1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
before(__u32 seq1,__u32 seq2)269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
tcp_out_of_memory(struct sock * sk)281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
tcp_too_many_orphans(struct sock * sk,int shift)291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 void tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen,
380 			   bool *lost_race);
381 int tcp_child_process(struct sock *parent, struct sock *child,
382 		      struct sk_buff *skb);
383 void tcp_enter_loss(struct sock *sk);
384 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385 void tcp_clear_retrans(struct tcp_sock *tp);
386 void tcp_update_metrics(struct sock *sk);
387 void tcp_init_metrics(struct sock *sk);
388 void tcp_metrics_init(void);
389 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 __poll_t tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 int tcp_set_rcvlowat(struct sock *sk, int val);
408 void tcp_data_ready(struct sock *sk);
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412 		       struct tcp_options_received *opt_rx,
413 		       int estab, struct tcp_fastopen_cookie *foc);
414 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
421 void tcp_v4_mtu_reduced(struct sock *sk);
422 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
423 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
424 struct sock *tcp_create_openreq_child(const struct sock *sk,
425 				      struct request_sock *req,
426 				      struct sk_buff *skb);
427 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
428 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
429 				  struct request_sock *req,
430 				  struct dst_entry *dst,
431 				  struct request_sock *req_unhash,
432 				  bool *own_req);
433 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
434 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
435 int tcp_connect(struct sock *sk);
436 enum tcp_synack_type {
437 	TCP_SYNACK_NORMAL,
438 	TCP_SYNACK_FASTOPEN,
439 	TCP_SYNACK_COOKIE,
440 };
441 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
442 				struct request_sock *req,
443 				struct tcp_fastopen_cookie *foc,
444 				enum tcp_synack_type synack_type);
445 int tcp_disconnect(struct sock *sk, int flags);
446 
447 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
448 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
449 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
450 
451 /* From syncookies.c */
452 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
453 				 struct request_sock *req,
454 				 struct dst_entry *dst, u32 tsoff);
455 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
456 		      u32 cookie);
457 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
458 #ifdef CONFIG_SYN_COOKIES
459 
460 /* Syncookies use a monotonic timer which increments every 60 seconds.
461  * This counter is used both as a hash input and partially encoded into
462  * the cookie value.  A cookie is only validated further if the delta
463  * between the current counter value and the encoded one is less than this,
464  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
465  * the counter advances immediately after a cookie is generated).
466  */
467 #define MAX_SYNCOOKIE_AGE	2
468 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
469 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
470 
471 /* syncookies: remember time of last synqueue overflow
472  * But do not dirty this field too often (once per second is enough)
473  * It is racy as we do not hold a lock, but race is very minor.
474  */
tcp_synq_overflow(const struct sock * sk)475 static inline void tcp_synq_overflow(const struct sock *sk)
476 {
477 	unsigned int last_overflow;
478 	unsigned int now = jiffies;
479 
480 	if (sk->sk_reuseport) {
481 		struct sock_reuseport *reuse;
482 
483 		reuse = rcu_dereference(sk->sk_reuseport_cb);
484 		if (likely(reuse)) {
485 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
486 			if (time_after32(now, last_overflow + HZ))
487 				WRITE_ONCE(reuse->synq_overflow_ts, now);
488 			return;
489 		}
490 	}
491 
492 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
493 	if (time_after32(now, last_overflow + HZ))
494 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
495 }
496 
497 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)498 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			return time_after32(now, last_overflow +
510 					    TCP_SYNCOOKIE_VALID);
511 		}
512 	}
513 
514 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
515 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
516 }
517 
tcp_cookie_time(void)518 static inline u32 tcp_cookie_time(void)
519 {
520 	u64 val = get_jiffies_64();
521 
522 	do_div(val, TCP_SYNCOOKIE_PERIOD);
523 	return val;
524 }
525 
526 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
527 			      u16 *mssp);
528 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
529 u64 cookie_init_timestamp(struct request_sock *req);
530 bool cookie_timestamp_decode(const struct net *net,
531 			     struct tcp_options_received *opt);
532 bool cookie_ecn_ok(const struct tcp_options_received *opt,
533 		   const struct net *net, const struct dst_entry *dst);
534 
535 /* From net/ipv6/syncookies.c */
536 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
537 		      u32 cookie);
538 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
539 
540 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
541 			      const struct tcphdr *th, u16 *mssp);
542 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
543 #endif
544 /* tcp_output.c */
545 
546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
547 			       int nonagle);
548 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 void tcp_retransmit_timer(struct sock *sk);
551 void tcp_xmit_retransmit_queue(struct sock *);
552 void tcp_simple_retransmit(struct sock *);
553 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
554 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
555 enum tcp_queue {
556 	TCP_FRAG_IN_WRITE_QUEUE,
557 	TCP_FRAG_IN_RTX_QUEUE,
558 };
559 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
560 		 struct sk_buff *skb, u32 len,
561 		 unsigned int mss_now, gfp_t gfp);
562 
563 void tcp_send_probe0(struct sock *);
564 void tcp_send_partial(struct sock *);
565 int tcp_write_wakeup(struct sock *, int mib);
566 void tcp_send_fin(struct sock *sk);
567 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
568 int tcp_send_synack(struct sock *);
569 void tcp_push_one(struct sock *, unsigned int mss_now);
570 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
571 void tcp_send_ack(struct sock *sk);
572 void tcp_send_delayed_ack(struct sock *sk);
573 void tcp_send_loss_probe(struct sock *sk);
574 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
575 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
576 			     const struct sk_buff *next_skb);
577 
578 /* tcp_input.c */
579 void tcp_rearm_rto(struct sock *sk);
580 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
581 void tcp_reset(struct sock *sk);
582 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
583 void tcp_fin(struct sock *sk);
584 
585 /* tcp_timer.c */
586 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)587 static inline void tcp_clear_xmit_timers(struct sock *sk)
588 {
589 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
590 		__sock_put(sk);
591 
592 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
593 		__sock_put(sk);
594 
595 	inet_csk_clear_xmit_timers(sk);
596 }
597 
598 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599 unsigned int tcp_current_mss(struct sock *sk);
600 
601 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)602 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603 {
604 	int cutoff;
605 
606 	/* When peer uses tiny windows, there is no use in packetizing
607 	 * to sub-MSS pieces for the sake of SWS or making sure there
608 	 * are enough packets in the pipe for fast recovery.
609 	 *
610 	 * On the other hand, for extremely large MSS devices, handling
611 	 * smaller than MSS windows in this way does make sense.
612 	 */
613 	if (tp->max_window > TCP_MSS_DEFAULT)
614 		cutoff = (tp->max_window >> 1);
615 	else
616 		cutoff = tp->max_window;
617 
618 	if (cutoff && pktsize > cutoff)
619 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 	else
621 		return pktsize;
622 }
623 
624 /* tcp.c */
625 void tcp_get_info(struct sock *, struct tcp_info *);
626 
627 /* Read 'sendfile()'-style from a TCP socket */
628 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 		  sk_read_actor_t recv_actor);
630 
631 void tcp_initialize_rcv_mss(struct sock *sk);
632 
633 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634 int tcp_mss_to_mtu(struct sock *sk, int mss);
635 void tcp_mtup_init(struct sock *sk);
636 void tcp_init_buffer_space(struct sock *sk);
637 
tcp_bound_rto(const struct sock * sk)638 static inline void tcp_bound_rto(const struct sock *sk)
639 {
640 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642 }
643 
__tcp_set_rto(const struct tcp_sock * tp)644 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645 {
646 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647 }
648 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)649 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650 {
651 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 			       ntohl(TCP_FLAG_ACK) |
653 			       snd_wnd);
654 }
655 
tcp_fast_path_on(struct tcp_sock * tp)656 static inline void tcp_fast_path_on(struct tcp_sock *tp)
657 {
658 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659 }
660 
tcp_fast_path_check(struct sock * sk)661 static inline void tcp_fast_path_check(struct sock *sk)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 
665 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 	    tp->rcv_wnd &&
667 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 	    !tp->urg_data)
669 		tcp_fast_path_on(tp);
670 }
671 
672 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)673 static inline u32 tcp_rto_min(struct sock *sk)
674 {
675 	const struct dst_entry *dst = __sk_dst_get(sk);
676 	u32 rto_min = TCP_RTO_MIN;
677 
678 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 	return rto_min;
681 }
682 
tcp_rto_min_us(struct sock * sk)683 static inline u32 tcp_rto_min_us(struct sock *sk)
684 {
685 	return jiffies_to_usecs(tcp_rto_min(sk));
686 }
687 
tcp_ca_dst_locked(const struct dst_entry * dst)688 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689 {
690 	return dst_metric_locked(dst, RTAX_CC_ALGO);
691 }
692 
693 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)694 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695 {
696 	return minmax_get(&tp->rtt_min);
697 }
698 
699 /* Compute the actual receive window we are currently advertising.
700  * Rcv_nxt can be after the window if our peer push more data
701  * than the offered window.
702  */
tcp_receive_window(const struct tcp_sock * tp)703 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704 {
705 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706 
707 	if (win < 0)
708 		win = 0;
709 	return (u32) win;
710 }
711 
712 /* Choose a new window, without checks for shrinking, and without
713  * scaling applied to the result.  The caller does these things
714  * if necessary.  This is a "raw" window selection.
715  */
716 u32 __tcp_select_window(struct sock *sk);
717 
718 void tcp_send_window_probe(struct sock *sk);
719 
720 /* TCP uses 32bit jiffies to save some space.
721  * Note that this is different from tcp_time_stamp, which
722  * historically has been the same until linux-4.13.
723  */
724 #define tcp_jiffies32 ((u32)jiffies)
725 
726 /*
727  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728  * It is no longer tied to jiffies, but to 1 ms clock.
729  * Note: double check if you want to use tcp_jiffies32 instead of this.
730  */
731 #define TCP_TS_HZ	1000
732 
tcp_clock_ns(void)733 static inline u64 tcp_clock_ns(void)
734 {
735 	return local_clock();
736 }
737 
tcp_clock_us(void)738 static inline u64 tcp_clock_us(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741 }
742 
743 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)744 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745 {
746 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)750 static inline u32 tcp_time_stamp_raw(void)
751 {
752 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753 }
754 
755 
756 /* Refresh 1us clock of a TCP socket,
757  * ensuring monotically increasing values.
758  */
tcp_mstamp_refresh(struct tcp_sock * tp)759 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
760 {
761 	u64 val = tcp_clock_us();
762 
763 	if (val > tp->tcp_mstamp)
764 		tp->tcp_mstamp = val;
765 }
766 
tcp_stamp_us_delta(u64 t1,u64 t0)767 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
768 {
769 	return max_t(s64, t1 - t0, 0);
770 }
771 
tcp_skb_timestamp(const struct sk_buff * skb)772 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
773 {
774 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
775 }
776 
777 
778 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
779 
780 #define TCPHDR_FIN 0x01
781 #define TCPHDR_SYN 0x02
782 #define TCPHDR_RST 0x04
783 #define TCPHDR_PSH 0x08
784 #define TCPHDR_ACK 0x10
785 #define TCPHDR_URG 0x20
786 #define TCPHDR_ECE 0x40
787 #define TCPHDR_CWR 0x80
788 
789 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
790 
791 /* This is what the send packet queuing engine uses to pass
792  * TCP per-packet control information to the transmission code.
793  * We also store the host-order sequence numbers in here too.
794  * This is 44 bytes if IPV6 is enabled.
795  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
796  */
797 struct tcp_skb_cb {
798 	__u32		seq;		/* Starting sequence number	*/
799 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
800 	union {
801 		/* Note : tcp_tw_isn is used in input path only
802 		 *	  (isn chosen by tcp_timewait_state_process())
803 		 *
804 		 * 	  tcp_gso_segs/size are used in write queue only,
805 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
806 		 */
807 		__u32		tcp_tw_isn;
808 		struct {
809 			u16	tcp_gso_segs;
810 			u16	tcp_gso_size;
811 		};
812 	};
813 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
814 
815 	__u8		sacked;		/* State flags for SACK.	*/
816 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
817 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
818 #define TCPCB_LOST		0x04	/* SKB is lost			*/
819 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
820 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
821 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
822 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
823 				TCPCB_REPAIRED)
824 
825 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
826 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
827 			eor:1,		/* Is skb MSG_EOR marked? */
828 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
829 			unused:5;
830 	__u32		ack_seq;	/* Sequence number ACK'd	*/
831 	union {
832 		struct {
833 			/* There is space for up to 24 bytes */
834 			__u32 in_flight:30,/* Bytes in flight at transmit */
835 			      is_app_limited:1, /* cwnd not fully used? */
836 			      unused:1;
837 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
838 			__u32 delivered;
839 			/* start of send pipeline phase */
840 			u64 first_tx_mstamp;
841 			/* when we reached the "delivered" count */
842 			u64 delivered_mstamp;
843 		} tx;   /* only used for outgoing skbs */
844 		union {
845 			struct inet_skb_parm	h4;
846 #if IS_ENABLED(CONFIG_IPV6)
847 			struct inet6_skb_parm	h6;
848 #endif
849 		} header;	/* For incoming skbs */
850 		struct {
851 			__u32 flags;
852 			struct sock *sk_redir;
853 			void *data_end;
854 		} bpf;
855 	};
856 };
857 
858 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
859 
bpf_compute_data_end_sk_skb(struct sk_buff * skb)860 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
861 {
862 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
863 }
864 
865 #if IS_ENABLED(CONFIG_IPV6)
866 /* This is the variant of inet6_iif() that must be used by TCP,
867  * as TCP moves IP6CB into a different location in skb->cb[]
868  */
tcp_v6_iif(const struct sk_buff * skb)869 static inline int tcp_v6_iif(const struct sk_buff *skb)
870 {
871 	return TCP_SKB_CB(skb)->header.h6.iif;
872 }
873 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)874 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
875 {
876 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
877 
878 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
879 }
880 
881 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)882 static inline int tcp_v6_sdif(const struct sk_buff *skb)
883 {
884 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
885 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
886 		return TCP_SKB_CB(skb)->header.h6.iif;
887 #endif
888 	return 0;
889 }
890 #endif
891 
inet_exact_dif_match(struct net * net,struct sk_buff * skb)892 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
893 {
894 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
895 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
896 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
897 		return true;
898 #endif
899 	return false;
900 }
901 
902 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)903 static inline int tcp_v4_sdif(struct sk_buff *skb)
904 {
905 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
906 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
907 		return TCP_SKB_CB(skb)->header.h4.iif;
908 #endif
909 	return 0;
910 }
911 
912 /* Due to TSO, an SKB can be composed of multiple actual
913  * packets.  To keep these tracked properly, we use this.
914  */
tcp_skb_pcount(const struct sk_buff * skb)915 static inline int tcp_skb_pcount(const struct sk_buff *skb)
916 {
917 	return TCP_SKB_CB(skb)->tcp_gso_segs;
918 }
919 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)920 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
921 {
922 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
923 }
924 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)925 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
926 {
927 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
928 }
929 
930 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)931 static inline int tcp_skb_mss(const struct sk_buff *skb)
932 {
933 	return TCP_SKB_CB(skb)->tcp_gso_size;
934 }
935 
tcp_skb_can_collapse_to(const struct sk_buff * skb)936 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
937 {
938 	return likely(!TCP_SKB_CB(skb)->eor);
939 }
940 
941 /* Events passed to congestion control interface */
942 enum tcp_ca_event {
943 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
944 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
945 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
946 	CA_EVENT_LOSS,		/* loss timeout */
947 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
948 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
949 };
950 
951 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
952 enum tcp_ca_ack_event_flags {
953 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
954 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
955 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
956 };
957 
958 /*
959  * Interface for adding new TCP congestion control handlers
960  */
961 #define TCP_CA_NAME_MAX	16
962 #define TCP_CA_MAX	128
963 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
964 
965 #define TCP_CA_UNSPEC	0
966 
967 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
968 #define TCP_CONG_NON_RESTRICTED 0x1
969 /* Requires ECN/ECT set on all packets */
970 #define TCP_CONG_NEEDS_ECN	0x2
971 
972 union tcp_cc_info;
973 
974 struct ack_sample {
975 	u32 pkts_acked;
976 	s32 rtt_us;
977 	u32 in_flight;
978 };
979 
980 /* A rate sample measures the number of (original/retransmitted) data
981  * packets delivered "delivered" over an interval of time "interval_us".
982  * The tcp_rate.c code fills in the rate sample, and congestion
983  * control modules that define a cong_control function to run at the end
984  * of ACK processing can optionally chose to consult this sample when
985  * setting cwnd and pacing rate.
986  * A sample is invalid if "delivered" or "interval_us" is negative.
987  */
988 struct rate_sample {
989 	u64  prior_mstamp; /* starting timestamp for interval */
990 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
991 	s32  delivered;		/* number of packets delivered over interval */
992 	long interval_us;	/* time for tp->delivered to incr "delivered" */
993 	u32 snd_interval_us;	/* snd interval for delivered packets */
994 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
995 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
996 	int  losses;		/* number of packets marked lost upon ACK */
997 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
998 	u32  prior_in_flight;	/* in flight before this ACK */
999 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1000 	bool is_retrans;	/* is sample from retransmission? */
1001 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1002 };
1003 
1004 struct tcp_congestion_ops {
1005 	struct list_head	list;
1006 	u32 key;
1007 	u32 flags;
1008 
1009 	/* initialize private data (optional) */
1010 	void (*init)(struct sock *sk);
1011 	/* cleanup private data  (optional) */
1012 	void (*release)(struct sock *sk);
1013 
1014 	/* return slow start threshold (required) */
1015 	u32 (*ssthresh)(struct sock *sk);
1016 	/* do new cwnd calculation (required) */
1017 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1018 	/* call before changing ca_state (optional) */
1019 	void (*set_state)(struct sock *sk, u8 new_state);
1020 	/* call when cwnd event occurs (optional) */
1021 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1022 	/* call when ack arrives (optional) */
1023 	void (*in_ack_event)(struct sock *sk, u32 flags);
1024 	/* new value of cwnd after loss (required) */
1025 	u32  (*undo_cwnd)(struct sock *sk);
1026 	/* hook for packet ack accounting (optional) */
1027 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1028 	/* override sysctl_tcp_min_tso_segs */
1029 	u32 (*min_tso_segs)(struct sock *sk);
1030 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1031 	u32 (*sndbuf_expand)(struct sock *sk);
1032 	/* call when packets are delivered to update cwnd and pacing rate,
1033 	 * after all the ca_state processing. (optional)
1034 	 */
1035 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1036 	/* get info for inet_diag (optional) */
1037 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1038 			   union tcp_cc_info *info);
1039 
1040 	char 		name[TCP_CA_NAME_MAX];
1041 	struct module 	*owner;
1042 };
1043 
1044 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1045 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1046 
1047 void tcp_assign_congestion_control(struct sock *sk);
1048 void tcp_init_congestion_control(struct sock *sk);
1049 void tcp_cleanup_congestion_control(struct sock *sk);
1050 int tcp_set_default_congestion_control(struct net *net, const char *name);
1051 void tcp_get_default_congestion_control(struct net *net, char *name);
1052 void tcp_get_available_congestion_control(char *buf, size_t len);
1053 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1054 int tcp_set_allowed_congestion_control(char *allowed);
1055 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1056 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1057 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1058 
1059 u32 tcp_reno_ssthresh(struct sock *sk);
1060 u32 tcp_reno_undo_cwnd(struct sock *sk);
1061 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1062 extern struct tcp_congestion_ops tcp_reno;
1063 
1064 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1065 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1066 #ifdef CONFIG_INET
1067 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1068 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1069 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1070 {
1071 	return NULL;
1072 }
1073 #endif
1074 
tcp_ca_needs_ecn(const struct sock * sk)1075 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1076 {
1077 	const struct inet_connection_sock *icsk = inet_csk(sk);
1078 
1079 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1080 }
1081 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1082 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1083 {
1084 	struct inet_connection_sock *icsk = inet_csk(sk);
1085 
1086 	if (icsk->icsk_ca_ops->set_state)
1087 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1088 	icsk->icsk_ca_state = ca_state;
1089 }
1090 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1091 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1092 {
1093 	const struct inet_connection_sock *icsk = inet_csk(sk);
1094 
1095 	if (icsk->icsk_ca_ops->cwnd_event)
1096 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1097 }
1098 
1099 /* From tcp_rate.c */
1100 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1101 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1102 			    struct rate_sample *rs);
1103 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1104 		  bool is_sack_reneg, struct rate_sample *rs);
1105 void tcp_rate_check_app_limited(struct sock *sk);
1106 
1107 /* These functions determine how the current flow behaves in respect of SACK
1108  * handling. SACK is negotiated with the peer, and therefore it can vary
1109  * between different flows.
1110  *
1111  * tcp_is_sack - SACK enabled
1112  * tcp_is_reno - No SACK
1113  */
tcp_is_sack(const struct tcp_sock * tp)1114 static inline int tcp_is_sack(const struct tcp_sock *tp)
1115 {
1116 	return tp->rx_opt.sack_ok;
1117 }
1118 
tcp_is_reno(const struct tcp_sock * tp)1119 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1120 {
1121 	return !tcp_is_sack(tp);
1122 }
1123 
tcp_left_out(const struct tcp_sock * tp)1124 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1125 {
1126 	return tp->sacked_out + tp->lost_out;
1127 }
1128 
1129 /* This determines how many packets are "in the network" to the best
1130  * of our knowledge.  In many cases it is conservative, but where
1131  * detailed information is available from the receiver (via SACK
1132  * blocks etc.) we can make more aggressive calculations.
1133  *
1134  * Use this for decisions involving congestion control, use just
1135  * tp->packets_out to determine if the send queue is empty or not.
1136  *
1137  * Read this equation as:
1138  *
1139  *	"Packets sent once on transmission queue" MINUS
1140  *	"Packets left network, but not honestly ACKed yet" PLUS
1141  *	"Packets fast retransmitted"
1142  */
tcp_packets_in_flight(const struct tcp_sock * tp)1143 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1144 {
1145 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1146 }
1147 
1148 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1149 
tcp_in_slow_start(const struct tcp_sock * tp)1150 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1151 {
1152 	return tp->snd_cwnd < tp->snd_ssthresh;
1153 }
1154 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1155 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1156 {
1157 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1158 }
1159 
tcp_in_cwnd_reduction(const struct sock * sk)1160 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1161 {
1162 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1163 	       (1 << inet_csk(sk)->icsk_ca_state);
1164 }
1165 
1166 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1167  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1168  * ssthresh.
1169  */
tcp_current_ssthresh(const struct sock * sk)1170 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1171 {
1172 	const struct tcp_sock *tp = tcp_sk(sk);
1173 
1174 	if (tcp_in_cwnd_reduction(sk))
1175 		return tp->snd_ssthresh;
1176 	else
1177 		return max(tp->snd_ssthresh,
1178 			   ((tp->snd_cwnd >> 1) +
1179 			    (tp->snd_cwnd >> 2)));
1180 }
1181 
1182 /* Use define here intentionally to get WARN_ON location shown at the caller */
1183 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1184 
1185 void tcp_enter_cwr(struct sock *sk);
1186 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1187 
1188 /* The maximum number of MSS of available cwnd for which TSO defers
1189  * sending if not using sysctl_tcp_tso_win_divisor.
1190  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1191 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1192 {
1193 	return 3;
1194 }
1195 
1196 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1197 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1198 {
1199 	return tp->snd_una + tp->snd_wnd;
1200 }
1201 
1202 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1203  * flexible approach. The RFC suggests cwnd should not be raised unless
1204  * it was fully used previously. And that's exactly what we do in
1205  * congestion avoidance mode. But in slow start we allow cwnd to grow
1206  * as long as the application has used half the cwnd.
1207  * Example :
1208  *    cwnd is 10 (IW10), but application sends 9 frames.
1209  *    We allow cwnd to reach 18 when all frames are ACKed.
1210  * This check is safe because it's as aggressive as slow start which already
1211  * risks 100% overshoot. The advantage is that we discourage application to
1212  * either send more filler packets or data to artificially blow up the cwnd
1213  * usage, and allow application-limited process to probe bw more aggressively.
1214  */
tcp_is_cwnd_limited(const struct sock * sk)1215 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1216 {
1217 	const struct tcp_sock *tp = tcp_sk(sk);
1218 
1219 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1220 	if (tcp_in_slow_start(tp))
1221 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1222 
1223 	return tp->is_cwnd_limited;
1224 }
1225 
1226 /* BBR congestion control needs pacing.
1227  * Same remark for SO_MAX_PACING_RATE.
1228  * sch_fq packet scheduler is efficiently handling pacing,
1229  * but is not always installed/used.
1230  * Return true if TCP stack should pace packets itself.
1231  */
tcp_needs_internal_pacing(const struct sock * sk)1232 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1233 {
1234 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1235 }
1236 
1237 /* Something is really bad, we could not queue an additional packet,
1238  * because qdisc is full or receiver sent a 0 window.
1239  * We do not want to add fuel to the fire, or abort too early,
1240  * so make sure the timer we arm now is at least 200ms in the future,
1241  * regardless of current icsk_rto value (as it could be ~2ms)
1242  */
tcp_probe0_base(const struct sock * sk)1243 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1244 {
1245 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1246 }
1247 
1248 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1249 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1250 					    unsigned long max_when)
1251 {
1252 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1253 
1254 	return (unsigned long)min_t(u64, when, max_when);
1255 }
1256 
tcp_check_probe_timer(struct sock * sk)1257 static inline void tcp_check_probe_timer(struct sock *sk)
1258 {
1259 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1260 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1261 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1262 }
1263 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1264 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1265 {
1266 	tp->snd_wl1 = seq;
1267 }
1268 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1269 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1270 {
1271 	tp->snd_wl1 = seq;
1272 }
1273 
1274 /*
1275  * Calculate(/check) TCP checksum
1276  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1277 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1278 				   __be32 daddr, __wsum base)
1279 {
1280 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1281 }
1282 
__tcp_checksum_complete(struct sk_buff * skb)1283 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1284 {
1285 	return __skb_checksum_complete(skb);
1286 }
1287 
tcp_checksum_complete(struct sk_buff * skb)1288 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1289 {
1290 	return !skb_csum_unnecessary(skb) &&
1291 		__tcp_checksum_complete(skb);
1292 }
1293 
1294 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1295 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1296 
1297 #undef STATE_TRACE
1298 
1299 #ifdef STATE_TRACE
1300 static const char *statename[]={
1301 	"Unused","Established","Syn Sent","Syn Recv",
1302 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1303 	"Close Wait","Last ACK","Listen","Closing"
1304 };
1305 #endif
1306 void tcp_set_state(struct sock *sk, int state);
1307 
1308 void tcp_done(struct sock *sk);
1309 
1310 int tcp_abort(struct sock *sk, int err);
1311 
tcp_sack_reset(struct tcp_options_received * rx_opt)1312 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1313 {
1314 	rx_opt->dsack = 0;
1315 	rx_opt->num_sacks = 0;
1316 }
1317 
1318 u32 tcp_default_init_rwnd(u32 mss);
1319 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1320 
tcp_slow_start_after_idle_check(struct sock * sk)1321 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1322 {
1323 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1324 	struct tcp_sock *tp = tcp_sk(sk);
1325 	s32 delta;
1326 
1327 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1328 	    ca_ops->cong_control)
1329 		return;
1330 	delta = tcp_jiffies32 - tp->lsndtime;
1331 	if (delta > inet_csk(sk)->icsk_rto)
1332 		tcp_cwnd_restart(sk, delta);
1333 }
1334 
1335 /* Determine a window scaling and initial window to offer. */
1336 void tcp_select_initial_window(const struct sock *sk, int __space,
1337 			       __u32 mss, __u32 *rcv_wnd,
1338 			       __u32 *window_clamp, int wscale_ok,
1339 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1340 
tcp_win_from_space(const struct sock * sk,int space)1341 static inline int tcp_win_from_space(const struct sock *sk, int space)
1342 {
1343 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1344 
1345 	return tcp_adv_win_scale <= 0 ?
1346 		(space>>(-tcp_adv_win_scale)) :
1347 		space - (space>>tcp_adv_win_scale);
1348 }
1349 
1350 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1351 static inline int tcp_space(const struct sock *sk)
1352 {
1353 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1354 				  atomic_read(&sk->sk_rmem_alloc));
1355 }
1356 
tcp_full_space(const struct sock * sk)1357 static inline int tcp_full_space(const struct sock *sk)
1358 {
1359 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1360 }
1361 
1362 extern void tcp_openreq_init_rwin(struct request_sock *req,
1363 				  const struct sock *sk_listener,
1364 				  const struct dst_entry *dst);
1365 
1366 void tcp_enter_memory_pressure(struct sock *sk);
1367 void tcp_leave_memory_pressure(struct sock *sk);
1368 
keepalive_intvl_when(const struct tcp_sock * tp)1369 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1370 {
1371 	struct net *net = sock_net((struct sock *)tp);
1372 
1373 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1374 }
1375 
keepalive_time_when(const struct tcp_sock * tp)1376 static inline int keepalive_time_when(const struct tcp_sock *tp)
1377 {
1378 	struct net *net = sock_net((struct sock *)tp);
1379 
1380 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1381 }
1382 
keepalive_probes(const struct tcp_sock * tp)1383 static inline int keepalive_probes(const struct tcp_sock *tp)
1384 {
1385 	struct net *net = sock_net((struct sock *)tp);
1386 
1387 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1388 }
1389 
keepalive_time_elapsed(const struct tcp_sock * tp)1390 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1391 {
1392 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1393 
1394 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1395 			  tcp_jiffies32 - tp->rcv_tstamp);
1396 }
1397 
tcp_fin_time(const struct sock * sk)1398 static inline int tcp_fin_time(const struct sock *sk)
1399 {
1400 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1401 	const int rto = inet_csk(sk)->icsk_rto;
1402 
1403 	if (fin_timeout < (rto << 2) - (rto >> 1))
1404 		fin_timeout = (rto << 2) - (rto >> 1);
1405 
1406 	return fin_timeout;
1407 }
1408 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1409 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1410 				  int paws_win)
1411 {
1412 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1413 		return true;
1414 	if (unlikely(!time_before32(ktime_get_seconds(),
1415 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1416 		return true;
1417 	/*
1418 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1419 	 * then following tcp messages have valid values. Ignore 0 value,
1420 	 * or else 'negative' tsval might forbid us to accept their packets.
1421 	 */
1422 	if (!rx_opt->ts_recent)
1423 		return true;
1424 	return false;
1425 }
1426 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1427 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1428 				   int rst)
1429 {
1430 	if (tcp_paws_check(rx_opt, 0))
1431 		return false;
1432 
1433 	/* RST segments are not recommended to carry timestamp,
1434 	   and, if they do, it is recommended to ignore PAWS because
1435 	   "their cleanup function should take precedence over timestamps."
1436 	   Certainly, it is mistake. It is necessary to understand the reasons
1437 	   of this constraint to relax it: if peer reboots, clock may go
1438 	   out-of-sync and half-open connections will not be reset.
1439 	   Actually, the problem would be not existing if all
1440 	   the implementations followed draft about maintaining clock
1441 	   via reboots. Linux-2.2 DOES NOT!
1442 
1443 	   However, we can relax time bounds for RST segments to MSL.
1444 	 */
1445 	if (rst && !time_before32(ktime_get_seconds(),
1446 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1447 		return false;
1448 	return true;
1449 }
1450 
1451 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1452 			  int mib_idx, u32 *last_oow_ack_time);
1453 
tcp_mib_init(struct net * net)1454 static inline void tcp_mib_init(struct net *net)
1455 {
1456 	/* See RFC 2012 */
1457 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1458 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1459 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1460 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1461 }
1462 
1463 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1464 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1465 {
1466 	tp->lost_skb_hint = NULL;
1467 }
1468 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1469 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1470 {
1471 	tcp_clear_retrans_hints_partial(tp);
1472 	tp->retransmit_skb_hint = NULL;
1473 }
1474 
1475 union tcp_md5_addr {
1476 	struct in_addr  a4;
1477 #if IS_ENABLED(CONFIG_IPV6)
1478 	struct in6_addr	a6;
1479 #endif
1480 };
1481 
1482 /* - key database */
1483 struct tcp_md5sig_key {
1484 	struct hlist_node	node;
1485 	u8			keylen;
1486 	u8			family; /* AF_INET or AF_INET6 */
1487 	union tcp_md5_addr	addr;
1488 	u8			prefixlen;
1489 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1490 	struct rcu_head		rcu;
1491 };
1492 
1493 /* - sock block */
1494 struct tcp_md5sig_info {
1495 	struct hlist_head	head;
1496 	struct rcu_head		rcu;
1497 };
1498 
1499 /* - pseudo header */
1500 struct tcp4_pseudohdr {
1501 	__be32		saddr;
1502 	__be32		daddr;
1503 	__u8		pad;
1504 	__u8		protocol;
1505 	__be16		len;
1506 };
1507 
1508 struct tcp6_pseudohdr {
1509 	struct in6_addr	saddr;
1510 	struct in6_addr daddr;
1511 	__be32		len;
1512 	__be32		protocol;	/* including padding */
1513 };
1514 
1515 union tcp_md5sum_block {
1516 	struct tcp4_pseudohdr ip4;
1517 #if IS_ENABLED(CONFIG_IPV6)
1518 	struct tcp6_pseudohdr ip6;
1519 #endif
1520 };
1521 
1522 /* - pool: digest algorithm, hash description and scratch buffer */
1523 struct tcp_md5sig_pool {
1524 	struct ahash_request	*md5_req;
1525 	void			*scratch;
1526 };
1527 
1528 /* - functions */
1529 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1530 			const struct sock *sk, const struct sk_buff *skb);
1531 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1532 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1533 		   gfp_t gfp);
1534 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1535 		   int family, u8 prefixlen);
1536 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1537 					 const struct sock *addr_sk);
1538 
1539 #ifdef CONFIG_TCP_MD5SIG
1540 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1541 					 const union tcp_md5_addr *addr,
1542 					 int family);
1543 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1544 #else
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1545 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1546 					 const union tcp_md5_addr *addr,
1547 					 int family)
1548 {
1549 	return NULL;
1550 }
1551 #define tcp_twsk_md5_key(twsk)	NULL
1552 #endif
1553 
1554 bool tcp_alloc_md5sig_pool(void);
1555 
1556 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1557 static inline void tcp_put_md5sig_pool(void)
1558 {
1559 	local_bh_enable();
1560 }
1561 
1562 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1563 			  unsigned int header_len);
1564 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1565 		     const struct tcp_md5sig_key *key);
1566 
1567 /* From tcp_fastopen.c */
1568 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1569 			    struct tcp_fastopen_cookie *cookie);
1570 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1571 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1572 			    u16 try_exp);
1573 struct tcp_fastopen_request {
1574 	/* Fast Open cookie. Size 0 means a cookie request */
1575 	struct tcp_fastopen_cookie	cookie;
1576 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1577 	size_t				size;
1578 	int				copied;	/* queued in tcp_connect() */
1579 };
1580 void tcp_free_fastopen_req(struct tcp_sock *tp);
1581 void tcp_fastopen_destroy_cipher(struct sock *sk);
1582 void tcp_fastopen_ctx_destroy(struct net *net);
1583 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1584 			      void *key, unsigned int len);
1585 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1586 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1587 			      struct request_sock *req,
1588 			      struct tcp_fastopen_cookie *foc,
1589 			      const struct dst_entry *dst);
1590 void tcp_fastopen_init_key_once(struct net *net);
1591 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1592 			     struct tcp_fastopen_cookie *cookie);
1593 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1594 #define TCP_FASTOPEN_KEY_LENGTH 16
1595 
1596 /* Fastopen key context */
1597 struct tcp_fastopen_context {
1598 	struct crypto_cipher	*tfm;
1599 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1600 	struct rcu_head		rcu;
1601 };
1602 
1603 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1604 void tcp_fastopen_active_disable(struct sock *sk);
1605 bool tcp_fastopen_active_should_disable(struct sock *sk);
1606 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1607 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1608 
1609 /* Latencies incurred by various limits for a sender. They are
1610  * chronograph-like stats that are mutually exclusive.
1611  */
1612 enum tcp_chrono {
1613 	TCP_CHRONO_UNSPEC,
1614 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1615 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1616 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1617 	__TCP_CHRONO_MAX,
1618 };
1619 
1620 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1621 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1622 
1623 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1624  * the same memory storage than skb->destructor/_skb_refdst
1625  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1626 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1627 {
1628 	skb->destructor = NULL;
1629 	skb->_skb_refdst = 0UL;
1630 }
1631 
1632 #define tcp_skb_tsorted_save(skb) {		\
1633 	unsigned long _save = skb->_skb_refdst;	\
1634 	skb->_skb_refdst = 0UL;
1635 
1636 #define tcp_skb_tsorted_restore(skb)		\
1637 	skb->_skb_refdst = _save;		\
1638 }
1639 
1640 void tcp_write_queue_purge(struct sock *sk);
1641 
tcp_rtx_queue_head(const struct sock * sk)1642 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1643 {
1644 	return skb_rb_first(&sk->tcp_rtx_queue);
1645 }
1646 
tcp_write_queue_head(const struct sock * sk)1647 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1648 {
1649 	return skb_peek(&sk->sk_write_queue);
1650 }
1651 
tcp_write_queue_tail(const struct sock * sk)1652 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1653 {
1654 	return skb_peek_tail(&sk->sk_write_queue);
1655 }
1656 
1657 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1658 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1659 
tcp_send_head(const struct sock * sk)1660 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1661 {
1662 	return skb_peek(&sk->sk_write_queue);
1663 }
1664 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1665 static inline bool tcp_skb_is_last(const struct sock *sk,
1666 				   const struct sk_buff *skb)
1667 {
1668 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1669 }
1670 
tcp_write_queue_empty(const struct sock * sk)1671 static inline bool tcp_write_queue_empty(const struct sock *sk)
1672 {
1673 	return skb_queue_empty(&sk->sk_write_queue);
1674 }
1675 
tcp_rtx_queue_empty(const struct sock * sk)1676 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1677 {
1678 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1679 }
1680 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1681 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1682 {
1683 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1684 }
1685 
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1686 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1687 {
1688 	if (tcp_write_queue_empty(sk))
1689 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1690 }
1691 
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1692 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1693 {
1694 	__skb_queue_tail(&sk->sk_write_queue, skb);
1695 }
1696 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1697 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1698 {
1699 	__tcp_add_write_queue_tail(sk, skb);
1700 
1701 	/* Queue it, remembering where we must start sending. */
1702 	if (sk->sk_write_queue.next == skb)
1703 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1704 }
1705 
1706 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1707 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1708 						  struct sk_buff *skb,
1709 						  struct sock *sk)
1710 {
1711 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1712 }
1713 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1714 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1715 {
1716 	tcp_skb_tsorted_anchor_cleanup(skb);
1717 	__skb_unlink(skb, &sk->sk_write_queue);
1718 }
1719 
1720 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1721 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1722 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1723 {
1724 	tcp_skb_tsorted_anchor_cleanup(skb);
1725 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1726 }
1727 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1728 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1729 {
1730 	list_del(&skb->tcp_tsorted_anchor);
1731 	tcp_rtx_queue_unlink(skb, sk);
1732 	sk_wmem_free_skb(sk, skb);
1733 }
1734 
tcp_push_pending_frames(struct sock * sk)1735 static inline void tcp_push_pending_frames(struct sock *sk)
1736 {
1737 	if (tcp_send_head(sk)) {
1738 		struct tcp_sock *tp = tcp_sk(sk);
1739 
1740 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1741 	}
1742 }
1743 
1744 /* Start sequence of the skb just after the highest skb with SACKed
1745  * bit, valid only if sacked_out > 0 or when the caller has ensured
1746  * validity by itself.
1747  */
tcp_highest_sack_seq(struct tcp_sock * tp)1748 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1749 {
1750 	if (!tp->sacked_out)
1751 		return tp->snd_una;
1752 
1753 	if (tp->highest_sack == NULL)
1754 		return tp->snd_nxt;
1755 
1756 	return TCP_SKB_CB(tp->highest_sack)->seq;
1757 }
1758 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1759 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1760 {
1761 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1762 }
1763 
tcp_highest_sack(struct sock * sk)1764 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1765 {
1766 	return tcp_sk(sk)->highest_sack;
1767 }
1768 
tcp_highest_sack_reset(struct sock * sk)1769 static inline void tcp_highest_sack_reset(struct sock *sk)
1770 {
1771 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1772 }
1773 
1774 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1775 static inline void tcp_highest_sack_replace(struct sock *sk,
1776 					    struct sk_buff *old,
1777 					    struct sk_buff *new)
1778 {
1779 	if (old == tcp_highest_sack(sk))
1780 		tcp_sk(sk)->highest_sack = new;
1781 }
1782 
1783 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1784 static inline bool inet_sk_transparent(const struct sock *sk)
1785 {
1786 	switch (sk->sk_state) {
1787 	case TCP_TIME_WAIT:
1788 		return inet_twsk(sk)->tw_transparent;
1789 	case TCP_NEW_SYN_RECV:
1790 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1791 	}
1792 	return inet_sk(sk)->transparent;
1793 }
1794 
1795 /* Determines whether this is a thin stream (which may suffer from
1796  * increased latency). Used to trigger latency-reducing mechanisms.
1797  */
tcp_stream_is_thin(struct tcp_sock * tp)1798 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1799 {
1800 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1801 }
1802 
1803 /* /proc */
1804 enum tcp_seq_states {
1805 	TCP_SEQ_STATE_LISTENING,
1806 	TCP_SEQ_STATE_ESTABLISHED,
1807 };
1808 
1809 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1810 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1811 void tcp_seq_stop(struct seq_file *seq, void *v);
1812 
1813 struct tcp_seq_afinfo {
1814 	sa_family_t			family;
1815 };
1816 
1817 struct tcp_iter_state {
1818 	struct seq_net_private	p;
1819 	enum tcp_seq_states	state;
1820 	struct sock		*syn_wait_sk;
1821 	int			bucket, offset, sbucket, num;
1822 	loff_t			last_pos;
1823 };
1824 
1825 extern struct request_sock_ops tcp_request_sock_ops;
1826 extern struct request_sock_ops tcp6_request_sock_ops;
1827 
1828 void tcp_v4_destroy_sock(struct sock *sk);
1829 
1830 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1831 				netdev_features_t features);
1832 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1833 int tcp_gro_complete(struct sk_buff *skb);
1834 
1835 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1836 
tcp_notsent_lowat(const struct tcp_sock * tp)1837 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1838 {
1839 	struct net *net = sock_net((struct sock *)tp);
1840 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1841 }
1842 
tcp_stream_memory_free(const struct sock * sk)1843 static inline bool tcp_stream_memory_free(const struct sock *sk)
1844 {
1845 	const struct tcp_sock *tp = tcp_sk(sk);
1846 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1847 
1848 	return notsent_bytes < tcp_notsent_lowat(tp);
1849 }
1850 
1851 #ifdef CONFIG_PROC_FS
1852 int tcp4_proc_init(void);
1853 void tcp4_proc_exit(void);
1854 #endif
1855 
1856 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1857 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1858 		     const struct tcp_request_sock_ops *af_ops,
1859 		     struct sock *sk, struct sk_buff *skb);
1860 
1861 /* TCP af-specific functions */
1862 struct tcp_sock_af_ops {
1863 #ifdef CONFIG_TCP_MD5SIG
1864 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1865 						const struct sock *addr_sk);
1866 	int		(*calc_md5_hash)(char *location,
1867 					 const struct tcp_md5sig_key *md5,
1868 					 const struct sock *sk,
1869 					 const struct sk_buff *skb);
1870 	int		(*md5_parse)(struct sock *sk,
1871 				     int optname,
1872 				     char __user *optval,
1873 				     int optlen);
1874 #endif
1875 };
1876 
1877 struct tcp_request_sock_ops {
1878 	u16 mss_clamp;
1879 #ifdef CONFIG_TCP_MD5SIG
1880 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1881 						 const struct sock *addr_sk);
1882 	int		(*calc_md5_hash) (char *location,
1883 					  const struct tcp_md5sig_key *md5,
1884 					  const struct sock *sk,
1885 					  const struct sk_buff *skb);
1886 #endif
1887 	void (*init_req)(struct request_sock *req,
1888 			 const struct sock *sk_listener,
1889 			 struct sk_buff *skb);
1890 #ifdef CONFIG_SYN_COOKIES
1891 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1892 				 __u16 *mss);
1893 #endif
1894 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1895 				       const struct request_sock *req);
1896 	u32 (*init_seq)(const struct sk_buff *skb);
1897 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1898 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1899 			   struct flowi *fl, struct request_sock *req,
1900 			   struct tcp_fastopen_cookie *foc,
1901 			   enum tcp_synack_type synack_type);
1902 };
1903 
1904 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1905 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1906 					 const struct sock *sk, struct sk_buff *skb,
1907 					 __u16 *mss)
1908 {
1909 	tcp_synq_overflow(sk);
1910 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1911 	return ops->cookie_init_seq(skb, mss);
1912 }
1913 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1914 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1915 					 const struct sock *sk, struct sk_buff *skb,
1916 					 __u16 *mss)
1917 {
1918 	return 0;
1919 }
1920 #endif
1921 
1922 int tcpv4_offload_init(void);
1923 
1924 void tcp_v4_init(void);
1925 void tcp_init(void);
1926 
1927 /* tcp_recovery.c */
1928 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1929 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1930 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1931 				u32 reo_wnd);
1932 extern void tcp_rack_mark_lost(struct sock *sk);
1933 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1934 			     u64 xmit_time);
1935 extern void tcp_rack_reo_timeout(struct sock *sk);
1936 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1937 
1938 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)1939 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1940 {
1941 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1942 	u32 rto = inet_csk(sk)->icsk_rto;
1943 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1944 
1945 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1946 }
1947 
1948 /*
1949  * Save and compile IPv4 options, return a pointer to it
1950  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)1951 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1952 							 struct sk_buff *skb)
1953 {
1954 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1955 	struct ip_options_rcu *dopt = NULL;
1956 
1957 	if (opt->optlen) {
1958 		int opt_size = sizeof(*dopt) + opt->optlen;
1959 
1960 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1961 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1962 			kfree(dopt);
1963 			dopt = NULL;
1964 		}
1965 	}
1966 	return dopt;
1967 }
1968 
1969 /* locally generated TCP pure ACKs have skb->truesize == 2
1970  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1971  * This is much faster than dissecting the packet to find out.
1972  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1973  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)1974 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1975 {
1976 	return skb->truesize == 2;
1977 }
1978 
skb_set_tcp_pure_ack(struct sk_buff * skb)1979 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1980 {
1981 	skb->truesize = 2;
1982 }
1983 
tcp_inq(struct sock * sk)1984 static inline int tcp_inq(struct sock *sk)
1985 {
1986 	struct tcp_sock *tp = tcp_sk(sk);
1987 	int answ;
1988 
1989 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1990 		answ = 0;
1991 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1992 		   !tp->urg_data ||
1993 		   before(tp->urg_seq, tp->copied_seq) ||
1994 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1995 
1996 		answ = tp->rcv_nxt - tp->copied_seq;
1997 
1998 		/* Subtract 1, if FIN was received */
1999 		if (answ && sock_flag(sk, SOCK_DONE))
2000 			answ--;
2001 	} else {
2002 		answ = tp->urg_seq - tp->copied_seq;
2003 	}
2004 
2005 	return answ;
2006 }
2007 
2008 int tcp_peek_len(struct socket *sock);
2009 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2010 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2011 {
2012 	u16 segs_in;
2013 
2014 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2015 	tp->segs_in += segs_in;
2016 	if (skb->len > tcp_hdrlen(skb))
2017 		tp->data_segs_in += segs_in;
2018 }
2019 
2020 /*
2021  * TCP listen path runs lockless.
2022  * We forced "struct sock" to be const qualified to make sure
2023  * we don't modify one of its field by mistake.
2024  * Here, we increment sk_drops which is an atomic_t, so we can safely
2025  * make sock writable again.
2026  */
tcp_listendrop(const struct sock * sk)2027 static inline void tcp_listendrop(const struct sock *sk)
2028 {
2029 	atomic_inc(&((struct sock *)sk)->sk_drops);
2030 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2031 }
2032 
2033 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2034 
2035 /*
2036  * Interface for adding Upper Level Protocols over TCP
2037  */
2038 
2039 #define TCP_ULP_NAME_MAX	16
2040 #define TCP_ULP_MAX		128
2041 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2042 
2043 enum {
2044 	TCP_ULP_TLS,
2045 	TCP_ULP_BPF,
2046 };
2047 
2048 struct tcp_ulp_ops {
2049 	struct list_head	list;
2050 
2051 	/* initialize ulp */
2052 	int (*init)(struct sock *sk);
2053 	/* cleanup ulp */
2054 	void (*release)(struct sock *sk);
2055 
2056 	int		uid;
2057 	char		name[TCP_ULP_NAME_MAX];
2058 	bool		user_visible;
2059 	struct module	*owner;
2060 };
2061 int tcp_register_ulp(struct tcp_ulp_ops *type);
2062 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2063 int tcp_set_ulp(struct sock *sk, const char *name);
2064 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2065 void tcp_get_available_ulp(char *buf, size_t len);
2066 void tcp_cleanup_ulp(struct sock *sk);
2067 
2068 #define MODULE_ALIAS_TCP_ULP(name)				\
2069 	__MODULE_INFO(alias, alias_userspace, name);		\
2070 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2071 
2072 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2073  * is < 0, then the BPF op failed (for example if the loaded BPF
2074  * program does not support the chosen operation or there is no BPF
2075  * program loaded).
2076  */
2077 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2078 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2079 {
2080 	struct bpf_sock_ops_kern sock_ops;
2081 	int ret;
2082 
2083 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2084 	if (sk_fullsock(sk)) {
2085 		sock_ops.is_fullsock = 1;
2086 		sock_owned_by_me(sk);
2087 	}
2088 
2089 	sock_ops.sk = sk;
2090 	sock_ops.op = op;
2091 	if (nargs > 0)
2092 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2093 
2094 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2095 	if (ret == 0)
2096 		ret = sock_ops.reply;
2097 	else
2098 		ret = -1;
2099 	return ret;
2100 }
2101 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2102 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2103 {
2104 	u32 args[2] = {arg1, arg2};
2105 
2106 	return tcp_call_bpf(sk, op, 2, args);
2107 }
2108 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2109 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2110 				    u32 arg3)
2111 {
2112 	u32 args[3] = {arg1, arg2, arg3};
2113 
2114 	return tcp_call_bpf(sk, op, 3, args);
2115 }
2116 
2117 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2118 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2119 {
2120 	return -EPERM;
2121 }
2122 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2123 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2124 {
2125 	return -EPERM;
2126 }
2127 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2128 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2129 				    u32 arg3)
2130 {
2131 	return -EPERM;
2132 }
2133 
2134 #endif
2135 
tcp_timeout_init(struct sock * sk)2136 static inline u32 tcp_timeout_init(struct sock *sk)
2137 {
2138 	int timeout;
2139 
2140 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2141 
2142 	if (timeout <= 0)
2143 		timeout = TCP_TIMEOUT_INIT;
2144 	return timeout;
2145 }
2146 
tcp_rwnd_init_bpf(struct sock * sk)2147 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2148 {
2149 	int rwnd;
2150 
2151 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2152 
2153 	if (rwnd < 0)
2154 		rwnd = 0;
2155 	return rwnd;
2156 }
2157 
tcp_bpf_ca_needs_ecn(struct sock * sk)2158 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2159 {
2160 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2161 }
2162 
2163 #if IS_ENABLED(CONFIG_SMC)
2164 extern struct static_key_false tcp_have_smc;
2165 #endif
2166 
2167 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2168 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2169 			     void (*cad)(struct sock *sk, u32 ack_seq));
2170 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2171 
2172 #endif
2173 
2174 #endif	/* _TCP_H */
2175