up, then
381 * the reserved bit will give the default 0. Poll on the reserved bit
382 * becoming 0 to find when the PHY is accessible.
383 * The flag should get set in 100us according to the HW team, but
384 * use 1ms due to occasional timeouts observed with that.
385 */
386 if (intel_wait_for_register_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy),
387 PHY_RESERVED | PHY_POWER_GOOD,
388 PHY_POWER_GOOD,
389 1))
390 DRM_ERROR("timeout during PHY%d power on\n", phy);
391
392 /* Program PLL Rcomp code offset */
393 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
394 val &= ~IREF0RC_OFFSET_MASK;
395 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
396 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
397
398 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
399 val &= ~IREF1RC_OFFSET_MASK;
400 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
401 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
402
403 /* Program power gating */
404 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
405 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
406 SUS_CLK_CONFIG;
407 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
408
409 if (phy_info->dual_channel) {
410 val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
411 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
412 I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
413 }
414
415 if (phy_info->rcomp_phy != -1) {
416 uint32_t grc_code;
417
418 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
419
420 /*
421 * PHY0 isn't connected to an RCOMP resistor so copy over
422 * the corresponding calibrated value from PHY1, and disable
423 * the automatic calibration on PHY0.
424 */
425 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
426 phy_info->rcomp_phy);
427 grc_code = val << GRC_CODE_FAST_SHIFT |
428 val << GRC_CODE_SLOW_SHIFT |
429 val;
430 I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
431
432 val = I915_READ(BXT_PORT_REF_DW8(phy));
433 val |= GRC_DIS | GRC_RDY_OVRD;
434 I915_WRITE(BXT_PORT_REF_DW8(phy), val);
435 }
436
437 if (phy_info->reset_delay)
438 udelay(phy_info->reset_delay);
439
440 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
441 val |= COMMON_RESET_DIS;
442 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
443 }
444
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)445 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
446 {
447 const struct bxt_ddi_phy_info *phy_info;
448 uint32_t val;
449
450 phy_info = bxt_get_phy_info(dev_priv, phy);
451
452 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
453 val &= ~COMMON_RESET_DIS;
454 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
455
456 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
457 val &= ~phy_info->pwron_mask;
458 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
459 }
460
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)461 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
462 {
463 const struct bxt_ddi_phy_info *phy_info =
464 bxt_get_phy_info(dev_priv, phy);
465 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
466 bool was_enabled;
467
468 lockdep_assert_held(&dev_priv->power_domains.lock);
469
470 was_enabled = true;
471 if (rcomp_phy != -1)
472 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
473
474 /*
475 * We need to copy the GRC calibration value from rcomp_phy,
476 * so make sure it's powered up.
477 */
478 if (!was_enabled)
479 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
480
481 _bxt_ddi_phy_init(dev_priv, phy);
482
483 if (!was_enabled)
484 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
485 }
486
487 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)488 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
489 i915_reg_t reg, u32 mask, u32 expected,
490 const char *reg_fmt, ...)
491 {
492 struct va_format vaf;
493 va_list args;
494 u32 val;
495
496 val = I915_READ(reg);
497 if ((val & mask) == expected)
498 return true;
499
500 va_start(args, reg_fmt);
501 vaf.fmt = reg_fmt;
502 vaf.va = &args;
503
504 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
505 "current %08x, expected %08x (mask %08x)\n",
506 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
507 mask);
508
509 va_end(args);
510
511 return false;
512 }
513
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)514 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
515 enum dpio_phy phy)
516 {
517 const struct bxt_ddi_phy_info *phy_info;
518 uint32_t mask;
519 bool ok;
520
521 phy_info = bxt_get_phy_info(dev_priv, phy);
522
523 #define _CHK(reg, mask, exp, fmt, ...) \
524 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
525 ## __VA_ARGS__)
526
527 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
528 return false;
529
530 ok = true;
531
532 /* PLL Rcomp code offset */
533 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
534 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
535 "BXT_PORT_CL1CM_DW9(%d)", phy);
536 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
537 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
538 "BXT_PORT_CL1CM_DW10(%d)", phy);
539
540 /* Power gating */
541 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
542 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
543 "BXT_PORT_CL1CM_DW28(%d)", phy);
544
545 if (phy_info->dual_channel)
546 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
547 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
548 "BXT_PORT_CL2CM_DW6(%d)", phy);
549
550 if (phy_info->rcomp_phy != -1) {
551 u32 grc_code = dev_priv->bxt_phy_grc;
552
553 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
554 grc_code << GRC_CODE_SLOW_SHIFT |
555 grc_code;
556 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
557 GRC_CODE_NOM_MASK;
558 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
559 "BXT_PORT_REF_DW6(%d)", phy);
560
561 mask = GRC_DIS | GRC_RDY_OVRD;
562 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
563 "BXT_PORT_REF_DW8(%d)", phy);
564 }
565
566 return ok;
567 #undef _CHK
568 }
569
570 uint8_t
bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count)571 bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count)
572 {
573 switch (lane_count) {
574 case 1:
575 return 0;
576 case 2:
577 return BIT(2) | BIT(0);
578 case 4:
579 return BIT(3) | BIT(2) | BIT(0);
580 default:
581 MISSING_CASE(lane_count);
582
583 return 0;
584 }
585 }
586
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,uint8_t lane_lat_optim_mask)587 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
588 uint8_t lane_lat_optim_mask)
589 {
590 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
591 enum port port = encoder->port;
592 enum dpio_phy phy;
593 enum dpio_channel ch;
594 int lane;
595
596 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
597
598 for (lane = 0; lane < 4; lane++) {
599 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
600
601 /*
602 * Note that on CHV this flag is called UPAR, but has
603 * the same function.
604 */
605 val &= ~LATENCY_OPTIM;
606 if (lane_lat_optim_mask & BIT(lane))
607 val |= LATENCY_OPTIM;
608
609 I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
610 }
611 }
612
613 uint8_t
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)614 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
615 {
616 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
617 enum port port = encoder->port;
618 enum dpio_phy phy;
619 enum dpio_channel ch;
620 int lane;
621 uint8_t mask;
622
623 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
624
625 mask = 0;
626 for (lane = 0; lane < 4; lane++) {
627 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
628
629 if (val & LATENCY_OPTIM)
630 mask |= BIT(lane);
631 }
632
633 return mask;
634 }
635
636
chv_set_phy_signal_level(struct intel_encoder * encoder,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)637 void chv_set_phy_signal_level(struct intel_encoder *encoder,
638 u32 deemph_reg_value, u32 margin_reg_value,
639 bool uniq_trans_scale)
640 {
641 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
642 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
643 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
644 enum dpio_channel ch = vlv_dport_to_channel(dport);
645 enum pipe pipe = intel_crtc->pipe;
646 u32 val;
647 int i;
648
649 mutex_lock(&dev_priv->sb_lock);
650
651 /* Clear calc init */
652 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
653 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
654 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
655 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
656 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
657
658 if (intel_crtc->config->lane_count > 2) {
659 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
660 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
661 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
662 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
663 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
664 }
665
666 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
667 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
668 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
669 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
670
671 if (intel_crtc->config->lane_count > 2) {
672 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
673 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
674 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
675 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
676 }
677
678 /* Program swing deemph */
679 for (i = 0; i < intel_crtc->config->lane_count; i++) {
680 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
681 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
682 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
683 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
684 }
685
686 /* Program swing margin */
687 for (i = 0; i < intel_crtc->config->lane_count; i++) {
688 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
689
690 val &= ~DPIO_SWING_MARGIN000_MASK;
691 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
692
693 /*
694 * Supposedly this value shouldn't matter when unique transition
695 * scale is disabled, but in fact it does matter. Let's just
696 * always program the same value and hope it's OK.
697 */
698 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
699 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
700
701 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
702 }
703
704 /*
705 * The document said it needs to set bit 27 for ch0 and bit 26
706 * for ch1. Might be a typo in the doc.
707 * For now, for this unique transition scale selection, set bit
708 * 27 for ch0 and ch1.
709 */
710 for (i = 0; i < intel_crtc->config->lane_count; i++) {
711 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
712 if (uniq_trans_scale)
713 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
714 else
715 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
716 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
717 }
718
719 /* Start swing calculation */
720 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
721 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
722 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
723
724 if (intel_crtc->config->lane_count > 2) {
725 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
726 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
727 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
728 }
729
730 mutex_unlock(&dev_priv->sb_lock);
731
732 }
733
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)734 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
735 const struct intel_crtc_state *crtc_state,
736 bool reset)
737 {
738 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
739 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
740 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
741 enum pipe pipe = crtc->pipe;
742 uint32_t val;
743
744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
745 if (reset)
746 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
747 else
748 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
749 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
750
751 if (crtc->config->lane_count > 2) {
752 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
753 if (reset)
754 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
755 else
756 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
757 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
758 }
759
760 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
761 val |= CHV_PCS_REQ_SOFTRESET_EN;
762 if (reset)
763 val &= ~DPIO_PCS_CLK_SOFT_RESET;
764 else
765 val |= DPIO_PCS_CLK_SOFT_RESET;
766 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
767
768 if (crtc->config->lane_count > 2) {
769 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
770 val |= CHV_PCS_REQ_SOFTRESET_EN;
771 if (reset)
772 val &= ~DPIO_PCS_CLK_SOFT_RESET;
773 else
774 val |= DPIO_PCS_CLK_SOFT_RESET;
775 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
776 }
777 }
778
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)779 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
780 const struct intel_crtc_state *crtc_state)
781 {
782 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
783 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
784 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
785 enum dpio_channel ch = vlv_dport_to_channel(dport);
786 enum pipe pipe = crtc->pipe;
787 unsigned int lane_mask =
788 intel_dp_unused_lane_mask(crtc_state->lane_count);
789 u32 val;
790
791 /*
792 * Must trick the second common lane into life.
793 * Otherwise we can't even access the PLL.
794 */
795 if (ch == DPIO_CH0 && pipe == PIPE_B)
796 dport->release_cl2_override =
797 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
798
799 chv_phy_powergate_lanes(encoder, true, lane_mask);
800
801 mutex_lock(&dev_priv->sb_lock);
802
803 /* Assert data lane reset */
804 chv_data_lane_soft_reset(encoder, crtc_state, true);
805
806 /* program left/right clock distribution */
807 if (pipe != PIPE_B) {
808 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
809 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
810 if (ch == DPIO_CH0)
811 val |= CHV_BUFLEFTENA1_FORCE;
812 if (ch == DPIO_CH1)
813 val |= CHV_BUFRIGHTENA1_FORCE;
814 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
815 } else {
816 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
817 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
818 if (ch == DPIO_CH0)
819 val |= CHV_BUFLEFTENA2_FORCE;
820 if (ch == DPIO_CH1)
821 val |= CHV_BUFRIGHTENA2_FORCE;
822 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
823 }
824
825 /* program clock channel usage */
826 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
827 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
828 if (pipe != PIPE_B)
829 val &= ~CHV_PCS_USEDCLKCHANNEL;
830 else
831 val |= CHV_PCS_USEDCLKCHANNEL;
832 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
833
834 if (crtc_state->lane_count > 2) {
835 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
836 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
837 if (pipe != PIPE_B)
838 val &= ~CHV_PCS_USEDCLKCHANNEL;
839 else
840 val |= CHV_PCS_USEDCLKCHANNEL;
841 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
842 }
843
844 /*
845 * This a a bit weird since generally CL
846 * matches the pipe, but here we need to
847 * pick the CL based on the port.
848 */
849 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
850 if (pipe != PIPE_B)
851 val &= ~CHV_CMN_USEDCLKCHANNEL;
852 else
853 val |= CHV_CMN_USEDCLKCHANNEL;
854 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
855
856 mutex_unlock(&dev_priv->sb_lock);
857 }
858
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)859 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
860 const struct intel_crtc_state *crtc_state)
861 {
862 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
863 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
864 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
865 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
866 enum dpio_channel ch = vlv_dport_to_channel(dport);
867 enum pipe pipe = crtc->pipe;
868 int data, i, stagger;
869 u32 val;
870
871 mutex_lock(&dev_priv->sb_lock);
872
873 /* allow hardware to manage TX FIFO reset source */
874 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
875 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
876 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
877
878 if (crtc_state->lane_count > 2) {
879 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
880 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
881 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
882 }
883
884 /* Program Tx lane latency optimal setting*/
885 for (i = 0; i < crtc_state->lane_count; i++) {
886 /* Set the upar bit */
887 if (crtc_state->lane_count == 1)
888 data = 0x0;
889 else
890 data = (i == 1) ? 0x0 : 0x1;
891 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
892 data << DPIO_UPAR_SHIFT);
893 }
894
895 /* Data lane stagger programming */
896 if (crtc_state->port_clock > 270000)
897 stagger = 0x18;
898 else if (crtc_state->port_clock > 135000)
899 stagger = 0xd;
900 else if (crtc_state->port_clock > 67500)
901 stagger = 0x7;
902 else if (crtc_state->port_clock > 33750)
903 stagger = 0x4;
904 else
905 stagger = 0x2;
906
907 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
908 val |= DPIO_TX2_STAGGER_MASK(0x1f);
909 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
910
911 if (crtc_state->lane_count > 2) {
912 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
913 val |= DPIO_TX2_STAGGER_MASK(0x1f);
914 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
915 }
916
917 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
918 DPIO_LANESTAGGER_STRAP(stagger) |
919 DPIO_LANESTAGGER_STRAP_OVRD |
920 DPIO_TX1_STAGGER_MASK(0x1f) |
921 DPIO_TX1_STAGGER_MULT(6) |
922 DPIO_TX2_STAGGER_MULT(0));
923
924 if (crtc_state->lane_count > 2) {
925 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
926 DPIO_LANESTAGGER_STRAP(stagger) |
927 DPIO_LANESTAGGER_STRAP_OVRD |
928 DPIO_TX1_STAGGER_MASK(0x1f) |
929 DPIO_TX1_STAGGER_MULT(7) |
930 DPIO_TX2_STAGGER_MULT(5));
931 }
932
933 /* Deassert data lane reset */
934 chv_data_lane_soft_reset(encoder, crtc_state, false);
935
936 mutex_unlock(&dev_priv->sb_lock);
937 }
938
chv_phy_release_cl2_override(struct intel_encoder * encoder)939 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
940 {
941 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
942 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
943
944 if (dport->release_cl2_override) {
945 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
946 dport->release_cl2_override = false;
947 }
948 }
949
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)950 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
951 const struct intel_crtc_state *old_crtc_state)
952 {
953 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
954 enum pipe pipe = to_intel_crtc(old_crtc_state->base.crtc)->pipe;
955 u32 val;
956
957 mutex_lock(&dev_priv->sb_lock);
958
959 /* disable left/right clock distribution */
960 if (pipe != PIPE_B) {
961 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
962 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
963 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
964 } else {
965 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
966 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
967 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
968 }
969
970 mutex_unlock(&dev_priv->sb_lock);
971
972 /*
973 * Leave the power down bit cleared for at least one
974 * lane so that chv_powergate_phy_ch() will power
975 * on something when the channel is otherwise unused.
976 * When the port is off and the override is removed
977 * the lanes power down anyway, so otherwise it doesn't
978 * really matter what the state of power down bits is
979 * after this.
980 */
981 chv_phy_powergate_lanes(encoder, false, 0x0);
982 }
983
vlv_set_phy_signal_level(struct intel_encoder * encoder,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)984 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
985 u32 demph_reg_value, u32 preemph_reg_value,
986 u32 uniqtranscale_reg_value, u32 tx3_demph)
987 {
988 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
989 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
990 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
991 enum dpio_channel port = vlv_dport_to_channel(dport);
992 enum pipe pipe = intel_crtc->pipe;
993
994 mutex_lock(&dev_priv->sb_lock);
995 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
996 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
997 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
998 uniqtranscale_reg_value);
999 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1000
1001 if (tx3_demph)
1002 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1003
1004 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1005 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1006 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1007 mutex_unlock(&dev_priv->sb_lock);
1008 }
1009
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1010 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1011 const struct intel_crtc_state *crtc_state)
1012 {
1013 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1014 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1015 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1016 enum dpio_channel port = vlv_dport_to_channel(dport);
1017 enum pipe pipe = crtc->pipe;
1018
1019 /* Program Tx lane resets to default */
1020 mutex_lock(&dev_priv->sb_lock);
1021 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1022 DPIO_PCS_TX_LANE2_RESET |
1023 DPIO_PCS_TX_LANE1_RESET);
1024 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1025 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1026 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1027 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1028 DPIO_PCS_CLK_SOFT_RESET);
1029
1030 /* Fix up inter-pair skew failure */
1031 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1032 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1033 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1034 mutex_unlock(&dev_priv->sb_lock);
1035 }
1036
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1037 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1038 const struct intel_crtc_state *crtc_state)
1039 {
1040 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1041 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1042 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1044 enum dpio_channel port = vlv_dport_to_channel(dport);
1045 enum pipe pipe = crtc->pipe;
1046 u32 val;
1047
1048 mutex_lock(&dev_priv->sb_lock);
1049
1050 /* Enable clock channels for this port */
1051 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1052 val = 0;
1053 if (pipe)
1054 val |= (1<<21);
1055 else
1056 val &= ~(1<<21);
1057 val |= 0x001000c4;
1058 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1059
1060 /* Program lane clock */
1061 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1062 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1063
1064 mutex_unlock(&dev_priv->sb_lock);
1065 }
1066
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1067 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1068 const struct intel_crtc_state *old_crtc_state)
1069 {
1070 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1071 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1072 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1073 enum dpio_channel port = vlv_dport_to_channel(dport);
1074 enum pipe pipe = crtc->pipe;
1075
1076 mutex_lock(&dev_priv->sb_lock);
1077 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1078 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1079 mutex_unlock(&dev_priv->sb_lock);
1080 }
1081