1 /******************************************************************************
2  *
3  *  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4  *
5  *  This program is free software; you can redistribute it and/or modify it
6  *  under the terms of version 2 of the GNU General Public License as
7  *  published by the Free Software Foundation.
8  *
9  *  This program is distributed in the hope that it will be useful, but WITHOUT
10  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  *  more details.
13  *
14  *  You should have received a copy of the GNU General Public License along with
15  *  this program; if not, write to the Free Software Foundation, Inc., 59
16  *  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *  The full GNU General Public License is included in this distribution in the
19  *  file called LICENSE.
20  *
21  *  Contact Information:
22  *  James P. Ketrenos <ipw2100-admin@linux.intel.com>
23  *  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *
26  *  Few modifications for Realtek's Wi-Fi drivers by
27  *  Andrea Merello <andrea.merello@gmail.com>
28  *
29  *  A special thanks goes to Realtek for their support !
30  *
31  ******************************************************************************/
32 
33 #include <linux/compiler.h>
34 #include <linux/errno.h>
35 #include <linux/if_arp.h>
36 #include <linux/in6.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/pci.h>
43 #include <linux/proc_fs.h>
44 #include <linux/skbuff.h>
45 #include <linux/slab.h>
46 #include <linux/tcp.h>
47 #include <linux/types.h>
48 #include <linux/wireless.h>
49 #include <linux/etherdevice.h>
50 #include <linux/uaccess.h>
51 #include <linux/if_vlan.h>
52 
53 #include "ieee80211.h"
54 
55 
56 /*
57  *
58  *
59  * 802.11 Data Frame
60  *
61  *
62  * 802.11 frame_contorl for data frames - 2 bytes
63  *      ,-----------------------------------------------------------------------------------------.
64  * bits | 0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  a  |  b  |  c  |  d  |  e   |
65  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
66  * val  | 0  |  0  |  0  |  1  |  x  |  0  |  0  |  0  |  1  |  0  |  x  |  x  |  x  |  x  |  x   |
67  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
68  * desc | ^-ver-^  |  ^type-^  |  ^-----subtype-----^  | to  |from |more |retry| pwr |more |wep   |
69  *      |          |           | x=0 data,x=1 data+ack | DS  | DS  |frag |     | mgm |data |      |
70  *      '-----------------------------------------------------------------------------------------'
71  *                                                    /\
72  *                                                    |
73  * 802.11 Data Frame                                  |
74  *           ,--------- 'ctrl' expands to >-----------'
75  *           |
76  *        ,--'---,-------------------------------------------------------------.
77  *  Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
78  *        |------|------|---------|---------|---------|------|---------|------|
79  *  Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
80  *        |      | tion | (BSSID) |         |         | ence |  data   |      |
81  *        `--------------------------------------------------|         |------'
82  *  Total: 28 non-data bytes                                 `----.----'
83  *                                                                |
84  *         .- 'Frame data' expands to <---------------------------'
85  *         |
86  *         V
87  *        ,---------------------------------------------------.
88  *  Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
89  *        |------|------|---------|----------|------|---------|
90  *  Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
91  *        | DSAP | SSAP |         |          |      | Packet  |
92  *        | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
93  *        `-----------------------------------------|         |
94  *  Total: 8 non-data bytes                         `----.----'
95  *                                                       |
96  *         .- 'IP Packet' expands, if WEP enabled, to <--'
97  *         |
98  *         V
99  *        ,-----------------------.
100  *  Bytes |  4  |   0-2296  |  4  |
101  *        |-----|-----------|-----|
102  *  Desc. | IV  | Encrypted | ICV |
103  *        |     | IP Packet |     |
104  *        `-----------------------'
105  *  Total: 8 non-data bytes
106  *
107  *
108  *  802.3 Ethernet Data Frame
109  *
110  *        ,-----------------------------------------.
111  *  Bytes |   6   |   6   |  2   |  Variable |   4  |
112  *        |-------|-------|------|-----------|------|
113  *  Desc. | Dest. | Source| Type | IP Packet |  fcs |
114  *        |  MAC  |  MAC  |      |           |      |
115  *        `-----------------------------------------'
116  *  Total: 18 non-data bytes
117  *
118  *  In the event that fragmentation is required, the incoming payload is split into
119  *  N parts of size ieee->fts.  The first fragment contains the SNAP header and the
120  *  remaining packets are just data.
121  *
122  *  If encryption is enabled, each fragment payload size is reduced by enough space
123  *  to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
124  *  So if you have 1500 bytes of payload with ieee->fts set to 500 without
125  *  encryption it will take 3 frames.  With WEP it will take 4 frames as the
126  *  payload of each frame is reduced to 492 bytes.
127  *
128  * SKB visualization
129  *
130  *  ,- skb->data
131  * |
132  * |    ETHERNET HEADER        ,-<-- PAYLOAD
133  * |                           |     14 bytes from skb->data
134  * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
135  * |                       | | |
136  * |,-Dest.--. ,--Src.---. | | |
137  * |  6 bytes| | 6 bytes | | | |
138  * v         | |         | | | |
139  * 0         | v       1 | v | v           2
140  * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
141  *     ^     | ^         | ^ |
142  *     |     | |         | | |
143  *     |     | |         | `T' <---- 2 bytes for Type
144  *     |     | |         |
145  *     |     | '---SNAP--' <-------- 6 bytes for SNAP
146  *     |     |
147  *     `-IV--' <-------------------- 4 bytes for IV (WEP)
148  *
149  *      SNAP HEADER
150  *
151  */
152 
153 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
154 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
155 
ieee80211_put_snap(u8 * data,u16 h_proto)156 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
157 {
158 	struct ieee80211_snap_hdr *snap;
159 	u8 *oui;
160 
161 	snap = (struct ieee80211_snap_hdr *)data;
162 	snap->dsap = 0xaa;
163 	snap->ssap = 0xaa;
164 	snap->ctrl = 0x03;
165 
166 	if (h_proto == 0x8137 || h_proto == 0x80f3)
167 		oui = P802_1H_OUI;
168 	else
169 		oui = RFC1042_OUI;
170 	snap->oui[0] = oui[0];
171 	snap->oui[1] = oui[1];
172 	snap->oui[2] = oui[2];
173 
174 	*(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
175 
176 	return SNAP_SIZE + sizeof(u16);
177 }
178 
ieee80211_encrypt_fragment(struct ieee80211_device * ieee,struct sk_buff * frag,int hdr_len)179 int ieee80211_encrypt_fragment(
180 	struct ieee80211_device *ieee,
181 	struct sk_buff *frag,
182 	int hdr_len)
183 {
184 	struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
185 	int res;
186 
187 	if (!(crypt && crypt->ops))
188 	{
189 		printk("=========>%s(), crypt is null\n", __func__);
190 		return -1;
191 	}
192 
193 	if (ieee->tkip_countermeasures &&
194 	    crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
195 		if (net_ratelimit()) {
196 			struct rtl_80211_hdr_3addrqos *header;
197 
198 			header = (struct rtl_80211_hdr_3addrqos *)frag->data;
199 			printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
200 			       "TX packet to %pM\n",
201 			       ieee->dev->name, header->addr1);
202 		}
203 		return -1;
204 	}
205 
206 	/* To encrypt, frame format is:
207 	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
208 	 */
209 
210 	// PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
211 	/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
212 	 * call both MSDU and MPDU encryption functions from here.
213 	 */
214 	atomic_inc(&crypt->refcnt);
215 	res = 0;
216 	if (crypt->ops->encrypt_msdu)
217 		res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
218 	if (res == 0 && crypt->ops->encrypt_mpdu)
219 		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
220 
221 	atomic_dec(&crypt->refcnt);
222 	if (res < 0) {
223 		printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
224 		       ieee->dev->name, frag->len);
225 		ieee->ieee_stats.tx_discards++;
226 		return -1;
227 	}
228 
229 	return 0;
230 }
231 
232 
ieee80211_txb_free(struct ieee80211_txb * txb)233 void ieee80211_txb_free(struct ieee80211_txb *txb) {
234 	//int i;
235 	if (unlikely(!txb))
236 		return;
237 	kfree(txb);
238 }
239 EXPORT_SYMBOL(ieee80211_txb_free);
240 
ieee80211_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)241 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
242 						 gfp_t gfp_mask)
243 {
244 	struct ieee80211_txb *txb;
245 	int i;
246 	txb = kmalloc(
247 		sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
248 		gfp_mask);
249 	if (!txb)
250 		return NULL;
251 
252 	memset(txb, 0, sizeof(struct ieee80211_txb));
253 	txb->nr_frags = nr_frags;
254 	txb->frag_size = __cpu_to_le16(txb_size);
255 
256 	for (i = 0; i < nr_frags; i++) {
257 		txb->fragments[i] = dev_alloc_skb(txb_size);
258 		if (unlikely(!txb->fragments[i])) {
259 			i--;
260 			break;
261 		}
262 		memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
263 	}
264 	if (unlikely(i != nr_frags)) {
265 		while (i >= 0)
266 			dev_kfree_skb_any(txb->fragments[i--]);
267 		kfree(txb);
268 		return NULL;
269 	}
270 	return txb;
271 }
272 
273 // Classify the to-be send data packet
274 // Need to acquire the sent queue index.
275 static int
ieee80211_classify(struct sk_buff * skb,struct ieee80211_network * network)276 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
277 {
278 	struct ethhdr *eth;
279 	struct iphdr *ip;
280 	eth = (struct ethhdr *)skb->data;
281 	if (eth->h_proto != htons(ETH_P_IP))
282 		return 0;
283 
284 	ip = ip_hdr(skb);
285 	switch (ip->tos & 0xfc) {
286 	case 0x20:
287 		return 2;
288 	case 0x40:
289 		return 1;
290 	case 0x60:
291 		return 3;
292 	case 0x80:
293 		return 4;
294 	case 0xa0:
295 		return 5;
296 	case 0xc0:
297 		return 6;
298 	case 0xe0:
299 		return 7;
300 	default:
301 		return 0;
302 	}
303 }
304 
ieee80211_tx_query_agg_cap(struct ieee80211_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)305 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
306 				       struct sk_buff *skb, struct cb_desc *tcb_desc)
307 {
308 	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
309 	struct tx_ts_record        *pTxTs = NULL;
310 	struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
311 
312 	if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
313 		return;
314 	if (!IsQoSDataFrame(skb->data))
315 		return;
316 
317 	if (is_multicast_ether_addr(hdr->addr1))
318 		return;
319 	//check packet and mode later
320 #ifdef TO_DO_LIST
321 	if(pTcb->PacketLength >= 4096)
322 		return;
323 	// For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
324 	if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
325 		return;
326 #endif
327 	if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
328 	{
329 		return;
330 	}
331 	if(pHTInfo->bCurrentAMPDUEnable)
332 	{
333 		if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
334 		{
335 			printk("===>can't get TS\n");
336 			return;
337 		}
338 		if (!pTxTs->tx_admitted_ba_record.bValid)
339 		{
340 			TsStartAddBaProcess(ieee, pTxTs);
341 			goto FORCED_AGG_SETTING;
342 		}
343 		else if (!pTxTs->using_ba)
344 		{
345 			if (SN_LESS(pTxTs->tx_admitted_ba_record.BaStartSeqCtrl.field.SeqNum, (pTxTs->tx_cur_seq + 1) % 4096))
346 				pTxTs->using_ba = true;
347 			else
348 				goto FORCED_AGG_SETTING;
349 		}
350 
351 		if (ieee->iw_mode == IW_MODE_INFRA)
352 		{
353 			tcb_desc->bAMPDUEnable = true;
354 			tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
355 			tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
356 		}
357 	}
358 FORCED_AGG_SETTING:
359 	switch (pHTInfo->ForcedAMPDUMode )
360 	{
361 		case HT_AGG_AUTO:
362 			break;
363 
364 		case HT_AGG_FORCE_ENABLE:
365 			tcb_desc->bAMPDUEnable = true;
366 			tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
367 			tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
368 			break;
369 
370 		case HT_AGG_FORCE_DISABLE:
371 			tcb_desc->bAMPDUEnable = false;
372 			tcb_desc->ampdu_density = 0;
373 			tcb_desc->ampdu_factor = 0;
374 			break;
375 
376 	}
377 		return;
378 }
379 
ieee80211_qurey_ShortPreambleMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)380 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
381 					      struct cb_desc *tcb_desc)
382 {
383 	tcb_desc->bUseShortPreamble = false;
384 	if (tcb_desc->data_rate == 2)
385 	{//// 1M can only use Long Preamble. 11B spec
386 		return;
387 	}
388 	else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
389 	{
390 		tcb_desc->bUseShortPreamble = true;
391 	}
392 	return;
393 }
394 static void
ieee80211_query_HTCapShortGI(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)395 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
396 {
397 	PRT_HIGH_THROUGHPUT		pHTInfo = ieee->pHTInfo;
398 
399 	tcb_desc->bUseShortGI		= false;
400 
401 	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
402 		return;
403 
404 	if(pHTInfo->bForcedShortGI)
405 	{
406 		tcb_desc->bUseShortGI = true;
407 		return;
408 	}
409 
410 	if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
411 		tcb_desc->bUseShortGI = true;
412 	else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
413 		tcb_desc->bUseShortGI = true;
414 }
415 
ieee80211_query_BandwidthMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)416 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
417 					  struct cb_desc *tcb_desc)
418 {
419 	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
420 
421 	tcb_desc->bPacketBW = false;
422 
423 	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
424 		return;
425 
426 	if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
427 		return;
428 
429 	if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
430 		return;
431 	//BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
432 	if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
433 		tcb_desc->bPacketBW = true;
434 	return;
435 }
436 
ieee80211_query_protectionmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)437 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
438 					   struct cb_desc *tcb_desc,
439 					   struct sk_buff *skb)
440 {
441 	// Common Settings
442 	tcb_desc->bRTSSTBC			= false;
443 	tcb_desc->bRTSUseShortGI		= false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
444 	tcb_desc->bCTSEnable			= false; // Most of protection using RTS/CTS
445 	tcb_desc->RTSSC				= 0;		// 20MHz: Don't care;  40MHz: Duplicate.
446 	tcb_desc->bRTSBW			= false; // RTS frame bandwidth is always 20MHz
447 
448 	if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
449 		return;
450 
451 	if (is_broadcast_ether_addr(skb->data+16))  //check addr3 as infrastructure add3 is DA.
452 		return;
453 
454 	if (ieee->mode < IEEE_N_24G) //b, g mode
455 	{
456 			// (1) RTS_Threshold is compared to the MPDU, not MSDU.
457 			// (2) If there are more than one frag in  this MSDU, only the first frag uses protection frame.
458 			//		Other fragments are protected by previous fragment.
459 			//		So we only need to check the length of first fragment.
460 		if (skb->len > ieee->rts)
461 		{
462 			tcb_desc->bRTSEnable = true;
463 			tcb_desc->rts_rate = MGN_24M;
464 		}
465 		else if (ieee->current_network.buseprotection)
466 		{
467 			// Use CTS-to-SELF in protection mode.
468 			tcb_desc->bRTSEnable = true;
469 			tcb_desc->bCTSEnable = true;
470 			tcb_desc->rts_rate = MGN_24M;
471 		}
472 		//otherwise return;
473 		return;
474 	}
475 	else
476 	{// 11n High throughput case.
477 		PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
478 		while (true)
479 		{
480 			//check ERP protection
481 			if (ieee->current_network.buseprotection)
482 			{// CTS-to-SELF
483 				tcb_desc->bRTSEnable = true;
484 				tcb_desc->bCTSEnable = true;
485 				tcb_desc->rts_rate = MGN_24M;
486 				break;
487 			}
488 			//check HT op mode
489 			if(pHTInfo->bCurrentHTSupport  && pHTInfo->bEnableHT)
490 			{
491 				u8 HTOpMode = pHTInfo->CurrentOpMode;
492 				if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
493 							(!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
494 				{
495 					tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
496 					tcb_desc->bRTSEnable = true;
497 					break;
498 				}
499 			}
500 			//check rts
501 			if (skb->len > ieee->rts)
502 			{
503 				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
504 				tcb_desc->bRTSEnable = true;
505 				break;
506 			}
507 			//to do list: check MIMO power save condition.
508 			//check AMPDU aggregation for TXOP
509 			if(tcb_desc->bAMPDUEnable)
510 			{
511 				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
512 				// According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
513 				// throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
514 				tcb_desc->bRTSEnable = false;
515 				break;
516 			}
517 			//check IOT action
518 			if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
519 			{
520 				tcb_desc->bCTSEnable	= true;
521 				tcb_desc->rts_rate  =	MGN_24M;
522 				tcb_desc->bRTSEnable = true;
523 				break;
524 			}
525 			// Totally no protection case!!
526 			goto NO_PROTECTION;
527 		}
528 		}
529 	// For test , CTS replace with RTS
530 	if (0) {
531 		tcb_desc->bCTSEnable	= true;
532 		tcb_desc->rts_rate = MGN_24M;
533 		tcb_desc->bRTSEnable	= true;
534 	}
535 	if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
536 		tcb_desc->bUseShortPreamble = true;
537 	if (ieee->mode == IW_MODE_MASTER)
538 			goto NO_PROTECTION;
539 	return;
540 NO_PROTECTION:
541 	tcb_desc->bRTSEnable	= false;
542 	tcb_desc->bCTSEnable	= false;
543 	tcb_desc->rts_rate		= 0;
544 	tcb_desc->RTSSC		= 0;
545 	tcb_desc->bRTSBW		= false;
546 }
547 
548 
ieee80211_txrate_selectmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)549 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
550 					struct cb_desc *tcb_desc)
551 {
552 #ifdef TO_DO_LIST
553 	if(!IsDataFrame(pFrame))
554 	{
555 		pTcb->bTxDisableRateFallBack = true;
556 		pTcb->bTxUseDriverAssingedRate = true;
557 		pTcb->RATRIndex = 7;
558 		return;
559 	}
560 
561 	if(pMgntInfo->ForcedDataRate!= 0)
562 	{
563 		pTcb->bTxDisableRateFallBack = true;
564 		pTcb->bTxUseDriverAssingedRate = true;
565 		return;
566 	}
567 #endif
568 	if(ieee->bTxDisableRateFallBack)
569 		tcb_desc->bTxDisableRateFallBack = true;
570 
571 	if(ieee->bTxUseDriverAssingedRate)
572 		tcb_desc->bTxUseDriverAssingedRate = true;
573 	if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
574 	{
575 		if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
576 			tcb_desc->RATRIndex = 0;
577 	}
578 }
579 
ieee80211_query_seqnum(struct ieee80211_device * ieee,struct sk_buff * skb,u8 * dst)580 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
581 				   struct sk_buff *skb, u8 *dst)
582 {
583 	if (is_multicast_ether_addr(dst))
584 		return;
585 	if (IsQoSDataFrame(skb->data)) //we deal qos data only
586 	{
587 		struct tx_ts_record *pTS = NULL;
588 		if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true))
589 		{
590 			return;
591 		}
592 		pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
593 	}
594 }
595 
ieee80211_xmit(struct sk_buff * skb,struct net_device * dev)596 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
597 {
598 	struct ieee80211_device *ieee = netdev_priv(dev);
599 	struct ieee80211_txb *txb = NULL;
600 	struct rtl_80211_hdr_3addrqos *frag_hdr;
601 	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
602 	unsigned long flags;
603 	struct net_device_stats *stats = &ieee->stats;
604 	int ether_type = 0, encrypt;
605 	int bytes, fc, qos_ctl = 0, hdr_len;
606 	struct sk_buff *skb_frag;
607 	struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
608 		.duration_id = 0,
609 		.seq_ctl = 0,
610 		.qos_ctl = 0
611 	};
612 	u8 dest[ETH_ALEN], src[ETH_ALEN];
613 	int qos_actived = ieee->current_network.qos_data.active;
614 
615 	struct ieee80211_crypt_data *crypt;
616 
617 	struct cb_desc *tcb_desc;
618 
619 	spin_lock_irqsave(&ieee->lock, flags);
620 
621 	/* If there is no driver handler to take the TXB, dont' bother
622 	 * creating it...
623 	 */
624 	if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
625 	   ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
626 		printk(KERN_WARNING "%s: No xmit handler.\n",
627 		       ieee->dev->name);
628 		goto success;
629 	}
630 
631 
632 	if(likely(ieee->raw_tx == 0)){
633 		if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
634 			printk(KERN_WARNING "%s: skb too small (%d).\n",
635 			ieee->dev->name, skb->len);
636 			goto success;
637 		}
638 
639 		memset(skb->cb, 0, sizeof(skb->cb));
640 		ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
641 
642 		crypt = ieee->crypt[ieee->tx_keyidx];
643 
644 		encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
645 			ieee->host_encrypt && crypt && crypt->ops;
646 
647 		if (!encrypt && ieee->ieee802_1x &&
648 		ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
649 			stats->tx_dropped++;
650 			goto success;
651 		}
652 	#ifdef CONFIG_IEEE80211_DEBUG
653 		if (crypt && !encrypt && ether_type == ETH_P_PAE) {
654 			struct eapol *eap = (struct eapol *)(skb->data +
655 				sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
656 			IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
657 				eap_get_type(eap->type));
658 		}
659 	#endif
660 
661 		/* Save source and destination addresses */
662 		memcpy(&dest, skb->data, ETH_ALEN);
663 		memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
664 
665 		/* Advance the SKB to the start of the payload */
666 		skb_pull(skb, sizeof(struct ethhdr));
667 
668 		/* Determine total amount of storage required for TXB packets */
669 		bytes = skb->len + SNAP_SIZE + sizeof(u16);
670 
671 		if (encrypt)
672 			fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
673 		else
674 
675 			fc = IEEE80211_FTYPE_DATA;
676 
677 		//if(ieee->current_network.QoS_Enable)
678 		if(qos_actived)
679 			fc |= IEEE80211_STYPE_QOS_DATA;
680 		else
681 			fc |= IEEE80211_STYPE_DATA;
682 
683 		if (ieee->iw_mode == IW_MODE_INFRA) {
684 			fc |= IEEE80211_FCTL_TODS;
685 			/* To DS: Addr1 = BSSID, Addr2 = SA,
686 			 * Addr3 = DA
687 			 */
688 			memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
689 			memcpy(&header.addr2, &src, ETH_ALEN);
690 			memcpy(&header.addr3, &dest, ETH_ALEN);
691 		} else if (ieee->iw_mode == IW_MODE_ADHOC) {
692 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
693 			 * Addr3 = BSSID
694 			 */
695 			memcpy(&header.addr1, dest, ETH_ALEN);
696 			memcpy(&header.addr2, src, ETH_ALEN);
697 			memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
698 		}
699 
700 		header.frame_ctl = cpu_to_le16(fc);
701 
702 		/* Determine fragmentation size based on destination (multicast
703 		 * and broadcast are not fragmented)
704 		 */
705 		if (is_multicast_ether_addr(header.addr1)) {
706 			frag_size = MAX_FRAG_THRESHOLD;
707 			qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
708 		}
709 		else {
710 			frag_size = ieee->fts;//default:392
711 			qos_ctl = 0;
712 		}
713 
714 		//if (ieee->current_network.QoS_Enable)
715 		if(qos_actived)
716 		{
717 			hdr_len = IEEE80211_3ADDR_LEN + 2;
718 
719 			skb->priority = ieee80211_classify(skb, &ieee->current_network);
720 			qos_ctl |= skb->priority; //set in the ieee80211_classify
721 			header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
722 		} else {
723 			hdr_len = IEEE80211_3ADDR_LEN;
724 		}
725 		/* Determine amount of payload per fragment.  Regardless of if
726 		 * this stack is providing the full 802.11 header, one will
727 		 * eventually be affixed to this fragment -- so we must account for
728 		 * it when determining the amount of payload space.
729 		 */
730 		bytes_per_frag = frag_size - hdr_len;
731 		if (ieee->config &
732 		(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
733 			bytes_per_frag -= IEEE80211_FCS_LEN;
734 
735 		/* Each fragment may need to have room for encryption pre/postfix */
736 		if (encrypt)
737 			bytes_per_frag -= crypt->ops->extra_prefix_len +
738 				crypt->ops->extra_postfix_len;
739 
740 		/* Number of fragments is the total bytes_per_frag /
741 		 * payload_per_fragment
742 		 */
743 		nr_frags = bytes / bytes_per_frag;
744 		bytes_last_frag = bytes % bytes_per_frag;
745 		if (bytes_last_frag)
746 			nr_frags++;
747 		else
748 			bytes_last_frag = bytes_per_frag;
749 
750 		/* When we allocate the TXB we allocate enough space for the reserve
751 		 * and full fragment bytes (bytes_per_frag doesn't include prefix,
752 		 * postfix, header, FCS, etc.)
753 		 */
754 		txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
755 		if (unlikely(!txb)) {
756 			printk(KERN_WARNING "%s: Could not allocate TXB\n",
757 			ieee->dev->name);
758 			goto failed;
759 		}
760 		txb->encrypted = encrypt;
761 		txb->payload_size = __cpu_to_le16(bytes);
762 
763 		//if (ieee->current_network.QoS_Enable)
764 		if(qos_actived)
765 		{
766 			txb->queue_index = UP2AC(skb->priority);
767 		} else {
768 			txb->queue_index = WME_AC_BK;
769 		}
770 
771 
772 
773 		for (i = 0; i < nr_frags; i++) {
774 			skb_frag = txb->fragments[i];
775 			tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
776 			if(qos_actived){
777 				skb_frag->priority = skb->priority;//UP2AC(skb->priority);
778 				tcb_desc->queue_index =  UP2AC(skb->priority);
779 			} else {
780 				skb_frag->priority = WME_AC_BK;
781 				tcb_desc->queue_index = WME_AC_BK;
782 			}
783 			skb_reserve(skb_frag, ieee->tx_headroom);
784 
785 			if (encrypt){
786 				if (ieee->hwsec_active)
787 					tcb_desc->bHwSec = 1;
788 				else
789 					tcb_desc->bHwSec = 0;
790 				skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
791 			}
792 			else
793 			{
794 				tcb_desc->bHwSec = 0;
795 			}
796 			frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
797 
798 			/* If this is not the last fragment, then add the MOREFRAGS
799 			 * bit to the frame control
800 			 */
801 			if (i != nr_frags - 1) {
802 				frag_hdr->frame_ctl = cpu_to_le16(
803 					fc | IEEE80211_FCTL_MOREFRAGS);
804 				bytes = bytes_per_frag;
805 
806 			} else {
807 				/* The last fragment takes the remaining length */
808 				bytes = bytes_last_frag;
809 			}
810 			//if(ieee->current_network.QoS_Enable)
811 			if(qos_actived)
812 			{
813 				// add 1 only indicate to corresponding seq number control 2006/7/12
814 				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
815 			} else {
816 				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
817 			}
818 
819 			/* Put a SNAP header on the first fragment */
820 			if (i == 0) {
821 				ieee80211_put_snap(
822 					skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
823 					ether_type);
824 				bytes -= SNAP_SIZE + sizeof(u16);
825 			}
826 
827 			skb_put_data(skb_frag, skb->data, bytes);
828 
829 			/* Advance the SKB... */
830 			skb_pull(skb, bytes);
831 
832 			/* Encryption routine will move the header forward in order
833 			 * to insert the IV between the header and the payload
834 			 */
835 			if (encrypt)
836 				ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
837 			if (ieee->config &
838 			(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
839 				skb_put(skb_frag, 4);
840 		}
841 
842 		if(qos_actived)
843 		{
844 		  if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
845 			ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
846 		  else
847 			ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
848 		} else {
849 		  if (ieee->seq_ctrl[0] == 0xFFF)
850 			ieee->seq_ctrl[0] = 0;
851 		  else
852 			ieee->seq_ctrl[0]++;
853 		}
854 	}else{
855 		if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
856 			printk(KERN_WARNING "%s: skb too small (%d).\n",
857 			ieee->dev->name, skb->len);
858 			goto success;
859 		}
860 
861 		txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
862 		if(!txb){
863 			printk(KERN_WARNING "%s: Could not allocate TXB\n",
864 			ieee->dev->name);
865 			goto failed;
866 		}
867 
868 		txb->encrypted = 0;
869 		txb->payload_size = __cpu_to_le16(skb->len);
870 		skb_put_data(txb->fragments[0], skb->data, skb->len);
871 	}
872 
873  success:
874 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
875 	if (txb)
876 	{
877 		struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
878 		tcb_desc->bTxEnableFwCalcDur = 1;
879 		if (is_multicast_ether_addr(header.addr1))
880 			tcb_desc->bMulticast = 1;
881 		if (is_broadcast_ether_addr(header.addr1))
882 			tcb_desc->bBroadcast = 1;
883 		ieee80211_txrate_selectmode(ieee, tcb_desc);
884 		if (tcb_desc->bMulticast ||  tcb_desc->bBroadcast)
885 			tcb_desc->data_rate = ieee->basic_rate;
886 		else
887 			tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
888 		ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
889 		ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
890 		ieee80211_query_HTCapShortGI(ieee, tcb_desc);
891 		ieee80211_query_BandwidthMode(ieee, tcb_desc);
892 		ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
893 		ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
894 	}
895 	spin_unlock_irqrestore(&ieee->lock, flags);
896 	dev_kfree_skb_any(skb);
897 	if (txb) {
898 		if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
899 			ieee80211_softmac_xmit(txb, ieee);
900 		}else{
901 			if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
902 				stats->tx_packets++;
903 				stats->tx_bytes += __le16_to_cpu(txb->payload_size);
904 				return 0;
905 			}
906 			ieee80211_txb_free(txb);
907 		}
908 	}
909 
910 	return 0;
911 
912  failed:
913 	spin_unlock_irqrestore(&ieee->lock, flags);
914 	netif_stop_queue(dev);
915 	stats->tx_errors++;
916 	return 1;
917 
918 }
919