1 /*
2  * Copyright © 2014-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "intel_drv.h"
25 
26 /**
27  * DOC: DPIO
28  *
29  * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30  * ports. DPIO is the name given to such a display PHY. These PHYs
31  * don't follow the standard programming model using direct MMIO
32  * registers, and instead their registers must be accessed trough IOSF
33  * sideband. VLV has one such PHY for driving ports B and C, and CHV
34  * adds another PHY for driving port D. Each PHY responds to specific
35  * IOSF-SB port.
36  *
37  * Each display PHY is made up of one or two channels. Each channel
38  * houses a common lane part which contains the PLL and other common
39  * logic. CH0 common lane also contains the IOSF-SB logic for the
40  * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41  * must be running when any DPIO registers are accessed.
42  *
43  * In addition to having their own registers, the PHYs are also
44  * controlled through some dedicated signals from the display
45  * controller. These include PLL reference clock enable, PLL enable,
46  * and CRI clock selection, for example.
47  *
48  * Eeach channel also has two splines (also called data lanes), and
49  * each spline is made up of one Physical Access Coding Sub-Layer
50  * (PCS) block and two TX lanes. So each channel has two PCS blocks
51  * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52  * data/clock pairs depending on the output type.
53  *
54  * Additionally the PHY also contains an AUX lane with AUX blocks
55  * for each channel. This is used for DP AUX communication, but
56  * this fact isn't really relevant for the driver since AUX is
57  * controlled from the display controller side. No DPIO registers
58  * need to be accessed during AUX communication,
59  *
60  * Generally on VLV/CHV the common lane corresponds to the pipe and
61  * the spline (PCS/TX) corresponds to the port.
62  *
63  * For dual channel PHY (VLV/CHV):
64  *
65  *  pipe A == CMN/PLL/REF CH0
66  *
67  *  pipe B == CMN/PLL/REF CH1
68  *
69  *  port B == PCS/TX CH0
70  *
71  *  port C == PCS/TX CH1
72  *
73  * This is especially important when we cross the streams
74  * ie. drive port B with pipe B, or port C with pipe A.
75  *
76  * For single channel PHY (CHV):
77  *
78  *  pipe C == CMN/PLL/REF CH0
79  *
80  *  port D == PCS/TX CH0
81  *
82  * On BXT the entire PHY channel corresponds to the port. That means
83  * the PLL is also now associated with the port rather than the pipe,
84  * and so the clock needs to be routed to the appropriate transcoder.
85  * Port A PLL is directly connected to transcoder EDP and port B/C
86  * PLLs can be routed to any transcoder A/B/C.
87  *
88  * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89  * digital port D (CHV) or port A (BXT). ::
90  *
91  *
92  *     Dual channel PHY (VLV/CHV/BXT)
93  *     ---------------------------------
94  *     |      CH0      |      CH1      |
95  *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
96  *     |---------------|---------------| Display PHY
97  *     | PCS01 | PCS23 | PCS01 | PCS23 |
98  *     |-------|-------|-------|-------|
99  *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100  *     ---------------------------------
101  *     |     DDI0      |     DDI1      | DP/HDMI ports
102  *     ---------------------------------
103  *
104  *     Single channel PHY (CHV/BXT)
105  *     -----------------
106  *     |      CH0      |
107  *     |  CMN/PLL/REF  |
108  *     |---------------| Display PHY
109  *     | PCS01 | PCS23 |
110  *     |-------|-------|
111  *     |TX0|TX1|TX2|TX3|
112  *     -----------------
113  *     |     DDI2      | DP/HDMI port
114  *     -----------------
115  */
116 
117 /**
118  * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
119  */
120 struct bxt_ddi_phy_info {
121 	/**
122 	 * @dual_channel: true if this phy has a second channel.
123 	 */
124 	bool dual_channel;
125 
126 	/**
127 	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 	 * Otherwise the GRC value will be copied from the phy indicated by
129 	 * this field.
130 	 */
131 	enum dpio_phy rcomp_phy;
132 
133 	/**
134 	 * @reset_delay: delay in us to wait before setting the common reset
135 	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
136 	 */
137 	int reset_delay;
138 
139 	/**
140 	 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
142 	 */
143 	u32 pwron_mask;
144 
145 	/**
146 	 * @channel: struct containing per channel information.
147 	 */
148 	struct {
149 		/**
150 		 * @channel.port: which port maps to this channel.
151 		 */
152 		enum port port;
153 	} channel[2];
154 };
155 
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
157 	[DPIO_PHY0] = {
158 		.dual_channel = true,
159 		.rcomp_phy = DPIO_PHY1,
160 		.pwron_mask = BIT(0),
161 
162 		.channel = {
163 			[DPIO_CH0] = { .port = PORT_B },
164 			[DPIO_CH1] = { .port = PORT_C },
165 		}
166 	},
167 	[DPIO_PHY1] = {
168 		.dual_channel = false,
169 		.rcomp_phy = -1,
170 		.pwron_mask = BIT(1),
171 
172 		.channel = {
173 			[DPIO_CH0] = { .port = PORT_A },
174 		}
175 	},
176 };
177 
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
179 	[DPIO_PHY0] = {
180 		.dual_channel = false,
181 		.rcomp_phy = DPIO_PHY1,
182 		.pwron_mask = BIT(0),
183 		.reset_delay = 20,
184 
185 		.channel = {
186 			[DPIO_CH0] = { .port = PORT_B },
187 		}
188 	},
189 	[DPIO_PHY1] = {
190 		.dual_channel = false,
191 		.rcomp_phy = -1,
192 		.pwron_mask = BIT(3),
193 		.reset_delay = 20,
194 
195 		.channel = {
196 			[DPIO_CH0] = { .port = PORT_A },
197 		}
198 	},
199 	[DPIO_PHY2] = {
200 		.dual_channel = false,
201 		.rcomp_phy = DPIO_PHY1,
202 		.pwron_mask = BIT(1),
203 		.reset_delay = 20,
204 
205 		.channel = {
206 			[DPIO_CH0] = { .port = PORT_C },
207 		}
208 	},
209 };
210 
211 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)212 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
213 {
214 	if (IS_GEMINILAKE(dev_priv)) {
215 		*count =  ARRAY_SIZE(glk_ddi_phy_info);
216 		return glk_ddi_phy_info;
217 	} else {
218 		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
219 		return bxt_ddi_phy_info;
220 	}
221 }
222 
223 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)224 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
225 {
226 	int count;
227 	const struct bxt_ddi_phy_info *phy_list =
228 		bxt_get_phy_list(dev_priv, &count);
229 
230 	return &phy_list[phy];
231 }
232 
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)233 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
234 			     enum dpio_phy *phy, enum dpio_channel *ch)
235 {
236 	const struct bxt_ddi_phy_info *phy_info, *phys;
237 	int i, count;
238 
239 	phys = bxt_get_phy_list(dev_priv, &count);
240 
241 	for (i = 0; i < count; i++) {
242 		phy_info = &phys[i];
243 
244 		if (port == phy_info->channel[DPIO_CH0].port) {
245 			*phy = i;
246 			*ch = DPIO_CH0;
247 			return;
248 		}
249 
250 		if (phy_info->dual_channel &&
251 		    port == phy_info->channel[DPIO_CH1].port) {
252 			*phy = i;
253 			*ch = DPIO_CH1;
254 			return;
255 		}
256 	}
257 
258 	WARN(1, "PHY not found for PORT %c", port_name(port));
259 	*phy = DPIO_PHY0;
260 	*ch = DPIO_CH0;
261 }
262 
bxt_ddi_phy_set_signal_level(struct drm_i915_private * dev_priv,enum port port,u32 margin,u32 scale,u32 enable,u32 deemphasis)263 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
264 				  enum port port, u32 margin, u32 scale,
265 				  u32 enable, u32 deemphasis)
266 {
267 	u32 val;
268 	enum dpio_phy phy;
269 	enum dpio_channel ch;
270 
271 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
272 
273 	/*
274 	 * While we write to the group register to program all lanes at once we
275 	 * can read only lane registers and we pick lanes 0/1 for that.
276 	 */
277 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
278 	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
279 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
280 
281 	val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
282 	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
283 	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
284 	I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
285 
286 	val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
287 	val &= ~SCALE_DCOMP_METHOD;
288 	if (enable)
289 		val |= SCALE_DCOMP_METHOD;
290 
291 	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
292 		DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
293 
294 	I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
295 
296 	val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
297 	val &= ~DE_EMPHASIS;
298 	val |= deemphasis << DEEMPH_SHIFT;
299 	I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
300 
301 	val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
302 	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
303 	I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
304 }
305 
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)306 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
307 			    enum dpio_phy phy)
308 {
309 	const struct bxt_ddi_phy_info *phy_info;
310 
311 	phy_info = bxt_get_phy_info(dev_priv, phy);
312 
313 	if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
314 		return false;
315 
316 	if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
317 	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
318 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
319 				 phy);
320 
321 		return false;
322 	}
323 
324 	if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
325 		DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
326 				 phy);
327 
328 		return false;
329 	}
330 
331 	return true;
332 }
333 
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)334 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
335 {
336 	u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
337 
338 	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
339 }
340 
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)341 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
342 				  enum dpio_phy phy)
343 {
344 	if (intel_wait_for_register(dev_priv,
345 				    BXT_PORT_REF_DW3(phy),
346 				    GRC_DONE, GRC_DONE,
347 				    10))
348 		DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
349 }
350 
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)351 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
352 			      enum dpio_phy phy)
353 {
354 	const struct bxt_ddi_phy_info *phy_info;
355 	u32 val;
356 
357 	phy_info = bxt_get_phy_info(dev_priv, phy);
358 
359 	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
360 		/* Still read out the GRC value for state verification */
361 		if (phy_info->rcomp_phy != -1)
362 			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
363 
364 		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
365 			DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
366 					 "won't reprogram it\n", phy);
367 			return;
368 		}
369 
370 		DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
371 				 "force reprogramming it\n", phy);
372 	}
373 
374 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
375 	val |= phy_info->pwron_mask;
376 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
377 
378 	/*
379 	 * The PHY registers start out inaccessible and respond to reads with
380 	 * all 1s.  Eventually they become accessible as they power up, then
381 	 * the reserved bit will give the default 0.  Poll on the reserved bit
382 	 * becoming 0 to find when the PHY is accessible.
383 	 * The flag should get set in 100us according to the HW team, but
384 	 * use 1ms due to occasional timeouts observed with that.
385 	 */
386 	if (intel_wait_for_register_fw(dev_priv, BXT_PORT_CL1CM_DW0(phy),
387 				       PHY_RESERVED | PHY_POWER_GOOD,
388 				       PHY_POWER_GOOD,
389 				       1))
390 		DRM_ERROR("timeout during PHY%d power on\n", phy);
391 
392 	/* Program PLL Rcomp code offset */
393 	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
394 	val &= ~IREF0RC_OFFSET_MASK;
395 	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
396 	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
397 
398 	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
399 	val &= ~IREF1RC_OFFSET_MASK;
400 	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
401 	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
402 
403 	/* Program power gating */
404 	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
405 	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
406 		SUS_CLK_CONFIG;
407 	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
408 
409 	if (phy_info->dual_channel) {
410 		val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
411 		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
412 		I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
413 	}
414 
415 	if (phy_info->rcomp_phy != -1) {
416 		uint32_t grc_code;
417 
418 		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
419 
420 		/*
421 		 * PHY0 isn't connected to an RCOMP resistor so copy over
422 		 * the corresponding calibrated value from PHY1, and disable
423 		 * the automatic calibration on PHY0.
424 		 */
425 		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
426 							  phy_info->rcomp_phy);
427 		grc_code = val << GRC_CODE_FAST_SHIFT |
428 			   val << GRC_CODE_SLOW_SHIFT |
429 			   val;
430 		I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
431 
432 		val = I915_READ(BXT_PORT_REF_DW8(phy));
433 		val |= GRC_DIS | GRC_RDY_OVRD;
434 		I915_WRITE(BXT_PORT_REF_DW8(phy), val);
435 	}
436 
437 	if (phy_info->reset_delay)
438 		udelay(phy_info->reset_delay);
439 
440 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
441 	val |= COMMON_RESET_DIS;
442 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
443 }
444 
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)445 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
446 {
447 	const struct bxt_ddi_phy_info *phy_info;
448 	uint32_t val;
449 
450 	phy_info = bxt_get_phy_info(dev_priv, phy);
451 
452 	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
453 	val &= ~COMMON_RESET_DIS;
454 	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
455 
456 	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
457 	val &= ~phy_info->pwron_mask;
458 	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
459 }
460 
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)461 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
462 {
463 	const struct bxt_ddi_phy_info *phy_info =
464 		bxt_get_phy_info(dev_priv, phy);
465 	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
466 	bool was_enabled;
467 
468 	lockdep_assert_held(&dev_priv->power_domains.lock);
469 
470 	was_enabled = true;
471 	if (rcomp_phy != -1)
472 		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
473 
474 	/*
475 	 * We need to copy the GRC calibration value from rcomp_phy,
476 	 * so make sure it's powered up.
477 	 */
478 	if (!was_enabled)
479 		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
480 
481 	_bxt_ddi_phy_init(dev_priv, phy);
482 
483 	if (!was_enabled)
484 		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
485 }
486 
487 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)488 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
489 		       i915_reg_t reg, u32 mask, u32 expected,
490 		       const char *reg_fmt, ...)
491 {
492 	struct va_format vaf;
493 	va_list args;
494 	u32 val;
495 
496 	val = I915_READ(reg);
497 	if ((val & mask) == expected)
498 		return true;
499 
500 	va_start(args, reg_fmt);
501 	vaf.fmt = reg_fmt;
502 	vaf.va = &args;
503 
504 	DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
505 			 "current %08x, expected %08x (mask %08x)\n",
506 			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
507 			 mask);
508 
509 	va_end(args);
510 
511 	return false;
512 }
513 
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)514 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
515 			      enum dpio_phy phy)
516 {
517 	const struct bxt_ddi_phy_info *phy_info;
518 	uint32_t mask;
519 	bool ok;
520 
521 	phy_info = bxt_get_phy_info(dev_priv, phy);
522 
523 #define _CHK(reg, mask, exp, fmt, ...)					\
524 	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
525 			       ## __VA_ARGS__)
526 
527 	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
528 		return false;
529 
530 	ok = true;
531 
532 	/* PLL Rcomp code offset */
533 	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
534 		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
535 		    "BXT_PORT_CL1CM_DW9(%d)", phy);
536 	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
537 		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
538 		    "BXT_PORT_CL1CM_DW10(%d)", phy);
539 
540 	/* Power gating */
541 	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
542 	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
543 		    "BXT_PORT_CL1CM_DW28(%d)", phy);
544 
545 	if (phy_info->dual_channel)
546 		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
547 			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
548 			   "BXT_PORT_CL2CM_DW6(%d)", phy);
549 
550 	if (phy_info->rcomp_phy != -1) {
551 		u32 grc_code = dev_priv->bxt_phy_grc;
552 
553 		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
554 			   grc_code << GRC_CODE_SLOW_SHIFT |
555 			   grc_code;
556 		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
557 		       GRC_CODE_NOM_MASK;
558 		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
559 			   "BXT_PORT_REF_DW6(%d)", phy);
560 
561 		mask = GRC_DIS | GRC_RDY_OVRD;
562 		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
563 			    "BXT_PORT_REF_DW8(%d)", phy);
564 	}
565 
566 	return ok;
567 #undef _CHK
568 }
569 
570 uint8_t
bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count)571 bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count)
572 {
573 	switch (lane_count) {
574 	case 1:
575 		return 0;
576 	case 2:
577 		return BIT(2) | BIT(0);
578 	case 4:
579 		return BIT(3) | BIT(2) | BIT(0);
580 	default:
581 		MISSING_CASE(lane_count);
582 
583 		return 0;
584 	}
585 }
586 
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,uint8_t lane_lat_optim_mask)587 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
588 				     uint8_t lane_lat_optim_mask)
589 {
590 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
591 	enum port port = encoder->port;
592 	enum dpio_phy phy;
593 	enum dpio_channel ch;
594 	int lane;
595 
596 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
597 
598 	for (lane = 0; lane < 4; lane++) {
599 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
600 
601 		/*
602 		 * Note that on CHV this flag is called UPAR, but has
603 		 * the same function.
604 		 */
605 		val &= ~LATENCY_OPTIM;
606 		if (lane_lat_optim_mask & BIT(lane))
607 			val |= LATENCY_OPTIM;
608 
609 		I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
610 	}
611 }
612 
613 uint8_t
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)614 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
615 {
616 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
617 	enum port port = encoder->port;
618 	enum dpio_phy phy;
619 	enum dpio_channel ch;
620 	int lane;
621 	uint8_t mask;
622 
623 	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
624 
625 	mask = 0;
626 	for (lane = 0; lane < 4; lane++) {
627 		u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
628 
629 		if (val & LATENCY_OPTIM)
630 			mask |= BIT(lane);
631 	}
632 
633 	return mask;
634 }
635 
636 
chv_set_phy_signal_level(struct intel_encoder * encoder,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)637 void chv_set_phy_signal_level(struct intel_encoder *encoder,
638 			      u32 deemph_reg_value, u32 margin_reg_value,
639 			      bool uniq_trans_scale)
640 {
641 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
642 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
643 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
644 	enum dpio_channel ch = vlv_dport_to_channel(dport);
645 	enum pipe pipe = intel_crtc->pipe;
646 	u32 val;
647 	int i;
648 
649 	mutex_lock(&dev_priv->sb_lock);
650 
651 	/* Clear calc init */
652 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
653 	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
654 	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
655 	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
656 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
657 
658 	if (intel_crtc->config->lane_count > 2) {
659 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
660 		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
661 		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
662 		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
663 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
664 	}
665 
666 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
667 	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
668 	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
669 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
670 
671 	if (intel_crtc->config->lane_count > 2) {
672 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
673 		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
674 		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
675 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
676 	}
677 
678 	/* Program swing deemph */
679 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
680 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
681 		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
682 		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
683 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
684 	}
685 
686 	/* Program swing margin */
687 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
688 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
689 
690 		val &= ~DPIO_SWING_MARGIN000_MASK;
691 		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
692 
693 		/*
694 		 * Supposedly this value shouldn't matter when unique transition
695 		 * scale is disabled, but in fact it does matter. Let's just
696 		 * always program the same value and hope it's OK.
697 		 */
698 		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
699 		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
700 
701 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
702 	}
703 
704 	/*
705 	 * The document said it needs to set bit 27 for ch0 and bit 26
706 	 * for ch1. Might be a typo in the doc.
707 	 * For now, for this unique transition scale selection, set bit
708 	 * 27 for ch0 and ch1.
709 	 */
710 	for (i = 0; i < intel_crtc->config->lane_count; i++) {
711 		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
712 		if (uniq_trans_scale)
713 			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
714 		else
715 			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
716 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
717 	}
718 
719 	/* Start swing calculation */
720 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
721 	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
722 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
723 
724 	if (intel_crtc->config->lane_count > 2) {
725 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
726 		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
727 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
728 	}
729 
730 	mutex_unlock(&dev_priv->sb_lock);
731 
732 }
733 
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)734 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
735 			      const struct intel_crtc_state *crtc_state,
736 			      bool reset)
737 {
738 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
739 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
740 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
741 	enum pipe pipe = crtc->pipe;
742 	uint32_t val;
743 
744 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
745 	if (reset)
746 		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
747 	else
748 		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
749 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
750 
751 	if (crtc->config->lane_count > 2) {
752 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
753 		if (reset)
754 			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
755 		else
756 			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
757 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
758 	}
759 
760 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
761 	val |= CHV_PCS_REQ_SOFTRESET_EN;
762 	if (reset)
763 		val &= ~DPIO_PCS_CLK_SOFT_RESET;
764 	else
765 		val |= DPIO_PCS_CLK_SOFT_RESET;
766 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
767 
768 	if (crtc->config->lane_count > 2) {
769 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
770 		val |= CHV_PCS_REQ_SOFTRESET_EN;
771 		if (reset)
772 			val &= ~DPIO_PCS_CLK_SOFT_RESET;
773 		else
774 			val |= DPIO_PCS_CLK_SOFT_RESET;
775 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
776 	}
777 }
778 
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)779 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
780 			    const struct intel_crtc_state *crtc_state)
781 {
782 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
783 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
784 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
785 	enum dpio_channel ch = vlv_dport_to_channel(dport);
786 	enum pipe pipe = crtc->pipe;
787 	unsigned int lane_mask =
788 		intel_dp_unused_lane_mask(crtc_state->lane_count);
789 	u32 val;
790 
791 	/*
792 	 * Must trick the second common lane into life.
793 	 * Otherwise we can't even access the PLL.
794 	 */
795 	if (ch == DPIO_CH0 && pipe == PIPE_B)
796 		dport->release_cl2_override =
797 			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
798 
799 	chv_phy_powergate_lanes(encoder, true, lane_mask);
800 
801 	mutex_lock(&dev_priv->sb_lock);
802 
803 	/* Assert data lane reset */
804 	chv_data_lane_soft_reset(encoder, crtc_state, true);
805 
806 	/* program left/right clock distribution */
807 	if (pipe != PIPE_B) {
808 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
809 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
810 		if (ch == DPIO_CH0)
811 			val |= CHV_BUFLEFTENA1_FORCE;
812 		if (ch == DPIO_CH1)
813 			val |= CHV_BUFRIGHTENA1_FORCE;
814 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
815 	} else {
816 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
817 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
818 		if (ch == DPIO_CH0)
819 			val |= CHV_BUFLEFTENA2_FORCE;
820 		if (ch == DPIO_CH1)
821 			val |= CHV_BUFRIGHTENA2_FORCE;
822 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
823 	}
824 
825 	/* program clock channel usage */
826 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
827 	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
828 	if (pipe != PIPE_B)
829 		val &= ~CHV_PCS_USEDCLKCHANNEL;
830 	else
831 		val |= CHV_PCS_USEDCLKCHANNEL;
832 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
833 
834 	if (crtc_state->lane_count > 2) {
835 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
836 		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
837 		if (pipe != PIPE_B)
838 			val &= ~CHV_PCS_USEDCLKCHANNEL;
839 		else
840 			val |= CHV_PCS_USEDCLKCHANNEL;
841 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
842 	}
843 
844 	/*
845 	 * This a a bit weird since generally CL
846 	 * matches the pipe, but here we need to
847 	 * pick the CL based on the port.
848 	 */
849 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
850 	if (pipe != PIPE_B)
851 		val &= ~CHV_CMN_USEDCLKCHANNEL;
852 	else
853 		val |= CHV_CMN_USEDCLKCHANNEL;
854 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
855 
856 	mutex_unlock(&dev_priv->sb_lock);
857 }
858 
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)859 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
860 				const struct intel_crtc_state *crtc_state)
861 {
862 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
863 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
864 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
865 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
866 	enum dpio_channel ch = vlv_dport_to_channel(dport);
867 	enum pipe pipe = crtc->pipe;
868 	int data, i, stagger;
869 	u32 val;
870 
871 	mutex_lock(&dev_priv->sb_lock);
872 
873 	/* allow hardware to manage TX FIFO reset source */
874 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
875 	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
876 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
877 
878 	if (crtc_state->lane_count > 2) {
879 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
880 		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
881 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
882 	}
883 
884 	/* Program Tx lane latency optimal setting*/
885 	for (i = 0; i < crtc_state->lane_count; i++) {
886 		/* Set the upar bit */
887 		if (crtc_state->lane_count == 1)
888 			data = 0x0;
889 		else
890 			data = (i == 1) ? 0x0 : 0x1;
891 		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
892 				data << DPIO_UPAR_SHIFT);
893 	}
894 
895 	/* Data lane stagger programming */
896 	if (crtc_state->port_clock > 270000)
897 		stagger = 0x18;
898 	else if (crtc_state->port_clock > 135000)
899 		stagger = 0xd;
900 	else if (crtc_state->port_clock > 67500)
901 		stagger = 0x7;
902 	else if (crtc_state->port_clock > 33750)
903 		stagger = 0x4;
904 	else
905 		stagger = 0x2;
906 
907 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
908 	val |= DPIO_TX2_STAGGER_MASK(0x1f);
909 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
910 
911 	if (crtc_state->lane_count > 2) {
912 		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
913 		val |= DPIO_TX2_STAGGER_MASK(0x1f);
914 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
915 	}
916 
917 	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
918 		       DPIO_LANESTAGGER_STRAP(stagger) |
919 		       DPIO_LANESTAGGER_STRAP_OVRD |
920 		       DPIO_TX1_STAGGER_MASK(0x1f) |
921 		       DPIO_TX1_STAGGER_MULT(6) |
922 		       DPIO_TX2_STAGGER_MULT(0));
923 
924 	if (crtc_state->lane_count > 2) {
925 		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
926 			       DPIO_LANESTAGGER_STRAP(stagger) |
927 			       DPIO_LANESTAGGER_STRAP_OVRD |
928 			       DPIO_TX1_STAGGER_MASK(0x1f) |
929 			       DPIO_TX1_STAGGER_MULT(7) |
930 			       DPIO_TX2_STAGGER_MULT(5));
931 	}
932 
933 	/* Deassert data lane reset */
934 	chv_data_lane_soft_reset(encoder, crtc_state, false);
935 
936 	mutex_unlock(&dev_priv->sb_lock);
937 }
938 
chv_phy_release_cl2_override(struct intel_encoder * encoder)939 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
940 {
941 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
942 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
943 
944 	if (dport->release_cl2_override) {
945 		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
946 		dport->release_cl2_override = false;
947 	}
948 }
949 
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)950 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
951 			      const struct intel_crtc_state *old_crtc_state)
952 {
953 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
954 	enum pipe pipe = to_intel_crtc(old_crtc_state->base.crtc)->pipe;
955 	u32 val;
956 
957 	mutex_lock(&dev_priv->sb_lock);
958 
959 	/* disable left/right clock distribution */
960 	if (pipe != PIPE_B) {
961 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
962 		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
963 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
964 	} else {
965 		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
966 		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
967 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
968 	}
969 
970 	mutex_unlock(&dev_priv->sb_lock);
971 
972 	/*
973 	 * Leave the power down bit cleared for at least one
974 	 * lane so that chv_powergate_phy_ch() will power
975 	 * on something when the channel is otherwise unused.
976 	 * When the port is off and the override is removed
977 	 * the lanes power down anyway, so otherwise it doesn't
978 	 * really matter what the state of power down bits is
979 	 * after this.
980 	 */
981 	chv_phy_powergate_lanes(encoder, false, 0x0);
982 }
983 
vlv_set_phy_signal_level(struct intel_encoder * encoder,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)984 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
985 			      u32 demph_reg_value, u32 preemph_reg_value,
986 			      u32 uniqtranscale_reg_value, u32 tx3_demph)
987 {
988 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
989 	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
990 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
991 	enum dpio_channel port = vlv_dport_to_channel(dport);
992 	enum pipe pipe = intel_crtc->pipe;
993 
994 	mutex_lock(&dev_priv->sb_lock);
995 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
996 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
997 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
998 			 uniqtranscale_reg_value);
999 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1000 
1001 	if (tx3_demph)
1002 		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1003 
1004 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1005 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1006 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1007 	mutex_unlock(&dev_priv->sb_lock);
1008 }
1009 
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1010 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1011 			    const struct intel_crtc_state *crtc_state)
1012 {
1013 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1014 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1015 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1016 	enum dpio_channel port = vlv_dport_to_channel(dport);
1017 	enum pipe pipe = crtc->pipe;
1018 
1019 	/* Program Tx lane resets to default */
1020 	mutex_lock(&dev_priv->sb_lock);
1021 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1022 			 DPIO_PCS_TX_LANE2_RESET |
1023 			 DPIO_PCS_TX_LANE1_RESET);
1024 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1025 			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1026 			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1027 			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1028 				 DPIO_PCS_CLK_SOFT_RESET);
1029 
1030 	/* Fix up inter-pair skew failure */
1031 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1032 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1033 	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1034 	mutex_unlock(&dev_priv->sb_lock);
1035 }
1036 
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1037 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1038 				const struct intel_crtc_state *crtc_state)
1039 {
1040 	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1041 	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1044 	enum dpio_channel port = vlv_dport_to_channel(dport);
1045 	enum pipe pipe = crtc->pipe;
1046 	u32 val;
1047 
1048 	mutex_lock(&dev_priv->sb_lock);
1049 
1050 	/* Enable clock channels for this port */
1051 	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1052 	val = 0;
1053 	if (pipe)
1054 		val |= (1<<21);
1055 	else
1056 		val &= ~(1<<21);
1057 	val |= 0x001000c4;
1058 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1059 
1060 	/* Program lane clock */
1061 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1062 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1063 
1064 	mutex_unlock(&dev_priv->sb_lock);
1065 }
1066 
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1067 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1068 			 const struct intel_crtc_state *old_crtc_state)
1069 {
1070 	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1071 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1072 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1073 	enum dpio_channel port = vlv_dport_to_channel(dport);
1074 	enum pipe pipe = crtc->pipe;
1075 
1076 	mutex_lock(&dev_priv->sb_lock);
1077 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1078 	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1079 	mutex_unlock(&dev_priv->sb_lock);
1080 }
1081