1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *
26 * Few modifications for Realtek's Wi-Fi drivers by
27 * Andrea Merello <andrea.merello@gmail.com>
28 *
29 * A special thanks goes to Realtek for their support !
30 *
31 ******************************************************************************/
32
33 #include <linux/compiler.h>
34 #include <linux/errno.h>
35 #include <linux/if_arp.h>
36 #include <linux/in6.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/pci.h>
43 #include <linux/proc_fs.h>
44 #include <linux/skbuff.h>
45 #include <linux/slab.h>
46 #include <linux/tcp.h>
47 #include <linux/types.h>
48 #include <linux/wireless.h>
49 #include <linux/etherdevice.h>
50 #include <linux/uaccess.h>
51 #include <linux/if_vlan.h>
52
53 #include "ieee80211.h"
54
55
56 /*
57 *
58 *
59 * 802.11 Data Frame
60 *
61 *
62 * 802.11 frame_contorl for data frames - 2 bytes
63 * ,-----------------------------------------------------------------------------------------.
64 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
65 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
66 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
67 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
68 * desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep |
69 * | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | |
70 * '-----------------------------------------------------------------------------------------'
71 * /\
72 * |
73 * 802.11 Data Frame |
74 * ,--------- 'ctrl' expands to >-----------'
75 * |
76 * ,--'---,-------------------------------------------------------------.
77 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
78 * |------|------|---------|---------|---------|------|---------|------|
79 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
80 * | | tion | (BSSID) | | | ence | data | |
81 * `--------------------------------------------------| |------'
82 * Total: 28 non-data bytes `----.----'
83 * |
84 * .- 'Frame data' expands to <---------------------------'
85 * |
86 * V
87 * ,---------------------------------------------------.
88 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
89 * |------|------|---------|----------|------|---------|
90 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
91 * | DSAP | SSAP | | | | Packet |
92 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
93 * `-----------------------------------------| |
94 * Total: 8 non-data bytes `----.----'
95 * |
96 * .- 'IP Packet' expands, if WEP enabled, to <--'
97 * |
98 * V
99 * ,-----------------------.
100 * Bytes | 4 | 0-2296 | 4 |
101 * |-----|-----------|-----|
102 * Desc. | IV | Encrypted | ICV |
103 * | | IP Packet | |
104 * `-----------------------'
105 * Total: 8 non-data bytes
106 *
107 *
108 * 802.3 Ethernet Data Frame
109 *
110 * ,-----------------------------------------.
111 * Bytes | 6 | 6 | 2 | Variable | 4 |
112 * |-------|-------|------|-----------|------|
113 * Desc. | Dest. | Source| Type | IP Packet | fcs |
114 * | MAC | MAC | | | |
115 * `-----------------------------------------'
116 * Total: 18 non-data bytes
117 *
118 * In the event that fragmentation is required, the incoming payload is split into
119 * N parts of size ieee->fts. The first fragment contains the SNAP header and the
120 * remaining packets are just data.
121 *
122 * If encryption is enabled, each fragment payload size is reduced by enough space
123 * to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
124 * So if you have 1500 bytes of payload with ieee->fts set to 500 without
125 * encryption it will take 3 frames. With WEP it will take 4 frames as the
126 * payload of each frame is reduced to 492 bytes.
127 *
128 * SKB visualization
129 *
130 * ,- skb->data
131 * |
132 * | ETHERNET HEADER ,-<-- PAYLOAD
133 * | | 14 bytes from skb->data
134 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
135 * | | | |
136 * |,-Dest.--. ,--Src.---. | | |
137 * | 6 bytes| | 6 bytes | | | |
138 * v | | | | | |
139 * 0 | v 1 | v | v 2
140 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
141 * ^ | ^ | ^ |
142 * | | | | | |
143 * | | | | `T' <---- 2 bytes for Type
144 * | | | |
145 * | | '---SNAP--' <-------- 6 bytes for SNAP
146 * | |
147 * `-IV--' <-------------------- 4 bytes for IV (WEP)
148 *
149 * SNAP HEADER
150 *
151 */
152
153 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
154 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
155
ieee80211_put_snap(u8 * data,u16 h_proto)156 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
157 {
158 struct ieee80211_snap_hdr *snap;
159 u8 *oui;
160
161 snap = (struct ieee80211_snap_hdr *)data;
162 snap->dsap = 0xaa;
163 snap->ssap = 0xaa;
164 snap->ctrl = 0x03;
165
166 if (h_proto == 0x8137 || h_proto == 0x80f3)
167 oui = P802_1H_OUI;
168 else
169 oui = RFC1042_OUI;
170 snap->oui[0] = oui[0];
171 snap->oui[1] = oui[1];
172 snap->oui[2] = oui[2];
173
174 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
175
176 return SNAP_SIZE + sizeof(u16);
177 }
178
ieee80211_encrypt_fragment(struct ieee80211_device * ieee,struct sk_buff * frag,int hdr_len)179 int ieee80211_encrypt_fragment(
180 struct ieee80211_device *ieee,
181 struct sk_buff *frag,
182 int hdr_len)
183 {
184 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
185 int res;
186
187 if (!(crypt && crypt->ops))
188 {
189 printk("=========>%s(), crypt is null\n", __func__);
190 return -1;
191 }
192
193 if (ieee->tkip_countermeasures &&
194 crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
195 if (net_ratelimit()) {
196 struct rtl_80211_hdr_3addrqos *header;
197
198 header = (struct rtl_80211_hdr_3addrqos *)frag->data;
199 printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
200 "TX packet to %pM\n",
201 ieee->dev->name, header->addr1);
202 }
203 return -1;
204 }
205
206 /* To encrypt, frame format is:
207 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
208 */
209
210 // PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
211 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
212 * call both MSDU and MPDU encryption functions from here.
213 */
214 atomic_inc(&crypt->refcnt);
215 res = 0;
216 if (crypt->ops->encrypt_msdu)
217 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
218 if (res == 0 && crypt->ops->encrypt_mpdu)
219 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
220
221 atomic_dec(&crypt->refcnt);
222 if (res < 0) {
223 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
224 ieee->dev->name, frag->len);
225 ieee->ieee_stats.tx_discards++;
226 return -1;
227 }
228
229 return 0;
230 }
231
232
ieee80211_txb_free(struct ieee80211_txb * txb)233 void ieee80211_txb_free(struct ieee80211_txb *txb) {
234 //int i;
235 if (unlikely(!txb))
236 return;
237 kfree(txb);
238 }
239 EXPORT_SYMBOL(ieee80211_txb_free);
240
ieee80211_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)241 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
242 gfp_t gfp_mask)
243 {
244 struct ieee80211_txb *txb;
245 int i;
246 txb = kmalloc(
247 sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
248 gfp_mask);
249 if (!txb)
250 return NULL;
251
252 memset(txb, 0, sizeof(struct ieee80211_txb));
253 txb->nr_frags = nr_frags;
254 txb->frag_size = __cpu_to_le16(txb_size);
255
256 for (i = 0; i < nr_frags; i++) {
257 txb->fragments[i] = dev_alloc_skb(txb_size);
258 if (unlikely(!txb->fragments[i])) {
259 i--;
260 break;
261 }
262 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
263 }
264 if (unlikely(i != nr_frags)) {
265 while (i >= 0)
266 dev_kfree_skb_any(txb->fragments[i--]);
267 kfree(txb);
268 return NULL;
269 }
270 return txb;
271 }
272
273 // Classify the to-be send data packet
274 // Need to acquire the sent queue index.
275 static int
ieee80211_classify(struct sk_buff * skb,struct ieee80211_network * network)276 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
277 {
278 struct ethhdr *eth;
279 struct iphdr *ip;
280 eth = (struct ethhdr *)skb->data;
281 if (eth->h_proto != htons(ETH_P_IP))
282 return 0;
283
284 ip = ip_hdr(skb);
285 switch (ip->tos & 0xfc) {
286 case 0x20:
287 return 2;
288 case 0x40:
289 return 1;
290 case 0x60:
291 return 3;
292 case 0x80:
293 return 4;
294 case 0xa0:
295 return 5;
296 case 0xc0:
297 return 6;
298 case 0xe0:
299 return 7;
300 default:
301 return 0;
302 }
303 }
304
ieee80211_tx_query_agg_cap(struct ieee80211_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)305 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
306 struct sk_buff *skb, struct cb_desc *tcb_desc)
307 {
308 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
309 struct tx_ts_record *pTxTs = NULL;
310 struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
311
312 if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
313 return;
314 if (!IsQoSDataFrame(skb->data))
315 return;
316
317 if (is_multicast_ether_addr(hdr->addr1))
318 return;
319 //check packet and mode later
320 #ifdef TO_DO_LIST
321 if(pTcb->PacketLength >= 4096)
322 return;
323 // For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
324 if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
325 return;
326 #endif
327 if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
328 {
329 return;
330 }
331 if(pHTInfo->bCurrentAMPDUEnable)
332 {
333 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
334 {
335 printk("===>can't get TS\n");
336 return;
337 }
338 if (!pTxTs->tx_admitted_ba_record.bValid)
339 {
340 TsStartAddBaProcess(ieee, pTxTs);
341 goto FORCED_AGG_SETTING;
342 }
343 else if (!pTxTs->using_ba)
344 {
345 if (SN_LESS(pTxTs->tx_admitted_ba_record.BaStartSeqCtrl.field.SeqNum, (pTxTs->tx_cur_seq + 1) % 4096))
346 pTxTs->using_ba = true;
347 else
348 goto FORCED_AGG_SETTING;
349 }
350
351 if (ieee->iw_mode == IW_MODE_INFRA)
352 {
353 tcb_desc->bAMPDUEnable = true;
354 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
355 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
356 }
357 }
358 FORCED_AGG_SETTING:
359 switch (pHTInfo->ForcedAMPDUMode )
360 {
361 case HT_AGG_AUTO:
362 break;
363
364 case HT_AGG_FORCE_ENABLE:
365 tcb_desc->bAMPDUEnable = true;
366 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
367 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
368 break;
369
370 case HT_AGG_FORCE_DISABLE:
371 tcb_desc->bAMPDUEnable = false;
372 tcb_desc->ampdu_density = 0;
373 tcb_desc->ampdu_factor = 0;
374 break;
375
376 }
377 return;
378 }
379
ieee80211_qurey_ShortPreambleMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)380 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
381 struct cb_desc *tcb_desc)
382 {
383 tcb_desc->bUseShortPreamble = false;
384 if (tcb_desc->data_rate == 2)
385 {//// 1M can only use Long Preamble. 11B spec
386 return;
387 }
388 else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
389 {
390 tcb_desc->bUseShortPreamble = true;
391 }
392 return;
393 }
394 static void
ieee80211_query_HTCapShortGI(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)395 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
396 {
397 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
398
399 tcb_desc->bUseShortGI = false;
400
401 if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
402 return;
403
404 if(pHTInfo->bForcedShortGI)
405 {
406 tcb_desc->bUseShortGI = true;
407 return;
408 }
409
410 if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
411 tcb_desc->bUseShortGI = true;
412 else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
413 tcb_desc->bUseShortGI = true;
414 }
415
ieee80211_query_BandwidthMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)416 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
417 struct cb_desc *tcb_desc)
418 {
419 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
420
421 tcb_desc->bPacketBW = false;
422
423 if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
424 return;
425
426 if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
427 return;
428
429 if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
430 return;
431 //BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
432 if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
433 tcb_desc->bPacketBW = true;
434 return;
435 }
436
ieee80211_query_protectionmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)437 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
438 struct cb_desc *tcb_desc,
439 struct sk_buff *skb)
440 {
441 // Common Settings
442 tcb_desc->bRTSSTBC = false;
443 tcb_desc->bRTSUseShortGI = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
444 tcb_desc->bCTSEnable = false; // Most of protection using RTS/CTS
445 tcb_desc->RTSSC = 0; // 20MHz: Don't care; 40MHz: Duplicate.
446 tcb_desc->bRTSBW = false; // RTS frame bandwidth is always 20MHz
447
448 if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
449 return;
450
451 if (is_broadcast_ether_addr(skb->data+16)) //check addr3 as infrastructure add3 is DA.
452 return;
453
454 if (ieee->mode < IEEE_N_24G) //b, g mode
455 {
456 // (1) RTS_Threshold is compared to the MPDU, not MSDU.
457 // (2) If there are more than one frag in this MSDU, only the first frag uses protection frame.
458 // Other fragments are protected by previous fragment.
459 // So we only need to check the length of first fragment.
460 if (skb->len > ieee->rts)
461 {
462 tcb_desc->bRTSEnable = true;
463 tcb_desc->rts_rate = MGN_24M;
464 }
465 else if (ieee->current_network.buseprotection)
466 {
467 // Use CTS-to-SELF in protection mode.
468 tcb_desc->bRTSEnable = true;
469 tcb_desc->bCTSEnable = true;
470 tcb_desc->rts_rate = MGN_24M;
471 }
472 //otherwise return;
473 return;
474 }
475 else
476 {// 11n High throughput case.
477 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
478 while (true)
479 {
480 //check ERP protection
481 if (ieee->current_network.buseprotection)
482 {// CTS-to-SELF
483 tcb_desc->bRTSEnable = true;
484 tcb_desc->bCTSEnable = true;
485 tcb_desc->rts_rate = MGN_24M;
486 break;
487 }
488 //check HT op mode
489 if(pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT)
490 {
491 u8 HTOpMode = pHTInfo->CurrentOpMode;
492 if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
493 (!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
494 {
495 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
496 tcb_desc->bRTSEnable = true;
497 break;
498 }
499 }
500 //check rts
501 if (skb->len > ieee->rts)
502 {
503 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
504 tcb_desc->bRTSEnable = true;
505 break;
506 }
507 //to do list: check MIMO power save condition.
508 //check AMPDU aggregation for TXOP
509 if(tcb_desc->bAMPDUEnable)
510 {
511 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
512 // According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
513 // throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
514 tcb_desc->bRTSEnable = false;
515 break;
516 }
517 //check IOT action
518 if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
519 {
520 tcb_desc->bCTSEnable = true;
521 tcb_desc->rts_rate = MGN_24M;
522 tcb_desc->bRTSEnable = true;
523 break;
524 }
525 // Totally no protection case!!
526 goto NO_PROTECTION;
527 }
528 }
529 // For test , CTS replace with RTS
530 if (0) {
531 tcb_desc->bCTSEnable = true;
532 tcb_desc->rts_rate = MGN_24M;
533 tcb_desc->bRTSEnable = true;
534 }
535 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
536 tcb_desc->bUseShortPreamble = true;
537 if (ieee->mode == IW_MODE_MASTER)
538 goto NO_PROTECTION;
539 return;
540 NO_PROTECTION:
541 tcb_desc->bRTSEnable = false;
542 tcb_desc->bCTSEnable = false;
543 tcb_desc->rts_rate = 0;
544 tcb_desc->RTSSC = 0;
545 tcb_desc->bRTSBW = false;
546 }
547
548
ieee80211_txrate_selectmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)549 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
550 struct cb_desc *tcb_desc)
551 {
552 #ifdef TO_DO_LIST
553 if(!IsDataFrame(pFrame))
554 {
555 pTcb->bTxDisableRateFallBack = true;
556 pTcb->bTxUseDriverAssingedRate = true;
557 pTcb->RATRIndex = 7;
558 return;
559 }
560
561 if(pMgntInfo->ForcedDataRate!= 0)
562 {
563 pTcb->bTxDisableRateFallBack = true;
564 pTcb->bTxUseDriverAssingedRate = true;
565 return;
566 }
567 #endif
568 if(ieee->bTxDisableRateFallBack)
569 tcb_desc->bTxDisableRateFallBack = true;
570
571 if(ieee->bTxUseDriverAssingedRate)
572 tcb_desc->bTxUseDriverAssingedRate = true;
573 if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
574 {
575 if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
576 tcb_desc->RATRIndex = 0;
577 }
578 }
579
ieee80211_query_seqnum(struct ieee80211_device * ieee,struct sk_buff * skb,u8 * dst)580 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
581 struct sk_buff *skb, u8 *dst)
582 {
583 if (is_multicast_ether_addr(dst))
584 return;
585 if (IsQoSDataFrame(skb->data)) //we deal qos data only
586 {
587 struct tx_ts_record *pTS = NULL;
588 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true))
589 {
590 return;
591 }
592 pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
593 }
594 }
595
ieee80211_xmit(struct sk_buff * skb,struct net_device * dev)596 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
597 {
598 struct ieee80211_device *ieee = netdev_priv(dev);
599 struct ieee80211_txb *txb = NULL;
600 struct rtl_80211_hdr_3addrqos *frag_hdr;
601 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
602 unsigned long flags;
603 struct net_device_stats *stats = &ieee->stats;
604 int ether_type = 0, encrypt;
605 int bytes, fc, qos_ctl = 0, hdr_len;
606 struct sk_buff *skb_frag;
607 struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
608 .duration_id = 0,
609 .seq_ctl = 0,
610 .qos_ctl = 0
611 };
612 u8 dest[ETH_ALEN], src[ETH_ALEN];
613 int qos_actived = ieee->current_network.qos_data.active;
614
615 struct ieee80211_crypt_data *crypt;
616
617 struct cb_desc *tcb_desc;
618
619 spin_lock_irqsave(&ieee->lock, flags);
620
621 /* If there is no driver handler to take the TXB, dont' bother
622 * creating it...
623 */
624 if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
625 ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
626 printk(KERN_WARNING "%s: No xmit handler.\n",
627 ieee->dev->name);
628 goto success;
629 }
630
631
632 if(likely(ieee->raw_tx == 0)){
633 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
634 printk(KERN_WARNING "%s: skb too small (%d).\n",
635 ieee->dev->name, skb->len);
636 goto success;
637 }
638
639 memset(skb->cb, 0, sizeof(skb->cb));
640 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
641
642 crypt = ieee->crypt[ieee->tx_keyidx];
643
644 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
645 ieee->host_encrypt && crypt && crypt->ops;
646
647 if (!encrypt && ieee->ieee802_1x &&
648 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
649 stats->tx_dropped++;
650 goto success;
651 }
652 #ifdef CONFIG_IEEE80211_DEBUG
653 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
654 struct eapol *eap = (struct eapol *)(skb->data +
655 sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
656 IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
657 eap_get_type(eap->type));
658 }
659 #endif
660
661 /* Save source and destination addresses */
662 memcpy(&dest, skb->data, ETH_ALEN);
663 memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
664
665 /* Advance the SKB to the start of the payload */
666 skb_pull(skb, sizeof(struct ethhdr));
667
668 /* Determine total amount of storage required for TXB packets */
669 bytes = skb->len + SNAP_SIZE + sizeof(u16);
670
671 if (encrypt)
672 fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
673 else
674
675 fc = IEEE80211_FTYPE_DATA;
676
677 //if(ieee->current_network.QoS_Enable)
678 if(qos_actived)
679 fc |= IEEE80211_STYPE_QOS_DATA;
680 else
681 fc |= IEEE80211_STYPE_DATA;
682
683 if (ieee->iw_mode == IW_MODE_INFRA) {
684 fc |= IEEE80211_FCTL_TODS;
685 /* To DS: Addr1 = BSSID, Addr2 = SA,
686 * Addr3 = DA
687 */
688 memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
689 memcpy(&header.addr2, &src, ETH_ALEN);
690 memcpy(&header.addr3, &dest, ETH_ALEN);
691 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
692 /* not From/To DS: Addr1 = DA, Addr2 = SA,
693 * Addr3 = BSSID
694 */
695 memcpy(&header.addr1, dest, ETH_ALEN);
696 memcpy(&header.addr2, src, ETH_ALEN);
697 memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
698 }
699
700 header.frame_ctl = cpu_to_le16(fc);
701
702 /* Determine fragmentation size based on destination (multicast
703 * and broadcast are not fragmented)
704 */
705 if (is_multicast_ether_addr(header.addr1)) {
706 frag_size = MAX_FRAG_THRESHOLD;
707 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
708 }
709 else {
710 frag_size = ieee->fts;//default:392
711 qos_ctl = 0;
712 }
713
714 //if (ieee->current_network.QoS_Enable)
715 if(qos_actived)
716 {
717 hdr_len = IEEE80211_3ADDR_LEN + 2;
718
719 skb->priority = ieee80211_classify(skb, &ieee->current_network);
720 qos_ctl |= skb->priority; //set in the ieee80211_classify
721 header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
722 } else {
723 hdr_len = IEEE80211_3ADDR_LEN;
724 }
725 /* Determine amount of payload per fragment. Regardless of if
726 * this stack is providing the full 802.11 header, one will
727 * eventually be affixed to this fragment -- so we must account for
728 * it when determining the amount of payload space.
729 */
730 bytes_per_frag = frag_size - hdr_len;
731 if (ieee->config &
732 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
733 bytes_per_frag -= IEEE80211_FCS_LEN;
734
735 /* Each fragment may need to have room for encryption pre/postfix */
736 if (encrypt)
737 bytes_per_frag -= crypt->ops->extra_prefix_len +
738 crypt->ops->extra_postfix_len;
739
740 /* Number of fragments is the total bytes_per_frag /
741 * payload_per_fragment
742 */
743 nr_frags = bytes / bytes_per_frag;
744 bytes_last_frag = bytes % bytes_per_frag;
745 if (bytes_last_frag)
746 nr_frags++;
747 else
748 bytes_last_frag = bytes_per_frag;
749
750 /* When we allocate the TXB we allocate enough space for the reserve
751 * and full fragment bytes (bytes_per_frag doesn't include prefix,
752 * postfix, header, FCS, etc.)
753 */
754 txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
755 if (unlikely(!txb)) {
756 printk(KERN_WARNING "%s: Could not allocate TXB\n",
757 ieee->dev->name);
758 goto failed;
759 }
760 txb->encrypted = encrypt;
761 txb->payload_size = __cpu_to_le16(bytes);
762
763 //if (ieee->current_network.QoS_Enable)
764 if(qos_actived)
765 {
766 txb->queue_index = UP2AC(skb->priority);
767 } else {
768 txb->queue_index = WME_AC_BK;
769 }
770
771
772
773 for (i = 0; i < nr_frags; i++) {
774 skb_frag = txb->fragments[i];
775 tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
776 if(qos_actived){
777 skb_frag->priority = skb->priority;//UP2AC(skb->priority);
778 tcb_desc->queue_index = UP2AC(skb->priority);
779 } else {
780 skb_frag->priority = WME_AC_BK;
781 tcb_desc->queue_index = WME_AC_BK;
782 }
783 skb_reserve(skb_frag, ieee->tx_headroom);
784
785 if (encrypt){
786 if (ieee->hwsec_active)
787 tcb_desc->bHwSec = 1;
788 else
789 tcb_desc->bHwSec = 0;
790 skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
791 }
792 else
793 {
794 tcb_desc->bHwSec = 0;
795 }
796 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
797
798 /* If this is not the last fragment, then add the MOREFRAGS
799 * bit to the frame control
800 */
801 if (i != nr_frags - 1) {
802 frag_hdr->frame_ctl = cpu_to_le16(
803 fc | IEEE80211_FCTL_MOREFRAGS);
804 bytes = bytes_per_frag;
805
806 } else {
807 /* The last fragment takes the remaining length */
808 bytes = bytes_last_frag;
809 }
810 //if(ieee->current_network.QoS_Enable)
811 if(qos_actived)
812 {
813 // add 1 only indicate to corresponding seq number control 2006/7/12
814 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
815 } else {
816 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
817 }
818
819 /* Put a SNAP header on the first fragment */
820 if (i == 0) {
821 ieee80211_put_snap(
822 skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
823 ether_type);
824 bytes -= SNAP_SIZE + sizeof(u16);
825 }
826
827 skb_put_data(skb_frag, skb->data, bytes);
828
829 /* Advance the SKB... */
830 skb_pull(skb, bytes);
831
832 /* Encryption routine will move the header forward in order
833 * to insert the IV between the header and the payload
834 */
835 if (encrypt)
836 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
837 if (ieee->config &
838 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
839 skb_put(skb_frag, 4);
840 }
841
842 if(qos_actived)
843 {
844 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
845 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
846 else
847 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
848 } else {
849 if (ieee->seq_ctrl[0] == 0xFFF)
850 ieee->seq_ctrl[0] = 0;
851 else
852 ieee->seq_ctrl[0]++;
853 }
854 }else{
855 if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
856 printk(KERN_WARNING "%s: skb too small (%d).\n",
857 ieee->dev->name, skb->len);
858 goto success;
859 }
860
861 txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
862 if(!txb){
863 printk(KERN_WARNING "%s: Could not allocate TXB\n",
864 ieee->dev->name);
865 goto failed;
866 }
867
868 txb->encrypted = 0;
869 txb->payload_size = __cpu_to_le16(skb->len);
870 skb_put_data(txb->fragments[0], skb->data, skb->len);
871 }
872
873 success:
874 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
875 if (txb)
876 {
877 struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
878 tcb_desc->bTxEnableFwCalcDur = 1;
879 if (is_multicast_ether_addr(header.addr1))
880 tcb_desc->bMulticast = 1;
881 if (is_broadcast_ether_addr(header.addr1))
882 tcb_desc->bBroadcast = 1;
883 ieee80211_txrate_selectmode(ieee, tcb_desc);
884 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
885 tcb_desc->data_rate = ieee->basic_rate;
886 else
887 tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
888 ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
889 ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
890 ieee80211_query_HTCapShortGI(ieee, tcb_desc);
891 ieee80211_query_BandwidthMode(ieee, tcb_desc);
892 ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
893 ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
894 }
895 spin_unlock_irqrestore(&ieee->lock, flags);
896 dev_kfree_skb_any(skb);
897 if (txb) {
898 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
899 ieee80211_softmac_xmit(txb, ieee);
900 }else{
901 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
902 stats->tx_packets++;
903 stats->tx_bytes += __le16_to_cpu(txb->payload_size);
904 return 0;
905 }
906 ieee80211_txb_free(txb);
907 }
908 }
909
910 return 0;
911
912 failed:
913 spin_unlock_irqrestore(&ieee->lock, flags);
914 netif_stop_queue(dev);
915 stats->tx_errors++;
916 return 1;
917
918 }
919