1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 /*
5  * Reader/writer consistent mechanism without starving writers. This type of
6  * lock for data where the reader wants a consistent set of information
7  * and is willing to retry if the information changes. There are two types
8  * of readers:
9  * 1. Sequence readers which never block a writer but they may have to retry
10  *    if a writer is in progress by detecting change in sequence number.
11  *    Writers do not wait for a sequence reader.
12  * 2. Locking readers which will wait if a writer or another locking reader
13  *    is in progress. A locking reader in progress will also block a writer
14  *    from going forward. Unlike the regular rwlock, the read lock here is
15  *    exclusive so that only one locking reader can get it.
16  *
17  * This is not as cache friendly as brlock. Also, this may not work well
18  * for data that contains pointers, because any writer could
19  * invalidate a pointer that a reader was following.
20  *
21  * Expected non-blocking reader usage:
22  * 	do {
23  *	    seq = read_seqbegin(&foo);
24  * 	...
25  *      } while (read_seqretry(&foo, seq));
26  *
27  *
28  * On non-SMP the spin locks disappear but the writer still needs
29  * to increment the sequence variables because an interrupt routine could
30  * change the state of the data.
31  *
32  * Based on x86_64 vsyscall gettimeofday
33  * by Keith Owens and Andrea Arcangeli
34  */
35 
36 #include <linux/spinlock.h>
37 #include <linux/preempt.h>
38 #include <linux/lockdep.h>
39 #include <linux/compiler.h>
40 #include <asm/processor.h>
41 
42 /*
43  * Version using sequence counter only.
44  * This can be used when code has its own mutex protecting the
45  * updating starting before the write_seqcountbeqin() and ending
46  * after the write_seqcount_end().
47  */
48 typedef struct seqcount {
49 	unsigned sequence;
50 #ifdef CONFIG_DEBUG_LOCK_ALLOC
51 	struct lockdep_map dep_map;
52 #endif
53 } seqcount_t;
54 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)55 static inline void __seqcount_init(seqcount_t *s, const char *name,
56 					  struct lock_class_key *key)
57 {
58 	/*
59 	 * Make sure we are not reinitializing a held lock:
60 	 */
61 	lockdep_init_map(&s->dep_map, name, key, 0);
62 	s->sequence = 0;
63 }
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
67 		.dep_map = { .name = #lockname } \
68 
69 # define seqcount_init(s)				\
70 	do {						\
71 		static struct lock_class_key __key;	\
72 		__seqcount_init((s), #s, &__key);	\
73 	} while (0)
74 
seqcount_lockdep_reader_access(const seqcount_t * s)75 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
76 {
77 	seqcount_t *l = (seqcount_t *)s;
78 	unsigned long flags;
79 
80 	local_irq_save(flags);
81 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
82 	seqcount_release(&l->dep_map, 1, _RET_IP_);
83 	local_irq_restore(flags);
84 }
85 
86 #else
87 # define SEQCOUNT_DEP_MAP_INIT(lockname)
88 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
89 # define seqcount_lockdep_reader_access(x)
90 #endif
91 
92 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
93 
94 
95 /**
96  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
97  * @s: pointer to seqcount_t
98  * Returns: count to be passed to read_seqcount_retry
99  *
100  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
101  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
102  * provided before actually loading any of the variables that are to be
103  * protected in this critical section.
104  *
105  * Use carefully, only in critical code, and comment how the barrier is
106  * provided.
107  */
__read_seqcount_begin(const seqcount_t * s)108 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
109 {
110 	unsigned ret;
111 
112 repeat:
113 	ret = READ_ONCE(s->sequence);
114 	if (unlikely(ret & 1)) {
115 		cpu_relax();
116 		goto repeat;
117 	}
118 	return ret;
119 }
120 
121 /**
122  * raw_read_seqcount - Read the raw seqcount
123  * @s: pointer to seqcount_t
124  * Returns: count to be passed to read_seqcount_retry
125  *
126  * raw_read_seqcount opens a read critical section of the given
127  * seqcount without any lockdep checking and without checking or
128  * masking the LSB. Calling code is responsible for handling that.
129  */
raw_read_seqcount(const seqcount_t * s)130 static inline unsigned raw_read_seqcount(const seqcount_t *s)
131 {
132 	unsigned ret = READ_ONCE(s->sequence);
133 	smp_rmb();
134 	return ret;
135 }
136 
137 /**
138  * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
139  * @s: pointer to seqcount_t
140  * Returns: count to be passed to read_seqcount_retry
141  *
142  * raw_read_seqcount_begin opens a read critical section of the given
143  * seqcount, but without any lockdep checking. Validity of the critical
144  * section is tested by checking read_seqcount_retry function.
145  */
raw_read_seqcount_begin(const seqcount_t * s)146 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
147 {
148 	unsigned ret = __read_seqcount_begin(s);
149 	smp_rmb();
150 	return ret;
151 }
152 
153 /**
154  * read_seqcount_begin - begin a seq-read critical section
155  * @s: pointer to seqcount_t
156  * Returns: count to be passed to read_seqcount_retry
157  *
158  * read_seqcount_begin opens a read critical section of the given seqcount.
159  * Validity of the critical section is tested by checking read_seqcount_retry
160  * function.
161  */
read_seqcount_begin(const seqcount_t * s)162 static inline unsigned read_seqcount_begin(const seqcount_t *s)
163 {
164 	seqcount_lockdep_reader_access(s);
165 	return raw_read_seqcount_begin(s);
166 }
167 
168 /**
169  * raw_seqcount_begin - begin a seq-read critical section
170  * @s: pointer to seqcount_t
171  * Returns: count to be passed to read_seqcount_retry
172  *
173  * raw_seqcount_begin opens a read critical section of the given seqcount.
174  * Validity of the critical section is tested by checking read_seqcount_retry
175  * function.
176  *
177  * Unlike read_seqcount_begin(), this function will not wait for the count
178  * to stabilize. If a writer is active when we begin, we will fail the
179  * read_seqcount_retry() instead of stabilizing at the beginning of the
180  * critical section.
181  */
raw_seqcount_begin(const seqcount_t * s)182 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
183 {
184 	unsigned ret = READ_ONCE(s->sequence);
185 	smp_rmb();
186 	return ret & ~1;
187 }
188 
189 /**
190  * __read_seqcount_retry - end a seq-read critical section (without barrier)
191  * @s: pointer to seqcount_t
192  * @start: count, from read_seqcount_begin
193  * Returns: 1 if retry is required, else 0
194  *
195  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
196  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
197  * provided before actually loading any of the variables that are to be
198  * protected in this critical section.
199  *
200  * Use carefully, only in critical code, and comment how the barrier is
201  * provided.
202  */
__read_seqcount_retry(const seqcount_t * s,unsigned start)203 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
204 {
205 	return unlikely(s->sequence != start);
206 }
207 
208 /**
209  * read_seqcount_retry - end a seq-read critical section
210  * @s: pointer to seqcount_t
211  * @start: count, from read_seqcount_begin
212  * Returns: 1 if retry is required, else 0
213  *
214  * read_seqcount_retry closes a read critical section of the given seqcount.
215  * If the critical section was invalid, it must be ignored (and typically
216  * retried).
217  */
read_seqcount_retry(const seqcount_t * s,unsigned start)218 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
219 {
220 	smp_rmb();
221 	return __read_seqcount_retry(s, start);
222 }
223 
224 
225 
raw_write_seqcount_begin(seqcount_t * s)226 static inline void raw_write_seqcount_begin(seqcount_t *s)
227 {
228 	s->sequence++;
229 	smp_wmb();
230 }
231 
raw_write_seqcount_end(seqcount_t * s)232 static inline void raw_write_seqcount_end(seqcount_t *s)
233 {
234 	smp_wmb();
235 	s->sequence++;
236 }
237 
238 /**
239  * raw_write_seqcount_barrier - do a seq write barrier
240  * @s: pointer to seqcount_t
241  *
242  * This can be used to provide an ordering guarantee instead of the
243  * usual consistency guarantee. It is one wmb cheaper, because we can
244  * collapse the two back-to-back wmb()s.
245  *
246  *      seqcount_t seq;
247  *      bool X = true, Y = false;
248  *
249  *      void read(void)
250  *      {
251  *              bool x, y;
252  *
253  *              do {
254  *                      int s = read_seqcount_begin(&seq);
255  *
256  *                      x = X; y = Y;
257  *
258  *              } while (read_seqcount_retry(&seq, s));
259  *
260  *              BUG_ON(!x && !y);
261  *      }
262  *
263  *      void write(void)
264  *      {
265  *              Y = true;
266  *
267  *              raw_write_seqcount_barrier(seq);
268  *
269  *              X = false;
270  *      }
271  */
raw_write_seqcount_barrier(seqcount_t * s)272 static inline void raw_write_seqcount_barrier(seqcount_t *s)
273 {
274 	s->sequence++;
275 	smp_wmb();
276 	s->sequence++;
277 }
278 
raw_read_seqcount_latch(seqcount_t * s)279 static inline int raw_read_seqcount_latch(seqcount_t *s)
280 {
281 	/* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
282 	int seq = READ_ONCE(s->sequence); /* ^^^ */
283 	return seq;
284 }
285 
286 /**
287  * raw_write_seqcount_latch - redirect readers to even/odd copy
288  * @s: pointer to seqcount_t
289  *
290  * The latch technique is a multiversion concurrency control method that allows
291  * queries during non-atomic modifications. If you can guarantee queries never
292  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
293  * -- you most likely do not need this.
294  *
295  * Where the traditional RCU/lockless data structures rely on atomic
296  * modifications to ensure queries observe either the old or the new state the
297  * latch allows the same for non-atomic updates. The trade-off is doubling the
298  * cost of storage; we have to maintain two copies of the entire data
299  * structure.
300  *
301  * Very simply put: we first modify one copy and then the other. This ensures
302  * there is always one copy in a stable state, ready to give us an answer.
303  *
304  * The basic form is a data structure like:
305  *
306  * struct latch_struct {
307  *	seqcount_t		seq;
308  *	struct data_struct	data[2];
309  * };
310  *
311  * Where a modification, which is assumed to be externally serialized, does the
312  * following:
313  *
314  * void latch_modify(struct latch_struct *latch, ...)
315  * {
316  *	smp_wmb();	<- Ensure that the last data[1] update is visible
317  *	latch->seq++;
318  *	smp_wmb();	<- Ensure that the seqcount update is visible
319  *
320  *	modify(latch->data[0], ...);
321  *
322  *	smp_wmb();	<- Ensure that the data[0] update is visible
323  *	latch->seq++;
324  *	smp_wmb();	<- Ensure that the seqcount update is visible
325  *
326  *	modify(latch->data[1], ...);
327  * }
328  *
329  * The query will have a form like:
330  *
331  * struct entry *latch_query(struct latch_struct *latch, ...)
332  * {
333  *	struct entry *entry;
334  *	unsigned seq, idx;
335  *
336  *	do {
337  *		seq = raw_read_seqcount_latch(&latch->seq);
338  *
339  *		idx = seq & 0x01;
340  *		entry = data_query(latch->data[idx], ...);
341  *
342  *		smp_rmb();
343  *	} while (seq != latch->seq);
344  *
345  *	return entry;
346  * }
347  *
348  * So during the modification, queries are first redirected to data[1]. Then we
349  * modify data[0]. When that is complete, we redirect queries back to data[0]
350  * and we can modify data[1].
351  *
352  * NOTE: The non-requirement for atomic modifications does _NOT_ include
353  *       the publishing of new entries in the case where data is a dynamic
354  *       data structure.
355  *
356  *       An iteration might start in data[0] and get suspended long enough
357  *       to miss an entire modification sequence, once it resumes it might
358  *       observe the new entry.
359  *
360  * NOTE: When data is a dynamic data structure; one should use regular RCU
361  *       patterns to manage the lifetimes of the objects within.
362  */
raw_write_seqcount_latch(seqcount_t * s)363 static inline void raw_write_seqcount_latch(seqcount_t *s)
364 {
365        smp_wmb();      /* prior stores before incrementing "sequence" */
366        s->sequence++;
367        smp_wmb();      /* increment "sequence" before following stores */
368 }
369 
370 /*
371  * Sequence counter only version assumes that callers are using their
372  * own mutexing.
373  */
write_seqcount_begin_nested(seqcount_t * s,int subclass)374 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
375 {
376 	raw_write_seqcount_begin(s);
377 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
378 }
379 
write_seqcount_begin(seqcount_t * s)380 static inline void write_seqcount_begin(seqcount_t *s)
381 {
382 	write_seqcount_begin_nested(s, 0);
383 }
384 
write_seqcount_end(seqcount_t * s)385 static inline void write_seqcount_end(seqcount_t *s)
386 {
387 	seqcount_release(&s->dep_map, 1, _RET_IP_);
388 	raw_write_seqcount_end(s);
389 }
390 
391 /**
392  * write_seqcount_invalidate - invalidate in-progress read-side seq operations
393  * @s: pointer to seqcount_t
394  *
395  * After write_seqcount_invalidate, no read-side seq operations will complete
396  * successfully and see data older than this.
397  */
write_seqcount_invalidate(seqcount_t * s)398 static inline void write_seqcount_invalidate(seqcount_t *s)
399 {
400 	smp_wmb();
401 	s->sequence+=2;
402 }
403 
404 typedef struct {
405 	struct seqcount seqcount;
406 	spinlock_t lock;
407 } seqlock_t;
408 
409 /*
410  * These macros triggered gcc-3.x compile-time problems.  We think these are
411  * OK now.  Be cautious.
412  */
413 #define __SEQLOCK_UNLOCKED(lockname)			\
414 	{						\
415 		.seqcount = SEQCNT_ZERO(lockname),	\
416 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
417 	}
418 
419 #define seqlock_init(x)					\
420 	do {						\
421 		seqcount_init(&(x)->seqcount);		\
422 		spin_lock_init(&(x)->lock);		\
423 	} while (0)
424 
425 #define DEFINE_SEQLOCK(x) \
426 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
427 
428 /*
429  * Read side functions for starting and finalizing a read side section.
430  */
read_seqbegin(const seqlock_t * sl)431 static inline unsigned read_seqbegin(const seqlock_t *sl)
432 {
433 	return read_seqcount_begin(&sl->seqcount);
434 }
435 
read_seqretry(const seqlock_t * sl,unsigned start)436 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
437 {
438 	return read_seqcount_retry(&sl->seqcount, start);
439 }
440 
441 /*
442  * Lock out other writers and update the count.
443  * Acts like a normal spin_lock/unlock.
444  * Don't need preempt_disable() because that is in the spin_lock already.
445  */
write_seqlock(seqlock_t * sl)446 static inline void write_seqlock(seqlock_t *sl)
447 {
448 	spin_lock(&sl->lock);
449 	write_seqcount_begin(&sl->seqcount);
450 }
451 
write_sequnlock(seqlock_t * sl)452 static inline void write_sequnlock(seqlock_t *sl)
453 {
454 	write_seqcount_end(&sl->seqcount);
455 	spin_unlock(&sl->lock);
456 }
457 
write_seqlock_bh(seqlock_t * sl)458 static inline void write_seqlock_bh(seqlock_t *sl)
459 {
460 	spin_lock_bh(&sl->lock);
461 	write_seqcount_begin(&sl->seqcount);
462 }
463 
write_sequnlock_bh(seqlock_t * sl)464 static inline void write_sequnlock_bh(seqlock_t *sl)
465 {
466 	write_seqcount_end(&sl->seqcount);
467 	spin_unlock_bh(&sl->lock);
468 }
469 
write_seqlock_irq(seqlock_t * sl)470 static inline void write_seqlock_irq(seqlock_t *sl)
471 {
472 	spin_lock_irq(&sl->lock);
473 	write_seqcount_begin(&sl->seqcount);
474 }
475 
write_sequnlock_irq(seqlock_t * sl)476 static inline void write_sequnlock_irq(seqlock_t *sl)
477 {
478 	write_seqcount_end(&sl->seqcount);
479 	spin_unlock_irq(&sl->lock);
480 }
481 
__write_seqlock_irqsave(seqlock_t * sl)482 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
483 {
484 	unsigned long flags;
485 
486 	spin_lock_irqsave(&sl->lock, flags);
487 	write_seqcount_begin(&sl->seqcount);
488 	return flags;
489 }
490 
491 #define write_seqlock_irqsave(lock, flags)				\
492 	do { flags = __write_seqlock_irqsave(lock); } while (0)
493 
494 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)495 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
496 {
497 	write_seqcount_end(&sl->seqcount);
498 	spin_unlock_irqrestore(&sl->lock, flags);
499 }
500 
501 /*
502  * A locking reader exclusively locks out other writers and locking readers,
503  * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
504  * Don't need preempt_disable() because that is in the spin_lock already.
505  */
read_seqlock_excl(seqlock_t * sl)506 static inline void read_seqlock_excl(seqlock_t *sl)
507 {
508 	spin_lock(&sl->lock);
509 }
510 
read_sequnlock_excl(seqlock_t * sl)511 static inline void read_sequnlock_excl(seqlock_t *sl)
512 {
513 	spin_unlock(&sl->lock);
514 }
515 
516 /**
517  * read_seqbegin_or_lock - begin a sequence number check or locking block
518  * @lock: sequence lock
519  * @seq : sequence number to be checked
520  *
521  * First try it once optimistically without taking the lock. If that fails,
522  * take the lock. The sequence number is also used as a marker for deciding
523  * whether to be a reader (even) or writer (odd).
524  * N.B. seq must be initialized to an even number to begin with.
525  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)526 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
527 {
528 	if (!(*seq & 1))	/* Even */
529 		*seq = read_seqbegin(lock);
530 	else			/* Odd */
531 		read_seqlock_excl(lock);
532 }
533 
need_seqretry(seqlock_t * lock,int seq)534 static inline int need_seqretry(seqlock_t *lock, int seq)
535 {
536 	return !(seq & 1) && read_seqretry(lock, seq);
537 }
538 
done_seqretry(seqlock_t * lock,int seq)539 static inline void done_seqretry(seqlock_t *lock, int seq)
540 {
541 	if (seq & 1)
542 		read_sequnlock_excl(lock);
543 }
544 
read_seqlock_excl_bh(seqlock_t * sl)545 static inline void read_seqlock_excl_bh(seqlock_t *sl)
546 {
547 	spin_lock_bh(&sl->lock);
548 }
549 
read_sequnlock_excl_bh(seqlock_t * sl)550 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
551 {
552 	spin_unlock_bh(&sl->lock);
553 }
554 
read_seqlock_excl_irq(seqlock_t * sl)555 static inline void read_seqlock_excl_irq(seqlock_t *sl)
556 {
557 	spin_lock_irq(&sl->lock);
558 }
559 
read_sequnlock_excl_irq(seqlock_t * sl)560 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
561 {
562 	spin_unlock_irq(&sl->lock);
563 }
564 
__read_seqlock_excl_irqsave(seqlock_t * sl)565 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
566 {
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&sl->lock, flags);
570 	return flags;
571 }
572 
573 #define read_seqlock_excl_irqsave(lock, flags)				\
574 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
575 
576 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)577 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
578 {
579 	spin_unlock_irqrestore(&sl->lock, flags);
580 }
581 
582 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)583 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
584 {
585 	unsigned long flags = 0;
586 
587 	if (!(*seq & 1))	/* Even */
588 		*seq = read_seqbegin(lock);
589 	else			/* Odd */
590 		read_seqlock_excl_irqsave(lock, flags);
591 
592 	return flags;
593 }
594 
595 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)596 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
597 {
598 	if (seq & 1)
599 		read_sequnlock_excl_irqrestore(lock, flags);
600 }
601 #endif /* __LINUX_SEQLOCK_H */
602