1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
dma_submit_error(dma_cookie_t cookie)37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_PRIVATE,
72 DMA_ASYNC_TX,
73 DMA_SLAVE,
74 DMA_CYCLIC,
75 DMA_INTERLEAVE,
76 /* last transaction type for creation of the capabilities mask */
77 DMA_TX_TYPE_END,
78 };
79
80 /**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87 enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
92 DMA_TRANS_NONE,
93 };
94
95 /**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118 /**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
126 * @dst_icg: Number of bytes to jump after last dst address of this
127 * chunk and before the first dst address for next chunk.
128 * Ignored if dst_inc is true and dst_sgl is false.
129 * @src_icg: Number of bytes to jump after last src address of this
130 * chunk and before the first src address for next chunk.
131 * Ignored if src_inc is true and src_sgl is false.
132 */
133 struct data_chunk {
134 size_t size;
135 size_t icg;
136 size_t dst_icg;
137 size_t src_icg;
138 };
139
140 /**
141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142 * and attributes.
143 * @src_start: Bus address of source for the first chunk.
144 * @dst_start: Bus address of destination for the first chunk.
145 * @dir: Specifies the type of Source and Destination.
146 * @src_inc: If the source address increments after reading from it.
147 * @dst_inc: If the destination address increments after writing to it.
148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149 * Otherwise, source is read contiguously (icg ignored).
150 * Ignored if src_inc is false.
151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152 * Otherwise, destination is filled contiguously (icg ignored).
153 * Ignored if dst_inc is false.
154 * @numf: Number of frames in this template.
155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
157 */
158 struct dma_interleaved_template {
159 dma_addr_t src_start;
160 dma_addr_t dst_start;
161 enum dma_transfer_direction dir;
162 bool src_inc;
163 bool dst_inc;
164 bool src_sgl;
165 bool dst_sgl;
166 size_t numf;
167 size_t frame_size;
168 struct data_chunk sgl[0];
169 };
170
171 /**
172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
173 * control completion, and communicate status.
174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
175 * this transaction
176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
177 * acknowledges receipt, i.e. has has a chance to establish any dependency
178 * chains
179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182 * sources that were the result of a previous operation, in the case of a PQ
183 * operation it continues the calculation with new sources
184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185 * on the result of this operation
186 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
187 * cleared or freed
188 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
189 * data and the descriptor should be in different format from normal
190 * data descriptors.
191 */
192 enum dma_ctrl_flags {
193 DMA_PREP_INTERRUPT = (1 << 0),
194 DMA_CTRL_ACK = (1 << 1),
195 DMA_PREP_PQ_DISABLE_P = (1 << 2),
196 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
197 DMA_PREP_CONTINUE = (1 << 4),
198 DMA_PREP_FENCE = (1 << 5),
199 DMA_CTRL_REUSE = (1 << 6),
200 DMA_PREP_CMD = (1 << 7),
201 };
202
203 /**
204 * enum sum_check_bits - bit position of pq_check_flags
205 */
206 enum sum_check_bits {
207 SUM_CHECK_P = 0,
208 SUM_CHECK_Q = 1,
209 };
210
211 /**
212 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
213 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
214 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
215 */
216 enum sum_check_flags {
217 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
218 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
219 };
220
221
222 /**
223 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
224 * See linux/cpumask.h
225 */
226 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
227
228 /**
229 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
230 * @memcpy_count: transaction counter
231 * @bytes_transferred: byte counter
232 */
233
234 struct dma_chan_percpu {
235 /* stats */
236 unsigned long memcpy_count;
237 unsigned long bytes_transferred;
238 };
239
240 /**
241 * struct dma_router - DMA router structure
242 * @dev: pointer to the DMA router device
243 * @route_free: function to be called when the route can be disconnected
244 */
245 struct dma_router {
246 struct device *dev;
247 void (*route_free)(struct device *dev, void *route_data);
248 };
249
250 /**
251 * struct dma_chan - devices supply DMA channels, clients use them
252 * @device: ptr to the dma device who supplies this channel, always !%NULL
253 * @cookie: last cookie value returned to client
254 * @completed_cookie: last completed cookie for this channel
255 * @chan_id: channel ID for sysfs
256 * @dev: class device for sysfs
257 * @device_node: used to add this to the device chan list
258 * @local: per-cpu pointer to a struct dma_chan_percpu
259 * @client_count: how many clients are using this channel
260 * @table_count: number of appearances in the mem-to-mem allocation table
261 * @router: pointer to the DMA router structure
262 * @route_data: channel specific data for the router
263 * @private: private data for certain client-channel associations
264 */
265 struct dma_chan {
266 struct dma_device *device;
267 dma_cookie_t cookie;
268 dma_cookie_t completed_cookie;
269
270 /* sysfs */
271 int chan_id;
272 struct dma_chan_dev *dev;
273
274 struct list_head device_node;
275 struct dma_chan_percpu __percpu *local;
276 int client_count;
277 int table_count;
278
279 /* DMA router */
280 struct dma_router *router;
281 void *route_data;
282
283 void *private;
284 };
285
286 /**
287 * struct dma_chan_dev - relate sysfs device node to backing channel device
288 * @chan: driver channel device
289 * @device: sysfs device
290 * @dev_id: parent dma_device dev_id
291 * @idr_ref: reference count to gate release of dma_device dev_id
292 */
293 struct dma_chan_dev {
294 struct dma_chan *chan;
295 struct device device;
296 int dev_id;
297 atomic_t *idr_ref;
298 };
299
300 /**
301 * enum dma_slave_buswidth - defines bus width of the DMA slave
302 * device, source or target buses
303 */
304 enum dma_slave_buswidth {
305 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
306 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
307 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
308 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
311 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
312 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
313 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
314 };
315
316 /**
317 * struct dma_slave_config - dma slave channel runtime config
318 * @direction: whether the data shall go in or out on this slave
319 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
320 * legal values. DEPRECATED, drivers should use the direction argument
321 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
322 * the dir field in the dma_interleaved_template structure.
323 * @src_addr: this is the physical address where DMA slave data
324 * should be read (RX), if the source is memory this argument is
325 * ignored.
326 * @dst_addr: this is the physical address where DMA slave data
327 * should be written (TX), if the source is memory this argument
328 * is ignored.
329 * @src_addr_width: this is the width in bytes of the source (RX)
330 * register where DMA data shall be read. If the source
331 * is memory this may be ignored depending on architecture.
332 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
333 * @dst_addr_width: same as src_addr_width but for destination
334 * target (TX) mutatis mutandis.
335 * @src_maxburst: the maximum number of words (note: words, as in
336 * units of the src_addr_width member, not bytes) that can be sent
337 * in one burst to the device. Typically something like half the
338 * FIFO depth on I/O peripherals so you don't overflow it. This
339 * may or may not be applicable on memory sources.
340 * @dst_maxburst: same as src_maxburst but for destination target
341 * mutatis mutandis.
342 * @src_port_window_size: The length of the register area in words the data need
343 * to be accessed on the device side. It is only used for devices which is using
344 * an area instead of a single register to receive the data. Typically the DMA
345 * loops in this area in order to transfer the data.
346 * @dst_port_window_size: same as src_port_window_size but for the destination
347 * port.
348 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
349 * with 'true' if peripheral should be flow controller. Direction will be
350 * selected at Runtime.
351 * @slave_id: Slave requester id. Only valid for slave channels. The dma
352 * slave peripheral will have unique id as dma requester which need to be
353 * pass as slave config.
354 *
355 * This struct is passed in as configuration data to a DMA engine
356 * in order to set up a certain channel for DMA transport at runtime.
357 * The DMA device/engine has to provide support for an additional
358 * callback in the dma_device structure, device_config and this struct
359 * will then be passed in as an argument to the function.
360 *
361 * The rationale for adding configuration information to this struct is as
362 * follows: if it is likely that more than one DMA slave controllers in
363 * the world will support the configuration option, then make it generic.
364 * If not: if it is fixed so that it be sent in static from the platform
365 * data, then prefer to do that.
366 */
367 struct dma_slave_config {
368 enum dma_transfer_direction direction;
369 phys_addr_t src_addr;
370 phys_addr_t dst_addr;
371 enum dma_slave_buswidth src_addr_width;
372 enum dma_slave_buswidth dst_addr_width;
373 u32 src_maxburst;
374 u32 dst_maxburst;
375 u32 src_port_window_size;
376 u32 dst_port_window_size;
377 bool device_fc;
378 unsigned int slave_id;
379 };
380
381 /**
382 * enum dma_residue_granularity - Granularity of the reported transfer residue
383 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
384 * DMA channel is only able to tell whether a descriptor has been completed or
385 * not, which means residue reporting is not supported by this channel. The
386 * residue field of the dma_tx_state field will always be 0.
387 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
388 * completed segment of the transfer (For cyclic transfers this is after each
389 * period). This is typically implemented by having the hardware generate an
390 * interrupt after each transferred segment and then the drivers updates the
391 * outstanding residue by the size of the segment. Another possibility is if
392 * the hardware supports scatter-gather and the segment descriptor has a field
393 * which gets set after the segment has been completed. The driver then counts
394 * the number of segments without the flag set to compute the residue.
395 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
396 * burst. This is typically only supported if the hardware has a progress
397 * register of some sort (E.g. a register with the current read/write address
398 * or a register with the amount of bursts/beats/bytes that have been
399 * transferred or still need to be transferred).
400 */
401 enum dma_residue_granularity {
402 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
403 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
404 DMA_RESIDUE_GRANULARITY_BURST = 2,
405 };
406
407 /**
408 * struct dma_slave_caps - expose capabilities of a slave channel only
409 * @src_addr_widths: bit mask of src addr widths the channel supports.
410 * Width is specified in bytes, e.g. for a channel supporting
411 * a width of 4 the mask should have BIT(4) set.
412 * @dst_addr_widths: bit mask of dst addr widths the channel supports
413 * @directions: bit mask of slave directions the channel supports.
414 * Since the enum dma_transfer_direction is not defined as bit flag for
415 * each type, the dma controller should set BIT(<TYPE>) and same
416 * should be checked by controller as well
417 * @max_burst: max burst capability per-transfer
418 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
419 * for resume later)
420 * @cmd_resume: true, if resume is supported
421 * @cmd_terminate: true, if terminate cmd is supported
422 * @residue_granularity: granularity of the reported transfer residue
423 * @descriptor_reuse: if a descriptor can be reused by client and
424 * resubmitted multiple times
425 */
426 struct dma_slave_caps {
427 u32 src_addr_widths;
428 u32 dst_addr_widths;
429 u32 directions;
430 u32 max_burst;
431 bool cmd_pause;
432 bool cmd_resume;
433 bool cmd_terminate;
434 enum dma_residue_granularity residue_granularity;
435 bool descriptor_reuse;
436 };
437
dma_chan_name(struct dma_chan * chan)438 static inline const char *dma_chan_name(struct dma_chan *chan)
439 {
440 return dev_name(&chan->dev->device);
441 }
442
443 void dma_chan_cleanup(struct kref *kref);
444
445 /**
446 * typedef dma_filter_fn - callback filter for dma_request_channel
447 * @chan: channel to be reviewed
448 * @filter_param: opaque parameter passed through dma_request_channel
449 *
450 * When this optional parameter is specified in a call to dma_request_channel a
451 * suitable channel is passed to this routine for further dispositioning before
452 * being returned. Where 'suitable' indicates a non-busy channel that
453 * satisfies the given capability mask. It returns 'true' to indicate that the
454 * channel is suitable.
455 */
456 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
457
458 typedef void (*dma_async_tx_callback)(void *dma_async_param);
459
460 enum dmaengine_tx_result {
461 DMA_TRANS_NOERROR = 0, /* SUCCESS */
462 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
463 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
464 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
465 };
466
467 struct dmaengine_result {
468 enum dmaengine_tx_result result;
469 u32 residue;
470 };
471
472 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
473 const struct dmaengine_result *result);
474
475 struct dmaengine_unmap_data {
476 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
477 u16 map_cnt;
478 #else
479 u8 map_cnt;
480 #endif
481 u8 to_cnt;
482 u8 from_cnt;
483 u8 bidi_cnt;
484 struct device *dev;
485 struct kref kref;
486 size_t len;
487 dma_addr_t addr[0];
488 };
489
490 /**
491 * struct dma_async_tx_descriptor - async transaction descriptor
492 * ---dma generic offload fields---
493 * @cookie: tracking cookie for this transaction, set to -EBUSY if
494 * this tx is sitting on a dependency list
495 * @flags: flags to augment operation preparation, control completion, and
496 * communicate status
497 * @phys: physical address of the descriptor
498 * @chan: target channel for this operation
499 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
500 * descriptor pending. To be pushed on .issue_pending() call
501 * @callback: routine to call after this operation is complete
502 * @callback_param: general parameter to pass to the callback routine
503 * ---async_tx api specific fields---
504 * @next: at completion submit this descriptor
505 * @parent: pointer to the next level up in the dependency chain
506 * @lock: protect the parent and next pointers
507 */
508 struct dma_async_tx_descriptor {
509 dma_cookie_t cookie;
510 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
511 dma_addr_t phys;
512 struct dma_chan *chan;
513 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
514 int (*desc_free)(struct dma_async_tx_descriptor *tx);
515 dma_async_tx_callback callback;
516 dma_async_tx_callback_result callback_result;
517 void *callback_param;
518 struct dmaengine_unmap_data *unmap;
519 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
520 struct dma_async_tx_descriptor *next;
521 struct dma_async_tx_descriptor *parent;
522 spinlock_t lock;
523 #endif
524 };
525
526 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)527 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
528 struct dmaengine_unmap_data *unmap)
529 {
530 kref_get(&unmap->kref);
531 tx->unmap = unmap;
532 }
533
534 struct dmaengine_unmap_data *
535 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
536 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
537 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)538 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
539 struct dmaengine_unmap_data *unmap)
540 {
541 }
542 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)543 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
544 {
545 return NULL;
546 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)547 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
548 {
549 }
550 #endif
551
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)552 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
553 {
554 if (tx->unmap) {
555 dmaengine_unmap_put(tx->unmap);
556 tx->unmap = NULL;
557 }
558 }
559
560 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)561 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
562 {
563 }
txd_unlock(struct dma_async_tx_descriptor * txd)564 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
565 {
566 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)567 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
568 {
569 BUG();
570 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)571 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
572 {
573 }
txd_clear_next(struct dma_async_tx_descriptor * txd)574 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
575 {
576 }
txd_next(struct dma_async_tx_descriptor * txd)577 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
578 {
579 return NULL;
580 }
txd_parent(struct dma_async_tx_descriptor * txd)581 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
582 {
583 return NULL;
584 }
585
586 #else
txd_lock(struct dma_async_tx_descriptor * txd)587 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
588 {
589 spin_lock_bh(&txd->lock);
590 }
txd_unlock(struct dma_async_tx_descriptor * txd)591 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
592 {
593 spin_unlock_bh(&txd->lock);
594 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)595 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
596 {
597 txd->next = next;
598 next->parent = txd;
599 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)600 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
601 {
602 txd->parent = NULL;
603 }
txd_clear_next(struct dma_async_tx_descriptor * txd)604 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
605 {
606 txd->next = NULL;
607 }
txd_parent(struct dma_async_tx_descriptor * txd)608 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
609 {
610 return txd->parent;
611 }
txd_next(struct dma_async_tx_descriptor * txd)612 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
613 {
614 return txd->next;
615 }
616 #endif
617
618 /**
619 * struct dma_tx_state - filled in to report the status of
620 * a transfer.
621 * @last: last completed DMA cookie
622 * @used: last issued DMA cookie (i.e. the one in progress)
623 * @residue: the remaining number of bytes left to transmit
624 * on the selected transfer for states DMA_IN_PROGRESS and
625 * DMA_PAUSED if this is implemented in the driver, else 0
626 */
627 struct dma_tx_state {
628 dma_cookie_t last;
629 dma_cookie_t used;
630 u32 residue;
631 };
632
633 /**
634 * enum dmaengine_alignment - defines alignment of the DMA async tx
635 * buffers
636 */
637 enum dmaengine_alignment {
638 DMAENGINE_ALIGN_1_BYTE = 0,
639 DMAENGINE_ALIGN_2_BYTES = 1,
640 DMAENGINE_ALIGN_4_BYTES = 2,
641 DMAENGINE_ALIGN_8_BYTES = 3,
642 DMAENGINE_ALIGN_16_BYTES = 4,
643 DMAENGINE_ALIGN_32_BYTES = 5,
644 DMAENGINE_ALIGN_64_BYTES = 6,
645 };
646
647 /**
648 * struct dma_slave_map - associates slave device and it's slave channel with
649 * parameter to be used by a filter function
650 * @devname: name of the device
651 * @slave: slave channel name
652 * @param: opaque parameter to pass to struct dma_filter.fn
653 */
654 struct dma_slave_map {
655 const char *devname;
656 const char *slave;
657 void *param;
658 };
659
660 /**
661 * struct dma_filter - information for slave device/channel to filter_fn/param
662 * mapping
663 * @fn: filter function callback
664 * @mapcnt: number of slave device/channel in the map
665 * @map: array of channel to filter mapping data
666 */
667 struct dma_filter {
668 dma_filter_fn fn;
669 int mapcnt;
670 const struct dma_slave_map *map;
671 };
672
673 /**
674 * struct dma_device - info on the entity supplying DMA services
675 * @chancnt: how many DMA channels are supported
676 * @privatecnt: how many DMA channels are requested by dma_request_channel
677 * @channels: the list of struct dma_chan
678 * @global_node: list_head for global dma_device_list
679 * @filter: information for device/slave to filter function/param mapping
680 * @cap_mask: one or more dma_capability flags
681 * @max_xor: maximum number of xor sources, 0 if no capability
682 * @max_pq: maximum number of PQ sources and PQ-continue capability
683 * @copy_align: alignment shift for memcpy operations
684 * @xor_align: alignment shift for xor operations
685 * @pq_align: alignment shift for pq operations
686 * @fill_align: alignment shift for memset operations
687 * @dev_id: unique device ID
688 * @dev: struct device reference for dma mapping api
689 * @src_addr_widths: bit mask of src addr widths the device supports
690 * Width is specified in bytes, e.g. for a device supporting
691 * a width of 4 the mask should have BIT(4) set.
692 * @dst_addr_widths: bit mask of dst addr widths the device supports
693 * @directions: bit mask of slave directions the device supports.
694 * Since the enum dma_transfer_direction is not defined as bit flag for
695 * each type, the dma controller should set BIT(<TYPE>) and same
696 * should be checked by controller as well
697 * @max_burst: max burst capability per-transfer
698 * @residue_granularity: granularity of the transfer residue reported
699 * by tx_status
700 * @device_alloc_chan_resources: allocate resources and return the
701 * number of allocated descriptors
702 * @device_free_chan_resources: release DMA channel's resources
703 * @device_prep_dma_memcpy: prepares a memcpy operation
704 * @device_prep_dma_xor: prepares a xor operation
705 * @device_prep_dma_xor_val: prepares a xor validation operation
706 * @device_prep_dma_pq: prepares a pq operation
707 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
708 * @device_prep_dma_memset: prepares a memset operation
709 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
710 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
711 * @device_prep_slave_sg: prepares a slave dma operation
712 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
713 * The function takes a buffer of size buf_len. The callback function will
714 * be called after period_len bytes have been transferred.
715 * @device_prep_interleaved_dma: Transfer expression in a generic way.
716 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
717 * @device_config: Pushes a new configuration to a channel, return 0 or an error
718 * code
719 * @device_pause: Pauses any transfer happening on a channel. Returns
720 * 0 or an error code
721 * @device_resume: Resumes any transfer on a channel previously
722 * paused. Returns 0 or an error code
723 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
724 * or an error code
725 * @device_synchronize: Synchronizes the termination of a transfers to the
726 * current context.
727 * @device_tx_status: poll for transaction completion, the optional
728 * txstate parameter can be supplied with a pointer to get a
729 * struct with auxiliary transfer status information, otherwise the call
730 * will just return a simple status code
731 * @device_issue_pending: push pending transactions to hardware
732 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
733 */
734 struct dma_device {
735
736 unsigned int chancnt;
737 unsigned int privatecnt;
738 struct list_head channels;
739 struct list_head global_node;
740 struct dma_filter filter;
741 dma_cap_mask_t cap_mask;
742 unsigned short max_xor;
743 unsigned short max_pq;
744 enum dmaengine_alignment copy_align;
745 enum dmaengine_alignment xor_align;
746 enum dmaengine_alignment pq_align;
747 enum dmaengine_alignment fill_align;
748 #define DMA_HAS_PQ_CONTINUE (1 << 15)
749
750 int dev_id;
751 struct device *dev;
752
753 u32 src_addr_widths;
754 u32 dst_addr_widths;
755 u32 directions;
756 u32 max_burst;
757 bool descriptor_reuse;
758 enum dma_residue_granularity residue_granularity;
759
760 int (*device_alloc_chan_resources)(struct dma_chan *chan);
761 void (*device_free_chan_resources)(struct dma_chan *chan);
762
763 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
764 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
765 size_t len, unsigned long flags);
766 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
767 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
768 unsigned int src_cnt, size_t len, unsigned long flags);
769 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
770 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
771 size_t len, enum sum_check_flags *result, unsigned long flags);
772 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
773 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
774 unsigned int src_cnt, const unsigned char *scf,
775 size_t len, unsigned long flags);
776 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
777 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
778 unsigned int src_cnt, const unsigned char *scf, size_t len,
779 enum sum_check_flags *pqres, unsigned long flags);
780 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
781 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
782 unsigned long flags);
783 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
784 struct dma_chan *chan, struct scatterlist *sg,
785 unsigned int nents, int value, unsigned long flags);
786 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
787 struct dma_chan *chan, unsigned long flags);
788
789 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
790 struct dma_chan *chan, struct scatterlist *sgl,
791 unsigned int sg_len, enum dma_transfer_direction direction,
792 unsigned long flags, void *context);
793 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
794 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
795 size_t period_len, enum dma_transfer_direction direction,
796 unsigned long flags);
797 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
798 struct dma_chan *chan, struct dma_interleaved_template *xt,
799 unsigned long flags);
800 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
801 struct dma_chan *chan, dma_addr_t dst, u64 data,
802 unsigned long flags);
803
804 int (*device_config)(struct dma_chan *chan,
805 struct dma_slave_config *config);
806 int (*device_pause)(struct dma_chan *chan);
807 int (*device_resume)(struct dma_chan *chan);
808 int (*device_terminate_all)(struct dma_chan *chan);
809 void (*device_synchronize)(struct dma_chan *chan);
810
811 enum dma_status (*device_tx_status)(struct dma_chan *chan,
812 dma_cookie_t cookie,
813 struct dma_tx_state *txstate);
814 void (*device_issue_pending)(struct dma_chan *chan);
815 };
816
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)817 static inline int dmaengine_slave_config(struct dma_chan *chan,
818 struct dma_slave_config *config)
819 {
820 if (chan->device->device_config)
821 return chan->device->device_config(chan, config);
822
823 return -ENOSYS;
824 }
825
is_slave_direction(enum dma_transfer_direction direction)826 static inline bool is_slave_direction(enum dma_transfer_direction direction)
827 {
828 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
829 }
830
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)831 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
832 struct dma_chan *chan, dma_addr_t buf, size_t len,
833 enum dma_transfer_direction dir, unsigned long flags)
834 {
835 struct scatterlist sg;
836 sg_init_table(&sg, 1);
837 sg_dma_address(&sg) = buf;
838 sg_dma_len(&sg) = len;
839
840 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
841 return NULL;
842
843 return chan->device->device_prep_slave_sg(chan, &sg, 1,
844 dir, flags, NULL);
845 }
846
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)847 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
848 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
849 enum dma_transfer_direction dir, unsigned long flags)
850 {
851 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
852 return NULL;
853
854 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
855 dir, flags, NULL);
856 }
857
858 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
859 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)860 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
861 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
862 enum dma_transfer_direction dir, unsigned long flags,
863 struct rio_dma_ext *rio_ext)
864 {
865 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
866 return NULL;
867
868 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
869 dir, flags, rio_ext);
870 }
871 #endif
872
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)873 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
874 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
875 size_t period_len, enum dma_transfer_direction dir,
876 unsigned long flags)
877 {
878 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
879 return NULL;
880
881 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
882 period_len, dir, flags);
883 }
884
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)885 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
886 struct dma_chan *chan, struct dma_interleaved_template *xt,
887 unsigned long flags)
888 {
889 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
890 return NULL;
891
892 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
893 }
894
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)895 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
896 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
897 unsigned long flags)
898 {
899 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
900 return NULL;
901
902 return chan->device->device_prep_dma_memset(chan, dest, value,
903 len, flags);
904 }
905
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)906 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
907 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
908 size_t len, unsigned long flags)
909 {
910 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
911 return NULL;
912
913 return chan->device->device_prep_dma_memcpy(chan, dest, src,
914 len, flags);
915 }
916
917 /**
918 * dmaengine_terminate_all() - Terminate all active DMA transfers
919 * @chan: The channel for which to terminate the transfers
920 *
921 * This function is DEPRECATED use either dmaengine_terminate_sync() or
922 * dmaengine_terminate_async() instead.
923 */
dmaengine_terminate_all(struct dma_chan * chan)924 static inline int dmaengine_terminate_all(struct dma_chan *chan)
925 {
926 if (chan->device->device_terminate_all)
927 return chan->device->device_terminate_all(chan);
928
929 return -ENOSYS;
930 }
931
932 /**
933 * dmaengine_terminate_async() - Terminate all active DMA transfers
934 * @chan: The channel for which to terminate the transfers
935 *
936 * Calling this function will terminate all active and pending descriptors
937 * that have previously been submitted to the channel. It is not guaranteed
938 * though that the transfer for the active descriptor has stopped when the
939 * function returns. Furthermore it is possible the complete callback of a
940 * submitted transfer is still running when this function returns.
941 *
942 * dmaengine_synchronize() needs to be called before it is safe to free
943 * any memory that is accessed by previously submitted descriptors or before
944 * freeing any resources accessed from within the completion callback of any
945 * perviously submitted descriptors.
946 *
947 * This function can be called from atomic context as well as from within a
948 * complete callback of a descriptor submitted on the same channel.
949 *
950 * If none of the two conditions above apply consider using
951 * dmaengine_terminate_sync() instead.
952 */
dmaengine_terminate_async(struct dma_chan * chan)953 static inline int dmaengine_terminate_async(struct dma_chan *chan)
954 {
955 if (chan->device->device_terminate_all)
956 return chan->device->device_terminate_all(chan);
957
958 return -EINVAL;
959 }
960
961 /**
962 * dmaengine_synchronize() - Synchronize DMA channel termination
963 * @chan: The channel to synchronize
964 *
965 * Synchronizes to the DMA channel termination to the current context. When this
966 * function returns it is guaranteed that all transfers for previously issued
967 * descriptors have stopped and and it is safe to free the memory assoicated
968 * with them. Furthermore it is guaranteed that all complete callback functions
969 * for a previously submitted descriptor have finished running and it is safe to
970 * free resources accessed from within the complete callbacks.
971 *
972 * The behavior of this function is undefined if dma_async_issue_pending() has
973 * been called between dmaengine_terminate_async() and this function.
974 *
975 * This function must only be called from non-atomic context and must not be
976 * called from within a complete callback of a descriptor submitted on the same
977 * channel.
978 */
dmaengine_synchronize(struct dma_chan * chan)979 static inline void dmaengine_synchronize(struct dma_chan *chan)
980 {
981 might_sleep();
982
983 if (chan->device->device_synchronize)
984 chan->device->device_synchronize(chan);
985 }
986
987 /**
988 * dmaengine_terminate_sync() - Terminate all active DMA transfers
989 * @chan: The channel for which to terminate the transfers
990 *
991 * Calling this function will terminate all active and pending transfers
992 * that have previously been submitted to the channel. It is similar to
993 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
994 * stopped and that all complete callbacks have finished running when the
995 * function returns.
996 *
997 * This function must only be called from non-atomic context and must not be
998 * called from within a complete callback of a descriptor submitted on the same
999 * channel.
1000 */
dmaengine_terminate_sync(struct dma_chan * chan)1001 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1002 {
1003 int ret;
1004
1005 ret = dmaengine_terminate_async(chan);
1006 if (ret)
1007 return ret;
1008
1009 dmaengine_synchronize(chan);
1010
1011 return 0;
1012 }
1013
dmaengine_pause(struct dma_chan * chan)1014 static inline int dmaengine_pause(struct dma_chan *chan)
1015 {
1016 if (chan->device->device_pause)
1017 return chan->device->device_pause(chan);
1018
1019 return -ENOSYS;
1020 }
1021
dmaengine_resume(struct dma_chan * chan)1022 static inline int dmaengine_resume(struct dma_chan *chan)
1023 {
1024 if (chan->device->device_resume)
1025 return chan->device->device_resume(chan);
1026
1027 return -ENOSYS;
1028 }
1029
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1030 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1031 dma_cookie_t cookie, struct dma_tx_state *state)
1032 {
1033 return chan->device->device_tx_status(chan, cookie, state);
1034 }
1035
dmaengine_submit(struct dma_async_tx_descriptor * desc)1036 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1037 {
1038 return desc->tx_submit(desc);
1039 }
1040
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1041 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1042 size_t off1, size_t off2, size_t len)
1043 {
1044 size_t mask;
1045
1046 if (!align)
1047 return true;
1048 mask = (1 << align) - 1;
1049 if (mask & (off1 | off2 | len))
1050 return false;
1051 return true;
1052 }
1053
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1054 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1055 size_t off2, size_t len)
1056 {
1057 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1058 }
1059
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1060 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1061 size_t off2, size_t len)
1062 {
1063 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1064 }
1065
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1066 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1067 size_t off2, size_t len)
1068 {
1069 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1070 }
1071
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1072 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1073 size_t off2, size_t len)
1074 {
1075 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1076 }
1077
1078 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1079 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1080 {
1081 dma->max_pq = maxpq;
1082 if (has_pq_continue)
1083 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1084 }
1085
dmaf_continue(enum dma_ctrl_flags flags)1086 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1087 {
1088 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1089 }
1090
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1091 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1092 {
1093 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1094
1095 return (flags & mask) == mask;
1096 }
1097
dma_dev_has_pq_continue(struct dma_device * dma)1098 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1099 {
1100 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1101 }
1102
dma_dev_to_maxpq(struct dma_device * dma)1103 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1104 {
1105 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1106 }
1107
1108 /* dma_maxpq - reduce maxpq in the face of continued operations
1109 * @dma - dma device with PQ capability
1110 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1111 *
1112 * When an engine does not support native continuation we need 3 extra
1113 * source slots to reuse P and Q with the following coefficients:
1114 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1115 * 2/ {01} * Q : use Q to continue Q' calculation
1116 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1117 *
1118 * In the case where P is disabled we only need 1 extra source:
1119 * 1/ {01} * Q : use Q to continue Q' calculation
1120 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1121 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1122 {
1123 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1124 return dma_dev_to_maxpq(dma);
1125 else if (dmaf_p_disabled_continue(flags))
1126 return dma_dev_to_maxpq(dma) - 1;
1127 else if (dmaf_continue(flags))
1128 return dma_dev_to_maxpq(dma) - 3;
1129 BUG();
1130 }
1131
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1132 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1133 size_t dir_icg)
1134 {
1135 if (inc) {
1136 if (dir_icg)
1137 return dir_icg;
1138 else if (sgl)
1139 return icg;
1140 }
1141
1142 return 0;
1143 }
1144
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1145 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1146 struct data_chunk *chunk)
1147 {
1148 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1149 chunk->icg, chunk->dst_icg);
1150 }
1151
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1152 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1153 struct data_chunk *chunk)
1154 {
1155 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1156 chunk->icg, chunk->src_icg);
1157 }
1158
1159 /* --- public DMA engine API --- */
1160
1161 #ifdef CONFIG_DMA_ENGINE
1162 void dmaengine_get(void);
1163 void dmaengine_put(void);
1164 #else
dmaengine_get(void)1165 static inline void dmaengine_get(void)
1166 {
1167 }
dmaengine_put(void)1168 static inline void dmaengine_put(void)
1169 {
1170 }
1171 #endif
1172
1173 #ifdef CONFIG_ASYNC_TX_DMA
1174 #define async_dmaengine_get() dmaengine_get()
1175 #define async_dmaengine_put() dmaengine_put()
1176 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1177 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1178 #else
1179 #define async_dma_find_channel(type) dma_find_channel(type)
1180 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1181 #else
async_dmaengine_get(void)1182 static inline void async_dmaengine_get(void)
1183 {
1184 }
async_dmaengine_put(void)1185 static inline void async_dmaengine_put(void)
1186 {
1187 }
1188 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1189 async_dma_find_channel(enum dma_transaction_type type)
1190 {
1191 return NULL;
1192 }
1193 #endif /* CONFIG_ASYNC_TX_DMA */
1194 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1195 struct dma_chan *chan);
1196
async_tx_ack(struct dma_async_tx_descriptor * tx)1197 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1198 {
1199 tx->flags |= DMA_CTRL_ACK;
1200 }
1201
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1202 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1203 {
1204 tx->flags &= ~DMA_CTRL_ACK;
1205 }
1206
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1207 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1208 {
1209 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1210 }
1211
1212 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1213 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1214 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1215 {
1216 set_bit(tx_type, dstp->bits);
1217 }
1218
1219 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1220 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1221 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1222 {
1223 clear_bit(tx_type, dstp->bits);
1224 }
1225
1226 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1227 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1228 {
1229 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1230 }
1231
1232 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1233 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1234 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1235 {
1236 return test_bit(tx_type, srcp->bits);
1237 }
1238
1239 #define for_each_dma_cap_mask(cap, mask) \
1240 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1241
1242 /**
1243 * dma_async_issue_pending - flush pending transactions to HW
1244 * @chan: target DMA channel
1245 *
1246 * This allows drivers to push copies to HW in batches,
1247 * reducing MMIO writes where possible.
1248 */
dma_async_issue_pending(struct dma_chan * chan)1249 static inline void dma_async_issue_pending(struct dma_chan *chan)
1250 {
1251 chan->device->device_issue_pending(chan);
1252 }
1253
1254 /**
1255 * dma_async_is_tx_complete - poll for transaction completion
1256 * @chan: DMA channel
1257 * @cookie: transaction identifier to check status of
1258 * @last: returns last completed cookie, can be NULL
1259 * @used: returns last issued cookie, can be NULL
1260 *
1261 * If @last and @used are passed in, upon return they reflect the driver
1262 * internal state and can be used with dma_async_is_complete() to check
1263 * the status of multiple cookies without re-checking hardware state.
1264 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1265 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1266 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1267 {
1268 struct dma_tx_state state;
1269 enum dma_status status;
1270
1271 status = chan->device->device_tx_status(chan, cookie, &state);
1272 if (last)
1273 *last = state.last;
1274 if (used)
1275 *used = state.used;
1276 return status;
1277 }
1278
1279 /**
1280 * dma_async_is_complete - test a cookie against chan state
1281 * @cookie: transaction identifier to test status of
1282 * @last_complete: last know completed transaction
1283 * @last_used: last cookie value handed out
1284 *
1285 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1286 * the test logic is separated for lightweight testing of multiple cookies
1287 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1288 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1289 dma_cookie_t last_complete, dma_cookie_t last_used)
1290 {
1291 if (last_complete <= last_used) {
1292 if ((cookie <= last_complete) || (cookie > last_used))
1293 return DMA_COMPLETE;
1294 } else {
1295 if ((cookie <= last_complete) && (cookie > last_used))
1296 return DMA_COMPLETE;
1297 }
1298 return DMA_IN_PROGRESS;
1299 }
1300
1301 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1302 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1303 {
1304 if (st) {
1305 st->last = last;
1306 st->used = used;
1307 st->residue = residue;
1308 }
1309 }
1310
1311 #ifdef CONFIG_DMA_ENGINE
1312 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1313 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1314 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1315 void dma_issue_pending_all(void);
1316 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1317 dma_filter_fn fn, void *fn_param);
1318 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1319
1320 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1321 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1322
1323 void dma_release_channel(struct dma_chan *chan);
1324 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1325 #else
dma_find_channel(enum dma_transaction_type tx_type)1326 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1327 {
1328 return NULL;
1329 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1330 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1331 {
1332 return DMA_COMPLETE;
1333 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1334 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1335 {
1336 return DMA_COMPLETE;
1337 }
dma_issue_pending_all(void)1338 static inline void dma_issue_pending_all(void)
1339 {
1340 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1341 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1342 dma_filter_fn fn, void *fn_param)
1343 {
1344 return NULL;
1345 }
dma_request_slave_channel(struct device * dev,const char * name)1346 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1347 const char *name)
1348 {
1349 return NULL;
1350 }
dma_request_chan(struct device * dev,const char * name)1351 static inline struct dma_chan *dma_request_chan(struct device *dev,
1352 const char *name)
1353 {
1354 return ERR_PTR(-ENODEV);
1355 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1356 static inline struct dma_chan *dma_request_chan_by_mask(
1357 const dma_cap_mask_t *mask)
1358 {
1359 return ERR_PTR(-ENODEV);
1360 }
dma_release_channel(struct dma_chan * chan)1361 static inline void dma_release_channel(struct dma_chan *chan)
1362 {
1363 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1364 static inline int dma_get_slave_caps(struct dma_chan *chan,
1365 struct dma_slave_caps *caps)
1366 {
1367 return -ENXIO;
1368 }
1369 #endif
1370
1371 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1372
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1373 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1374 {
1375 struct dma_slave_caps caps;
1376
1377 dma_get_slave_caps(tx->chan, &caps);
1378
1379 if (caps.descriptor_reuse) {
1380 tx->flags |= DMA_CTRL_REUSE;
1381 return 0;
1382 } else {
1383 return -EPERM;
1384 }
1385 }
1386
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1387 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1388 {
1389 tx->flags &= ~DMA_CTRL_REUSE;
1390 }
1391
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1392 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1393 {
1394 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1395 }
1396
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1397 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1398 {
1399 /* this is supported for reusable desc, so check that */
1400 if (dmaengine_desc_test_reuse(desc))
1401 return desc->desc_free(desc);
1402 else
1403 return -EPERM;
1404 }
1405
1406 /* --- DMA device --- */
1407
1408 int dma_async_device_register(struct dma_device *device);
1409 int dmaenginem_async_device_register(struct dma_device *device);
1410 void dma_async_device_unregister(struct dma_device *device);
1411 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1412 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1413 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1414 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1415 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1416 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1417
1418 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1419 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1420 dma_filter_fn fn, void *fn_param,
1421 struct device *dev, const char *name)
1422 {
1423 struct dma_chan *chan;
1424
1425 chan = dma_request_slave_channel(dev, name);
1426 if (chan)
1427 return chan;
1428
1429 if (!fn || !fn_param)
1430 return NULL;
1431
1432 return __dma_request_channel(mask, fn, fn_param);
1433 }
1434 #endif /* DMAENGINE_H */
1435