1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91 do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97 } while (0)
98
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118 do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132
133 union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139 };
140
141 extern union ib_gid zgid;
142
143 enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148 };
149
150 #define ROCE_V2_UDP_DPORT 4791
151 struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158 };
159
160 enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163 };
164
165 enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171 };
172
173 enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178 };
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182
183 enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188 };
189
ib_network_to_gid_type(enum rdma_network_type network_type)190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199 }
200
201 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214 }
215
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220 };
221
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277 };
278
279 enum ib_kernel_cap_flags {
280 /*
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
286 */
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
296
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 IBK_UD_TSO = 1 << 6,
301 /* iopib will use the device ops:
302 * get_vf_config
303 * get_vf_guid
304 * get_vf_stats
305 * set_vf_guid
306 * set_vf_link_state
307 */
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
311 };
312
313 enum ib_atomic_cap {
314 IB_ATOMIC_NONE,
315 IB_ATOMIC_HCA,
316 IB_ATOMIC_GLOB
317 };
318
319 enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322 };
323
324 enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331 };
332
333 struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341 };
342
343 struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351 };
352
353 enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357
358 struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369 };
370
371 struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375 };
376
377 enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379 };
380
381 struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384 };
385
386 struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390 };
391
392 struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396 };
397
398 struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453 };
454
455 enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461 };
462
463 enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466 };
467
ib_mtu_enum_to_int(enum ib_mtu mtu)468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478 }
479
ib_mtu_int_to_enum(int mtu)480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492 }
493
opa_mtu_enum_to_int(enum opa_mtu mtu)494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 }
504 }
505
opa_mtu_int_to_enum(int mtu)506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515
516 enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523 };
524
525 enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
533 };
534
535 enum ib_port_width {
536 IB_WIDTH_1X = 1,
537 IB_WIDTH_2X = 16,
538 IB_WIDTH_4X = 2,
539 IB_WIDTH_8X = 4,
540 IB_WIDTH_12X = 8
541 };
542
ib_width_enum_to_int(enum ib_port_width width)543 static inline int ib_width_enum_to_int(enum ib_port_width width)
544 {
545 switch (width) {
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
551 default: return -1;
552 }
553 }
554
555 enum ib_port_speed {
556 IB_SPEED_SDR = 1,
557 IB_SPEED_DDR = 2,
558 IB_SPEED_QDR = 4,
559 IB_SPEED_FDR10 = 8,
560 IB_SPEED_FDR = 16,
561 IB_SPEED_EDR = 32,
562 IB_SPEED_HDR = 64,
563 IB_SPEED_NDR = 128,
564 };
565
566 enum ib_stat_flag {
567 IB_STAT_FLAG_OPTIONAL = 1 << 0,
568 };
569
570 /**
571 * struct rdma_stat_desc
572 * @name - The name of the counter
573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
574 * @priv - Driver private information; Core code should not use
575 */
576 struct rdma_stat_desc {
577 const char *name;
578 unsigned int flags;
579 const void *priv;
580 };
581
582 /**
583 * struct rdma_hw_stats
584 * @lock - Mutex to protect parallel write access to lifespan and values
585 * of counters, which are 64bits and not guaranteed to be written
586 * atomicaly on 32bits systems.
587 * @timestamp - Used by the core code to track when the last update was
588 * @lifespan - Used by the core code to determine how old the counters
589 * should be before being updated again. Stored in jiffies, defaults
590 * to 10 milliseconds, drivers can override the default be specifying
591 * their own value during their allocation routine.
592 * @descs - Array of pointers to static descriptors used for the counters
593 * in directory.
594 * @is_disabled - A bitmap to indicate each counter is currently disabled
595 * or not.
596 * @num_counters - How many hardware counters there are. If name is
597 * shorter than this number, a kernel oops will result. Driver authors
598 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
599 * in their code to prevent this.
600 * @value - Array of u64 counters that are accessed by the sysfs code and
601 * filled in by the drivers get_stats routine
602 */
603 struct rdma_hw_stats {
604 struct mutex lock; /* Protect lifespan and values[] */
605 unsigned long timestamp;
606 unsigned long lifespan;
607 const struct rdma_stat_desc *descs;
608 unsigned long *is_disabled;
609 int num_counters;
610 u64 value[];
611 };
612
613 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
614
615 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
616 const struct rdma_stat_desc *descs, int num_counters,
617 unsigned long lifespan);
618
619 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
620
621 /* Define bits for the various functionality this port needs to be supported by
622 * the core.
623 */
624 /* Management 0x00000FFF */
625 #define RDMA_CORE_CAP_IB_MAD 0x00000001
626 #define RDMA_CORE_CAP_IB_SMI 0x00000002
627 #define RDMA_CORE_CAP_IB_CM 0x00000004
628 #define RDMA_CORE_CAP_IW_CM 0x00000008
629 #define RDMA_CORE_CAP_IB_SA 0x00000010
630 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
631
632 /* Address format 0x000FF000 */
633 #define RDMA_CORE_CAP_AF_IB 0x00001000
634 #define RDMA_CORE_CAP_ETH_AH 0x00002000
635 #define RDMA_CORE_CAP_OPA_AH 0x00004000
636 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
637
638 /* Protocol 0xFFF00000 */
639 #define RDMA_CORE_CAP_PROT_IB 0x00100000
640 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
641 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
642 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
643 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
644 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
645
646 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
647 | RDMA_CORE_CAP_PROT_ROCE \
648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
649
650 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
651 | RDMA_CORE_CAP_IB_MAD \
652 | RDMA_CORE_CAP_IB_SMI \
653 | RDMA_CORE_CAP_IB_CM \
654 | RDMA_CORE_CAP_IB_SA \
655 | RDMA_CORE_CAP_AF_IB)
656 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
657 | RDMA_CORE_CAP_IB_MAD \
658 | RDMA_CORE_CAP_IB_CM \
659 | RDMA_CORE_CAP_AF_IB \
660 | RDMA_CORE_CAP_ETH_AH)
661 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
663 | RDMA_CORE_CAP_IB_MAD \
664 | RDMA_CORE_CAP_IB_CM \
665 | RDMA_CORE_CAP_AF_IB \
666 | RDMA_CORE_CAP_ETH_AH)
667 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
668 | RDMA_CORE_CAP_IW_CM)
669 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
670 | RDMA_CORE_CAP_OPA_MAD)
671
672 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
673
674 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
675
676 struct ib_port_attr {
677 u64 subnet_prefix;
678 enum ib_port_state state;
679 enum ib_mtu max_mtu;
680 enum ib_mtu active_mtu;
681 u32 phys_mtu;
682 int gid_tbl_len;
683 unsigned int ip_gids:1;
684 /* This is the value from PortInfo CapabilityMask, defined by IBA */
685 u32 port_cap_flags;
686 u32 max_msg_sz;
687 u32 bad_pkey_cntr;
688 u32 qkey_viol_cntr;
689 u16 pkey_tbl_len;
690 u32 sm_lid;
691 u32 lid;
692 u8 lmc;
693 u8 max_vl_num;
694 u8 sm_sl;
695 u8 subnet_timeout;
696 u8 init_type_reply;
697 u8 active_width;
698 u16 active_speed;
699 u8 phys_state;
700 u16 port_cap_flags2;
701 };
702
703 enum ib_device_modify_flags {
704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
706 };
707
708 #define IB_DEVICE_NODE_DESC_MAX 64
709
710 struct ib_device_modify {
711 u64 sys_image_guid;
712 char node_desc[IB_DEVICE_NODE_DESC_MAX];
713 };
714
715 enum ib_port_modify_flags {
716 IB_PORT_SHUTDOWN = 1,
717 IB_PORT_INIT_TYPE = (1<<2),
718 IB_PORT_RESET_QKEY_CNTR = (1<<3),
719 IB_PORT_OPA_MASK_CHG = (1<<4)
720 };
721
722 struct ib_port_modify {
723 u32 set_port_cap_mask;
724 u32 clr_port_cap_mask;
725 u8 init_type;
726 };
727
728 enum ib_event_type {
729 IB_EVENT_CQ_ERR,
730 IB_EVENT_QP_FATAL,
731 IB_EVENT_QP_REQ_ERR,
732 IB_EVENT_QP_ACCESS_ERR,
733 IB_EVENT_COMM_EST,
734 IB_EVENT_SQ_DRAINED,
735 IB_EVENT_PATH_MIG,
736 IB_EVENT_PATH_MIG_ERR,
737 IB_EVENT_DEVICE_FATAL,
738 IB_EVENT_PORT_ACTIVE,
739 IB_EVENT_PORT_ERR,
740 IB_EVENT_LID_CHANGE,
741 IB_EVENT_PKEY_CHANGE,
742 IB_EVENT_SM_CHANGE,
743 IB_EVENT_SRQ_ERR,
744 IB_EVENT_SRQ_LIMIT_REACHED,
745 IB_EVENT_QP_LAST_WQE_REACHED,
746 IB_EVENT_CLIENT_REREGISTER,
747 IB_EVENT_GID_CHANGE,
748 IB_EVENT_WQ_FATAL,
749 };
750
751 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
752
753 struct ib_event {
754 struct ib_device *device;
755 union {
756 struct ib_cq *cq;
757 struct ib_qp *qp;
758 struct ib_srq *srq;
759 struct ib_wq *wq;
760 u32 port_num;
761 } element;
762 enum ib_event_type event;
763 };
764
765 struct ib_event_handler {
766 struct ib_device *device;
767 void (*handler)(struct ib_event_handler *, struct ib_event *);
768 struct list_head list;
769 };
770
771 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
772 do { \
773 (_ptr)->device = _device; \
774 (_ptr)->handler = _handler; \
775 INIT_LIST_HEAD(&(_ptr)->list); \
776 } while (0)
777
778 struct ib_global_route {
779 const struct ib_gid_attr *sgid_attr;
780 union ib_gid dgid;
781 u32 flow_label;
782 u8 sgid_index;
783 u8 hop_limit;
784 u8 traffic_class;
785 };
786
787 struct ib_grh {
788 __be32 version_tclass_flow;
789 __be16 paylen;
790 u8 next_hdr;
791 u8 hop_limit;
792 union ib_gid sgid;
793 union ib_gid dgid;
794 };
795
796 union rdma_network_hdr {
797 struct ib_grh ibgrh;
798 struct {
799 /* The IB spec states that if it's IPv4, the header
800 * is located in the last 20 bytes of the header.
801 */
802 u8 reserved[20];
803 struct iphdr roce4grh;
804 };
805 };
806
807 #define IB_QPN_MASK 0xFFFFFF
808
809 enum {
810 IB_MULTICAST_QPN = 0xffffff
811 };
812
813 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
814 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
815
816 enum ib_ah_flags {
817 IB_AH_GRH = 1
818 };
819
820 enum ib_rate {
821 IB_RATE_PORT_CURRENT = 0,
822 IB_RATE_2_5_GBPS = 2,
823 IB_RATE_5_GBPS = 5,
824 IB_RATE_10_GBPS = 3,
825 IB_RATE_20_GBPS = 6,
826 IB_RATE_30_GBPS = 4,
827 IB_RATE_40_GBPS = 7,
828 IB_RATE_60_GBPS = 8,
829 IB_RATE_80_GBPS = 9,
830 IB_RATE_120_GBPS = 10,
831 IB_RATE_14_GBPS = 11,
832 IB_RATE_56_GBPS = 12,
833 IB_RATE_112_GBPS = 13,
834 IB_RATE_168_GBPS = 14,
835 IB_RATE_25_GBPS = 15,
836 IB_RATE_100_GBPS = 16,
837 IB_RATE_200_GBPS = 17,
838 IB_RATE_300_GBPS = 18,
839 IB_RATE_28_GBPS = 19,
840 IB_RATE_50_GBPS = 20,
841 IB_RATE_400_GBPS = 21,
842 IB_RATE_600_GBPS = 22,
843 };
844
845 /**
846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
849 * @rate: rate to convert.
850 */
851 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
852
853 /**
854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
856 * @rate: rate to convert.
857 */
858 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
859
860
861 /**
862 * enum ib_mr_type - memory region type
863 * @IB_MR_TYPE_MEM_REG: memory region that is used for
864 * normal registration
865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
866 * register any arbitrary sg lists (without
867 * the normal mr constraints - see
868 * ib_map_mr_sg)
869 * @IB_MR_TYPE_DM: memory region that is used for device
870 * memory registration
871 * @IB_MR_TYPE_USER: memory region that is used for the user-space
872 * application
873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
874 * without address translations (VA=PA)
875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
876 * data integrity operations
877 */
878 enum ib_mr_type {
879 IB_MR_TYPE_MEM_REG,
880 IB_MR_TYPE_SG_GAPS,
881 IB_MR_TYPE_DM,
882 IB_MR_TYPE_USER,
883 IB_MR_TYPE_DMA,
884 IB_MR_TYPE_INTEGRITY,
885 };
886
887 enum ib_mr_status_check {
888 IB_MR_CHECK_SIG_STATUS = 1,
889 };
890
891 /**
892 * struct ib_mr_status - Memory region status container
893 *
894 * @fail_status: Bitmask of MR checks status. For each
895 * failed check a corresponding status bit is set.
896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897 * failure.
898 */
899 struct ib_mr_status {
900 u32 fail_status;
901 struct ib_sig_err sig_err;
902 };
903
904 /**
905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906 * enum.
907 * @mult: multiple to convert.
908 */
909 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
910
911 struct rdma_ah_init_attr {
912 struct rdma_ah_attr *ah_attr;
913 u32 flags;
914 struct net_device *xmit_slave;
915 };
916
917 enum rdma_ah_attr_type {
918 RDMA_AH_ATTR_TYPE_UNDEFINED,
919 RDMA_AH_ATTR_TYPE_IB,
920 RDMA_AH_ATTR_TYPE_ROCE,
921 RDMA_AH_ATTR_TYPE_OPA,
922 };
923
924 struct ib_ah_attr {
925 u16 dlid;
926 u8 src_path_bits;
927 };
928
929 struct roce_ah_attr {
930 u8 dmac[ETH_ALEN];
931 };
932
933 struct opa_ah_attr {
934 u32 dlid;
935 u8 src_path_bits;
936 bool make_grd;
937 };
938
939 struct rdma_ah_attr {
940 struct ib_global_route grh;
941 u8 sl;
942 u8 static_rate;
943 u32 port_num;
944 u8 ah_flags;
945 enum rdma_ah_attr_type type;
946 union {
947 struct ib_ah_attr ib;
948 struct roce_ah_attr roce;
949 struct opa_ah_attr opa;
950 };
951 };
952
953 enum ib_wc_status {
954 IB_WC_SUCCESS,
955 IB_WC_LOC_LEN_ERR,
956 IB_WC_LOC_QP_OP_ERR,
957 IB_WC_LOC_EEC_OP_ERR,
958 IB_WC_LOC_PROT_ERR,
959 IB_WC_WR_FLUSH_ERR,
960 IB_WC_MW_BIND_ERR,
961 IB_WC_BAD_RESP_ERR,
962 IB_WC_LOC_ACCESS_ERR,
963 IB_WC_REM_INV_REQ_ERR,
964 IB_WC_REM_ACCESS_ERR,
965 IB_WC_REM_OP_ERR,
966 IB_WC_RETRY_EXC_ERR,
967 IB_WC_RNR_RETRY_EXC_ERR,
968 IB_WC_LOC_RDD_VIOL_ERR,
969 IB_WC_REM_INV_RD_REQ_ERR,
970 IB_WC_REM_ABORT_ERR,
971 IB_WC_INV_EECN_ERR,
972 IB_WC_INV_EEC_STATE_ERR,
973 IB_WC_FATAL_ERR,
974 IB_WC_RESP_TIMEOUT_ERR,
975 IB_WC_GENERAL_ERR
976 };
977
978 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
979
980 enum ib_wc_opcode {
981 IB_WC_SEND = IB_UVERBS_WC_SEND,
982 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
983 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
984 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
985 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
986 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
987 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
988 IB_WC_LSO = IB_UVERBS_WC_TSO,
989 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
990 IB_WC_REG_MR,
991 IB_WC_MASKED_COMP_SWAP,
992 IB_WC_MASKED_FETCH_ADD,
993 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
994 /*
995 * Set value of IB_WC_RECV so consumers can test if a completion is a
996 * receive by testing (opcode & IB_WC_RECV).
997 */
998 IB_WC_RECV = 1 << 7,
999 IB_WC_RECV_RDMA_WITH_IMM
1000 };
1001
1002 enum ib_wc_flags {
1003 IB_WC_GRH = 1,
1004 IB_WC_WITH_IMM = (1<<1),
1005 IB_WC_WITH_INVALIDATE = (1<<2),
1006 IB_WC_IP_CSUM_OK = (1<<3),
1007 IB_WC_WITH_SMAC = (1<<4),
1008 IB_WC_WITH_VLAN = (1<<5),
1009 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1010 };
1011
1012 struct ib_wc {
1013 union {
1014 u64 wr_id;
1015 struct ib_cqe *wr_cqe;
1016 };
1017 enum ib_wc_status status;
1018 enum ib_wc_opcode opcode;
1019 u32 vendor_err;
1020 u32 byte_len;
1021 struct ib_qp *qp;
1022 union {
1023 __be32 imm_data;
1024 u32 invalidate_rkey;
1025 } ex;
1026 u32 src_qp;
1027 u32 slid;
1028 int wc_flags;
1029 u16 pkey_index;
1030 u8 sl;
1031 u8 dlid_path_bits;
1032 u32 port_num; /* valid only for DR SMPs on switches */
1033 u8 smac[ETH_ALEN];
1034 u16 vlan_id;
1035 u8 network_hdr_type;
1036 };
1037
1038 enum ib_cq_notify_flags {
1039 IB_CQ_SOLICITED = 1 << 0,
1040 IB_CQ_NEXT_COMP = 1 << 1,
1041 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1042 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1043 };
1044
1045 enum ib_srq_type {
1046 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1047 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1048 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1049 };
1050
ib_srq_has_cq(enum ib_srq_type srq_type)1051 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1052 {
1053 return srq_type == IB_SRQT_XRC ||
1054 srq_type == IB_SRQT_TM;
1055 }
1056
1057 enum ib_srq_attr_mask {
1058 IB_SRQ_MAX_WR = 1 << 0,
1059 IB_SRQ_LIMIT = 1 << 1,
1060 };
1061
1062 struct ib_srq_attr {
1063 u32 max_wr;
1064 u32 max_sge;
1065 u32 srq_limit;
1066 };
1067
1068 struct ib_srq_init_attr {
1069 void (*event_handler)(struct ib_event *, void *);
1070 void *srq_context;
1071 struct ib_srq_attr attr;
1072 enum ib_srq_type srq_type;
1073
1074 struct {
1075 struct ib_cq *cq;
1076 union {
1077 struct {
1078 struct ib_xrcd *xrcd;
1079 } xrc;
1080
1081 struct {
1082 u32 max_num_tags;
1083 } tag_matching;
1084 };
1085 } ext;
1086 };
1087
1088 struct ib_qp_cap {
1089 u32 max_send_wr;
1090 u32 max_recv_wr;
1091 u32 max_send_sge;
1092 u32 max_recv_sge;
1093 u32 max_inline_data;
1094
1095 /*
1096 * Maximum number of rdma_rw_ctx structures in flight at a time.
1097 * ib_create_qp() will calculate the right amount of neededed WRs
1098 * and MRs based on this.
1099 */
1100 u32 max_rdma_ctxs;
1101 };
1102
1103 enum ib_sig_type {
1104 IB_SIGNAL_ALL_WR,
1105 IB_SIGNAL_REQ_WR
1106 };
1107
1108 enum ib_qp_type {
1109 /*
1110 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1111 * here (and in that order) since the MAD layer uses them as
1112 * indices into a 2-entry table.
1113 */
1114 IB_QPT_SMI,
1115 IB_QPT_GSI,
1116
1117 IB_QPT_RC = IB_UVERBS_QPT_RC,
1118 IB_QPT_UC = IB_UVERBS_QPT_UC,
1119 IB_QPT_UD = IB_UVERBS_QPT_UD,
1120 IB_QPT_RAW_IPV6,
1121 IB_QPT_RAW_ETHERTYPE,
1122 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1123 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1124 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1125 IB_QPT_MAX,
1126 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1127 /* Reserve a range for qp types internal to the low level driver.
1128 * These qp types will not be visible at the IB core layer, so the
1129 * IB_QPT_MAX usages should not be affected in the core layer
1130 */
1131 IB_QPT_RESERVED1 = 0x1000,
1132 IB_QPT_RESERVED2,
1133 IB_QPT_RESERVED3,
1134 IB_QPT_RESERVED4,
1135 IB_QPT_RESERVED5,
1136 IB_QPT_RESERVED6,
1137 IB_QPT_RESERVED7,
1138 IB_QPT_RESERVED8,
1139 IB_QPT_RESERVED9,
1140 IB_QPT_RESERVED10,
1141 };
1142
1143 enum ib_qp_create_flags {
1144 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1145 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1146 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1147 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1148 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1149 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1150 IB_QP_CREATE_NETIF_QP = 1 << 5,
1151 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1152 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1153 IB_QP_CREATE_SCATTER_FCS =
1154 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1155 IB_QP_CREATE_CVLAN_STRIPPING =
1156 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1157 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1158 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1159 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1160 /* reserve bits 26-31 for low level drivers' internal use */
1161 IB_QP_CREATE_RESERVED_START = 1 << 26,
1162 IB_QP_CREATE_RESERVED_END = 1 << 31,
1163 };
1164
1165 /*
1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1167 * callback to destroy the passed in QP.
1168 */
1169
1170 struct ib_qp_init_attr {
1171 /* This callback occurs in workqueue context */
1172 void (*event_handler)(struct ib_event *, void *);
1173
1174 void *qp_context;
1175 struct ib_cq *send_cq;
1176 struct ib_cq *recv_cq;
1177 struct ib_srq *srq;
1178 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1179 struct ib_qp_cap cap;
1180 enum ib_sig_type sq_sig_type;
1181 enum ib_qp_type qp_type;
1182 u32 create_flags;
1183
1184 /*
1185 * Only needed for special QP types, or when using the RW API.
1186 */
1187 u32 port_num;
1188 struct ib_rwq_ind_table *rwq_ind_tbl;
1189 u32 source_qpn;
1190 };
1191
1192 struct ib_qp_open_attr {
1193 void (*event_handler)(struct ib_event *, void *);
1194 void *qp_context;
1195 u32 qp_num;
1196 enum ib_qp_type qp_type;
1197 };
1198
1199 enum ib_rnr_timeout {
1200 IB_RNR_TIMER_655_36 = 0,
1201 IB_RNR_TIMER_000_01 = 1,
1202 IB_RNR_TIMER_000_02 = 2,
1203 IB_RNR_TIMER_000_03 = 3,
1204 IB_RNR_TIMER_000_04 = 4,
1205 IB_RNR_TIMER_000_06 = 5,
1206 IB_RNR_TIMER_000_08 = 6,
1207 IB_RNR_TIMER_000_12 = 7,
1208 IB_RNR_TIMER_000_16 = 8,
1209 IB_RNR_TIMER_000_24 = 9,
1210 IB_RNR_TIMER_000_32 = 10,
1211 IB_RNR_TIMER_000_48 = 11,
1212 IB_RNR_TIMER_000_64 = 12,
1213 IB_RNR_TIMER_000_96 = 13,
1214 IB_RNR_TIMER_001_28 = 14,
1215 IB_RNR_TIMER_001_92 = 15,
1216 IB_RNR_TIMER_002_56 = 16,
1217 IB_RNR_TIMER_003_84 = 17,
1218 IB_RNR_TIMER_005_12 = 18,
1219 IB_RNR_TIMER_007_68 = 19,
1220 IB_RNR_TIMER_010_24 = 20,
1221 IB_RNR_TIMER_015_36 = 21,
1222 IB_RNR_TIMER_020_48 = 22,
1223 IB_RNR_TIMER_030_72 = 23,
1224 IB_RNR_TIMER_040_96 = 24,
1225 IB_RNR_TIMER_061_44 = 25,
1226 IB_RNR_TIMER_081_92 = 26,
1227 IB_RNR_TIMER_122_88 = 27,
1228 IB_RNR_TIMER_163_84 = 28,
1229 IB_RNR_TIMER_245_76 = 29,
1230 IB_RNR_TIMER_327_68 = 30,
1231 IB_RNR_TIMER_491_52 = 31
1232 };
1233
1234 enum ib_qp_attr_mask {
1235 IB_QP_STATE = 1,
1236 IB_QP_CUR_STATE = (1<<1),
1237 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1238 IB_QP_ACCESS_FLAGS = (1<<3),
1239 IB_QP_PKEY_INDEX = (1<<4),
1240 IB_QP_PORT = (1<<5),
1241 IB_QP_QKEY = (1<<6),
1242 IB_QP_AV = (1<<7),
1243 IB_QP_PATH_MTU = (1<<8),
1244 IB_QP_TIMEOUT = (1<<9),
1245 IB_QP_RETRY_CNT = (1<<10),
1246 IB_QP_RNR_RETRY = (1<<11),
1247 IB_QP_RQ_PSN = (1<<12),
1248 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1249 IB_QP_ALT_PATH = (1<<14),
1250 IB_QP_MIN_RNR_TIMER = (1<<15),
1251 IB_QP_SQ_PSN = (1<<16),
1252 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1253 IB_QP_PATH_MIG_STATE = (1<<18),
1254 IB_QP_CAP = (1<<19),
1255 IB_QP_DEST_QPN = (1<<20),
1256 IB_QP_RESERVED1 = (1<<21),
1257 IB_QP_RESERVED2 = (1<<22),
1258 IB_QP_RESERVED3 = (1<<23),
1259 IB_QP_RESERVED4 = (1<<24),
1260 IB_QP_RATE_LIMIT = (1<<25),
1261
1262 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1263 };
1264
1265 enum ib_qp_state {
1266 IB_QPS_RESET,
1267 IB_QPS_INIT,
1268 IB_QPS_RTR,
1269 IB_QPS_RTS,
1270 IB_QPS_SQD,
1271 IB_QPS_SQE,
1272 IB_QPS_ERR
1273 };
1274
1275 enum ib_mig_state {
1276 IB_MIG_MIGRATED,
1277 IB_MIG_REARM,
1278 IB_MIG_ARMED
1279 };
1280
1281 enum ib_mw_type {
1282 IB_MW_TYPE_1 = 1,
1283 IB_MW_TYPE_2 = 2
1284 };
1285
1286 struct ib_qp_attr {
1287 enum ib_qp_state qp_state;
1288 enum ib_qp_state cur_qp_state;
1289 enum ib_mtu path_mtu;
1290 enum ib_mig_state path_mig_state;
1291 u32 qkey;
1292 u32 rq_psn;
1293 u32 sq_psn;
1294 u32 dest_qp_num;
1295 int qp_access_flags;
1296 struct ib_qp_cap cap;
1297 struct rdma_ah_attr ah_attr;
1298 struct rdma_ah_attr alt_ah_attr;
1299 u16 pkey_index;
1300 u16 alt_pkey_index;
1301 u8 en_sqd_async_notify;
1302 u8 sq_draining;
1303 u8 max_rd_atomic;
1304 u8 max_dest_rd_atomic;
1305 u8 min_rnr_timer;
1306 u32 port_num;
1307 u8 timeout;
1308 u8 retry_cnt;
1309 u8 rnr_retry;
1310 u32 alt_port_num;
1311 u8 alt_timeout;
1312 u32 rate_limit;
1313 struct net_device *xmit_slave;
1314 };
1315
1316 enum ib_wr_opcode {
1317 /* These are shared with userspace */
1318 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1319 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1320 IB_WR_SEND = IB_UVERBS_WR_SEND,
1321 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1322 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1323 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1324 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1325 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1326 IB_WR_LSO = IB_UVERBS_WR_TSO,
1327 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1328 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1329 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1330 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1331 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1332 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1333 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1334 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1335 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1336
1337 /* These are kernel only and can not be issued by userspace */
1338 IB_WR_REG_MR = 0x20,
1339 IB_WR_REG_MR_INTEGRITY,
1340
1341 /* reserve values for low level drivers' internal use.
1342 * These values will not be used at all in the ib core layer.
1343 */
1344 IB_WR_RESERVED1 = 0xf0,
1345 IB_WR_RESERVED2,
1346 IB_WR_RESERVED3,
1347 IB_WR_RESERVED4,
1348 IB_WR_RESERVED5,
1349 IB_WR_RESERVED6,
1350 IB_WR_RESERVED7,
1351 IB_WR_RESERVED8,
1352 IB_WR_RESERVED9,
1353 IB_WR_RESERVED10,
1354 };
1355
1356 enum ib_send_flags {
1357 IB_SEND_FENCE = 1,
1358 IB_SEND_SIGNALED = (1<<1),
1359 IB_SEND_SOLICITED = (1<<2),
1360 IB_SEND_INLINE = (1<<3),
1361 IB_SEND_IP_CSUM = (1<<4),
1362
1363 /* reserve bits 26-31 for low level drivers' internal use */
1364 IB_SEND_RESERVED_START = (1 << 26),
1365 IB_SEND_RESERVED_END = (1 << 31),
1366 };
1367
1368 struct ib_sge {
1369 u64 addr;
1370 u32 length;
1371 u32 lkey;
1372 };
1373
1374 struct ib_cqe {
1375 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1376 };
1377
1378 struct ib_send_wr {
1379 struct ib_send_wr *next;
1380 union {
1381 u64 wr_id;
1382 struct ib_cqe *wr_cqe;
1383 };
1384 struct ib_sge *sg_list;
1385 int num_sge;
1386 enum ib_wr_opcode opcode;
1387 int send_flags;
1388 union {
1389 __be32 imm_data;
1390 u32 invalidate_rkey;
1391 } ex;
1392 };
1393
1394 struct ib_rdma_wr {
1395 struct ib_send_wr wr;
1396 u64 remote_addr;
1397 u32 rkey;
1398 };
1399
rdma_wr(const struct ib_send_wr * wr)1400 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1401 {
1402 return container_of(wr, struct ib_rdma_wr, wr);
1403 }
1404
1405 struct ib_atomic_wr {
1406 struct ib_send_wr wr;
1407 u64 remote_addr;
1408 u64 compare_add;
1409 u64 swap;
1410 u64 compare_add_mask;
1411 u64 swap_mask;
1412 u32 rkey;
1413 };
1414
atomic_wr(const struct ib_send_wr * wr)1415 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1416 {
1417 return container_of(wr, struct ib_atomic_wr, wr);
1418 }
1419
1420 struct ib_ud_wr {
1421 struct ib_send_wr wr;
1422 struct ib_ah *ah;
1423 void *header;
1424 int hlen;
1425 int mss;
1426 u32 remote_qpn;
1427 u32 remote_qkey;
1428 u16 pkey_index; /* valid for GSI only */
1429 u32 port_num; /* valid for DR SMPs on switch only */
1430 };
1431
ud_wr(const struct ib_send_wr * wr)1432 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1433 {
1434 return container_of(wr, struct ib_ud_wr, wr);
1435 }
1436
1437 struct ib_reg_wr {
1438 struct ib_send_wr wr;
1439 struct ib_mr *mr;
1440 u32 key;
1441 int access;
1442 };
1443
reg_wr(const struct ib_send_wr * wr)1444 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1445 {
1446 return container_of(wr, struct ib_reg_wr, wr);
1447 }
1448
1449 struct ib_recv_wr {
1450 struct ib_recv_wr *next;
1451 union {
1452 u64 wr_id;
1453 struct ib_cqe *wr_cqe;
1454 };
1455 struct ib_sge *sg_list;
1456 int num_sge;
1457 };
1458
1459 enum ib_access_flags {
1460 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1461 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1462 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1463 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1464 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1465 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1466 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1467 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1468 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1469 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1470 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1471
1472 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1473 IB_ACCESS_SUPPORTED =
1474 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1475 };
1476
1477 /*
1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1479 * are hidden here instead of a uapi header!
1480 */
1481 enum ib_mr_rereg_flags {
1482 IB_MR_REREG_TRANS = 1,
1483 IB_MR_REREG_PD = (1<<1),
1484 IB_MR_REREG_ACCESS = (1<<2),
1485 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1486 };
1487
1488 struct ib_umem;
1489
1490 enum rdma_remove_reason {
1491 /*
1492 * Userspace requested uobject deletion or initial try
1493 * to remove uobject via cleanup. Call could fail
1494 */
1495 RDMA_REMOVE_DESTROY,
1496 /* Context deletion. This call should delete the actual object itself */
1497 RDMA_REMOVE_CLOSE,
1498 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1499 RDMA_REMOVE_DRIVER_REMOVE,
1500 /* uobj is being cleaned-up before being committed */
1501 RDMA_REMOVE_ABORT,
1502 /* The driver failed to destroy the uobject and is being disconnected */
1503 RDMA_REMOVE_DRIVER_FAILURE,
1504 };
1505
1506 struct ib_rdmacg_object {
1507 #ifdef CONFIG_CGROUP_RDMA
1508 struct rdma_cgroup *cg; /* owner rdma cgroup */
1509 #endif
1510 };
1511
1512 struct ib_ucontext {
1513 struct ib_device *device;
1514 struct ib_uverbs_file *ufile;
1515
1516 struct ib_rdmacg_object cg_obj;
1517 /*
1518 * Implementation details of the RDMA core, don't use in drivers:
1519 */
1520 struct rdma_restrack_entry res;
1521 struct xarray mmap_xa;
1522 };
1523
1524 struct ib_uobject {
1525 u64 user_handle; /* handle given to us by userspace */
1526 /* ufile & ucontext owning this object */
1527 struct ib_uverbs_file *ufile;
1528 /* FIXME, save memory: ufile->context == context */
1529 struct ib_ucontext *context; /* associated user context */
1530 void *object; /* containing object */
1531 struct list_head list; /* link to context's list */
1532 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1533 int id; /* index into kernel idr */
1534 struct kref ref;
1535 atomic_t usecnt; /* protects exclusive access */
1536 struct rcu_head rcu; /* kfree_rcu() overhead */
1537
1538 const struct uverbs_api_object *uapi_object;
1539 };
1540
1541 struct ib_udata {
1542 const void __user *inbuf;
1543 void __user *outbuf;
1544 size_t inlen;
1545 size_t outlen;
1546 };
1547
1548 struct ib_pd {
1549 u32 local_dma_lkey;
1550 u32 flags;
1551 struct ib_device *device;
1552 struct ib_uobject *uobject;
1553 atomic_t usecnt; /* count all resources */
1554
1555 u32 unsafe_global_rkey;
1556
1557 /*
1558 * Implementation details of the RDMA core, don't use in drivers:
1559 */
1560 struct ib_mr *__internal_mr;
1561 struct rdma_restrack_entry res;
1562 };
1563
1564 struct ib_xrcd {
1565 struct ib_device *device;
1566 atomic_t usecnt; /* count all exposed resources */
1567 struct inode *inode;
1568 struct rw_semaphore tgt_qps_rwsem;
1569 struct xarray tgt_qps;
1570 };
1571
1572 struct ib_ah {
1573 struct ib_device *device;
1574 struct ib_pd *pd;
1575 struct ib_uobject *uobject;
1576 const struct ib_gid_attr *sgid_attr;
1577 enum rdma_ah_attr_type type;
1578 };
1579
1580 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1581
1582 enum ib_poll_context {
1583 IB_POLL_SOFTIRQ, /* poll from softirq context */
1584 IB_POLL_WORKQUEUE, /* poll from workqueue */
1585 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1586 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1587
1588 IB_POLL_DIRECT, /* caller context, no hw completions */
1589 };
1590
1591 struct ib_cq {
1592 struct ib_device *device;
1593 struct ib_ucq_object *uobject;
1594 ib_comp_handler comp_handler;
1595 void (*event_handler)(struct ib_event *, void *);
1596 void *cq_context;
1597 int cqe;
1598 unsigned int cqe_used;
1599 atomic_t usecnt; /* count number of work queues */
1600 enum ib_poll_context poll_ctx;
1601 struct ib_wc *wc;
1602 struct list_head pool_entry;
1603 union {
1604 struct irq_poll iop;
1605 struct work_struct work;
1606 };
1607 struct workqueue_struct *comp_wq;
1608 struct dim *dim;
1609
1610 /* updated only by trace points */
1611 ktime_t timestamp;
1612 u8 interrupt:1;
1613 u8 shared:1;
1614 unsigned int comp_vector;
1615
1616 /*
1617 * Implementation details of the RDMA core, don't use in drivers:
1618 */
1619 struct rdma_restrack_entry res;
1620 };
1621
1622 struct ib_srq {
1623 struct ib_device *device;
1624 struct ib_pd *pd;
1625 struct ib_usrq_object *uobject;
1626 void (*event_handler)(struct ib_event *, void *);
1627 void *srq_context;
1628 enum ib_srq_type srq_type;
1629 atomic_t usecnt;
1630
1631 struct {
1632 struct ib_cq *cq;
1633 union {
1634 struct {
1635 struct ib_xrcd *xrcd;
1636 u32 srq_num;
1637 } xrc;
1638 };
1639 } ext;
1640
1641 /*
1642 * Implementation details of the RDMA core, don't use in drivers:
1643 */
1644 struct rdma_restrack_entry res;
1645 };
1646
1647 enum ib_raw_packet_caps {
1648 /*
1649 * Strip cvlan from incoming packet and report it in the matching work
1650 * completion is supported.
1651 */
1652 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1653 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1654 /*
1655 * Scatter FCS field of an incoming packet to host memory is supported.
1656 */
1657 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1658 /* Checksum offloads are supported (for both send and receive). */
1659 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1660 /*
1661 * When a packet is received for an RQ with no receive WQEs, the
1662 * packet processing is delayed.
1663 */
1664 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1665 };
1666
1667 enum ib_wq_type {
1668 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1669 };
1670
1671 enum ib_wq_state {
1672 IB_WQS_RESET,
1673 IB_WQS_RDY,
1674 IB_WQS_ERR
1675 };
1676
1677 struct ib_wq {
1678 struct ib_device *device;
1679 struct ib_uwq_object *uobject;
1680 void *wq_context;
1681 void (*event_handler)(struct ib_event *, void *);
1682 struct ib_pd *pd;
1683 struct ib_cq *cq;
1684 u32 wq_num;
1685 enum ib_wq_state state;
1686 enum ib_wq_type wq_type;
1687 atomic_t usecnt;
1688 };
1689
1690 enum ib_wq_flags {
1691 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1692 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1693 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1694 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1695 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1696 };
1697
1698 struct ib_wq_init_attr {
1699 void *wq_context;
1700 enum ib_wq_type wq_type;
1701 u32 max_wr;
1702 u32 max_sge;
1703 struct ib_cq *cq;
1704 void (*event_handler)(struct ib_event *, void *);
1705 u32 create_flags; /* Use enum ib_wq_flags */
1706 };
1707
1708 enum ib_wq_attr_mask {
1709 IB_WQ_STATE = 1 << 0,
1710 IB_WQ_CUR_STATE = 1 << 1,
1711 IB_WQ_FLAGS = 1 << 2,
1712 };
1713
1714 struct ib_wq_attr {
1715 enum ib_wq_state wq_state;
1716 enum ib_wq_state curr_wq_state;
1717 u32 flags; /* Use enum ib_wq_flags */
1718 u32 flags_mask; /* Use enum ib_wq_flags */
1719 };
1720
1721 struct ib_rwq_ind_table {
1722 struct ib_device *device;
1723 struct ib_uobject *uobject;
1724 atomic_t usecnt;
1725 u32 ind_tbl_num;
1726 u32 log_ind_tbl_size;
1727 struct ib_wq **ind_tbl;
1728 };
1729
1730 struct ib_rwq_ind_table_init_attr {
1731 u32 log_ind_tbl_size;
1732 /* Each entry is a pointer to Receive Work Queue */
1733 struct ib_wq **ind_tbl;
1734 };
1735
1736 enum port_pkey_state {
1737 IB_PORT_PKEY_NOT_VALID = 0,
1738 IB_PORT_PKEY_VALID = 1,
1739 IB_PORT_PKEY_LISTED = 2,
1740 };
1741
1742 struct ib_qp_security;
1743
1744 struct ib_port_pkey {
1745 enum port_pkey_state state;
1746 u16 pkey_index;
1747 u32 port_num;
1748 struct list_head qp_list;
1749 struct list_head to_error_list;
1750 struct ib_qp_security *sec;
1751 };
1752
1753 struct ib_ports_pkeys {
1754 struct ib_port_pkey main;
1755 struct ib_port_pkey alt;
1756 };
1757
1758 struct ib_qp_security {
1759 struct ib_qp *qp;
1760 struct ib_device *dev;
1761 /* Hold this mutex when changing port and pkey settings. */
1762 struct mutex mutex;
1763 struct ib_ports_pkeys *ports_pkeys;
1764 /* A list of all open shared QP handles. Required to enforce security
1765 * properly for all users of a shared QP.
1766 */
1767 struct list_head shared_qp_list;
1768 void *security;
1769 bool destroying;
1770 atomic_t error_list_count;
1771 struct completion error_complete;
1772 int error_comps_pending;
1773 };
1774
1775 /*
1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1777 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1778 */
1779 struct ib_qp {
1780 struct ib_device *device;
1781 struct ib_pd *pd;
1782 struct ib_cq *send_cq;
1783 struct ib_cq *recv_cq;
1784 spinlock_t mr_lock;
1785 int mrs_used;
1786 struct list_head rdma_mrs;
1787 struct list_head sig_mrs;
1788 struct ib_srq *srq;
1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1790 struct list_head xrcd_list;
1791
1792 /* count times opened, mcast attaches, flow attaches */
1793 atomic_t usecnt;
1794 struct list_head open_list;
1795 struct ib_qp *real_qp;
1796 struct ib_uqp_object *uobject;
1797 void (*event_handler)(struct ib_event *, void *);
1798 void *qp_context;
1799 /* sgid_attrs associated with the AV's */
1800 const struct ib_gid_attr *av_sgid_attr;
1801 const struct ib_gid_attr *alt_path_sgid_attr;
1802 u32 qp_num;
1803 u32 max_write_sge;
1804 u32 max_read_sge;
1805 enum ib_qp_type qp_type;
1806 struct ib_rwq_ind_table *rwq_ind_tbl;
1807 struct ib_qp_security *qp_sec;
1808 u32 port;
1809
1810 bool integrity_en;
1811 /*
1812 * Implementation details of the RDMA core, don't use in drivers:
1813 */
1814 struct rdma_restrack_entry res;
1815
1816 /* The counter the qp is bind to */
1817 struct rdma_counter *counter;
1818 };
1819
1820 struct ib_dm {
1821 struct ib_device *device;
1822 u32 length;
1823 u32 flags;
1824 struct ib_uobject *uobject;
1825 atomic_t usecnt;
1826 };
1827
1828 struct ib_mr {
1829 struct ib_device *device;
1830 struct ib_pd *pd;
1831 u32 lkey;
1832 u32 rkey;
1833 u64 iova;
1834 u64 length;
1835 unsigned int page_size;
1836 enum ib_mr_type type;
1837 bool need_inval;
1838 union {
1839 struct ib_uobject *uobject; /* user */
1840 struct list_head qp_entry; /* FR */
1841 };
1842
1843 struct ib_dm *dm;
1844 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1845 /*
1846 * Implementation details of the RDMA core, don't use in drivers:
1847 */
1848 struct rdma_restrack_entry res;
1849 };
1850
1851 struct ib_mw {
1852 struct ib_device *device;
1853 struct ib_pd *pd;
1854 struct ib_uobject *uobject;
1855 u32 rkey;
1856 enum ib_mw_type type;
1857 };
1858
1859 /* Supported steering options */
1860 enum ib_flow_attr_type {
1861 /* steering according to rule specifications */
1862 IB_FLOW_ATTR_NORMAL = 0x0,
1863 /* default unicast and multicast rule -
1864 * receive all Eth traffic which isn't steered to any QP
1865 */
1866 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1867 /* default multicast rule -
1868 * receive all Eth multicast traffic which isn't steered to any QP
1869 */
1870 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1871 /* sniffer rule - receive all port traffic */
1872 IB_FLOW_ATTR_SNIFFER = 0x3
1873 };
1874
1875 /* Supported steering header types */
1876 enum ib_flow_spec_type {
1877 /* L2 headers*/
1878 IB_FLOW_SPEC_ETH = 0x20,
1879 IB_FLOW_SPEC_IB = 0x22,
1880 /* L3 header*/
1881 IB_FLOW_SPEC_IPV4 = 0x30,
1882 IB_FLOW_SPEC_IPV6 = 0x31,
1883 IB_FLOW_SPEC_ESP = 0x34,
1884 /* L4 headers*/
1885 IB_FLOW_SPEC_TCP = 0x40,
1886 IB_FLOW_SPEC_UDP = 0x41,
1887 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1888 IB_FLOW_SPEC_GRE = 0x51,
1889 IB_FLOW_SPEC_MPLS = 0x60,
1890 IB_FLOW_SPEC_INNER = 0x100,
1891 /* Actions */
1892 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1893 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1894 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1895 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1896 };
1897 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1898 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1899
1900 enum ib_flow_flags {
1901 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1902 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1903 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1904 };
1905
1906 struct ib_flow_eth_filter {
1907 u8 dst_mac[6];
1908 u8 src_mac[6];
1909 __be16 ether_type;
1910 __be16 vlan_tag;
1911 /* Must be last */
1912 u8 real_sz[];
1913 };
1914
1915 struct ib_flow_spec_eth {
1916 u32 type;
1917 u16 size;
1918 struct ib_flow_eth_filter val;
1919 struct ib_flow_eth_filter mask;
1920 };
1921
1922 struct ib_flow_ib_filter {
1923 __be16 dlid;
1924 __u8 sl;
1925 /* Must be last */
1926 u8 real_sz[];
1927 };
1928
1929 struct ib_flow_spec_ib {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_ib_filter val;
1933 struct ib_flow_ib_filter mask;
1934 };
1935
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1940 last have this flag set */
1941 };
1942
1943 struct ib_flow_ipv4_filter {
1944 __be32 src_ip;
1945 __be32 dst_ip;
1946 u8 proto;
1947 u8 tos;
1948 u8 ttl;
1949 u8 flags;
1950 /* Must be last */
1951 u8 real_sz[];
1952 };
1953
1954 struct ib_flow_spec_ipv4 {
1955 u32 type;
1956 u16 size;
1957 struct ib_flow_ipv4_filter val;
1958 struct ib_flow_ipv4_filter mask;
1959 };
1960
1961 struct ib_flow_ipv6_filter {
1962 u8 src_ip[16];
1963 u8 dst_ip[16];
1964 __be32 flow_label;
1965 u8 next_hdr;
1966 u8 traffic_class;
1967 u8 hop_limit;
1968 /* Must be last */
1969 u8 real_sz[];
1970 };
1971
1972 struct ib_flow_spec_ipv6 {
1973 u32 type;
1974 u16 size;
1975 struct ib_flow_ipv6_filter val;
1976 struct ib_flow_ipv6_filter mask;
1977 };
1978
1979 struct ib_flow_tcp_udp_filter {
1980 __be16 dst_port;
1981 __be16 src_port;
1982 /* Must be last */
1983 u8 real_sz[];
1984 };
1985
1986 struct ib_flow_spec_tcp_udp {
1987 u32 type;
1988 u16 size;
1989 struct ib_flow_tcp_udp_filter val;
1990 struct ib_flow_tcp_udp_filter mask;
1991 };
1992
1993 struct ib_flow_tunnel_filter {
1994 __be32 tunnel_id;
1995 u8 real_sz[];
1996 };
1997
1998 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1999 * the tunnel_id from val has the vni value
2000 */
2001 struct ib_flow_spec_tunnel {
2002 u32 type;
2003 u16 size;
2004 struct ib_flow_tunnel_filter val;
2005 struct ib_flow_tunnel_filter mask;
2006 };
2007
2008 struct ib_flow_esp_filter {
2009 __be32 spi;
2010 __be32 seq;
2011 /* Must be last */
2012 u8 real_sz[];
2013 };
2014
2015 struct ib_flow_spec_esp {
2016 u32 type;
2017 u16 size;
2018 struct ib_flow_esp_filter val;
2019 struct ib_flow_esp_filter mask;
2020 };
2021
2022 struct ib_flow_gre_filter {
2023 __be16 c_ks_res0_ver;
2024 __be16 protocol;
2025 __be32 key;
2026 /* Must be last */
2027 u8 real_sz[];
2028 };
2029
2030 struct ib_flow_spec_gre {
2031 u32 type;
2032 u16 size;
2033 struct ib_flow_gre_filter val;
2034 struct ib_flow_gre_filter mask;
2035 };
2036
2037 struct ib_flow_mpls_filter {
2038 __be32 tag;
2039 /* Must be last */
2040 u8 real_sz[];
2041 };
2042
2043 struct ib_flow_spec_mpls {
2044 u32 type;
2045 u16 size;
2046 struct ib_flow_mpls_filter val;
2047 struct ib_flow_mpls_filter mask;
2048 };
2049
2050 struct ib_flow_spec_action_tag {
2051 enum ib_flow_spec_type type;
2052 u16 size;
2053 u32 tag_id;
2054 };
2055
2056 struct ib_flow_spec_action_drop {
2057 enum ib_flow_spec_type type;
2058 u16 size;
2059 };
2060
2061 struct ib_flow_spec_action_handle {
2062 enum ib_flow_spec_type type;
2063 u16 size;
2064 struct ib_flow_action *act;
2065 };
2066
2067 enum ib_counters_description {
2068 IB_COUNTER_PACKETS,
2069 IB_COUNTER_BYTES,
2070 };
2071
2072 struct ib_flow_spec_action_count {
2073 enum ib_flow_spec_type type;
2074 u16 size;
2075 struct ib_counters *counters;
2076 };
2077
2078 union ib_flow_spec {
2079 struct {
2080 u32 type;
2081 u16 size;
2082 };
2083 struct ib_flow_spec_eth eth;
2084 struct ib_flow_spec_ib ib;
2085 struct ib_flow_spec_ipv4 ipv4;
2086 struct ib_flow_spec_tcp_udp tcp_udp;
2087 struct ib_flow_spec_ipv6 ipv6;
2088 struct ib_flow_spec_tunnel tunnel;
2089 struct ib_flow_spec_esp esp;
2090 struct ib_flow_spec_gre gre;
2091 struct ib_flow_spec_mpls mpls;
2092 struct ib_flow_spec_action_tag flow_tag;
2093 struct ib_flow_spec_action_drop drop;
2094 struct ib_flow_spec_action_handle action;
2095 struct ib_flow_spec_action_count flow_count;
2096 };
2097
2098 struct ib_flow_attr {
2099 enum ib_flow_attr_type type;
2100 u16 size;
2101 u16 priority;
2102 u32 flags;
2103 u8 num_of_specs;
2104 u32 port;
2105 union ib_flow_spec flows[];
2106 };
2107
2108 struct ib_flow {
2109 struct ib_qp *qp;
2110 struct ib_device *device;
2111 struct ib_uobject *uobject;
2112 };
2113
2114 enum ib_flow_action_type {
2115 IB_FLOW_ACTION_UNSPECIFIED,
2116 IB_FLOW_ACTION_ESP = 1,
2117 };
2118
2119 struct ib_flow_action_attrs_esp_keymats {
2120 enum ib_uverbs_flow_action_esp_keymat protocol;
2121 union {
2122 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2123 } keymat;
2124 };
2125
2126 struct ib_flow_action_attrs_esp_replays {
2127 enum ib_uverbs_flow_action_esp_replay protocol;
2128 union {
2129 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2130 } replay;
2131 };
2132
2133 enum ib_flow_action_attrs_esp_flags {
2134 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2135 * This is done in order to share the same flags between user-space and
2136 * kernel and spare an unnecessary translation.
2137 */
2138
2139 /* Kernel flags */
2140 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2141 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2142 };
2143
2144 struct ib_flow_spec_list {
2145 struct ib_flow_spec_list *next;
2146 union ib_flow_spec spec;
2147 };
2148
2149 struct ib_flow_action_attrs_esp {
2150 struct ib_flow_action_attrs_esp_keymats *keymat;
2151 struct ib_flow_action_attrs_esp_replays *replay;
2152 struct ib_flow_spec_list *encap;
2153 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2154 * Value of 0 is a valid value.
2155 */
2156 u32 esn;
2157 u32 spi;
2158 u32 seq;
2159 u32 tfc_pad;
2160 /* Use enum ib_flow_action_attrs_esp_flags */
2161 u64 flags;
2162 u64 hard_limit_pkts;
2163 };
2164
2165 struct ib_flow_action {
2166 struct ib_device *device;
2167 struct ib_uobject *uobject;
2168 enum ib_flow_action_type type;
2169 atomic_t usecnt;
2170 };
2171
2172 struct ib_mad;
2173
2174 enum ib_process_mad_flags {
2175 IB_MAD_IGNORE_MKEY = 1,
2176 IB_MAD_IGNORE_BKEY = 2,
2177 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2178 };
2179
2180 enum ib_mad_result {
2181 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2182 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2183 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2184 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2185 };
2186
2187 struct ib_port_cache {
2188 u64 subnet_prefix;
2189 struct ib_pkey_cache *pkey;
2190 struct ib_gid_table *gid;
2191 u8 lmc;
2192 enum ib_port_state port_state;
2193 };
2194
2195 struct ib_port_immutable {
2196 int pkey_tbl_len;
2197 int gid_tbl_len;
2198 u32 core_cap_flags;
2199 u32 max_mad_size;
2200 };
2201
2202 struct ib_port_data {
2203 struct ib_device *ib_dev;
2204
2205 struct ib_port_immutable immutable;
2206
2207 spinlock_t pkey_list_lock;
2208
2209 spinlock_t netdev_lock;
2210
2211 struct list_head pkey_list;
2212
2213 struct ib_port_cache cache;
2214
2215 struct net_device __rcu *netdev;
2216 netdevice_tracker netdev_tracker;
2217 struct hlist_node ndev_hash_link;
2218 struct rdma_port_counter port_counter;
2219 struct ib_port *sysfs;
2220 };
2221
2222 /* rdma netdev type - specifies protocol type */
2223 enum rdma_netdev_t {
2224 RDMA_NETDEV_OPA_VNIC,
2225 RDMA_NETDEV_IPOIB,
2226 };
2227
2228 /**
2229 * struct rdma_netdev - rdma netdev
2230 * For cases where netstack interfacing is required.
2231 */
2232 struct rdma_netdev {
2233 void *clnt_priv;
2234 struct ib_device *hca;
2235 u32 port_num;
2236 int mtu;
2237
2238 /*
2239 * cleanup function must be specified.
2240 * FIXME: This is only used for OPA_VNIC and that usage should be
2241 * removed too.
2242 */
2243 void (*free_rdma_netdev)(struct net_device *netdev);
2244
2245 /* control functions */
2246 void (*set_id)(struct net_device *netdev, int id);
2247 /* send packet */
2248 int (*send)(struct net_device *dev, struct sk_buff *skb,
2249 struct ib_ah *address, u32 dqpn);
2250 /* multicast */
2251 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2252 union ib_gid *gid, u16 mlid,
2253 int set_qkey, u32 qkey);
2254 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2255 union ib_gid *gid, u16 mlid);
2256 /* timeout */
2257 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2258 };
2259
2260 struct rdma_netdev_alloc_params {
2261 size_t sizeof_priv;
2262 unsigned int txqs;
2263 unsigned int rxqs;
2264 void *param;
2265
2266 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2267 struct net_device *netdev, void *param);
2268 };
2269
2270 struct ib_odp_counters {
2271 atomic64_t faults;
2272 atomic64_t invalidations;
2273 atomic64_t prefetch;
2274 };
2275
2276 struct ib_counters {
2277 struct ib_device *device;
2278 struct ib_uobject *uobject;
2279 /* num of objects attached */
2280 atomic_t usecnt;
2281 };
2282
2283 struct ib_counters_read_attr {
2284 u64 *counters_buff;
2285 u32 ncounters;
2286 u32 flags; /* use enum ib_read_counters_flags */
2287 };
2288
2289 struct uverbs_attr_bundle;
2290 struct iw_cm_id;
2291 struct iw_cm_conn_param;
2292
2293 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2294 .size_##ib_struct = \
2295 (sizeof(struct drv_struct) + \
2296 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2297 BUILD_BUG_ON_ZERO( \
2298 !__same_type(((struct drv_struct *)NULL)->member, \
2299 struct ib_struct)))
2300
2301 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2302 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2303 gfp, false))
2304
2305 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2306 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2307 GFP_KERNEL, true))
2308
2309 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2310 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2311
2312 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2313
2314 struct rdma_user_mmap_entry {
2315 struct kref ref;
2316 struct ib_ucontext *ucontext;
2317 unsigned long start_pgoff;
2318 size_t npages;
2319 bool driver_removed;
2320 };
2321
2322 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2323 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2324 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2325 {
2326 return (u64)entry->start_pgoff << PAGE_SHIFT;
2327 }
2328
2329 /**
2330 * struct ib_device_ops - InfiniBand device operations
2331 * This structure defines all the InfiniBand device operations, providers will
2332 * need to define the supported operations, otherwise they will be set to null.
2333 */
2334 struct ib_device_ops {
2335 struct module *owner;
2336 enum rdma_driver_id driver_id;
2337 u32 uverbs_abi_ver;
2338 unsigned int uverbs_no_driver_id_binding:1;
2339
2340 /*
2341 * NOTE: New drivers should not make use of device_group; instead new
2342 * device parameter should be exposed via netlink command. This
2343 * mechanism exists only for existing drivers.
2344 */
2345 const struct attribute_group *device_group;
2346 const struct attribute_group **port_groups;
2347
2348 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2349 const struct ib_send_wr **bad_send_wr);
2350 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2351 const struct ib_recv_wr **bad_recv_wr);
2352 void (*drain_rq)(struct ib_qp *qp);
2353 void (*drain_sq)(struct ib_qp *qp);
2354 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2355 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2356 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2357 int (*post_srq_recv)(struct ib_srq *srq,
2358 const struct ib_recv_wr *recv_wr,
2359 const struct ib_recv_wr **bad_recv_wr);
2360 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2361 u32 port_num, const struct ib_wc *in_wc,
2362 const struct ib_grh *in_grh,
2363 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2364 size_t *out_mad_size, u16 *out_mad_pkey_index);
2365 int (*query_device)(struct ib_device *device,
2366 struct ib_device_attr *device_attr,
2367 struct ib_udata *udata);
2368 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2369 struct ib_device_modify *device_modify);
2370 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2371 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2372 int comp_vector);
2373 int (*query_port)(struct ib_device *device, u32 port_num,
2374 struct ib_port_attr *port_attr);
2375 int (*modify_port)(struct ib_device *device, u32 port_num,
2376 int port_modify_mask,
2377 struct ib_port_modify *port_modify);
2378 /**
2379 * The following mandatory functions are used only at device
2380 * registration. Keep functions such as these at the end of this
2381 * structure to avoid cache line misses when accessing struct ib_device
2382 * in fast paths.
2383 */
2384 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2385 struct ib_port_immutable *immutable);
2386 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2387 u32 port_num);
2388 /**
2389 * When calling get_netdev, the HW vendor's driver should return the
2390 * net device of device @device at port @port_num or NULL if such
2391 * a net device doesn't exist. The vendor driver should call dev_hold
2392 * on this net device. The HW vendor's device driver must guarantee
2393 * that this function returns NULL before the net device has finished
2394 * NETDEV_UNREGISTER state.
2395 */
2396 struct net_device *(*get_netdev)(struct ib_device *device,
2397 u32 port_num);
2398 /**
2399 * rdma netdev operation
2400 *
2401 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2402 * must return -EOPNOTSUPP if it doesn't support the specified type.
2403 */
2404 struct net_device *(*alloc_rdma_netdev)(
2405 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2406 const char *name, unsigned char name_assign_type,
2407 void (*setup)(struct net_device *));
2408
2409 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2410 enum rdma_netdev_t type,
2411 struct rdma_netdev_alloc_params *params);
2412 /**
2413 * query_gid should be return GID value for @device, when @port_num
2414 * link layer is either IB or iWarp. It is no-op if @port_num port
2415 * is RoCE link layer.
2416 */
2417 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2418 union ib_gid *gid);
2419 /**
2420 * When calling add_gid, the HW vendor's driver should add the gid
2421 * of device of port at gid index available at @attr. Meta-info of
2422 * that gid (for example, the network device related to this gid) is
2423 * available at @attr. @context allows the HW vendor driver to store
2424 * extra information together with a GID entry. The HW vendor driver may
2425 * allocate memory to contain this information and store it in @context
2426 * when a new GID entry is written to. Params are consistent until the
2427 * next call of add_gid or delete_gid. The function should return 0 on
2428 * success or error otherwise. The function could be called
2429 * concurrently for different ports. This function is only called when
2430 * roce_gid_table is used.
2431 */
2432 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2433 /**
2434 * When calling del_gid, the HW vendor's driver should delete the
2435 * gid of device @device at gid index gid_index of port port_num
2436 * available in @attr.
2437 * Upon the deletion of a GID entry, the HW vendor must free any
2438 * allocated memory. The caller will clear @context afterwards.
2439 * This function is only called when roce_gid_table is used.
2440 */
2441 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2442 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2443 u16 *pkey);
2444 int (*alloc_ucontext)(struct ib_ucontext *context,
2445 struct ib_udata *udata);
2446 void (*dealloc_ucontext)(struct ib_ucontext *context);
2447 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2448 /**
2449 * This will be called once refcount of an entry in mmap_xa reaches
2450 * zero. The type of the memory that was mapped may differ between
2451 * entries and is opaque to the rdma_user_mmap interface.
2452 * Therefore needs to be implemented by the driver in mmap_free.
2453 */
2454 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2455 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2456 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2457 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2458 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2459 struct ib_udata *udata);
2460 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461 struct ib_udata *udata);
2462 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2463 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2464 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2465 int (*create_srq)(struct ib_srq *srq,
2466 struct ib_srq_init_attr *srq_init_attr,
2467 struct ib_udata *udata);
2468 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2469 enum ib_srq_attr_mask srq_attr_mask,
2470 struct ib_udata *udata);
2471 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2472 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2473 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2474 struct ib_udata *udata);
2475 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2476 int qp_attr_mask, struct ib_udata *udata);
2477 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2479 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2480 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2481 struct ib_udata *udata);
2482 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2483 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2484 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2485 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2486 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2487 u64 virt_addr, int mr_access_flags,
2488 struct ib_udata *udata);
2489 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2490 u64 length, u64 virt_addr, int fd,
2491 int mr_access_flags,
2492 struct ib_udata *udata);
2493 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2494 u64 length, u64 virt_addr,
2495 int mr_access_flags, struct ib_pd *pd,
2496 struct ib_udata *udata);
2497 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2498 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2499 u32 max_num_sg);
2500 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2501 u32 max_num_data_sg,
2502 u32 max_num_meta_sg);
2503 int (*advise_mr)(struct ib_pd *pd,
2504 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2505 struct ib_sge *sg_list, u32 num_sge,
2506 struct uverbs_attr_bundle *attrs);
2507
2508 /*
2509 * Kernel users should universally support relaxed ordering (RO), as
2510 * they are designed to read data only after observing the CQE and use
2511 * the DMA API correctly.
2512 *
2513 * Some drivers implicitly enable RO if platform supports it.
2514 */
2515 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2516 unsigned int *sg_offset);
2517 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2518 struct ib_mr_status *mr_status);
2519 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2520 int (*dealloc_mw)(struct ib_mw *mw);
2521 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2522 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2523 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2524 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2525 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2526 struct ib_flow_attr *flow_attr,
2527 struct ib_udata *udata);
2528 int (*destroy_flow)(struct ib_flow *flow_id);
2529 int (*destroy_flow_action)(struct ib_flow_action *action);
2530 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2531 int state);
2532 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2533 struct ifla_vf_info *ivf);
2534 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2535 struct ifla_vf_stats *stats);
2536 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2537 struct ifla_vf_guid *node_guid,
2538 struct ifla_vf_guid *port_guid);
2539 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2540 int type);
2541 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2542 struct ib_wq_init_attr *init_attr,
2543 struct ib_udata *udata);
2544 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2545 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2546 u32 wq_attr_mask, struct ib_udata *udata);
2547 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2548 struct ib_rwq_ind_table_init_attr *init_attr,
2549 struct ib_udata *udata);
2550 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2551 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2552 struct ib_ucontext *context,
2553 struct ib_dm_alloc_attr *attr,
2554 struct uverbs_attr_bundle *attrs);
2555 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2556 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2557 struct ib_dm_mr_attr *attr,
2558 struct uverbs_attr_bundle *attrs);
2559 int (*create_counters)(struct ib_counters *counters,
2560 struct uverbs_attr_bundle *attrs);
2561 int (*destroy_counters)(struct ib_counters *counters);
2562 int (*read_counters)(struct ib_counters *counters,
2563 struct ib_counters_read_attr *counters_read_attr,
2564 struct uverbs_attr_bundle *attrs);
2565 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2566 int data_sg_nents, unsigned int *data_sg_offset,
2567 struct scatterlist *meta_sg, int meta_sg_nents,
2568 unsigned int *meta_sg_offset);
2569
2570 /**
2571 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2572 * fill in the driver initialized data. The struct is kfree()'ed by
2573 * the sysfs core when the device is removed. A lifespan of -1 in the
2574 * return struct tells the core to set a default lifespan.
2575 */
2576 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2577 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2578 u32 port_num);
2579 /**
2580 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2581 * @index - The index in the value array we wish to have updated, or
2582 * num_counters if we want all stats updated
2583 * Return codes -
2584 * < 0 - Error, no counters updated
2585 * index - Updated the single counter pointed to by index
2586 * num_counters - Updated all counters (will reset the timestamp
2587 * and prevent further calls for lifespan milliseconds)
2588 * Drivers are allowed to update all counters in leiu of just the
2589 * one given in index at their option
2590 */
2591 int (*get_hw_stats)(struct ib_device *device,
2592 struct rdma_hw_stats *stats, u32 port, int index);
2593
2594 /**
2595 * modify_hw_stat - Modify the counter configuration
2596 * @enable: true/false when enable/disable a counter
2597 * Return codes - 0 on success or error code otherwise.
2598 */
2599 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2600 unsigned int counter_index, bool enable);
2601 /**
2602 * Allows rdma drivers to add their own restrack attributes.
2603 */
2604 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2605 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2606 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2607 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2608 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2609 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2610 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2611
2612 /* Device lifecycle callbacks */
2613 /*
2614 * Called after the device becomes registered, before clients are
2615 * attached
2616 */
2617 int (*enable_driver)(struct ib_device *dev);
2618 /*
2619 * This is called as part of ib_dealloc_device().
2620 */
2621 void (*dealloc_driver)(struct ib_device *dev);
2622
2623 /* iWarp CM callbacks */
2624 void (*iw_add_ref)(struct ib_qp *qp);
2625 void (*iw_rem_ref)(struct ib_qp *qp);
2626 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2627 int (*iw_connect)(struct iw_cm_id *cm_id,
2628 struct iw_cm_conn_param *conn_param);
2629 int (*iw_accept)(struct iw_cm_id *cm_id,
2630 struct iw_cm_conn_param *conn_param);
2631 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2632 u8 pdata_len);
2633 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2634 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2635 /**
2636 * counter_bind_qp - Bind a QP to a counter.
2637 * @counter - The counter to be bound. If counter->id is zero then
2638 * the driver needs to allocate a new counter and set counter->id
2639 */
2640 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2641 /**
2642 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2643 * counter and bind it onto the default one
2644 */
2645 int (*counter_unbind_qp)(struct ib_qp *qp);
2646 /**
2647 * counter_dealloc -De-allocate the hw counter
2648 */
2649 int (*counter_dealloc)(struct rdma_counter *counter);
2650 /**
2651 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2652 * the driver initialized data.
2653 */
2654 struct rdma_hw_stats *(*counter_alloc_stats)(
2655 struct rdma_counter *counter);
2656 /**
2657 * counter_update_stats - Query the stats value of this counter
2658 */
2659 int (*counter_update_stats)(struct rdma_counter *counter);
2660
2661 /**
2662 * Allows rdma drivers to add their own restrack attributes
2663 * dumped via 'rdma stat' iproute2 command.
2664 */
2665 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2666
2667 /* query driver for its ucontext properties */
2668 int (*query_ucontext)(struct ib_ucontext *context,
2669 struct uverbs_attr_bundle *attrs);
2670
2671 /*
2672 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2673 * Everyone else relies on Linux memory management model.
2674 */
2675 int (*get_numa_node)(struct ib_device *dev);
2676
2677 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2678 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2679 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2680 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2681 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2682 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2683 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2684 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2685 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2686 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2687 };
2688
2689 struct ib_core_device {
2690 /* device must be the first element in structure until,
2691 * union of ib_core_device and device exists in ib_device.
2692 */
2693 struct device dev;
2694 possible_net_t rdma_net;
2695 struct kobject *ports_kobj;
2696 struct list_head port_list;
2697 struct ib_device *owner; /* reach back to owner ib_device */
2698 };
2699
2700 struct rdma_restrack_root;
2701 struct ib_device {
2702 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2703 struct device *dma_device;
2704 struct ib_device_ops ops;
2705 char name[IB_DEVICE_NAME_MAX];
2706 struct rcu_head rcu_head;
2707
2708 struct list_head event_handler_list;
2709 /* Protects event_handler_list */
2710 struct rw_semaphore event_handler_rwsem;
2711
2712 /* Protects QP's event_handler calls and open_qp list */
2713 spinlock_t qp_open_list_lock;
2714
2715 struct rw_semaphore client_data_rwsem;
2716 struct xarray client_data;
2717 struct mutex unregistration_lock;
2718
2719 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2720 rwlock_t cache_lock;
2721 /**
2722 * port_data is indexed by port number
2723 */
2724 struct ib_port_data *port_data;
2725
2726 int num_comp_vectors;
2727
2728 union {
2729 struct device dev;
2730 struct ib_core_device coredev;
2731 };
2732
2733 /* First group is for device attributes,
2734 * Second group is for driver provided attributes (optional).
2735 * Third group is for the hw_stats
2736 * It is a NULL terminated array.
2737 */
2738 const struct attribute_group *groups[4];
2739
2740 u64 uverbs_cmd_mask;
2741
2742 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2743 __be64 node_guid;
2744 u32 local_dma_lkey;
2745 u16 is_switch:1;
2746 /* Indicates kernel verbs support, should not be used in drivers */
2747 u16 kverbs_provider:1;
2748 /* CQ adaptive moderation (RDMA DIM) */
2749 u16 use_cq_dim:1;
2750 u8 node_type;
2751 u32 phys_port_cnt;
2752 struct ib_device_attr attrs;
2753 struct hw_stats_device_data *hw_stats_data;
2754
2755 #ifdef CONFIG_CGROUP_RDMA
2756 struct rdmacg_device cg_device;
2757 #endif
2758
2759 u32 index;
2760
2761 spinlock_t cq_pools_lock;
2762 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2763
2764 struct rdma_restrack_root *res;
2765
2766 const struct uapi_definition *driver_def;
2767
2768 /*
2769 * Positive refcount indicates that the device is currently
2770 * registered and cannot be unregistered.
2771 */
2772 refcount_t refcount;
2773 struct completion unreg_completion;
2774 struct work_struct unregistration_work;
2775
2776 const struct rdma_link_ops *link_ops;
2777
2778 /* Protects compat_devs xarray modifications */
2779 struct mutex compat_devs_mutex;
2780 /* Maintains compat devices for each net namespace */
2781 struct xarray compat_devs;
2782
2783 /* Used by iWarp CM */
2784 char iw_ifname[IFNAMSIZ];
2785 u32 iw_driver_flags;
2786 u32 lag_flags;
2787 };
2788
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2789 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2790 gfp_t gfp, bool is_numa_aware)
2791 {
2792 if (is_numa_aware && dev->ops.get_numa_node)
2793 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2794
2795 return kzalloc(size, gfp);
2796 }
2797
2798 struct ib_client_nl_info;
2799 struct ib_client {
2800 const char *name;
2801 int (*add)(struct ib_device *ibdev);
2802 void (*remove)(struct ib_device *, void *client_data);
2803 void (*rename)(struct ib_device *dev, void *client_data);
2804 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2805 struct ib_client_nl_info *res);
2806 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2807
2808 /* Returns the net_dev belonging to this ib_client and matching the
2809 * given parameters.
2810 * @dev: An RDMA device that the net_dev use for communication.
2811 * @port: A physical port number on the RDMA device.
2812 * @pkey: P_Key that the net_dev uses if applicable.
2813 * @gid: A GID that the net_dev uses to communicate.
2814 * @addr: An IP address the net_dev is configured with.
2815 * @client_data: The device's client data set by ib_set_client_data().
2816 *
2817 * An ib_client that implements a net_dev on top of RDMA devices
2818 * (such as IP over IB) should implement this callback, allowing the
2819 * rdma_cm module to find the right net_dev for a given request.
2820 *
2821 * The caller is responsible for calling dev_put on the returned
2822 * netdev. */
2823 struct net_device *(*get_net_dev_by_params)(
2824 struct ib_device *dev,
2825 u32 port,
2826 u16 pkey,
2827 const union ib_gid *gid,
2828 const struct sockaddr *addr,
2829 void *client_data);
2830
2831 refcount_t uses;
2832 struct completion uses_zero;
2833 u32 client_id;
2834
2835 /* kverbs are not required by the client */
2836 u8 no_kverbs_req:1;
2837 };
2838
2839 /*
2840 * IB block DMA iterator
2841 *
2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2843 * to a HW supported page size.
2844 */
2845 struct ib_block_iter {
2846 /* internal states */
2847 struct scatterlist *__sg; /* sg holding the current aligned block */
2848 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2849 unsigned int __sg_nents; /* number of SG entries */
2850 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2851 unsigned int __pg_bit; /* alignment of current block */
2852 };
2853
2854 struct ib_device *_ib_alloc_device(size_t size);
2855 #define ib_alloc_device(drv_struct, member) \
2856 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2857 BUILD_BUG_ON_ZERO(offsetof( \
2858 struct drv_struct, member))), \
2859 struct drv_struct, member)
2860
2861 void ib_dealloc_device(struct ib_device *device);
2862
2863 void ib_get_device_fw_str(struct ib_device *device, char *str);
2864
2865 int ib_register_device(struct ib_device *device, const char *name,
2866 struct device *dma_device);
2867 void ib_unregister_device(struct ib_device *device);
2868 void ib_unregister_driver(enum rdma_driver_id driver_id);
2869 void ib_unregister_device_and_put(struct ib_device *device);
2870 void ib_unregister_device_queued(struct ib_device *ib_dev);
2871
2872 int ib_register_client (struct ib_client *client);
2873 void ib_unregister_client(struct ib_client *client);
2874
2875 void __rdma_block_iter_start(struct ib_block_iter *biter,
2876 struct scatterlist *sglist,
2877 unsigned int nents,
2878 unsigned long pgsz);
2879 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2880
2881 /**
2882 * rdma_block_iter_dma_address - get the aligned dma address of the current
2883 * block held by the block iterator.
2884 * @biter: block iterator holding the memory block
2885 */
2886 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2887 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2888 {
2889 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2890 }
2891
2892 /**
2893 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2894 * @sglist: sglist to iterate over
2895 * @biter: block iterator holding the memory block
2896 * @nents: maximum number of sg entries to iterate over
2897 * @pgsz: best HW supported page size to use
2898 *
2899 * Callers may use rdma_block_iter_dma_address() to get each
2900 * blocks aligned DMA address.
2901 */
2902 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2903 for (__rdma_block_iter_start(biter, sglist, nents, \
2904 pgsz); \
2905 __rdma_block_iter_next(biter);)
2906
2907 /**
2908 * ib_get_client_data - Get IB client context
2909 * @device:Device to get context for
2910 * @client:Client to get context for
2911 *
2912 * ib_get_client_data() returns the client context data set with
2913 * ib_set_client_data(). This can only be called while the client is
2914 * registered to the device, once the ib_client remove() callback returns this
2915 * cannot be called.
2916 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2917 static inline void *ib_get_client_data(struct ib_device *device,
2918 struct ib_client *client)
2919 {
2920 return xa_load(&device->client_data, client->client_id);
2921 }
2922 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2923 void *data);
2924 void ib_set_device_ops(struct ib_device *device,
2925 const struct ib_device_ops *ops);
2926
2927 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2928 unsigned long pfn, unsigned long size, pgprot_t prot,
2929 struct rdma_user_mmap_entry *entry);
2930 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2931 struct rdma_user_mmap_entry *entry,
2932 size_t length);
2933 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2934 struct rdma_user_mmap_entry *entry,
2935 size_t length, u32 min_pgoff,
2936 u32 max_pgoff);
2937
2938 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2939 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2940 struct rdma_user_mmap_entry *entry,
2941 size_t length, u32 pgoff)
2942 {
2943 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2944 pgoff);
2945 }
2946
2947 struct rdma_user_mmap_entry *
2948 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2949 unsigned long pgoff);
2950 struct rdma_user_mmap_entry *
2951 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2952 struct vm_area_struct *vma);
2953 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2954
2955 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2956
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2957 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2958 {
2959 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2960 }
2961
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2962 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2963 {
2964 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2965 }
2966
ib_is_buffer_cleared(const void __user * p,size_t len)2967 static inline bool ib_is_buffer_cleared(const void __user *p,
2968 size_t len)
2969 {
2970 bool ret;
2971 u8 *buf;
2972
2973 if (len > USHRT_MAX)
2974 return false;
2975
2976 buf = memdup_user(p, len);
2977 if (IS_ERR(buf))
2978 return false;
2979
2980 ret = !memchr_inv(buf, 0, len);
2981 kfree(buf);
2982 return ret;
2983 }
2984
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2985 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2986 size_t offset,
2987 size_t len)
2988 {
2989 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2990 }
2991
2992 /**
2993 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2994 * contains all required attributes and no attributes not allowed for
2995 * the given QP state transition.
2996 * @cur_state: Current QP state
2997 * @next_state: Next QP state
2998 * @type: QP type
2999 * @mask: Mask of supplied QP attributes
3000 *
3001 * This function is a helper function that a low-level driver's
3002 * modify_qp method can use to validate the consumer's input. It
3003 * checks that cur_state and next_state are valid QP states, that a
3004 * transition from cur_state to next_state is allowed by the IB spec,
3005 * and that the attribute mask supplied is allowed for the transition.
3006 */
3007 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3008 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3009
3010 void ib_register_event_handler(struct ib_event_handler *event_handler);
3011 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3012 void ib_dispatch_event(const struct ib_event *event);
3013
3014 int ib_query_port(struct ib_device *device,
3015 u32 port_num, struct ib_port_attr *port_attr);
3016
3017 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3018 u32 port_num);
3019
3020 /**
3021 * rdma_cap_ib_switch - Check if the device is IB switch
3022 * @device: Device to check
3023 *
3024 * Device driver is responsible for setting is_switch bit on
3025 * in ib_device structure at init time.
3026 *
3027 * Return: true if the device is IB switch.
3028 */
rdma_cap_ib_switch(const struct ib_device * device)3029 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3030 {
3031 return device->is_switch;
3032 }
3033
3034 /**
3035 * rdma_start_port - Return the first valid port number for the device
3036 * specified
3037 *
3038 * @device: Device to be checked
3039 *
3040 * Return start port number
3041 */
rdma_start_port(const struct ib_device * device)3042 static inline u32 rdma_start_port(const struct ib_device *device)
3043 {
3044 return rdma_cap_ib_switch(device) ? 0 : 1;
3045 }
3046
3047 /**
3048 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3049 * @device - The struct ib_device * to iterate over
3050 * @iter - The unsigned int to store the port number
3051 */
3052 #define rdma_for_each_port(device, iter) \
3053 for (iter = rdma_start_port(device + \
3054 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3055 iter))); \
3056 iter <= rdma_end_port(device); iter++)
3057
3058 /**
3059 * rdma_end_port - Return the last valid port number for the device
3060 * specified
3061 *
3062 * @device: Device to be checked
3063 *
3064 * Return last port number
3065 */
rdma_end_port(const struct ib_device * device)3066 static inline u32 rdma_end_port(const struct ib_device *device)
3067 {
3068 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3069 }
3070
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3071 static inline int rdma_is_port_valid(const struct ib_device *device,
3072 unsigned int port)
3073 {
3074 return (port >= rdma_start_port(device) &&
3075 port <= rdma_end_port(device));
3076 }
3077
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3078 static inline bool rdma_is_grh_required(const struct ib_device *device,
3079 u32 port_num)
3080 {
3081 return device->port_data[port_num].immutable.core_cap_flags &
3082 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3083 }
3084
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3085 static inline bool rdma_protocol_ib(const struct ib_device *device,
3086 u32 port_num)
3087 {
3088 return device->port_data[port_num].immutable.core_cap_flags &
3089 RDMA_CORE_CAP_PROT_IB;
3090 }
3091
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3092 static inline bool rdma_protocol_roce(const struct ib_device *device,
3093 u32 port_num)
3094 {
3095 return device->port_data[port_num].immutable.core_cap_flags &
3096 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3097 }
3098
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3099 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3100 u32 port_num)
3101 {
3102 return device->port_data[port_num].immutable.core_cap_flags &
3103 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3104 }
3105
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3106 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3107 u32 port_num)
3108 {
3109 return device->port_data[port_num].immutable.core_cap_flags &
3110 RDMA_CORE_CAP_PROT_ROCE;
3111 }
3112
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3113 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3114 u32 port_num)
3115 {
3116 return device->port_data[port_num].immutable.core_cap_flags &
3117 RDMA_CORE_CAP_PROT_IWARP;
3118 }
3119
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3120 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3121 u32 port_num)
3122 {
3123 return rdma_protocol_ib(device, port_num) ||
3124 rdma_protocol_roce(device, port_num);
3125 }
3126
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3127 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3128 u32 port_num)
3129 {
3130 return device->port_data[port_num].immutable.core_cap_flags &
3131 RDMA_CORE_CAP_PROT_RAW_PACKET;
3132 }
3133
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3134 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3135 u32 port_num)
3136 {
3137 return device->port_data[port_num].immutable.core_cap_flags &
3138 RDMA_CORE_CAP_PROT_USNIC;
3139 }
3140
3141 /**
3142 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3143 * Management Datagrams.
3144 * @device: Device to check
3145 * @port_num: Port number to check
3146 *
3147 * Management Datagrams (MAD) are a required part of the InfiniBand
3148 * specification and are supported on all InfiniBand devices. A slightly
3149 * extended version are also supported on OPA interfaces.
3150 *
3151 * Return: true if the port supports sending/receiving of MAD packets.
3152 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3153 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3154 {
3155 return device->port_data[port_num].immutable.core_cap_flags &
3156 RDMA_CORE_CAP_IB_MAD;
3157 }
3158
3159 /**
3160 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3161 * Management Datagrams.
3162 * @device: Device to check
3163 * @port_num: Port number to check
3164 *
3165 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3166 * datagrams with their own versions. These OPA MADs share many but not all of
3167 * the characteristics of InfiniBand MADs.
3168 *
3169 * OPA MADs differ in the following ways:
3170 *
3171 * 1) MADs are variable size up to 2K
3172 * IBTA defined MADs remain fixed at 256 bytes
3173 * 2) OPA SMPs must carry valid PKeys
3174 * 3) OPA SMP packets are a different format
3175 *
3176 * Return: true if the port supports OPA MAD packet formats.
3177 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3178 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3179 {
3180 return device->port_data[port_num].immutable.core_cap_flags &
3181 RDMA_CORE_CAP_OPA_MAD;
3182 }
3183
3184 /**
3185 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3186 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3187 * @device: Device to check
3188 * @port_num: Port number to check
3189 *
3190 * Each InfiniBand node is required to provide a Subnet Management Agent
3191 * that the subnet manager can access. Prior to the fabric being fully
3192 * configured by the subnet manager, the SMA is accessed via a well known
3193 * interface called the Subnet Management Interface (SMI). This interface
3194 * uses directed route packets to communicate with the SM to get around the
3195 * chicken and egg problem of the SM needing to know what's on the fabric
3196 * in order to configure the fabric, and needing to configure the fabric in
3197 * order to send packets to the devices on the fabric. These directed
3198 * route packets do not need the fabric fully configured in order to reach
3199 * their destination. The SMI is the only method allowed to send
3200 * directed route packets on an InfiniBand fabric.
3201 *
3202 * Return: true if the port provides an SMI.
3203 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3204 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3205 {
3206 return device->port_data[port_num].immutable.core_cap_flags &
3207 RDMA_CORE_CAP_IB_SMI;
3208 }
3209
3210 /**
3211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3212 * Communication Manager.
3213 * @device: Device to check
3214 * @port_num: Port number to check
3215 *
3216 * The InfiniBand Communication Manager is one of many pre-defined General
3217 * Service Agents (GSA) that are accessed via the General Service
3218 * Interface (GSI). It's role is to facilitate establishment of connections
3219 * between nodes as well as other management related tasks for established
3220 * connections.
3221 *
3222 * Return: true if the port supports an IB CM (this does not guarantee that
3223 * a CM is actually running however).
3224 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3225 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3226 {
3227 return device->port_data[port_num].immutable.core_cap_flags &
3228 RDMA_CORE_CAP_IB_CM;
3229 }
3230
3231 /**
3232 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3233 * Communication Manager.
3234 * @device: Device to check
3235 * @port_num: Port number to check
3236 *
3237 * Similar to above, but specific to iWARP connections which have a different
3238 * managment protocol than InfiniBand.
3239 *
3240 * Return: true if the port supports an iWARP CM (this does not guarantee that
3241 * a CM is actually running however).
3242 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3243 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3244 {
3245 return device->port_data[port_num].immutable.core_cap_flags &
3246 RDMA_CORE_CAP_IW_CM;
3247 }
3248
3249 /**
3250 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3251 * Subnet Administration.
3252 * @device: Device to check
3253 * @port_num: Port number to check
3254 *
3255 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3256 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3257 * fabrics, devices should resolve routes to other hosts by contacting the
3258 * SA to query the proper route.
3259 *
3260 * Return: true if the port should act as a client to the fabric Subnet
3261 * Administration interface. This does not imply that the SA service is
3262 * running locally.
3263 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3264 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3265 {
3266 return device->port_data[port_num].immutable.core_cap_flags &
3267 RDMA_CORE_CAP_IB_SA;
3268 }
3269
3270 /**
3271 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3272 * Multicast.
3273 * @device: Device to check
3274 * @port_num: Port number to check
3275 *
3276 * InfiniBand multicast registration is more complex than normal IPv4 or
3277 * IPv6 multicast registration. Each Host Channel Adapter must register
3278 * with the Subnet Manager when it wishes to join a multicast group. It
3279 * should do so only once regardless of how many queue pairs it subscribes
3280 * to this group. And it should leave the group only after all queue pairs
3281 * attached to the group have been detached.
3282 *
3283 * Return: true if the port must undertake the additional adminstrative
3284 * overhead of registering/unregistering with the SM and tracking of the
3285 * total number of queue pairs attached to the multicast group.
3286 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3287 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3288 u32 port_num)
3289 {
3290 return rdma_cap_ib_sa(device, port_num);
3291 }
3292
3293 /**
3294 * rdma_cap_af_ib - Check if the port of device has the capability
3295 * Native Infiniband Address.
3296 * @device: Device to check
3297 * @port_num: Port number to check
3298 *
3299 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3300 * GID. RoCE uses a different mechanism, but still generates a GID via
3301 * a prescribed mechanism and port specific data.
3302 *
3303 * Return: true if the port uses a GID address to identify devices on the
3304 * network.
3305 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3306 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3307 {
3308 return device->port_data[port_num].immutable.core_cap_flags &
3309 RDMA_CORE_CAP_AF_IB;
3310 }
3311
3312 /**
3313 * rdma_cap_eth_ah - Check if the port of device has the capability
3314 * Ethernet Address Handle.
3315 * @device: Device to check
3316 * @port_num: Port number to check
3317 *
3318 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3319 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3320 * port. Normally, packet headers are generated by the sending host
3321 * adapter, but when sending connectionless datagrams, we must manually
3322 * inject the proper headers for the fabric we are communicating over.
3323 *
3324 * Return: true if we are running as a RoCE port and must force the
3325 * addition of a Global Route Header built from our Ethernet Address
3326 * Handle into our header list for connectionless packets.
3327 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3328 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3329 {
3330 return device->port_data[port_num].immutable.core_cap_flags &
3331 RDMA_CORE_CAP_ETH_AH;
3332 }
3333
3334 /**
3335 * rdma_cap_opa_ah - Check if the port of device supports
3336 * OPA Address handles
3337 * @device: Device to check
3338 * @port_num: Port number to check
3339 *
3340 * Return: true if we are running on an OPA device which supports
3341 * the extended OPA addressing.
3342 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3343 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3344 {
3345 return (device->port_data[port_num].immutable.core_cap_flags &
3346 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3347 }
3348
3349 /**
3350 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3351 *
3352 * @device: Device
3353 * @port_num: Port number
3354 *
3355 * This MAD size includes the MAD headers and MAD payload. No other headers
3356 * are included.
3357 *
3358 * Return the max MAD size required by the Port. Will return 0 if the port
3359 * does not support MADs
3360 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3361 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3362 u32 port_num)
3363 {
3364 return device->port_data[port_num].immutable.max_mad_size;
3365 }
3366
3367 /**
3368 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3369 * @device: Device to check
3370 * @port_num: Port number to check
3371 *
3372 * RoCE GID table mechanism manages the various GIDs for a device.
3373 *
3374 * NOTE: if allocating the port's GID table has failed, this call will still
3375 * return true, but any RoCE GID table API will fail.
3376 *
3377 * Return: true if the port uses RoCE GID table mechanism in order to manage
3378 * its GIDs.
3379 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3380 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3381 u32 port_num)
3382 {
3383 return rdma_protocol_roce(device, port_num) &&
3384 device->ops.add_gid && device->ops.del_gid;
3385 }
3386
3387 /*
3388 * Check if the device supports READ W/ INVALIDATE.
3389 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3390 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3391 {
3392 /*
3393 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3394 * has support for it yet.
3395 */
3396 return rdma_protocol_iwarp(dev, port_num);
3397 }
3398
3399 /**
3400 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3401 * @device: Device
3402 * @port_num: 1 based Port number
3403 *
3404 * Return true if port is an Intel OPA port , false if not
3405 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3406 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3407 u32 port_num)
3408 {
3409 return (device->port_data[port_num].immutable.core_cap_flags &
3410 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3411 }
3412
3413 /**
3414 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3415 * @device: Device
3416 * @port_num: Port number
3417 * @mtu: enum value of MTU
3418 *
3419 * Return the MTU size supported by the port as an integer value. Will return
3420 * -1 if enum value of mtu is not supported.
3421 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3422 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3423 int mtu)
3424 {
3425 if (rdma_core_cap_opa_port(device, port))
3426 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3427 else
3428 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3429 }
3430
3431 /**
3432 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3433 * @device: Device
3434 * @port_num: Port number
3435 * @attr: port attribute
3436 *
3437 * Return the MTU size supported by the port as an integer value.
3438 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3439 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3440 struct ib_port_attr *attr)
3441 {
3442 if (rdma_core_cap_opa_port(device, port))
3443 return attr->phys_mtu;
3444 else
3445 return ib_mtu_enum_to_int(attr->max_mtu);
3446 }
3447
3448 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3449 int state);
3450 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3451 struct ifla_vf_info *info);
3452 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3453 struct ifla_vf_stats *stats);
3454 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3455 struct ifla_vf_guid *node_guid,
3456 struct ifla_vf_guid *port_guid);
3457 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3458 int type);
3459
3460 int ib_query_pkey(struct ib_device *device,
3461 u32 port_num, u16 index, u16 *pkey);
3462
3463 int ib_modify_device(struct ib_device *device,
3464 int device_modify_mask,
3465 struct ib_device_modify *device_modify);
3466
3467 int ib_modify_port(struct ib_device *device,
3468 u32 port_num, int port_modify_mask,
3469 struct ib_port_modify *port_modify);
3470
3471 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3472 u32 *port_num, u16 *index);
3473
3474 int ib_find_pkey(struct ib_device *device,
3475 u32 port_num, u16 pkey, u16 *index);
3476
3477 enum ib_pd_flags {
3478 /*
3479 * Create a memory registration for all memory in the system and place
3480 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3481 * ULPs to avoid the overhead of dynamic MRs.
3482 *
3483 * This flag is generally considered unsafe and must only be used in
3484 * extremly trusted environments. Every use of it will log a warning
3485 * in the kernel log.
3486 */
3487 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3488 };
3489
3490 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3491 const char *caller);
3492
3493 /**
3494 * ib_alloc_pd - Allocates an unused protection domain.
3495 * @device: The device on which to allocate the protection domain.
3496 * @flags: protection domain flags
3497 *
3498 * A protection domain object provides an association between QPs, shared
3499 * receive queues, address handles, memory regions, and memory windows.
3500 *
3501 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3502 * memory operations.
3503 */
3504 #define ib_alloc_pd(device, flags) \
3505 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3506
3507 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3508
3509 /**
3510 * ib_dealloc_pd - Deallocate kernel PD
3511 * @pd: The protection domain
3512 *
3513 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3514 */
ib_dealloc_pd(struct ib_pd * pd)3515 static inline void ib_dealloc_pd(struct ib_pd *pd)
3516 {
3517 int ret = ib_dealloc_pd_user(pd, NULL);
3518
3519 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3520 }
3521
3522 enum rdma_create_ah_flags {
3523 /* In a sleepable context */
3524 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3525 };
3526
3527 /**
3528 * rdma_create_ah - Creates an address handle for the given address vector.
3529 * @pd: The protection domain associated with the address handle.
3530 * @ah_attr: The attributes of the address vector.
3531 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3532 *
3533 * The address handle is used to reference a local or global destination
3534 * in all UD QP post sends.
3535 */
3536 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3537 u32 flags);
3538
3539 /**
3540 * rdma_create_user_ah - Creates an address handle for the given address vector.
3541 * It resolves destination mac address for ah attribute of RoCE type.
3542 * @pd: The protection domain associated with the address handle.
3543 * @ah_attr: The attributes of the address vector.
3544 * @udata: pointer to user's input output buffer information need by
3545 * provider driver.
3546 *
3547 * It returns 0 on success and returns appropriate error code on error.
3548 * The address handle is used to reference a local or global destination
3549 * in all UD QP post sends.
3550 */
3551 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3552 struct rdma_ah_attr *ah_attr,
3553 struct ib_udata *udata);
3554 /**
3555 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3556 * work completion.
3557 * @hdr: the L3 header to parse
3558 * @net_type: type of header to parse
3559 * @sgid: place to store source gid
3560 * @dgid: place to store destination gid
3561 */
3562 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3563 enum rdma_network_type net_type,
3564 union ib_gid *sgid, union ib_gid *dgid);
3565
3566 /**
3567 * ib_get_rdma_header_version - Get the header version
3568 * @hdr: the L3 header to parse
3569 */
3570 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3571
3572 /**
3573 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3574 * work completion.
3575 * @device: Device on which the received message arrived.
3576 * @port_num: Port on which the received message arrived.
3577 * @wc: Work completion associated with the received message.
3578 * @grh: References the received global route header. This parameter is
3579 * ignored unless the work completion indicates that the GRH is valid.
3580 * @ah_attr: Returned attributes that can be used when creating an address
3581 * handle for replying to the message.
3582 * When ib_init_ah_attr_from_wc() returns success,
3583 * (a) for IB link layer it optionally contains a reference to SGID attribute
3584 * when GRH is present for IB link layer.
3585 * (b) for RoCE link layer it contains a reference to SGID attribute.
3586 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3587 * attributes which are initialized using ib_init_ah_attr_from_wc().
3588 *
3589 */
3590 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3591 const struct ib_wc *wc, const struct ib_grh *grh,
3592 struct rdma_ah_attr *ah_attr);
3593
3594 /**
3595 * ib_create_ah_from_wc - Creates an address handle associated with the
3596 * sender of the specified work completion.
3597 * @pd: The protection domain associated with the address handle.
3598 * @wc: Work completion information associated with a received message.
3599 * @grh: References the received global route header. This parameter is
3600 * ignored unless the work completion indicates that the GRH is valid.
3601 * @port_num: The outbound port number to associate with the address.
3602 *
3603 * The address handle is used to reference a local or global destination
3604 * in all UD QP post sends.
3605 */
3606 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3607 const struct ib_grh *grh, u32 port_num);
3608
3609 /**
3610 * rdma_modify_ah - Modifies the address vector associated with an address
3611 * handle.
3612 * @ah: The address handle to modify.
3613 * @ah_attr: The new address vector attributes to associate with the
3614 * address handle.
3615 */
3616 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3617
3618 /**
3619 * rdma_query_ah - Queries the address vector associated with an address
3620 * handle.
3621 * @ah: The address handle to query.
3622 * @ah_attr: The address vector attributes associated with the address
3623 * handle.
3624 */
3625 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3626
3627 enum rdma_destroy_ah_flags {
3628 /* In a sleepable context */
3629 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3630 };
3631
3632 /**
3633 * rdma_destroy_ah_user - Destroys an address handle.
3634 * @ah: The address handle to destroy.
3635 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3636 * @udata: Valid user data or NULL for kernel objects
3637 */
3638 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3639
3640 /**
3641 * rdma_destroy_ah - Destroys an kernel address handle.
3642 * @ah: The address handle to destroy.
3643 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3644 *
3645 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3646 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3647 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3648 {
3649 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3650
3651 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3652 }
3653
3654 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3655 struct ib_srq_init_attr *srq_init_attr,
3656 struct ib_usrq_object *uobject,
3657 struct ib_udata *udata);
3658 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3659 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3660 {
3661 if (!pd->device->ops.create_srq)
3662 return ERR_PTR(-EOPNOTSUPP);
3663
3664 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3665 }
3666
3667 /**
3668 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3669 * @srq: The SRQ to modify.
3670 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3671 * the current values of selected SRQ attributes are returned.
3672 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3673 * are being modified.
3674 *
3675 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3676 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3677 * the number of receives queued drops below the limit.
3678 */
3679 int ib_modify_srq(struct ib_srq *srq,
3680 struct ib_srq_attr *srq_attr,
3681 enum ib_srq_attr_mask srq_attr_mask);
3682
3683 /**
3684 * ib_query_srq - Returns the attribute list and current values for the
3685 * specified SRQ.
3686 * @srq: The SRQ to query.
3687 * @srq_attr: The attributes of the specified SRQ.
3688 */
3689 int ib_query_srq(struct ib_srq *srq,
3690 struct ib_srq_attr *srq_attr);
3691
3692 /**
3693 * ib_destroy_srq_user - Destroys the specified SRQ.
3694 * @srq: The SRQ to destroy.
3695 * @udata: Valid user data or NULL for kernel objects
3696 */
3697 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3698
3699 /**
3700 * ib_destroy_srq - Destroys the specified kernel SRQ.
3701 * @srq: The SRQ to destroy.
3702 *
3703 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3704 */
ib_destroy_srq(struct ib_srq * srq)3705 static inline void ib_destroy_srq(struct ib_srq *srq)
3706 {
3707 int ret = ib_destroy_srq_user(srq, NULL);
3708
3709 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3710 }
3711
3712 /**
3713 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3714 * @srq: The SRQ to post the work request on.
3715 * @recv_wr: A list of work requests to post on the receive queue.
3716 * @bad_recv_wr: On an immediate failure, this parameter will reference
3717 * the work request that failed to be posted on the QP.
3718 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3719 static inline int ib_post_srq_recv(struct ib_srq *srq,
3720 const struct ib_recv_wr *recv_wr,
3721 const struct ib_recv_wr **bad_recv_wr)
3722 {
3723 const struct ib_recv_wr *dummy;
3724
3725 return srq->device->ops.post_srq_recv(srq, recv_wr,
3726 bad_recv_wr ? : &dummy);
3727 }
3728
3729 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3730 struct ib_qp_init_attr *qp_init_attr,
3731 const char *caller);
3732 /**
3733 * ib_create_qp - Creates a kernel QP associated with the specific protection
3734 * domain.
3735 * @pd: The protection domain associated with the QP.
3736 * @init_attr: A list of initial attributes required to create the
3737 * QP. If QP creation succeeds, then the attributes are updated to
3738 * the actual capabilities of the created QP.
3739 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3740 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3741 struct ib_qp_init_attr *init_attr)
3742 {
3743 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3744 }
3745
3746 /**
3747 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3748 * @qp: The QP to modify.
3749 * @attr: On input, specifies the QP attributes to modify. On output,
3750 * the current values of selected QP attributes are returned.
3751 * @attr_mask: A bit-mask used to specify which attributes of the QP
3752 * are being modified.
3753 * @udata: pointer to user's input output buffer information
3754 * are being modified.
3755 * It returns 0 on success and returns appropriate error code on error.
3756 */
3757 int ib_modify_qp_with_udata(struct ib_qp *qp,
3758 struct ib_qp_attr *attr,
3759 int attr_mask,
3760 struct ib_udata *udata);
3761
3762 /**
3763 * ib_modify_qp - Modifies the attributes for the specified QP and then
3764 * transitions the QP to the given state.
3765 * @qp: The QP to modify.
3766 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3767 * the current values of selected QP attributes are returned.
3768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3769 * are being modified.
3770 */
3771 int ib_modify_qp(struct ib_qp *qp,
3772 struct ib_qp_attr *qp_attr,
3773 int qp_attr_mask);
3774
3775 /**
3776 * ib_query_qp - Returns the attribute list and current values for the
3777 * specified QP.
3778 * @qp: The QP to query.
3779 * @qp_attr: The attributes of the specified QP.
3780 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3781 * @qp_init_attr: Additional attributes of the selected QP.
3782 *
3783 * The qp_attr_mask may be used to limit the query to gathering only the
3784 * selected attributes.
3785 */
3786 int ib_query_qp(struct ib_qp *qp,
3787 struct ib_qp_attr *qp_attr,
3788 int qp_attr_mask,
3789 struct ib_qp_init_attr *qp_init_attr);
3790
3791 /**
3792 * ib_destroy_qp - Destroys the specified QP.
3793 * @qp: The QP to destroy.
3794 * @udata: Valid udata or NULL for kernel objects
3795 */
3796 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3797
3798 /**
3799 * ib_destroy_qp - Destroys the specified kernel QP.
3800 * @qp: The QP to destroy.
3801 *
3802 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3803 */
ib_destroy_qp(struct ib_qp * qp)3804 static inline int ib_destroy_qp(struct ib_qp *qp)
3805 {
3806 return ib_destroy_qp_user(qp, NULL);
3807 }
3808
3809 /**
3810 * ib_open_qp - Obtain a reference to an existing sharable QP.
3811 * @xrcd - XRC domain
3812 * @qp_open_attr: Attributes identifying the QP to open.
3813 *
3814 * Returns a reference to a sharable QP.
3815 */
3816 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3817 struct ib_qp_open_attr *qp_open_attr);
3818
3819 /**
3820 * ib_close_qp - Release an external reference to a QP.
3821 * @qp: The QP handle to release
3822 *
3823 * The opened QP handle is released by the caller. The underlying
3824 * shared QP is not destroyed until all internal references are released.
3825 */
3826 int ib_close_qp(struct ib_qp *qp);
3827
3828 /**
3829 * ib_post_send - Posts a list of work requests to the send queue of
3830 * the specified QP.
3831 * @qp: The QP to post the work request on.
3832 * @send_wr: A list of work requests to post on the send queue.
3833 * @bad_send_wr: On an immediate failure, this parameter will reference
3834 * the work request that failed to be posted on the QP.
3835 *
3836 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3837 * error is returned, the QP state shall not be affected,
3838 * ib_post_send() will return an immediate error after queueing any
3839 * earlier work requests in the list.
3840 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3841 static inline int ib_post_send(struct ib_qp *qp,
3842 const struct ib_send_wr *send_wr,
3843 const struct ib_send_wr **bad_send_wr)
3844 {
3845 const struct ib_send_wr *dummy;
3846
3847 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3848 }
3849
3850 /**
3851 * ib_post_recv - Posts a list of work requests to the receive queue of
3852 * the specified QP.
3853 * @qp: The QP to post the work request on.
3854 * @recv_wr: A list of work requests to post on the receive queue.
3855 * @bad_recv_wr: On an immediate failure, this parameter will reference
3856 * the work request that failed to be posted on the QP.
3857 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3858 static inline int ib_post_recv(struct ib_qp *qp,
3859 const struct ib_recv_wr *recv_wr,
3860 const struct ib_recv_wr **bad_recv_wr)
3861 {
3862 const struct ib_recv_wr *dummy;
3863
3864 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3865 }
3866
3867 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3868 int comp_vector, enum ib_poll_context poll_ctx,
3869 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3870 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3871 int nr_cqe, int comp_vector,
3872 enum ib_poll_context poll_ctx)
3873 {
3874 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3875 KBUILD_MODNAME);
3876 }
3877
3878 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3879 int nr_cqe, enum ib_poll_context poll_ctx,
3880 const char *caller);
3881
3882 /**
3883 * ib_alloc_cq_any: Allocate kernel CQ
3884 * @dev: The IB device
3885 * @private: Private data attached to the CQE
3886 * @nr_cqe: Number of CQEs in the CQ
3887 * @poll_ctx: Context used for polling the CQ
3888 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3889 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3890 void *private, int nr_cqe,
3891 enum ib_poll_context poll_ctx)
3892 {
3893 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3894 KBUILD_MODNAME);
3895 }
3896
3897 void ib_free_cq(struct ib_cq *cq);
3898 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3899
3900 /**
3901 * ib_create_cq - Creates a CQ on the specified device.
3902 * @device: The device on which to create the CQ.
3903 * @comp_handler: A user-specified callback that is invoked when a
3904 * completion event occurs on the CQ.
3905 * @event_handler: A user-specified callback that is invoked when an
3906 * asynchronous event not associated with a completion occurs on the CQ.
3907 * @cq_context: Context associated with the CQ returned to the user via
3908 * the associated completion and event handlers.
3909 * @cq_attr: The attributes the CQ should be created upon.
3910 *
3911 * Users can examine the cq structure to determine the actual CQ size.
3912 */
3913 struct ib_cq *__ib_create_cq(struct ib_device *device,
3914 ib_comp_handler comp_handler,
3915 void (*event_handler)(struct ib_event *, void *),
3916 void *cq_context,
3917 const struct ib_cq_init_attr *cq_attr,
3918 const char *caller);
3919 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3920 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3921
3922 /**
3923 * ib_resize_cq - Modifies the capacity of the CQ.
3924 * @cq: The CQ to resize.
3925 * @cqe: The minimum size of the CQ.
3926 *
3927 * Users can examine the cq structure to determine the actual CQ size.
3928 */
3929 int ib_resize_cq(struct ib_cq *cq, int cqe);
3930
3931 /**
3932 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3933 * @cq: The CQ to modify.
3934 * @cq_count: number of CQEs that will trigger an event
3935 * @cq_period: max period of time in usec before triggering an event
3936 *
3937 */
3938 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3939
3940 /**
3941 * ib_destroy_cq_user - Destroys the specified CQ.
3942 * @cq: The CQ to destroy.
3943 * @udata: Valid user data or NULL for kernel objects
3944 */
3945 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3946
3947 /**
3948 * ib_destroy_cq - Destroys the specified kernel CQ.
3949 * @cq: The CQ to destroy.
3950 *
3951 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3952 */
ib_destroy_cq(struct ib_cq * cq)3953 static inline void ib_destroy_cq(struct ib_cq *cq)
3954 {
3955 int ret = ib_destroy_cq_user(cq, NULL);
3956
3957 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3958 }
3959
3960 /**
3961 * ib_poll_cq - poll a CQ for completion(s)
3962 * @cq:the CQ being polled
3963 * @num_entries:maximum number of completions to return
3964 * @wc:array of at least @num_entries &struct ib_wc where completions
3965 * will be returned
3966 *
3967 * Poll a CQ for (possibly multiple) completions. If the return value
3968 * is < 0, an error occurred. If the return value is >= 0, it is the
3969 * number of completions returned. If the return value is
3970 * non-negative and < num_entries, then the CQ was emptied.
3971 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3972 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3973 struct ib_wc *wc)
3974 {
3975 return cq->device->ops.poll_cq(cq, num_entries, wc);
3976 }
3977
3978 /**
3979 * ib_req_notify_cq - Request completion notification on a CQ.
3980 * @cq: The CQ to generate an event for.
3981 * @flags:
3982 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3983 * to request an event on the next solicited event or next work
3984 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3985 * may also be |ed in to request a hint about missed events, as
3986 * described below.
3987 *
3988 * Return Value:
3989 * < 0 means an error occurred while requesting notification
3990 * == 0 means notification was requested successfully, and if
3991 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3992 * were missed and it is safe to wait for another event. In
3993 * this case is it guaranteed that any work completions added
3994 * to the CQ since the last CQ poll will trigger a completion
3995 * notification event.
3996 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3997 * in. It means that the consumer must poll the CQ again to
3998 * make sure it is empty to avoid missing an event because of a
3999 * race between requesting notification and an entry being
4000 * added to the CQ. This return value means it is possible
4001 * (but not guaranteed) that a work completion has been added
4002 * to the CQ since the last poll without triggering a
4003 * completion notification event.
4004 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4005 static inline int ib_req_notify_cq(struct ib_cq *cq,
4006 enum ib_cq_notify_flags flags)
4007 {
4008 return cq->device->ops.req_notify_cq(cq, flags);
4009 }
4010
4011 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4012 int comp_vector_hint,
4013 enum ib_poll_context poll_ctx);
4014
4015 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4016
4017 /*
4018 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4019 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4020 * address into the dma address.
4021 */
ib_uses_virt_dma(struct ib_device * dev)4022 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4023 {
4024 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4025 }
4026
4027 /*
4028 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4029 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4030 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4031 {
4032 if (ib_uses_virt_dma(dev))
4033 return false;
4034
4035 return dma_pci_p2pdma_supported(dev->dma_device);
4036 }
4037
4038 /**
4039 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4040 * @dma_addr: The DMA address
4041 *
4042 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4043 * going through the dma_addr marshalling.
4044 */
ib_virt_dma_to_ptr(u64 dma_addr)4045 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4046 {
4047 /* virt_dma mode maps the kvs's directly into the dma addr */
4048 return (void *)(uintptr_t)dma_addr;
4049 }
4050
4051 /**
4052 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4053 * @dma_addr: The DMA address
4054 *
4055 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4056 * through the dma_addr marshalling.
4057 */
ib_virt_dma_to_page(u64 dma_addr)4058 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4059 {
4060 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4061 }
4062
4063 /**
4064 * ib_dma_mapping_error - check a DMA addr for error
4065 * @dev: The device for which the dma_addr was created
4066 * @dma_addr: The DMA address to check
4067 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4068 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4069 {
4070 if (ib_uses_virt_dma(dev))
4071 return 0;
4072 return dma_mapping_error(dev->dma_device, dma_addr);
4073 }
4074
4075 /**
4076 * ib_dma_map_single - Map a kernel virtual address to DMA address
4077 * @dev: The device for which the dma_addr is to be created
4078 * @cpu_addr: The kernel virtual address
4079 * @size: The size of the region in bytes
4080 * @direction: The direction of the DMA
4081 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4082 static inline u64 ib_dma_map_single(struct ib_device *dev,
4083 void *cpu_addr, size_t size,
4084 enum dma_data_direction direction)
4085 {
4086 if (ib_uses_virt_dma(dev))
4087 return (uintptr_t)cpu_addr;
4088 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4089 }
4090
4091 /**
4092 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4093 * @dev: The device for which the DMA address was created
4094 * @addr: The DMA address
4095 * @size: The size of the region in bytes
4096 * @direction: The direction of the DMA
4097 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4098 static inline void ib_dma_unmap_single(struct ib_device *dev,
4099 u64 addr, size_t size,
4100 enum dma_data_direction direction)
4101 {
4102 if (!ib_uses_virt_dma(dev))
4103 dma_unmap_single(dev->dma_device, addr, size, direction);
4104 }
4105
4106 /**
4107 * ib_dma_map_page - Map a physical page to DMA address
4108 * @dev: The device for which the dma_addr is to be created
4109 * @page: The page to be mapped
4110 * @offset: The offset within the page
4111 * @size: The size of the region in bytes
4112 * @direction: The direction of the DMA
4113 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4114 static inline u64 ib_dma_map_page(struct ib_device *dev,
4115 struct page *page,
4116 unsigned long offset,
4117 size_t size,
4118 enum dma_data_direction direction)
4119 {
4120 if (ib_uses_virt_dma(dev))
4121 return (uintptr_t)(page_address(page) + offset);
4122 return dma_map_page(dev->dma_device, page, offset, size, direction);
4123 }
4124
4125 /**
4126 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4127 * @dev: The device for which the DMA address was created
4128 * @addr: The DMA address
4129 * @size: The size of the region in bytes
4130 * @direction: The direction of the DMA
4131 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4132 static inline void ib_dma_unmap_page(struct ib_device *dev,
4133 u64 addr, size_t size,
4134 enum dma_data_direction direction)
4135 {
4136 if (!ib_uses_virt_dma(dev))
4137 dma_unmap_page(dev->dma_device, addr, size, direction);
4138 }
4139
4140 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4141 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4142 struct scatterlist *sg, int nents,
4143 enum dma_data_direction direction,
4144 unsigned long dma_attrs)
4145 {
4146 if (ib_uses_virt_dma(dev))
4147 return ib_dma_virt_map_sg(dev, sg, nents);
4148 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4149 dma_attrs);
4150 }
4151
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4152 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4153 struct scatterlist *sg, int nents,
4154 enum dma_data_direction direction,
4155 unsigned long dma_attrs)
4156 {
4157 if (!ib_uses_virt_dma(dev))
4158 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4159 dma_attrs);
4160 }
4161
4162 /**
4163 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4164 * @dev: The device for which the DMA addresses are to be created
4165 * @sg: The sg_table object describing the buffer
4166 * @direction: The direction of the DMA
4167 * @attrs: Optional DMA attributes for the map operation
4168 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4169 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4170 struct sg_table *sgt,
4171 enum dma_data_direction direction,
4172 unsigned long dma_attrs)
4173 {
4174 int nents;
4175
4176 if (ib_uses_virt_dma(dev)) {
4177 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4178 if (!nents)
4179 return -EIO;
4180 sgt->nents = nents;
4181 return 0;
4182 }
4183 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4184 }
4185
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4186 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4187 struct sg_table *sgt,
4188 enum dma_data_direction direction,
4189 unsigned long dma_attrs)
4190 {
4191 if (!ib_uses_virt_dma(dev))
4192 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4193 }
4194
4195 /**
4196 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4197 * @dev: The device for which the DMA addresses are to be created
4198 * @sg: The array of scatter/gather entries
4199 * @nents: The number of scatter/gather entries
4200 * @direction: The direction of the DMA
4201 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4202 static inline int ib_dma_map_sg(struct ib_device *dev,
4203 struct scatterlist *sg, int nents,
4204 enum dma_data_direction direction)
4205 {
4206 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4207 }
4208
4209 /**
4210 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4211 * @dev: The device for which the DMA addresses were created
4212 * @sg: The array of scatter/gather entries
4213 * @nents: The number of scatter/gather entries
4214 * @direction: The direction of the DMA
4215 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4216 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4217 struct scatterlist *sg, int nents,
4218 enum dma_data_direction direction)
4219 {
4220 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4221 }
4222
4223 /**
4224 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4225 * @dev: The device to query
4226 *
4227 * The returned value represents a size in bytes.
4228 */
ib_dma_max_seg_size(struct ib_device * dev)4229 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4230 {
4231 if (ib_uses_virt_dma(dev))
4232 return UINT_MAX;
4233 return dma_get_max_seg_size(dev->dma_device);
4234 }
4235
4236 /**
4237 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4238 * @dev: The device for which the DMA address was created
4239 * @addr: The DMA address
4240 * @size: The size of the region in bytes
4241 * @dir: The direction of the DMA
4242 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4243 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4244 u64 addr,
4245 size_t size,
4246 enum dma_data_direction dir)
4247 {
4248 if (!ib_uses_virt_dma(dev))
4249 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4250 }
4251
4252 /**
4253 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4254 * @dev: The device for which the DMA address was created
4255 * @addr: The DMA address
4256 * @size: The size of the region in bytes
4257 * @dir: The direction of the DMA
4258 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4259 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4260 u64 addr,
4261 size_t size,
4262 enum dma_data_direction dir)
4263 {
4264 if (!ib_uses_virt_dma(dev))
4265 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4266 }
4267
4268 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4269 * space. This function should be called when 'current' is the owning MM.
4270 */
4271 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4272 u64 virt_addr, int mr_access_flags);
4273
4274 /* ib_advise_mr - give an advice about an address range in a memory region */
4275 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4276 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4277 /**
4278 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4279 * HCA translation table.
4280 * @mr: The memory region to deregister.
4281 * @udata: Valid user data or NULL for kernel object
4282 *
4283 * This function can fail, if the memory region has memory windows bound to it.
4284 */
4285 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4286
4287 /**
4288 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4289 * HCA translation table.
4290 * @mr: The memory region to deregister.
4291 *
4292 * This function can fail, if the memory region has memory windows bound to it.
4293 *
4294 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4295 */
ib_dereg_mr(struct ib_mr * mr)4296 static inline int ib_dereg_mr(struct ib_mr *mr)
4297 {
4298 return ib_dereg_mr_user(mr, NULL);
4299 }
4300
4301 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4302 u32 max_num_sg);
4303
4304 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4305 u32 max_num_data_sg,
4306 u32 max_num_meta_sg);
4307
4308 /**
4309 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4310 * R_Key and L_Key.
4311 * @mr - struct ib_mr pointer to be updated.
4312 * @newkey - new key to be used.
4313 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4314 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4315 {
4316 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4317 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4318 }
4319
4320 /**
4321 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4322 * for calculating a new rkey for type 2 memory windows.
4323 * @rkey - the rkey to increment.
4324 */
ib_inc_rkey(u32 rkey)4325 static inline u32 ib_inc_rkey(u32 rkey)
4326 {
4327 const u32 mask = 0x000000ff;
4328 return ((rkey + 1) & mask) | (rkey & ~mask);
4329 }
4330
4331 /**
4332 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4333 * @qp: QP to attach to the multicast group. The QP must be type
4334 * IB_QPT_UD.
4335 * @gid: Multicast group GID.
4336 * @lid: Multicast group LID in host byte order.
4337 *
4338 * In order to send and receive multicast packets, subnet
4339 * administration must have created the multicast group and configured
4340 * the fabric appropriately. The port associated with the specified
4341 * QP must also be a member of the multicast group.
4342 */
4343 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4344
4345 /**
4346 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4347 * @qp: QP to detach from the multicast group.
4348 * @gid: Multicast group GID.
4349 * @lid: Multicast group LID in host byte order.
4350 */
4351 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4352
4353 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4354 struct inode *inode, struct ib_udata *udata);
4355 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4356
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4357 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4358 unsigned int flags)
4359 {
4360 u64 device_cap = ib_dev->attrs.device_cap_flags;
4361
4362 /*
4363 * Local write permission is required if remote write or
4364 * remote atomic permission is also requested.
4365 */
4366 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4367 !(flags & IB_ACCESS_LOCAL_WRITE))
4368 return -EINVAL;
4369
4370 if (flags & ~IB_ACCESS_SUPPORTED)
4371 return -EINVAL;
4372
4373 if (flags & IB_ACCESS_ON_DEMAND &&
4374 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4375 return -EOPNOTSUPP;
4376
4377 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4378 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4379 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4380 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4381 return -EOPNOTSUPP;
4382
4383 return 0;
4384 }
4385
ib_access_writable(int access_flags)4386 static inline bool ib_access_writable(int access_flags)
4387 {
4388 /*
4389 * We have writable memory backing the MR if any of the following
4390 * access flags are set. "Local write" and "remote write" obviously
4391 * require write access. "Remote atomic" can do things like fetch and
4392 * add, which will modify memory, and "MW bind" can change permissions
4393 * by binding a window.
4394 */
4395 return access_flags &
4396 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4397 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4398 }
4399
4400 /**
4401 * ib_check_mr_status: lightweight check of MR status.
4402 * This routine may provide status checks on a selected
4403 * ib_mr. first use is for signature status check.
4404 *
4405 * @mr: A memory region.
4406 * @check_mask: Bitmask of which checks to perform from
4407 * ib_mr_status_check enumeration.
4408 * @mr_status: The container of relevant status checks.
4409 * failed checks will be indicated in the status bitmask
4410 * and the relevant info shall be in the error item.
4411 */
4412 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4413 struct ib_mr_status *mr_status);
4414
4415 /**
4416 * ib_device_try_get: Hold a registration lock
4417 * device: The device to lock
4418 *
4419 * A device under an active registration lock cannot become unregistered. It
4420 * is only possible to obtain a registration lock on a device that is fully
4421 * registered, otherwise this function returns false.
4422 *
4423 * The registration lock is only necessary for actions which require the
4424 * device to still be registered. Uses that only require the device pointer to
4425 * be valid should use get_device(&ibdev->dev) to hold the memory.
4426 *
4427 */
ib_device_try_get(struct ib_device * dev)4428 static inline bool ib_device_try_get(struct ib_device *dev)
4429 {
4430 return refcount_inc_not_zero(&dev->refcount);
4431 }
4432
4433 void ib_device_put(struct ib_device *device);
4434 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4435 enum rdma_driver_id driver_id);
4436 struct ib_device *ib_device_get_by_name(const char *name,
4437 enum rdma_driver_id driver_id);
4438 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4439 u16 pkey, const union ib_gid *gid,
4440 const struct sockaddr *addr);
4441 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4442 unsigned int port);
4443 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4444 struct ib_wq_init_attr *init_attr);
4445 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4446
4447 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4448 unsigned int *sg_offset, unsigned int page_size);
4449 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4450 int data_sg_nents, unsigned int *data_sg_offset,
4451 struct scatterlist *meta_sg, int meta_sg_nents,
4452 unsigned int *meta_sg_offset, unsigned int page_size);
4453
4454 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4455 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4456 unsigned int *sg_offset, unsigned int page_size)
4457 {
4458 int n;
4459
4460 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4461 mr->iova = 0;
4462
4463 return n;
4464 }
4465
4466 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4467 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4468
4469 void ib_drain_rq(struct ib_qp *qp);
4470 void ib_drain_sq(struct ib_qp *qp);
4471 void ib_drain_qp(struct ib_qp *qp);
4472
4473 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4474 u8 *width);
4475
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4476 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4477 {
4478 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4479 return attr->roce.dmac;
4480 return NULL;
4481 }
4482
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4483 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4484 {
4485 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4486 attr->ib.dlid = (u16)dlid;
4487 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4488 attr->opa.dlid = dlid;
4489 }
4490
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4491 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4492 {
4493 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4494 return attr->ib.dlid;
4495 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4496 return attr->opa.dlid;
4497 return 0;
4498 }
4499
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4500 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4501 {
4502 attr->sl = sl;
4503 }
4504
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4505 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4506 {
4507 return attr->sl;
4508 }
4509
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4510 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4511 u8 src_path_bits)
4512 {
4513 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4514 attr->ib.src_path_bits = src_path_bits;
4515 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4516 attr->opa.src_path_bits = src_path_bits;
4517 }
4518
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4519 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4520 {
4521 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4522 return attr->ib.src_path_bits;
4523 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4524 return attr->opa.src_path_bits;
4525 return 0;
4526 }
4527
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4528 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4529 bool make_grd)
4530 {
4531 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4532 attr->opa.make_grd = make_grd;
4533 }
4534
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4535 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4536 {
4537 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4538 return attr->opa.make_grd;
4539 return false;
4540 }
4541
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4542 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4543 {
4544 attr->port_num = port_num;
4545 }
4546
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4547 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4548 {
4549 return attr->port_num;
4550 }
4551
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4552 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4553 u8 static_rate)
4554 {
4555 attr->static_rate = static_rate;
4556 }
4557
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4558 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4559 {
4560 return attr->static_rate;
4561 }
4562
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4563 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4564 enum ib_ah_flags flag)
4565 {
4566 attr->ah_flags = flag;
4567 }
4568
4569 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4570 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4571 {
4572 return attr->ah_flags;
4573 }
4574
4575 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4576 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4577 {
4578 return &attr->grh;
4579 }
4580
4581 /*To retrieve and modify the grh */
4582 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4583 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4584 {
4585 return &attr->grh;
4586 }
4587
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4588 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4589 {
4590 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4591
4592 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4593 }
4594
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4595 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4596 __be64 prefix)
4597 {
4598 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4599
4600 grh->dgid.global.subnet_prefix = prefix;
4601 }
4602
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4603 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4604 __be64 if_id)
4605 {
4606 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4607
4608 grh->dgid.global.interface_id = if_id;
4609 }
4610
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4611 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4612 union ib_gid *dgid, u32 flow_label,
4613 u8 sgid_index, u8 hop_limit,
4614 u8 traffic_class)
4615 {
4616 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4617
4618 attr->ah_flags = IB_AH_GRH;
4619 if (dgid)
4620 grh->dgid = *dgid;
4621 grh->flow_label = flow_label;
4622 grh->sgid_index = sgid_index;
4623 grh->hop_limit = hop_limit;
4624 grh->traffic_class = traffic_class;
4625 grh->sgid_attr = NULL;
4626 }
4627
4628 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4629 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4630 u32 flow_label, u8 hop_limit, u8 traffic_class,
4631 const struct ib_gid_attr *sgid_attr);
4632 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4633 const struct rdma_ah_attr *src);
4634 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4635 const struct rdma_ah_attr *new);
4636 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4637
4638 /**
4639 * rdma_ah_find_type - Return address handle type.
4640 *
4641 * @dev: Device to be checked
4642 * @port_num: Port number
4643 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4644 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4645 u32 port_num)
4646 {
4647 if (rdma_protocol_roce(dev, port_num))
4648 return RDMA_AH_ATTR_TYPE_ROCE;
4649 if (rdma_protocol_ib(dev, port_num)) {
4650 if (rdma_cap_opa_ah(dev, port_num))
4651 return RDMA_AH_ATTR_TYPE_OPA;
4652 return RDMA_AH_ATTR_TYPE_IB;
4653 }
4654
4655 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4656 }
4657
4658 /**
4659 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4660 * In the current implementation the only way to
4661 * get the 32bit lid is from other sources for OPA.
4662 * For IB, lids will always be 16bits so cast the
4663 * value accordingly.
4664 *
4665 * @lid: A 32bit LID
4666 */
ib_lid_cpu16(u32 lid)4667 static inline u16 ib_lid_cpu16(u32 lid)
4668 {
4669 WARN_ON_ONCE(lid & 0xFFFF0000);
4670 return (u16)lid;
4671 }
4672
4673 /**
4674 * ib_lid_be16 - Return lid in 16bit BE encoding.
4675 *
4676 * @lid: A 32bit LID
4677 */
ib_lid_be16(u32 lid)4678 static inline __be16 ib_lid_be16(u32 lid)
4679 {
4680 WARN_ON_ONCE(lid & 0xFFFF0000);
4681 return cpu_to_be16((u16)lid);
4682 }
4683
4684 /**
4685 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4686 * vector
4687 * @device: the rdma device
4688 * @comp_vector: index of completion vector
4689 *
4690 * Returns NULL on failure, otherwise a corresponding cpu map of the
4691 * completion vector (returns all-cpus map if the device driver doesn't
4692 * implement get_vector_affinity).
4693 */
4694 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4695 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4696 {
4697 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4698 !device->ops.get_vector_affinity)
4699 return NULL;
4700
4701 return device->ops.get_vector_affinity(device, comp_vector);
4702
4703 }
4704
4705 /**
4706 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4707 * and add their gids, as needed, to the relevant RoCE devices.
4708 *
4709 * @device: the rdma device
4710 */
4711 void rdma_roce_rescan_device(struct ib_device *ibdev);
4712
4713 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4714
4715 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4716
4717 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4718 enum rdma_netdev_t type, const char *name,
4719 unsigned char name_assign_type,
4720 void (*setup)(struct net_device *));
4721
4722 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4723 enum rdma_netdev_t type, const char *name,
4724 unsigned char name_assign_type,
4725 void (*setup)(struct net_device *),
4726 struct net_device *netdev);
4727
4728 /**
4729 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4730 *
4731 * @device: device pointer for which ib_device pointer to retrieve
4732 *
4733 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4734 *
4735 */
rdma_device_to_ibdev(struct device * device)4736 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4737 {
4738 struct ib_core_device *coredev =
4739 container_of(device, struct ib_core_device, dev);
4740
4741 return coredev->owner;
4742 }
4743
4744 /**
4745 * ibdev_to_node - return the NUMA node for a given ib_device
4746 * @dev: device to get the NUMA node for.
4747 */
ibdev_to_node(struct ib_device * ibdev)4748 static inline int ibdev_to_node(struct ib_device *ibdev)
4749 {
4750 struct device *parent = ibdev->dev.parent;
4751
4752 if (!parent)
4753 return NUMA_NO_NODE;
4754 return dev_to_node(parent);
4755 }
4756
4757 /**
4758 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4759 * ib_device holder structure from device pointer.
4760 *
4761 * NOTE: New drivers should not make use of this API; This API is only for
4762 * existing drivers who have exposed sysfs entries using
4763 * ops->device_group.
4764 */
4765 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4766 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4767
4768 bool rdma_dev_access_netns(const struct ib_device *device,
4769 const struct net *net);
4770
4771 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4772 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4773 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4774
4775 /**
4776 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4777 * on the flow_label
4778 *
4779 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4780 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4781 * convention.
4782 */
rdma_flow_label_to_udp_sport(u32 fl)4783 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4784 {
4785 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4786
4787 fl_low ^= fl_high >> 14;
4788 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4789 }
4790
4791 /**
4792 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4793 * local and remote qpn values
4794 *
4795 * This function folded the multiplication results of two qpns, 24 bit each,
4796 * fields, and converts it to a 20 bit results.
4797 *
4798 * This function will create symmetric flow_label value based on the local
4799 * and remote qpn values. this will allow both the requester and responder
4800 * to calculate the same flow_label for a given connection.
4801 *
4802 * This helper function should be used by driver in case the upper layer
4803 * provide a zero flow_label value. This is to improve entropy of RDMA
4804 * traffic in the network.
4805 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4806 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4807 {
4808 u64 v = (u64)lqpn * rqpn;
4809
4810 v ^= v >> 20;
4811 v ^= v >> 40;
4812
4813 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4814 }
4815
4816 /**
4817 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4818 * label. If flow label is not defined in GRH then
4819 * calculate it based on lqpn/rqpn.
4820 *
4821 * @fl: flow label from GRH
4822 * @lqpn: local qp number
4823 * @rqpn: remote qp number
4824 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4825 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4826 {
4827 if (!fl)
4828 fl = rdma_calc_flow_label(lqpn, rqpn);
4829
4830 return rdma_flow_label_to_udp_sport(fl);
4831 }
4832
4833 const struct ib_port_immutable*
4834 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4835 #endif /* IB_VERBS_H */
4836