1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Heterogeneous Memory Management (HMM)
9  *
10  * See Documentation/vm/hmm.rst for reasons and overview of what HMM is and it
11  * is for. Here we focus on the HMM API description, with some explanation of
12  * the underlying implementation.
13  *
14  * Short description: HMM provides a set of helpers to share a virtual address
15  * space between CPU and a device, so that the device can access any valid
16  * address of the process (while still obeying memory protection). HMM also
17  * provides helpers to migrate process memory to device memory, and back. Each
18  * set of functionality (address space mirroring, and migration to and from
19  * device memory) can be used independently of the other.
20  *
21  *
22  * HMM address space mirroring API:
23  *
24  * Use HMM address space mirroring if you want to mirror a range of the CPU
25  * page tables of a process into a device page table. Here, "mirror" means "keep
26  * synchronized". Prerequisites: the device must provide the ability to write-
27  * protect its page tables (at PAGE_SIZE granularity), and must be able to
28  * recover from the resulting potential page faults.
29  *
30  * HMM guarantees that at any point in time, a given virtual address points to
31  * either the same memory in both CPU and device page tables (that is: CPU and
32  * device page tables each point to the same pages), or that one page table (CPU
33  * or device) points to no entry, while the other still points to the old page
34  * for the address. The latter case happens when the CPU page table update
35  * happens first, and then the update is mirrored over to the device page table.
36  * This does not cause any issue, because the CPU page table cannot start
37  * pointing to a new page until the device page table is invalidated.
38  *
39  * HMM uses mmu_notifiers to monitor the CPU page tables, and forwards any
40  * updates to each device driver that has registered a mirror. It also provides
41  * some API calls to help with taking a snapshot of the CPU page table, and to
42  * synchronize with any updates that might happen concurrently.
43  *
44  *
45  * HMM migration to and from device memory:
46  *
47  * HMM provides a set of helpers to hotplug device memory as ZONE_DEVICE, with
48  * a new MEMORY_DEVICE_PRIVATE type. This provides a struct page for each page
49  * of the device memory, and allows the device driver to manage its memory
50  * using those struct pages. Having struct pages for device memory makes
51  * migration easier. Because that memory is not addressable by the CPU it must
52  * never be pinned to the device; in other words, any CPU page fault can always
53  * cause the device memory to be migrated (copied/moved) back to regular memory.
54  *
55  * A new migrate helper (migrate_vma()) has been added (see mm/migrate.c) that
56  * allows use of a device DMA engine to perform the copy operation between
57  * regular system memory and device memory.
58  */
59 #ifndef LINUX_HMM_H
60 #define LINUX_HMM_H
61 
62 #include <linux/kconfig.h>
63 #include <asm/pgtable.h>
64 
65 #ifdef CONFIG_HMM_MIRROR
66 
67 #include <linux/device.h>
68 #include <linux/migrate.h>
69 #include <linux/memremap.h>
70 #include <linux/completion.h>
71 #include <linux/mmu_notifier.h>
72 
73 
74 /*
75  * struct hmm - HMM per mm struct
76  *
77  * @mm: mm struct this HMM struct is bound to
78  * @lock: lock protecting ranges list
79  * @ranges: list of range being snapshotted
80  * @mirrors: list of mirrors for this mm
81  * @mmu_notifier: mmu notifier to track updates to CPU page table
82  * @mirrors_sem: read/write semaphore protecting the mirrors list
83  * @wq: wait queue for user waiting on a range invalidation
84  * @notifiers: count of active mmu notifiers
85  */
86 struct hmm {
87 	struct mmu_notifier	mmu_notifier;
88 	spinlock_t		ranges_lock;
89 	struct list_head	ranges;
90 	struct list_head	mirrors;
91 	struct rw_semaphore	mirrors_sem;
92 	wait_queue_head_t	wq;
93 	long			notifiers;
94 };
95 
96 /*
97  * hmm_pfn_flag_e - HMM flag enums
98  *
99  * Flags:
100  * HMM_PFN_VALID: pfn is valid. It has, at least, read permission.
101  * HMM_PFN_WRITE: CPU page table has write permission set
102  * HMM_PFN_DEVICE_PRIVATE: private device memory (ZONE_DEVICE)
103  *
104  * The driver provides a flags array for mapping page protections to device
105  * PTE bits. If the driver valid bit for an entry is bit 3,
106  * i.e., (entry & (1 << 3)), then the driver must provide
107  * an array in hmm_range.flags with hmm_range.flags[HMM_PFN_VALID] == 1 << 3.
108  * Same logic apply to all flags. This is the same idea as vm_page_prot in vma
109  * except that this is per device driver rather than per architecture.
110  */
111 enum hmm_pfn_flag_e {
112 	HMM_PFN_VALID = 0,
113 	HMM_PFN_WRITE,
114 	HMM_PFN_DEVICE_PRIVATE,
115 	HMM_PFN_FLAG_MAX
116 };
117 
118 /*
119  * hmm_pfn_value_e - HMM pfn special value
120  *
121  * Flags:
122  * HMM_PFN_ERROR: corresponding CPU page table entry points to poisoned memory
123  * HMM_PFN_NONE: corresponding CPU page table entry is pte_none()
124  * HMM_PFN_SPECIAL: corresponding CPU page table entry is special; i.e., the
125  *      result of vmf_insert_pfn() or vm_insert_page(). Therefore, it should not
126  *      be mirrored by a device, because the entry will never have HMM_PFN_VALID
127  *      set and the pfn value is undefined.
128  *
129  * Driver provides values for none entry, error entry, and special entry.
130  * Driver can alias (i.e., use same value) error and special, but
131  * it should not alias none with error or special.
132  *
133  * HMM pfn value returned by hmm_vma_get_pfns() or hmm_vma_fault() will be:
134  * hmm_range.values[HMM_PFN_ERROR] if CPU page table entry is poisonous,
135  * hmm_range.values[HMM_PFN_NONE] if there is no CPU page table entry,
136  * hmm_range.values[HMM_PFN_SPECIAL] if CPU page table entry is a special one
137  */
138 enum hmm_pfn_value_e {
139 	HMM_PFN_ERROR,
140 	HMM_PFN_NONE,
141 	HMM_PFN_SPECIAL,
142 	HMM_PFN_VALUE_MAX
143 };
144 
145 /*
146  * struct hmm_range - track invalidation lock on virtual address range
147  *
148  * @hmm: the core HMM structure this range is active against
149  * @vma: the vm area struct for the range
150  * @list: all range lock are on a list
151  * @start: range virtual start address (inclusive)
152  * @end: range virtual end address (exclusive)
153  * @pfns: array of pfns (big enough for the range)
154  * @flags: pfn flags to match device driver page table
155  * @values: pfn value for some special case (none, special, error, ...)
156  * @default_flags: default flags for the range (write, read, ... see hmm doc)
157  * @pfn_flags_mask: allows to mask pfn flags so that only default_flags matter
158  * @pfn_shifts: pfn shift value (should be <= PAGE_SHIFT)
159  * @valid: pfns array did not change since it has been fill by an HMM function
160  */
161 struct hmm_range {
162 	struct hmm		*hmm;
163 	struct list_head	list;
164 	unsigned long		start;
165 	unsigned long		end;
166 	uint64_t		*pfns;
167 	const uint64_t		*flags;
168 	const uint64_t		*values;
169 	uint64_t		default_flags;
170 	uint64_t		pfn_flags_mask;
171 	uint8_t			pfn_shift;
172 	bool			valid;
173 };
174 
175 /*
176  * hmm_range_wait_until_valid() - wait for range to be valid
177  * @range: range affected by invalidation to wait on
178  * @timeout: time out for wait in ms (ie abort wait after that period of time)
179  * Return: true if the range is valid, false otherwise.
180  */
hmm_range_wait_until_valid(struct hmm_range * range,unsigned long timeout)181 static inline bool hmm_range_wait_until_valid(struct hmm_range *range,
182 					      unsigned long timeout)
183 {
184 	return wait_event_timeout(range->hmm->wq, range->valid,
185 				  msecs_to_jiffies(timeout)) != 0;
186 }
187 
188 /*
189  * hmm_range_valid() - test if a range is valid or not
190  * @range: range
191  * Return: true if the range is valid, false otherwise.
192  */
hmm_range_valid(struct hmm_range * range)193 static inline bool hmm_range_valid(struct hmm_range *range)
194 {
195 	return range->valid;
196 }
197 
198 /*
199  * hmm_device_entry_to_page() - return struct page pointed to by a device entry
200  * @range: range use to decode device entry value
201  * @entry: device entry value to get corresponding struct page from
202  * Return: struct page pointer if entry is a valid, NULL otherwise
203  *
204  * If the device entry is valid (ie valid flag set) then return the struct page
205  * matching the entry value. Otherwise return NULL.
206  */
hmm_device_entry_to_page(const struct hmm_range * range,uint64_t entry)207 static inline struct page *hmm_device_entry_to_page(const struct hmm_range *range,
208 						    uint64_t entry)
209 {
210 	if (entry == range->values[HMM_PFN_NONE])
211 		return NULL;
212 	if (entry == range->values[HMM_PFN_ERROR])
213 		return NULL;
214 	if (entry == range->values[HMM_PFN_SPECIAL])
215 		return NULL;
216 	if (!(entry & range->flags[HMM_PFN_VALID]))
217 		return NULL;
218 	return pfn_to_page(entry >> range->pfn_shift);
219 }
220 
221 /*
222  * hmm_device_entry_to_pfn() - return pfn value store in a device entry
223  * @range: range use to decode device entry value
224  * @entry: device entry to extract pfn from
225  * Return: pfn value if device entry is valid, -1UL otherwise
226  */
227 static inline unsigned long
hmm_device_entry_to_pfn(const struct hmm_range * range,uint64_t pfn)228 hmm_device_entry_to_pfn(const struct hmm_range *range, uint64_t pfn)
229 {
230 	if (pfn == range->values[HMM_PFN_NONE])
231 		return -1UL;
232 	if (pfn == range->values[HMM_PFN_ERROR])
233 		return -1UL;
234 	if (pfn == range->values[HMM_PFN_SPECIAL])
235 		return -1UL;
236 	if (!(pfn & range->flags[HMM_PFN_VALID]))
237 		return -1UL;
238 	return (pfn >> range->pfn_shift);
239 }
240 
241 /*
242  * hmm_device_entry_from_page() - create a valid device entry for a page
243  * @range: range use to encode HMM pfn value
244  * @page: page for which to create the device entry
245  * Return: valid device entry for the page
246  */
hmm_device_entry_from_page(const struct hmm_range * range,struct page * page)247 static inline uint64_t hmm_device_entry_from_page(const struct hmm_range *range,
248 						  struct page *page)
249 {
250 	return (page_to_pfn(page) << range->pfn_shift) |
251 		range->flags[HMM_PFN_VALID];
252 }
253 
254 /*
255  * hmm_device_entry_from_pfn() - create a valid device entry value from pfn
256  * @range: range use to encode HMM pfn value
257  * @pfn: pfn value for which to create the device entry
258  * Return: valid device entry for the pfn
259  */
hmm_device_entry_from_pfn(const struct hmm_range * range,unsigned long pfn)260 static inline uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
261 						 unsigned long pfn)
262 {
263 	return (pfn << range->pfn_shift) |
264 		range->flags[HMM_PFN_VALID];
265 }
266 
267 /*
268  * Mirroring: how to synchronize device page table with CPU page table.
269  *
270  * A device driver that is participating in HMM mirroring must always
271  * synchronize with CPU page table updates. For this, device drivers can either
272  * directly use mmu_notifier APIs or they can use the hmm_mirror API. Device
273  * drivers can decide to register one mirror per device per process, or just
274  * one mirror per process for a group of devices. The pattern is:
275  *
276  *      int device_bind_address_space(..., struct mm_struct *mm, ...)
277  *      {
278  *          struct device_address_space *das;
279  *
280  *          // Device driver specific initialization, and allocation of das
281  *          // which contains an hmm_mirror struct as one of its fields.
282  *          ...
283  *
284  *          ret = hmm_mirror_register(&das->mirror, mm, &device_mirror_ops);
285  *          if (ret) {
286  *              // Cleanup on error
287  *              return ret;
288  *          }
289  *
290  *          // Other device driver specific initialization
291  *          ...
292  *      }
293  *
294  * Once an hmm_mirror is registered for an address space, the device driver
295  * will get callbacks through sync_cpu_device_pagetables() operation (see
296  * hmm_mirror_ops struct).
297  *
298  * Device driver must not free the struct containing the hmm_mirror struct
299  * before calling hmm_mirror_unregister(). The expected usage is to do that when
300  * the device driver is unbinding from an address space.
301  *
302  *
303  *      void device_unbind_address_space(struct device_address_space *das)
304  *      {
305  *          // Device driver specific cleanup
306  *          ...
307  *
308  *          hmm_mirror_unregister(&das->mirror);
309  *
310  *          // Other device driver specific cleanup, and now das can be freed
311  *          ...
312  *      }
313  */
314 
315 struct hmm_mirror;
316 
317 /*
318  * struct hmm_mirror_ops - HMM mirror device operations callback
319  *
320  * @update: callback to update range on a device
321  */
322 struct hmm_mirror_ops {
323 	/* release() - release hmm_mirror
324 	 *
325 	 * @mirror: pointer to struct hmm_mirror
326 	 *
327 	 * This is called when the mm_struct is being released.  The callback
328 	 * must ensure that all access to any pages obtained from this mirror
329 	 * is halted before the callback returns. All future access should
330 	 * fault.
331 	 */
332 	void (*release)(struct hmm_mirror *mirror);
333 
334 	/* sync_cpu_device_pagetables() - synchronize page tables
335 	 *
336 	 * @mirror: pointer to struct hmm_mirror
337 	 * @update: update information (see struct mmu_notifier_range)
338 	 * Return: -EAGAIN if mmu_notifier_range_blockable(update) is false
339 	 * and callback needs to block, 0 otherwise.
340 	 *
341 	 * This callback ultimately originates from mmu_notifiers when the CPU
342 	 * page table is updated. The device driver must update its page table
343 	 * in response to this callback. The update argument tells what action
344 	 * to perform.
345 	 *
346 	 * The device driver must not return from this callback until the device
347 	 * page tables are completely updated (TLBs flushed, etc); this is a
348 	 * synchronous call.
349 	 */
350 	int (*sync_cpu_device_pagetables)(
351 		struct hmm_mirror *mirror,
352 		const struct mmu_notifier_range *update);
353 };
354 
355 /*
356  * struct hmm_mirror - mirror struct for a device driver
357  *
358  * @hmm: pointer to struct hmm (which is unique per mm_struct)
359  * @ops: device driver callback for HMM mirror operations
360  * @list: for list of mirrors of a given mm
361  *
362  * Each address space (mm_struct) being mirrored by a device must register one
363  * instance of an hmm_mirror struct with HMM. HMM will track the list of all
364  * mirrors for each mm_struct.
365  */
366 struct hmm_mirror {
367 	struct hmm			*hmm;
368 	const struct hmm_mirror_ops	*ops;
369 	struct list_head		list;
370 };
371 
372 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm);
373 void hmm_mirror_unregister(struct hmm_mirror *mirror);
374 
375 /*
376  * Please see Documentation/vm/hmm.rst for how to use the range API.
377  */
378 int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror);
379 void hmm_range_unregister(struct hmm_range *range);
380 
381 /*
382  * Retry fault if non-blocking, drop mmap_sem and return -EAGAIN in that case.
383  */
384 #define HMM_FAULT_ALLOW_RETRY		(1 << 0)
385 
386 /* Don't fault in missing PTEs, just snapshot the current state. */
387 #define HMM_FAULT_SNAPSHOT		(1 << 1)
388 
389 long hmm_range_fault(struct hmm_range *range, unsigned int flags);
390 
391 long hmm_range_dma_map(struct hmm_range *range,
392 		       struct device *device,
393 		       dma_addr_t *daddrs,
394 		       unsigned int flags);
395 long hmm_range_dma_unmap(struct hmm_range *range,
396 			 struct device *device,
397 			 dma_addr_t *daddrs,
398 			 bool dirty);
399 
400 /*
401  * HMM_RANGE_DEFAULT_TIMEOUT - default timeout (ms) when waiting for a range
402  *
403  * When waiting for mmu notifiers we need some kind of time out otherwise we
404  * could potentialy wait for ever, 1000ms ie 1s sounds like a long time to
405  * wait already.
406  */
407 #define HMM_RANGE_DEFAULT_TIMEOUT 1000
408 
409 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
410 
411 #endif /* LINUX_HMM_H */
412