1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Copyright (c) 1999-2002 Vojtech Pavlik
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  */
9 #ifndef _UAPI_INPUT_H
10 #define _UAPI_INPUT_H
11 
12 
13 #ifndef __KERNEL__
14 #include <sys/time.h>
15 #include <sys/ioctl.h>
16 #include <sys/types.h>
17 #include <linux/types.h>
18 #endif
19 
20 #include "input-event-codes.h"
21 
22 /*
23  * The event structure itself
24  * Note that __USE_TIME_BITS64 is defined by libc based on
25  * application's request to use 64 bit time_t.
26  */
27 
28 struct input_event {
29 #if (__BITS_PER_LONG != 32 || !defined(__USE_TIME_BITS64)) && !defined(__KERNEL)
30 	struct timeval time;
31 #define input_event_sec time.tv_sec
32 #define input_event_usec time.tv_usec
33 #else
34 	__kernel_ulong_t __sec;
35 	__kernel_ulong_t __usec;
36 #define input_event_sec  __sec
37 #define input_event_usec __usec
38 #endif
39 	__u16 type;
40 	__u16 code;
41 	__s32 value;
42 };
43 
44 /*
45  * Protocol version.
46  */
47 
48 #define EV_VERSION		0x010001
49 
50 /*
51  * IOCTLs (0x00 - 0x7f)
52  */
53 
54 struct input_id {
55 	__u16 bustype;
56 	__u16 vendor;
57 	__u16 product;
58 	__u16 version;
59 };
60 
61 /**
62  * struct input_absinfo - used by EVIOCGABS/EVIOCSABS ioctls
63  * @value: latest reported value for the axis.
64  * @minimum: specifies minimum value for the axis.
65  * @maximum: specifies maximum value for the axis.
66  * @fuzz: specifies fuzz value that is used to filter noise from
67  *	the event stream.
68  * @flat: values that are within this value will be discarded by
69  *	joydev interface and reported as 0 instead.
70  * @resolution: specifies resolution for the values reported for
71  *	the axis.
72  *
73  * Note that input core does not clamp reported values to the
74  * [minimum, maximum] limits, such task is left to userspace.
75  *
76  * The default resolution for main axes (ABS_X, ABS_Y, ABS_Z)
77  * is reported in units per millimeter (units/mm), resolution
78  * for rotational axes (ABS_RX, ABS_RY, ABS_RZ) is reported
79  * in units per radian.
80  * When INPUT_PROP_ACCELEROMETER is set the resolution changes.
81  * The main axes (ABS_X, ABS_Y, ABS_Z) are then reported in
82  * in units per g (units/g) and in units per degree per second
83  * (units/deg/s) for rotational axes (ABS_RX, ABS_RY, ABS_RZ).
84  */
85 struct input_absinfo {
86 	__s32 value;
87 	__s32 minimum;
88 	__s32 maximum;
89 	__s32 fuzz;
90 	__s32 flat;
91 	__s32 resolution;
92 };
93 
94 /**
95  * struct input_keymap_entry - used by EVIOCGKEYCODE/EVIOCSKEYCODE ioctls
96  * @scancode: scancode represented in machine-endian form.
97  * @len: length of the scancode that resides in @scancode buffer.
98  * @index: index in the keymap, may be used instead of scancode
99  * @flags: allows to specify how kernel should handle the request. For
100  *	example, setting INPUT_KEYMAP_BY_INDEX flag indicates that kernel
101  *	should perform lookup in keymap by @index instead of @scancode
102  * @keycode: key code assigned to this scancode
103  *
104  * The structure is used to retrieve and modify keymap data. Users have
105  * option of performing lookup either by @scancode itself or by @index
106  * in keymap entry. EVIOCGKEYCODE will also return scancode or index
107  * (depending on which element was used to perform lookup).
108  */
109 struct input_keymap_entry {
110 #define INPUT_KEYMAP_BY_INDEX	(1 << 0)
111 	__u8  flags;
112 	__u8  len;
113 	__u16 index;
114 	__u32 keycode;
115 	__u8  scancode[32];
116 };
117 
118 struct input_mask {
119 	__u32 type;
120 	__u32 codes_size;
121 	__u64 codes_ptr;
122 };
123 
124 #define EVIOCGVERSION		_IOR('E', 0x01, int)			/* get driver version */
125 #define EVIOCGID		_IOR('E', 0x02, struct input_id)	/* get device ID */
126 #define EVIOCGREP		_IOR('E', 0x03, unsigned int[2])	/* get repeat settings */
127 #define EVIOCSREP		_IOW('E', 0x03, unsigned int[2])	/* set repeat settings */
128 
129 #define EVIOCGKEYCODE		_IOR('E', 0x04, unsigned int[2])        /* get keycode */
130 #define EVIOCGKEYCODE_V2	_IOR('E', 0x04, struct input_keymap_entry)
131 #define EVIOCSKEYCODE		_IOW('E', 0x04, unsigned int[2])        /* set keycode */
132 #define EVIOCSKEYCODE_V2	_IOW('E', 0x04, struct input_keymap_entry)
133 
134 #define EVIOCGNAME(len)		_IOC(_IOC_READ, 'E', 0x06, len)		/* get device name */
135 #define EVIOCGPHYS(len)		_IOC(_IOC_READ, 'E', 0x07, len)		/* get physical location */
136 #define EVIOCGUNIQ(len)		_IOC(_IOC_READ, 'E', 0x08, len)		/* get unique identifier */
137 #define EVIOCGPROP(len)		_IOC(_IOC_READ, 'E', 0x09, len)		/* get device properties */
138 
139 /**
140  * EVIOCGMTSLOTS(len) - get MT slot values
141  * @len: size of the data buffer in bytes
142  *
143  * The ioctl buffer argument should be binary equivalent to
144  *
145  * struct input_mt_request_layout {
146  *	__u32 code;
147  *	__s32 values[num_slots];
148  * };
149  *
150  * where num_slots is the (arbitrary) number of MT slots to extract.
151  *
152  * The ioctl size argument (len) is the size of the buffer, which
153  * should satisfy len = (num_slots + 1) * sizeof(__s32).  If len is
154  * too small to fit all available slots, the first num_slots are
155  * returned.
156  *
157  * Before the call, code is set to the wanted ABS_MT event type. On
158  * return, values[] is filled with the slot values for the specified
159  * ABS_MT code.
160  *
161  * If the request code is not an ABS_MT value, -EINVAL is returned.
162  */
163 #define EVIOCGMTSLOTS(len)	_IOC(_IOC_READ, 'E', 0x0a, len)
164 
165 #define EVIOCGKEY(len)		_IOC(_IOC_READ, 'E', 0x18, len)		/* get global key state */
166 #define EVIOCGLED(len)		_IOC(_IOC_READ, 'E', 0x19, len)		/* get all LEDs */
167 #define EVIOCGSND(len)		_IOC(_IOC_READ, 'E', 0x1a, len)		/* get all sounds status */
168 #define EVIOCGSW(len)		_IOC(_IOC_READ, 'E', 0x1b, len)		/* get all switch states */
169 
170 #define EVIOCGBIT(ev,len)	_IOC(_IOC_READ, 'E', 0x20 + (ev), len)	/* get event bits */
171 #define EVIOCGABS(abs)		_IOR('E', 0x40 + (abs), struct input_absinfo)	/* get abs value/limits */
172 #define EVIOCSABS(abs)		_IOW('E', 0xc0 + (abs), struct input_absinfo)	/* set abs value/limits */
173 
174 #define EVIOCSFF		_IOW('E', 0x80, struct ff_effect)	/* send a force effect to a force feedback device */
175 #define EVIOCRMFF		_IOW('E', 0x81, int)			/* Erase a force effect */
176 #define EVIOCGEFFECTS		_IOR('E', 0x84, int)			/* Report number of effects playable at the same time */
177 
178 #define EVIOCGRAB		_IOW('E', 0x90, int)			/* Grab/Release device */
179 #define EVIOCREVOKE		_IOW('E', 0x91, int)			/* Revoke device access */
180 
181 /**
182  * EVIOCGMASK - Retrieve current event mask
183  *
184  * This ioctl allows user to retrieve the current event mask for specific
185  * event type. The argument must be of type "struct input_mask" and
186  * specifies the event type to query, the address of the receive buffer and
187  * the size of the receive buffer.
188  *
189  * The event mask is a per-client mask that specifies which events are
190  * forwarded to the client. Each event code is represented by a single bit
191  * in the event mask. If the bit is set, the event is passed to the client
192  * normally. Otherwise, the event is filtered and will never be queued on
193  * the client's receive buffer.
194  *
195  * Event masks do not affect global state of the input device. They only
196  * affect the file descriptor they are applied to.
197  *
198  * The default event mask for a client has all bits set, i.e. all events
199  * are forwarded to the client. If the kernel is queried for an unknown
200  * event type or if the receive buffer is larger than the number of
201  * event codes known to the kernel, the kernel returns all zeroes for those
202  * codes.
203  *
204  * At maximum, codes_size bytes are copied.
205  *
206  * This ioctl may fail with ENODEV in case the file is revoked, EFAULT
207  * if the receive-buffer points to invalid memory, or EINVAL if the kernel
208  * does not implement the ioctl.
209  */
210 #define EVIOCGMASK		_IOR('E', 0x92, struct input_mask)	/* Get event-masks */
211 
212 /**
213  * EVIOCSMASK - Set event mask
214  *
215  * This ioctl is the counterpart to EVIOCGMASK. Instead of receiving the
216  * current event mask, this changes the client's event mask for a specific
217  * type.  See EVIOCGMASK for a description of event-masks and the
218  * argument-type.
219  *
220  * This ioctl provides full forward compatibility. If the passed event type
221  * is unknown to the kernel, or if the number of event codes specified in
222  * the mask is bigger than what is known to the kernel, the ioctl is still
223  * accepted and applied. However, any unknown codes are left untouched and
224  * stay cleared. That means, the kernel always filters unknown codes
225  * regardless of what the client requests.  If the new mask doesn't cover
226  * all known event-codes, all remaining codes are automatically cleared and
227  * thus filtered.
228  *
229  * This ioctl may fail with ENODEV in case the file is revoked. EFAULT is
230  * returned if the receive-buffer points to invalid memory. EINVAL is returned
231  * if the kernel does not implement the ioctl.
232  */
233 #define EVIOCSMASK		_IOW('E', 0x93, struct input_mask)	/* Set event-masks */
234 
235 #define EVIOCSCLOCKID		_IOW('E', 0xa0, int)			/* Set clockid to be used for timestamps */
236 
237 /*
238  * IDs.
239  */
240 
241 #define ID_BUS			0
242 #define ID_VENDOR		1
243 #define ID_PRODUCT		2
244 #define ID_VERSION		3
245 
246 #define BUS_PCI			0x01
247 #define BUS_ISAPNP		0x02
248 #define BUS_USB			0x03
249 #define BUS_HIL			0x04
250 #define BUS_BLUETOOTH		0x05
251 #define BUS_VIRTUAL		0x06
252 
253 #define BUS_ISA			0x10
254 #define BUS_I8042		0x11
255 #define BUS_XTKBD		0x12
256 #define BUS_RS232		0x13
257 #define BUS_GAMEPORT		0x14
258 #define BUS_PARPORT		0x15
259 #define BUS_AMIGA		0x16
260 #define BUS_ADB			0x17
261 #define BUS_I2C			0x18
262 #define BUS_HOST		0x19
263 #define BUS_GSC			0x1A
264 #define BUS_ATARI		0x1B
265 #define BUS_SPI			0x1C
266 #define BUS_RMI			0x1D
267 #define BUS_CEC			0x1E
268 #define BUS_INTEL_ISHTP		0x1F
269 
270 /*
271  * MT_TOOL types
272  */
273 #define MT_TOOL_FINGER		0x00
274 #define MT_TOOL_PEN		0x01
275 #define MT_TOOL_PALM		0x02
276 #define MT_TOOL_DIAL		0x0a
277 #define MT_TOOL_MAX		0x0f
278 
279 /*
280  * Values describing the status of a force-feedback effect
281  */
282 #define FF_STATUS_STOPPED	0x00
283 #define FF_STATUS_PLAYING	0x01
284 #define FF_STATUS_MAX		0x01
285 
286 /*
287  * Structures used in ioctls to upload effects to a device
288  * They are pieces of a bigger structure (called ff_effect)
289  */
290 
291 /*
292  * All duration values are expressed in ms. Values above 32767 ms (0x7fff)
293  * should not be used and have unspecified results.
294  */
295 
296 /**
297  * struct ff_replay - defines scheduling of the force-feedback effect
298  * @length: duration of the effect
299  * @delay: delay before effect should start playing
300  */
301 struct ff_replay {
302 	__u16 length;
303 	__u16 delay;
304 };
305 
306 /**
307  * struct ff_trigger - defines what triggers the force-feedback effect
308  * @button: number of the button triggering the effect
309  * @interval: controls how soon the effect can be re-triggered
310  */
311 struct ff_trigger {
312 	__u16 button;
313 	__u16 interval;
314 };
315 
316 /**
317  * struct ff_envelope - generic force-feedback effect envelope
318  * @attack_length: duration of the attack (ms)
319  * @attack_level: level at the beginning of the attack
320  * @fade_length: duration of fade (ms)
321  * @fade_level: level at the end of fade
322  *
323  * The @attack_level and @fade_level are absolute values; when applying
324  * envelope force-feedback core will convert to positive/negative
325  * value based on polarity of the default level of the effect.
326  * Valid range for the attack and fade levels is 0x0000 - 0x7fff
327  */
328 struct ff_envelope {
329 	__u16 attack_length;
330 	__u16 attack_level;
331 	__u16 fade_length;
332 	__u16 fade_level;
333 };
334 
335 /**
336  * struct ff_constant_effect - defines parameters of a constant force-feedback effect
337  * @level: strength of the effect; may be negative
338  * @envelope: envelope data
339  */
340 struct ff_constant_effect {
341 	__s16 level;
342 	struct ff_envelope envelope;
343 };
344 
345 /**
346  * struct ff_ramp_effect - defines parameters of a ramp force-feedback effect
347  * @start_level: beginning strength of the effect; may be negative
348  * @end_level: final strength of the effect; may be negative
349  * @envelope: envelope data
350  */
351 struct ff_ramp_effect {
352 	__s16 start_level;
353 	__s16 end_level;
354 	struct ff_envelope envelope;
355 };
356 
357 /**
358  * struct ff_condition_effect - defines a spring or friction force-feedback effect
359  * @right_saturation: maximum level when joystick moved all way to the right
360  * @left_saturation: same for the left side
361  * @right_coeff: controls how fast the force grows when the joystick moves
362  *	to the right
363  * @left_coeff: same for the left side
364  * @deadband: size of the dead zone, where no force is produced
365  * @center: position of the dead zone
366  */
367 struct ff_condition_effect {
368 	__u16 right_saturation;
369 	__u16 left_saturation;
370 
371 	__s16 right_coeff;
372 	__s16 left_coeff;
373 
374 	__u16 deadband;
375 	__s16 center;
376 };
377 
378 /**
379  * struct ff_periodic_effect - defines parameters of a periodic force-feedback effect
380  * @waveform: kind of the effect (wave)
381  * @period: period of the wave (ms)
382  * @magnitude: peak value
383  * @offset: mean value of the wave (roughly)
384  * @phase: 'horizontal' shift
385  * @envelope: envelope data
386  * @custom_len: number of samples (FF_CUSTOM only)
387  * @custom_data: buffer of samples (FF_CUSTOM only)
388  *
389  * Known waveforms - FF_SQUARE, FF_TRIANGLE, FF_SINE, FF_SAW_UP,
390  * FF_SAW_DOWN, FF_CUSTOM. The exact syntax FF_CUSTOM is undefined
391  * for the time being as no driver supports it yet.
392  *
393  * Note: the data pointed by custom_data is copied by the driver.
394  * You can therefore dispose of the memory after the upload/update.
395  */
396 struct ff_periodic_effect {
397 	__u16 waveform;
398 	__u16 period;
399 	__s16 magnitude;
400 	__s16 offset;
401 	__u16 phase;
402 
403 	struct ff_envelope envelope;
404 
405 	__u32 custom_len;
406 	__s16 __user *custom_data;
407 };
408 
409 /**
410  * struct ff_rumble_effect - defines parameters of a periodic force-feedback effect
411  * @strong_magnitude: magnitude of the heavy motor
412  * @weak_magnitude: magnitude of the light one
413  *
414  * Some rumble pads have two motors of different weight. Strong_magnitude
415  * represents the magnitude of the vibration generated by the heavy one.
416  */
417 struct ff_rumble_effect {
418 	__u16 strong_magnitude;
419 	__u16 weak_magnitude;
420 };
421 
422 /**
423  * struct ff_effect - defines force feedback effect
424  * @type: type of the effect (FF_CONSTANT, FF_PERIODIC, FF_RAMP, FF_SPRING,
425  *	FF_FRICTION, FF_DAMPER, FF_RUMBLE, FF_INERTIA, or FF_CUSTOM)
426  * @id: an unique id assigned to an effect
427  * @direction: direction of the effect
428  * @trigger: trigger conditions (struct ff_trigger)
429  * @replay: scheduling of the effect (struct ff_replay)
430  * @u: effect-specific structure (one of ff_constant_effect, ff_ramp_effect,
431  *	ff_periodic_effect, ff_condition_effect, ff_rumble_effect) further
432  *	defining effect parameters
433  *
434  * This structure is sent through ioctl from the application to the driver.
435  * To create a new effect application should set its @id to -1; the kernel
436  * will return assigned @id which can later be used to update or delete
437  * this effect.
438  *
439  * Direction of the effect is encoded as follows:
440  *	0 deg -> 0x0000 (down)
441  *	90 deg -> 0x4000 (left)
442  *	180 deg -> 0x8000 (up)
443  *	270 deg -> 0xC000 (right)
444  */
445 struct ff_effect {
446 	__u16 type;
447 	__s16 id;
448 	__u16 direction;
449 	struct ff_trigger trigger;
450 	struct ff_replay replay;
451 
452 	union {
453 		struct ff_constant_effect constant;
454 		struct ff_ramp_effect ramp;
455 		struct ff_periodic_effect periodic;
456 		struct ff_condition_effect condition[2]; /* One for each axis */
457 		struct ff_rumble_effect rumble;
458 	} u;
459 };
460 
461 /*
462  * Force feedback effect types
463  */
464 
465 #define FF_RUMBLE	0x50
466 #define FF_PERIODIC	0x51
467 #define FF_CONSTANT	0x52
468 #define FF_SPRING	0x53
469 #define FF_FRICTION	0x54
470 #define FF_DAMPER	0x55
471 #define FF_INERTIA	0x56
472 #define FF_RAMP		0x57
473 
474 #define FF_EFFECT_MIN	FF_RUMBLE
475 #define FF_EFFECT_MAX	FF_RAMP
476 
477 /*
478  * Force feedback periodic effect types
479  */
480 
481 #define FF_SQUARE	0x58
482 #define FF_TRIANGLE	0x59
483 #define FF_SINE		0x5a
484 #define FF_SAW_UP	0x5b
485 #define FF_SAW_DOWN	0x5c
486 #define FF_CUSTOM	0x5d
487 
488 #define FF_WAVEFORM_MIN	FF_SQUARE
489 #define FF_WAVEFORM_MAX	FF_CUSTOM
490 
491 /*
492  * Set ff device properties
493  */
494 
495 #define FF_GAIN		0x60
496 #define FF_AUTOCENTER	0x61
497 
498 /*
499  * ff->playback(effect_id = FF_GAIN) is the first effect_id to
500  * cause a collision with another ff method, in this case ff->set_gain().
501  * Therefore the greatest safe value for effect_id is FF_GAIN - 1,
502  * and thus the total number of effects should never exceed FF_GAIN.
503  */
504 #define FF_MAX_EFFECTS	FF_GAIN
505 
506 #define FF_MAX		0x7f
507 #define FF_CNT		(FF_MAX+1)
508 
509 #endif /* _UAPI_INPUT_H */
510