1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63
64 /*
65 * Global Variables
66 */
67
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
71
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
76
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
81
srpt_get_u64_x(char * buffer,const struct kernel_param * kp)82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
83 {
84 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
85 }
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
90
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
103
104 /*
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
107 */
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new)108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
109 {
110 unsigned long flags;
111 enum rdma_ch_state prev;
112 bool changed = false;
113
114 spin_lock_irqsave(&ch->spinlock, flags);
115 prev = ch->state;
116 if (new > prev) {
117 ch->state = new;
118 changed = true;
119 }
120 spin_unlock_irqrestore(&ch->spinlock, flags);
121
122 return changed;
123 }
124
125 /**
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
129 *
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
134 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)135 static void srpt_event_handler(struct ib_event_handler *handler,
136 struct ib_event *event)
137 {
138 struct srpt_device *sdev =
139 container_of(handler, struct srpt_device, event_handler);
140 struct srpt_port *sport;
141 u8 port_num;
142
143 pr_debug("ASYNC event= %d on device= %s\n", event->event,
144 dev_name(&sdev->device->dev));
145
146 switch (event->event) {
147 case IB_EVENT_PORT_ERR:
148 port_num = event->element.port_num - 1;
149 if (port_num < sdev->device->phys_port_cnt) {
150 sport = &sdev->port[port_num];
151 sport->lid = 0;
152 sport->sm_lid = 0;
153 } else {
154 WARN(true, "event %d: port_num %d out of range 1..%d\n",
155 event->event, port_num + 1,
156 sdev->device->phys_port_cnt);
157 }
158 break;
159 case IB_EVENT_PORT_ACTIVE:
160 case IB_EVENT_LID_CHANGE:
161 case IB_EVENT_PKEY_CHANGE:
162 case IB_EVENT_SM_CHANGE:
163 case IB_EVENT_CLIENT_REREGISTER:
164 case IB_EVENT_GID_CHANGE:
165 /* Refresh port data asynchronously. */
166 port_num = event->element.port_num - 1;
167 if (port_num < sdev->device->phys_port_cnt) {
168 sport = &sdev->port[port_num];
169 if (!sport->lid && !sport->sm_lid)
170 schedule_work(&sport->work);
171 } else {
172 WARN(true, "event %d: port_num %d out of range 1..%d\n",
173 event->event, port_num + 1,
174 sdev->device->phys_port_cnt);
175 }
176 break;
177 default:
178 pr_err("received unrecognized IB event %d\n", event->event);
179 break;
180 }
181 }
182
183 /**
184 * srpt_srq_event - SRQ event callback function
185 * @event: Description of the event that occurred.
186 * @ctx: Context pointer specified at SRQ creation time.
187 */
srpt_srq_event(struct ib_event * event,void * ctx)188 static void srpt_srq_event(struct ib_event *event, void *ctx)
189 {
190 pr_debug("SRQ event %d\n", event->event);
191 }
192
get_ch_state_name(enum rdma_ch_state s)193 static const char *get_ch_state_name(enum rdma_ch_state s)
194 {
195 switch (s) {
196 case CH_CONNECTING:
197 return "connecting";
198 case CH_LIVE:
199 return "live";
200 case CH_DISCONNECTING:
201 return "disconnecting";
202 case CH_DRAINING:
203 return "draining";
204 case CH_DISCONNECTED:
205 return "disconnected";
206 }
207 return "???";
208 }
209
210 /**
211 * srpt_qp_event - QP event callback function
212 * @event: Description of the event that occurred.
213 * @ch: SRPT RDMA channel.
214 */
srpt_qp_event(struct ib_event * event,struct srpt_rdma_ch * ch)215 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
216 {
217 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
218 event->event, ch, ch->sess_name, ch->qp->qp_num,
219 get_ch_state_name(ch->state));
220
221 switch (event->event) {
222 case IB_EVENT_COMM_EST:
223 if (ch->using_rdma_cm)
224 rdma_notify(ch->rdma_cm.cm_id, event->event);
225 else
226 ib_cm_notify(ch->ib_cm.cm_id, event->event);
227 break;
228 case IB_EVENT_QP_LAST_WQE_REACHED:
229 pr_debug("%s-%d, state %s: received Last WQE event.\n",
230 ch->sess_name, ch->qp->qp_num,
231 get_ch_state_name(ch->state));
232 break;
233 default:
234 pr_err("received unrecognized IB QP event %d\n", event->event);
235 break;
236 }
237 }
238
239 /**
240 * srpt_set_ioc - initialize a IOUnitInfo structure
241 * @c_list: controller list.
242 * @slot: one-based slot number.
243 * @value: four-bit value.
244 *
245 * Copies the lowest four bits of value in element slot of the array of four
246 * bit elements called c_list (controller list). The index slot is one-based.
247 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)248 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
249 {
250 u16 id;
251 u8 tmp;
252
253 id = (slot - 1) / 2;
254 if (slot & 0x1) {
255 tmp = c_list[id] & 0xf;
256 c_list[id] = (value << 4) | tmp;
257 } else {
258 tmp = c_list[id] & 0xf0;
259 c_list[id] = (value & 0xf) | tmp;
260 }
261 }
262
263 /**
264 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
265 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
266 *
267 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
268 * Specification.
269 */
srpt_get_class_port_info(struct ib_dm_mad * mad)270 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
271 {
272 struct ib_class_port_info *cif;
273
274 cif = (struct ib_class_port_info *)mad->data;
275 memset(cif, 0, sizeof(*cif));
276 cif->base_version = 1;
277 cif->class_version = 1;
278
279 ib_set_cpi_resp_time(cif, 20);
280 mad->mad_hdr.status = 0;
281 }
282
283 /**
284 * srpt_get_iou - write IOUnitInfo to a management datagram
285 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
286 *
287 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
288 * Specification. See also section B.7, table B.6 in the SRP r16a document.
289 */
srpt_get_iou(struct ib_dm_mad * mad)290 static void srpt_get_iou(struct ib_dm_mad *mad)
291 {
292 struct ib_dm_iou_info *ioui;
293 u8 slot;
294 int i;
295
296 ioui = (struct ib_dm_iou_info *)mad->data;
297 ioui->change_id = cpu_to_be16(1);
298 ioui->max_controllers = 16;
299
300 /* set present for slot 1 and empty for the rest */
301 srpt_set_ioc(ioui->controller_list, 1, 1);
302 for (i = 1, slot = 2; i < 16; i++, slot++)
303 srpt_set_ioc(ioui->controller_list, slot, 0);
304
305 mad->mad_hdr.status = 0;
306 }
307
308 /**
309 * srpt_get_ioc - write IOControllerprofile to a management datagram
310 * @sport: HCA port through which the MAD has been received.
311 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
312 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
313 *
314 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
315 * Architecture Specification. See also section B.7, table B.7 in the SRP
316 * r16a document.
317 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)318 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
319 struct ib_dm_mad *mad)
320 {
321 struct srpt_device *sdev = sport->sdev;
322 struct ib_dm_ioc_profile *iocp;
323 int send_queue_depth;
324
325 iocp = (struct ib_dm_ioc_profile *)mad->data;
326
327 if (!slot || slot > 16) {
328 mad->mad_hdr.status
329 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
330 return;
331 }
332
333 if (slot > 2) {
334 mad->mad_hdr.status
335 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
336 return;
337 }
338
339 if (sdev->use_srq)
340 send_queue_depth = sdev->srq_size;
341 else
342 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
343 sdev->device->attrs.max_qp_wr);
344
345 memset(iocp, 0, sizeof(*iocp));
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 1U << 24));
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366 mad->mad_hdr.status = 0;
367 }
368
369 /**
370 * srpt_get_svc_entries - write ServiceEntries to a management datagram
371 * @ioc_guid: I/O controller GUID to use in reply.
372 * @slot: I/O controller number.
373 * @hi: End of the range of service entries to be specified in the reply.
374 * @lo: Start of the range of service entries to be specified in the reply..
375 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
376 *
377 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
378 * Specification. See also section B.7, table B.8 in the SRP r16a document.
379 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)380 static void srpt_get_svc_entries(u64 ioc_guid,
381 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
382 {
383 struct ib_dm_svc_entries *svc_entries;
384
385 WARN_ON(!ioc_guid);
386
387 if (!slot || slot > 16) {
388 mad->mad_hdr.status
389 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
390 return;
391 }
392
393 if (slot > 2 || lo > hi || hi > 1) {
394 mad->mad_hdr.status
395 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
396 return;
397 }
398
399 svc_entries = (struct ib_dm_svc_entries *)mad->data;
400 memset(svc_entries, 0, sizeof(*svc_entries));
401 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
402 snprintf(svc_entries->service_entries[0].name,
403 sizeof(svc_entries->service_entries[0].name),
404 "%s%016llx",
405 SRP_SERVICE_NAME_PREFIX,
406 ioc_guid);
407
408 mad->mad_hdr.status = 0;
409 }
410
411 /**
412 * srpt_mgmt_method_get - process a received management datagram
413 * @sp: HCA port through which the MAD has been received.
414 * @rq_mad: received MAD.
415 * @rsp_mad: response MAD.
416 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)417 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
418 struct ib_dm_mad *rsp_mad)
419 {
420 u16 attr_id;
421 u32 slot;
422 u8 hi, lo;
423
424 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
425 switch (attr_id) {
426 case DM_ATTR_CLASS_PORT_INFO:
427 srpt_get_class_port_info(rsp_mad);
428 break;
429 case DM_ATTR_IOU_INFO:
430 srpt_get_iou(rsp_mad);
431 break;
432 case DM_ATTR_IOC_PROFILE:
433 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
434 srpt_get_ioc(sp, slot, rsp_mad);
435 break;
436 case DM_ATTR_SVC_ENTRIES:
437 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
438 hi = (u8) ((slot >> 8) & 0xff);
439 lo = (u8) (slot & 0xff);
440 slot = (u16) ((slot >> 16) & 0xffff);
441 srpt_get_svc_entries(srpt_service_guid,
442 slot, hi, lo, rsp_mad);
443 break;
444 default:
445 rsp_mad->mad_hdr.status =
446 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
447 break;
448 }
449 }
450
451 /**
452 * srpt_mad_send_handler - MAD send completion callback
453 * @mad_agent: Return value of ib_register_mad_agent().
454 * @mad_wc: Work completion reporting that the MAD has been sent.
455 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)456 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
457 struct ib_mad_send_wc *mad_wc)
458 {
459 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
460 ib_free_send_mad(mad_wc->send_buf);
461 }
462
463 /**
464 * srpt_mad_recv_handler - MAD reception callback function
465 * @mad_agent: Return value of ib_register_mad_agent().
466 * @send_buf: Not used.
467 * @mad_wc: Work completion reporting that a MAD has been received.
468 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_buf * send_buf,struct ib_mad_recv_wc * mad_wc)469 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
470 struct ib_mad_send_buf *send_buf,
471 struct ib_mad_recv_wc *mad_wc)
472 {
473 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
474 struct ib_ah *ah;
475 struct ib_mad_send_buf *rsp;
476 struct ib_dm_mad *dm_mad;
477
478 if (!mad_wc || !mad_wc->recv_buf.mad)
479 return;
480
481 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
482 mad_wc->recv_buf.grh, mad_agent->port_num);
483 if (IS_ERR(ah))
484 goto err;
485
486 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
487
488 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
489 mad_wc->wc->pkey_index, 0,
490 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
491 GFP_KERNEL,
492 IB_MGMT_BASE_VERSION);
493 if (IS_ERR(rsp))
494 goto err_rsp;
495
496 rsp->ah = ah;
497
498 dm_mad = rsp->mad;
499 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
500 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
501 dm_mad->mad_hdr.status = 0;
502
503 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
504 case IB_MGMT_METHOD_GET:
505 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
506 break;
507 case IB_MGMT_METHOD_SET:
508 dm_mad->mad_hdr.status =
509 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
510 break;
511 default:
512 dm_mad->mad_hdr.status =
513 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
514 break;
515 }
516
517 if (!ib_post_send_mad(rsp, NULL)) {
518 ib_free_recv_mad(mad_wc);
519 /* will destroy_ah & free_send_mad in send completion */
520 return;
521 }
522
523 ib_free_send_mad(rsp);
524
525 err_rsp:
526 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
527 err:
528 ib_free_recv_mad(mad_wc);
529 }
530
srpt_format_guid(char * buf,unsigned int size,const __be64 * guid)531 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
532 {
533 const __be16 *g = (const __be16 *)guid;
534
535 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
536 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
537 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
538 }
539
540 /**
541 * srpt_refresh_port - configure a HCA port
542 * @sport: SRPT HCA port.
543 *
544 * Enable InfiniBand management datagram processing, update the cached sm_lid,
545 * lid and gid values, and register a callback function for processing MADs
546 * on the specified port.
547 *
548 * Note: It is safe to call this function more than once for the same port.
549 */
srpt_refresh_port(struct srpt_port * sport)550 static int srpt_refresh_port(struct srpt_port *sport)
551 {
552 struct ib_mad_agent *mad_agent;
553 struct ib_mad_reg_req reg_req;
554 struct ib_port_modify port_modify;
555 struct ib_port_attr port_attr;
556 int ret;
557
558 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
559 if (ret)
560 return ret;
561
562 sport->sm_lid = port_attr.sm_lid;
563 sport->lid = port_attr.lid;
564
565 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
566 if (ret)
567 return ret;
568
569 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
570 &sport->gid.global.interface_id);
571 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
572 "0x%016llx%016llx",
573 be64_to_cpu(sport->gid.global.subnet_prefix),
574 be64_to_cpu(sport->gid.global.interface_id));
575
576 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
577 return 0;
578
579 memset(&port_modify, 0, sizeof(port_modify));
580 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 port_modify.clr_port_cap_mask = 0;
582
583 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
584 if (ret) {
585 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
586 dev_name(&sport->sdev->device->dev), sport->port, ret);
587 return 0;
588 }
589
590 if (!sport->mad_agent) {
591 memset(®_req, 0, sizeof(reg_req));
592 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
593 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
594 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
595 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
596
597 mad_agent = ib_register_mad_agent(sport->sdev->device,
598 sport->port,
599 IB_QPT_GSI,
600 ®_req, 0,
601 srpt_mad_send_handler,
602 srpt_mad_recv_handler,
603 sport, 0);
604 if (IS_ERR(mad_agent)) {
605 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
606 dev_name(&sport->sdev->device->dev), sport->port,
607 PTR_ERR(mad_agent));
608 sport->mad_agent = NULL;
609 memset(&port_modify, 0, sizeof(port_modify));
610 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
611 ib_modify_port(sport->sdev->device, sport->port, 0,
612 &port_modify);
613 return 0;
614 }
615
616 sport->mad_agent = mad_agent;
617 }
618
619 return 0;
620 }
621
622 /**
623 * srpt_unregister_mad_agent - unregister MAD callback functions
624 * @sdev: SRPT HCA pointer.
625 * @port_cnt: number of ports with registered MAD
626 *
627 * Note: It is safe to call this function more than once for the same device.
628 */
srpt_unregister_mad_agent(struct srpt_device * sdev,int port_cnt)629 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
630 {
631 struct ib_port_modify port_modify = {
632 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
633 };
634 struct srpt_port *sport;
635 int i;
636
637 for (i = 1; i <= port_cnt; i++) {
638 sport = &sdev->port[i - 1];
639 WARN_ON(sport->port != i);
640 if (sport->mad_agent) {
641 ib_modify_port(sdev->device, i, 0, &port_modify);
642 ib_unregister_mad_agent(sport->mad_agent);
643 sport->mad_agent = NULL;
644 }
645 }
646 }
647
648 /**
649 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
650 * @sdev: SRPT HCA pointer.
651 * @ioctx_size: I/O context size.
652 * @buf_cache: I/O buffer cache.
653 * @dir: DMA data direction.
654 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)655 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
656 int ioctx_size,
657 struct kmem_cache *buf_cache,
658 enum dma_data_direction dir)
659 {
660 struct srpt_ioctx *ioctx;
661
662 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
663 if (!ioctx)
664 goto err;
665
666 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
667 if (!ioctx->buf)
668 goto err_free_ioctx;
669
670 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
671 kmem_cache_size(buf_cache), dir);
672 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
673 goto err_free_buf;
674
675 return ioctx;
676
677 err_free_buf:
678 kmem_cache_free(buf_cache, ioctx->buf);
679 err_free_ioctx:
680 kfree(ioctx);
681 err:
682 return NULL;
683 }
684
685 /**
686 * srpt_free_ioctx - free a SRPT I/O context structure
687 * @sdev: SRPT HCA pointer.
688 * @ioctx: I/O context pointer.
689 * @buf_cache: I/O buffer cache.
690 * @dir: DMA data direction.
691 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,struct kmem_cache * buf_cache,enum dma_data_direction dir)692 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
693 struct kmem_cache *buf_cache,
694 enum dma_data_direction dir)
695 {
696 if (!ioctx)
697 return;
698
699 ib_dma_unmap_single(sdev->device, ioctx->dma,
700 kmem_cache_size(buf_cache), dir);
701 kmem_cache_free(buf_cache, ioctx->buf);
702 kfree(ioctx);
703 }
704
705 /**
706 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
707 * @sdev: Device to allocate the I/O context ring for.
708 * @ring_size: Number of elements in the I/O context ring.
709 * @ioctx_size: I/O context size.
710 * @buf_cache: I/O buffer cache.
711 * @alignment_offset: Offset in each ring buffer at which the SRP information
712 * unit starts.
713 * @dir: DMA data direction.
714 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,struct kmem_cache * buf_cache,int alignment_offset,enum dma_data_direction dir)715 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
716 int ring_size, int ioctx_size,
717 struct kmem_cache *buf_cache,
718 int alignment_offset,
719 enum dma_data_direction dir)
720 {
721 struct srpt_ioctx **ring;
722 int i;
723
724 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
725 ioctx_size != sizeof(struct srpt_send_ioctx));
726
727 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
728 if (!ring)
729 goto out;
730 for (i = 0; i < ring_size; ++i) {
731 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
732 if (!ring[i])
733 goto err;
734 ring[i]->index = i;
735 ring[i]->offset = alignment_offset;
736 }
737 goto out;
738
739 err:
740 while (--i >= 0)
741 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
742 kvfree(ring);
743 ring = NULL;
744 out:
745 return ring;
746 }
747
748 /**
749 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
750 * @ioctx_ring: I/O context ring to be freed.
751 * @sdev: SRPT HCA pointer.
752 * @ring_size: Number of ring elements.
753 * @buf_cache: I/O buffer cache.
754 * @dir: DMA data direction.
755 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)756 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
757 struct srpt_device *sdev, int ring_size,
758 struct kmem_cache *buf_cache,
759 enum dma_data_direction dir)
760 {
761 int i;
762
763 if (!ioctx_ring)
764 return;
765
766 for (i = 0; i < ring_size; ++i)
767 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
768 kvfree(ioctx_ring);
769 }
770
771 /**
772 * srpt_set_cmd_state - set the state of a SCSI command
773 * @ioctx: Send I/O context.
774 * @new: New I/O context state.
775 *
776 * Does not modify the state of aborted commands. Returns the previous command
777 * state.
778 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)779 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
780 enum srpt_command_state new)
781 {
782 enum srpt_command_state previous;
783
784 previous = ioctx->state;
785 if (previous != SRPT_STATE_DONE)
786 ioctx->state = new;
787
788 return previous;
789 }
790
791 /**
792 * srpt_test_and_set_cmd_state - test and set the state of a command
793 * @ioctx: Send I/O context.
794 * @old: Current I/O context state.
795 * @new: New I/O context state.
796 *
797 * Returns true if and only if the previous command state was equal to 'old'.
798 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)799 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
800 enum srpt_command_state old,
801 enum srpt_command_state new)
802 {
803 enum srpt_command_state previous;
804
805 WARN_ON(!ioctx);
806 WARN_ON(old == SRPT_STATE_DONE);
807 WARN_ON(new == SRPT_STATE_NEW);
808
809 previous = ioctx->state;
810 if (previous == old)
811 ioctx->state = new;
812
813 return previous == old;
814 }
815
816 /**
817 * srpt_post_recv - post an IB receive request
818 * @sdev: SRPT HCA pointer.
819 * @ch: SRPT RDMA channel.
820 * @ioctx: Receive I/O context pointer.
821 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * ioctx)822 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
823 struct srpt_recv_ioctx *ioctx)
824 {
825 struct ib_sge list;
826 struct ib_recv_wr wr;
827
828 BUG_ON(!sdev);
829 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
830 list.length = srp_max_req_size;
831 list.lkey = sdev->lkey;
832
833 ioctx->ioctx.cqe.done = srpt_recv_done;
834 wr.wr_cqe = &ioctx->ioctx.cqe;
835 wr.next = NULL;
836 wr.sg_list = &list;
837 wr.num_sge = 1;
838
839 if (sdev->use_srq)
840 return ib_post_srq_recv(sdev->srq, &wr, NULL);
841 else
842 return ib_post_recv(ch->qp, &wr, NULL);
843 }
844
845 /**
846 * srpt_zerolength_write - perform a zero-length RDMA write
847 * @ch: SRPT RDMA channel.
848 *
849 * A quote from the InfiniBand specification: C9-88: For an HCA responder
850 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
851 * request, the R_Key shall not be validated, even if the request includes
852 * Immediate data.
853 */
srpt_zerolength_write(struct srpt_rdma_ch * ch)854 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
855 {
856 struct ib_rdma_wr wr = {
857 .wr = {
858 .next = NULL,
859 { .wr_cqe = &ch->zw_cqe, },
860 .opcode = IB_WR_RDMA_WRITE,
861 .send_flags = IB_SEND_SIGNALED,
862 }
863 };
864
865 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
866 ch->qp->qp_num);
867
868 return ib_post_send(ch->qp, &wr.wr, NULL);
869 }
870
srpt_zerolength_write_done(struct ib_cq * cq,struct ib_wc * wc)871 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
872 {
873 struct srpt_rdma_ch *ch = wc->qp->qp_context;
874
875 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
876 wc->status);
877
878 if (wc->status == IB_WC_SUCCESS) {
879 srpt_process_wait_list(ch);
880 } else {
881 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
882 schedule_work(&ch->release_work);
883 else
884 pr_debug("%s-%d: already disconnected.\n",
885 ch->sess_name, ch->qp->qp_num);
886 }
887 }
888
srpt_alloc_rw_ctxs(struct srpt_send_ioctx * ioctx,struct srp_direct_buf * db,int nbufs,struct scatterlist ** sg,unsigned * sg_cnt)889 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
890 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
891 unsigned *sg_cnt)
892 {
893 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
894 struct srpt_rdma_ch *ch = ioctx->ch;
895 struct scatterlist *prev = NULL;
896 unsigned prev_nents;
897 int ret, i;
898
899 if (nbufs == 1) {
900 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
901 } else {
902 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
903 GFP_KERNEL);
904 if (!ioctx->rw_ctxs)
905 return -ENOMEM;
906 }
907
908 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
909 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
910 u64 remote_addr = be64_to_cpu(db->va);
911 u32 size = be32_to_cpu(db->len);
912 u32 rkey = be32_to_cpu(db->key);
913
914 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
915 i < nbufs - 1);
916 if (ret)
917 goto unwind;
918
919 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
920 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
921 if (ret < 0) {
922 target_free_sgl(ctx->sg, ctx->nents);
923 goto unwind;
924 }
925
926 ioctx->n_rdma += ret;
927 ioctx->n_rw_ctx++;
928
929 if (prev) {
930 sg_unmark_end(&prev[prev_nents - 1]);
931 sg_chain(prev, prev_nents + 1, ctx->sg);
932 } else {
933 *sg = ctx->sg;
934 }
935
936 prev = ctx->sg;
937 prev_nents = ctx->nents;
938
939 *sg_cnt += ctx->nents;
940 }
941
942 return 0;
943
944 unwind:
945 while (--i >= 0) {
946 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
947
948 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
949 ctx->sg, ctx->nents, dir);
950 target_free_sgl(ctx->sg, ctx->nents);
951 }
952 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
953 kfree(ioctx->rw_ctxs);
954 return ret;
955 }
956
srpt_free_rw_ctxs(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)957 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
958 struct srpt_send_ioctx *ioctx)
959 {
960 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
961 int i;
962
963 for (i = 0; i < ioctx->n_rw_ctx; i++) {
964 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
965
966 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
967 ctx->sg, ctx->nents, dir);
968 target_free_sgl(ctx->sg, ctx->nents);
969 }
970
971 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
972 kfree(ioctx->rw_ctxs);
973 }
974
srpt_get_desc_buf(struct srp_cmd * srp_cmd)975 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
976 {
977 /*
978 * The pointer computations below will only be compiled correctly
979 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
980 * whether srp_cmd::add_data has been declared as a byte pointer.
981 */
982 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
983 !__same_type(srp_cmd->add_data[0], (u8)0));
984
985 /*
986 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
987 * CDB LENGTH' field are reserved and the size in bytes of this field
988 * is four times the value specified in bits 3..7. Hence the "& ~3".
989 */
990 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
991 }
992
993 /**
994 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
995 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
996 * @ioctx: I/O context that will be used for responding to the initiator.
997 * @srp_cmd: Pointer to the SRP_CMD request data.
998 * @dir: Pointer to the variable to which the transfer direction will be
999 * written.
1000 * @sg: [out] scatterlist for the parsed SRP_CMD.
1001 * @sg_cnt: [out] length of @sg.
1002 * @data_len: Pointer to the variable to which the total data length of all
1003 * descriptors in the SRP_CMD request will be written.
1004 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1005 * starts.
1006 *
1007 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1008 *
1009 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1010 * -ENOMEM when memory allocation fails and zero upon success.
1011 */
srpt_get_desc_tbl(struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,struct scatterlist ** sg,unsigned int * sg_cnt,u64 * data_len,u16 imm_data_offset)1012 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1013 struct srpt_send_ioctx *ioctx,
1014 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1015 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1016 u16 imm_data_offset)
1017 {
1018 BUG_ON(!dir);
1019 BUG_ON(!data_len);
1020
1021 /*
1022 * The lower four bits of the buffer format field contain the DATA-IN
1023 * buffer descriptor format, and the highest four bits contain the
1024 * DATA-OUT buffer descriptor format.
1025 */
1026 if (srp_cmd->buf_fmt & 0xf)
1027 /* DATA-IN: transfer data from target to initiator (read). */
1028 *dir = DMA_FROM_DEVICE;
1029 else if (srp_cmd->buf_fmt >> 4)
1030 /* DATA-OUT: transfer data from initiator to target (write). */
1031 *dir = DMA_TO_DEVICE;
1032 else
1033 *dir = DMA_NONE;
1034
1035 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1036 ioctx->cmd.data_direction = *dir;
1037
1038 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1039 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1040 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1041
1042 *data_len = be32_to_cpu(db->len);
1043 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1044 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1045 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1046 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1047 int nbufs = be32_to_cpu(idb->table_desc.len) /
1048 sizeof(struct srp_direct_buf);
1049
1050 if (nbufs >
1051 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1052 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1053 srp_cmd->data_out_desc_cnt,
1054 srp_cmd->data_in_desc_cnt,
1055 be32_to_cpu(idb->table_desc.len),
1056 sizeof(struct srp_direct_buf));
1057 return -EINVAL;
1058 }
1059
1060 *data_len = be32_to_cpu(idb->len);
1061 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1062 sg, sg_cnt);
1063 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1064 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1065 void *data = (void *)srp_cmd + imm_data_offset;
1066 uint32_t len = be32_to_cpu(imm_buf->len);
1067 uint32_t req_size = imm_data_offset + len;
1068
1069 if (req_size > srp_max_req_size) {
1070 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1071 imm_data_offset, len, srp_max_req_size);
1072 return -EINVAL;
1073 }
1074 if (recv_ioctx->byte_len < req_size) {
1075 pr_err("Received too few data - %d < %d\n",
1076 recv_ioctx->byte_len, req_size);
1077 return -EIO;
1078 }
1079 /*
1080 * The immediate data buffer descriptor must occur before the
1081 * immediate data itself.
1082 */
1083 if ((void *)(imm_buf + 1) > (void *)data) {
1084 pr_err("Received invalid write request\n");
1085 return -EINVAL;
1086 }
1087 *data_len = len;
1088 ioctx->recv_ioctx = recv_ioctx;
1089 if ((uintptr_t)data & 511) {
1090 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1091 return -EINVAL;
1092 }
1093 sg_init_one(&ioctx->imm_sg, data, len);
1094 *sg = &ioctx->imm_sg;
1095 *sg_cnt = 1;
1096 return 0;
1097 } else {
1098 *data_len = 0;
1099 return 0;
1100 }
1101 }
1102
1103 /**
1104 * srpt_init_ch_qp - initialize queue pair attributes
1105 * @ch: SRPT RDMA channel.
1106 * @qp: Queue pair pointer.
1107 *
1108 * Initialized the attributes of queue pair 'qp' by allowing local write,
1109 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1110 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)1111 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1112 {
1113 struct ib_qp_attr *attr;
1114 int ret;
1115
1116 WARN_ON_ONCE(ch->using_rdma_cm);
1117
1118 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1119 if (!attr)
1120 return -ENOMEM;
1121
1122 attr->qp_state = IB_QPS_INIT;
1123 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1124 attr->port_num = ch->sport->port;
1125
1126 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1127 ch->pkey, &attr->pkey_index);
1128 if (ret < 0)
1129 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1130 ch->pkey, ret);
1131
1132 ret = ib_modify_qp(qp, attr,
1133 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1134 IB_QP_PKEY_INDEX);
1135
1136 kfree(attr);
1137 return ret;
1138 }
1139
1140 /**
1141 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1142 * @ch: channel of the queue pair.
1143 * @qp: queue pair to change the state of.
1144 *
1145 * Returns zero upon success and a negative value upon failure.
1146 *
1147 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1148 * If this structure ever becomes larger, it might be necessary to allocate
1149 * it dynamically instead of on the stack.
1150 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)1151 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1152 {
1153 struct ib_qp_attr qp_attr;
1154 int attr_mask;
1155 int ret;
1156
1157 WARN_ON_ONCE(ch->using_rdma_cm);
1158
1159 qp_attr.qp_state = IB_QPS_RTR;
1160 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1161 if (ret)
1162 goto out;
1163
1164 qp_attr.max_dest_rd_atomic = 4;
1165
1166 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1167
1168 out:
1169 return ret;
1170 }
1171
1172 /**
1173 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1174 * @ch: channel of the queue pair.
1175 * @qp: queue pair to change the state of.
1176 *
1177 * Returns zero upon success and a negative value upon failure.
1178 *
1179 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1180 * If this structure ever becomes larger, it might be necessary to allocate
1181 * it dynamically instead of on the stack.
1182 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1183 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1184 {
1185 struct ib_qp_attr qp_attr;
1186 int attr_mask;
1187 int ret;
1188
1189 qp_attr.qp_state = IB_QPS_RTS;
1190 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1191 if (ret)
1192 goto out;
1193
1194 qp_attr.max_rd_atomic = 4;
1195
1196 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1197
1198 out:
1199 return ret;
1200 }
1201
1202 /**
1203 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1204 * @ch: SRPT RDMA channel.
1205 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1206 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1207 {
1208 struct ib_qp_attr qp_attr;
1209
1210 qp_attr.qp_state = IB_QPS_ERR;
1211 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1212 }
1213
1214 /**
1215 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1216 * @ch: SRPT RDMA channel.
1217 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1218 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1219 {
1220 struct srpt_send_ioctx *ioctx;
1221 int tag, cpu;
1222
1223 BUG_ON(!ch);
1224
1225 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1226 if (tag < 0)
1227 return NULL;
1228
1229 ioctx = ch->ioctx_ring[tag];
1230 BUG_ON(ioctx->ch != ch);
1231 ioctx->state = SRPT_STATE_NEW;
1232 WARN_ON_ONCE(ioctx->recv_ioctx);
1233 ioctx->n_rdma = 0;
1234 ioctx->n_rw_ctx = 0;
1235 ioctx->queue_status_only = false;
1236 /*
1237 * transport_init_se_cmd() does not initialize all fields, so do it
1238 * here.
1239 */
1240 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1241 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1242 ioctx->cmd.map_tag = tag;
1243 ioctx->cmd.map_cpu = cpu;
1244
1245 return ioctx;
1246 }
1247
1248 /**
1249 * srpt_abort_cmd - abort a SCSI command
1250 * @ioctx: I/O context associated with the SCSI command.
1251 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1252 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1253 {
1254 enum srpt_command_state state;
1255
1256 BUG_ON(!ioctx);
1257
1258 /*
1259 * If the command is in a state where the target core is waiting for
1260 * the ib_srpt driver, change the state to the next state.
1261 */
1262
1263 state = ioctx->state;
1264 switch (state) {
1265 case SRPT_STATE_NEED_DATA:
1266 ioctx->state = SRPT_STATE_DATA_IN;
1267 break;
1268 case SRPT_STATE_CMD_RSP_SENT:
1269 case SRPT_STATE_MGMT_RSP_SENT:
1270 ioctx->state = SRPT_STATE_DONE;
1271 break;
1272 default:
1273 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1274 __func__, state);
1275 break;
1276 }
1277
1278 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1279 ioctx->state, ioctx->cmd.tag);
1280
1281 switch (state) {
1282 case SRPT_STATE_NEW:
1283 case SRPT_STATE_DATA_IN:
1284 case SRPT_STATE_MGMT:
1285 case SRPT_STATE_DONE:
1286 /*
1287 * Do nothing - defer abort processing until
1288 * srpt_queue_response() is invoked.
1289 */
1290 break;
1291 case SRPT_STATE_NEED_DATA:
1292 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1293 transport_generic_request_failure(&ioctx->cmd,
1294 TCM_CHECK_CONDITION_ABORT_CMD);
1295 break;
1296 case SRPT_STATE_CMD_RSP_SENT:
1297 /*
1298 * SRP_RSP sending failed or the SRP_RSP send completion has
1299 * not been received in time.
1300 */
1301 transport_generic_free_cmd(&ioctx->cmd, 0);
1302 break;
1303 case SRPT_STATE_MGMT_RSP_SENT:
1304 transport_generic_free_cmd(&ioctx->cmd, 0);
1305 break;
1306 default:
1307 WARN(1, "Unexpected command state (%d)", state);
1308 break;
1309 }
1310
1311 return state;
1312 }
1313
1314 /**
1315 * srpt_rdma_read_done - RDMA read completion callback
1316 * @cq: Completion queue.
1317 * @wc: Work completion.
1318 *
1319 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1320 * the data that has been transferred via IB RDMA had to be postponed until the
1321 * check_stop_free() callback. None of this is necessary anymore and needs to
1322 * be cleaned up.
1323 */
srpt_rdma_read_done(struct ib_cq * cq,struct ib_wc * wc)1324 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1325 {
1326 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1327 struct srpt_send_ioctx *ioctx =
1328 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1329
1330 WARN_ON(ioctx->n_rdma <= 0);
1331 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1332 ioctx->n_rdma = 0;
1333
1334 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1335 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1336 ioctx, wc->status);
1337 srpt_abort_cmd(ioctx);
1338 return;
1339 }
1340
1341 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1342 SRPT_STATE_DATA_IN))
1343 target_execute_cmd(&ioctx->cmd);
1344 else
1345 pr_err("%s[%d]: wrong state = %d\n", __func__,
1346 __LINE__, ioctx->state);
1347 }
1348
1349 /**
1350 * srpt_build_cmd_rsp - build a SRP_RSP response
1351 * @ch: RDMA channel through which the request has been received.
1352 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1353 * be built in the buffer ioctx->buf points at and hence this function will
1354 * overwrite the request data.
1355 * @tag: tag of the request for which this response is being generated.
1356 * @status: value for the STATUS field of the SRP_RSP information unit.
1357 *
1358 * Returns the size in bytes of the SRP_RSP response.
1359 *
1360 * An SRP_RSP response contains a SCSI status or service response. See also
1361 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1362 * response. See also SPC-2 for more information about sense data.
1363 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1364 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1365 struct srpt_send_ioctx *ioctx, u64 tag,
1366 int status)
1367 {
1368 struct se_cmd *cmd = &ioctx->cmd;
1369 struct srp_rsp *srp_rsp;
1370 const u8 *sense_data;
1371 int sense_data_len, max_sense_len;
1372 u32 resid = cmd->residual_count;
1373
1374 /*
1375 * The lowest bit of all SAM-3 status codes is zero (see also
1376 * paragraph 5.3 in SAM-3).
1377 */
1378 WARN_ON(status & 1);
1379
1380 srp_rsp = ioctx->ioctx.buf;
1381 BUG_ON(!srp_rsp);
1382
1383 sense_data = ioctx->sense_data;
1384 sense_data_len = ioctx->cmd.scsi_sense_length;
1385 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1386
1387 memset(srp_rsp, 0, sizeof(*srp_rsp));
1388 srp_rsp->opcode = SRP_RSP;
1389 srp_rsp->req_lim_delta =
1390 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1391 srp_rsp->tag = tag;
1392 srp_rsp->status = status;
1393
1394 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1395 if (cmd->data_direction == DMA_TO_DEVICE) {
1396 /* residual data from an underflow write */
1397 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1398 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1399 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1400 /* residual data from an underflow read */
1401 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1402 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1403 }
1404 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1405 if (cmd->data_direction == DMA_TO_DEVICE) {
1406 /* residual data from an overflow write */
1407 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1408 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1409 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1410 /* residual data from an overflow read */
1411 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1412 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1413 }
1414 }
1415
1416 if (sense_data_len) {
1417 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1418 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1419 if (sense_data_len > max_sense_len) {
1420 pr_warn("truncated sense data from %d to %d bytes\n",
1421 sense_data_len, max_sense_len);
1422 sense_data_len = max_sense_len;
1423 }
1424
1425 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1426 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1427 memcpy(srp_rsp->data, sense_data, sense_data_len);
1428 }
1429
1430 return sizeof(*srp_rsp) + sense_data_len;
1431 }
1432
1433 /**
1434 * srpt_build_tskmgmt_rsp - build a task management response
1435 * @ch: RDMA channel through which the request has been received.
1436 * @ioctx: I/O context in which the SRP_RSP response will be built.
1437 * @rsp_code: RSP_CODE that will be stored in the response.
1438 * @tag: Tag of the request for which this response is being generated.
1439 *
1440 * Returns the size in bytes of the SRP_RSP response.
1441 *
1442 * An SRP_RSP response contains a SCSI status or service response. See also
1443 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1444 * response.
1445 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1446 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1447 struct srpt_send_ioctx *ioctx,
1448 u8 rsp_code, u64 tag)
1449 {
1450 struct srp_rsp *srp_rsp;
1451 int resp_data_len;
1452 int resp_len;
1453
1454 resp_data_len = 4;
1455 resp_len = sizeof(*srp_rsp) + resp_data_len;
1456
1457 srp_rsp = ioctx->ioctx.buf;
1458 BUG_ON(!srp_rsp);
1459 memset(srp_rsp, 0, sizeof(*srp_rsp));
1460
1461 srp_rsp->opcode = SRP_RSP;
1462 srp_rsp->req_lim_delta =
1463 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1464 srp_rsp->tag = tag;
1465
1466 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1467 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1468 srp_rsp->data[3] = rsp_code;
1469
1470 return resp_len;
1471 }
1472
srpt_check_stop_free(struct se_cmd * cmd)1473 static int srpt_check_stop_free(struct se_cmd *cmd)
1474 {
1475 struct srpt_send_ioctx *ioctx = container_of(cmd,
1476 struct srpt_send_ioctx, cmd);
1477
1478 return target_put_sess_cmd(&ioctx->cmd);
1479 }
1480
1481 /**
1482 * srpt_handle_cmd - process a SRP_CMD information unit
1483 * @ch: SRPT RDMA channel.
1484 * @recv_ioctx: Receive I/O context.
1485 * @send_ioctx: Send I/O context.
1486 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1487 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1488 struct srpt_recv_ioctx *recv_ioctx,
1489 struct srpt_send_ioctx *send_ioctx)
1490 {
1491 struct se_cmd *cmd;
1492 struct srp_cmd *srp_cmd;
1493 struct scatterlist *sg = NULL;
1494 unsigned sg_cnt = 0;
1495 u64 data_len;
1496 enum dma_data_direction dir;
1497 int rc;
1498
1499 BUG_ON(!send_ioctx);
1500
1501 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1502 cmd = &send_ioctx->cmd;
1503 cmd->tag = srp_cmd->tag;
1504
1505 switch (srp_cmd->task_attr) {
1506 case SRP_CMD_SIMPLE_Q:
1507 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1508 break;
1509 case SRP_CMD_ORDERED_Q:
1510 default:
1511 cmd->sam_task_attr = TCM_ORDERED_TAG;
1512 break;
1513 case SRP_CMD_HEAD_OF_Q:
1514 cmd->sam_task_attr = TCM_HEAD_TAG;
1515 break;
1516 case SRP_CMD_ACA:
1517 cmd->sam_task_attr = TCM_ACA_TAG;
1518 break;
1519 }
1520
1521 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1522 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1523 if (rc) {
1524 if (rc != -EAGAIN) {
1525 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1526 srp_cmd->tag);
1527 }
1528 goto busy;
1529 }
1530
1531 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1532 scsilun_to_int(&srp_cmd->lun), data_len,
1533 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1534 if (rc != 0) {
1535 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1536 srp_cmd->tag);
1537 goto busy;
1538 }
1539
1540 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1541 GFP_KERNEL))
1542 return;
1543
1544 target_submit(cmd);
1545 return;
1546
1547 busy:
1548 target_send_busy(cmd);
1549 }
1550
srp_tmr_to_tcm(int fn)1551 static int srp_tmr_to_tcm(int fn)
1552 {
1553 switch (fn) {
1554 case SRP_TSK_ABORT_TASK:
1555 return TMR_ABORT_TASK;
1556 case SRP_TSK_ABORT_TASK_SET:
1557 return TMR_ABORT_TASK_SET;
1558 case SRP_TSK_CLEAR_TASK_SET:
1559 return TMR_CLEAR_TASK_SET;
1560 case SRP_TSK_LUN_RESET:
1561 return TMR_LUN_RESET;
1562 case SRP_TSK_CLEAR_ACA:
1563 return TMR_CLEAR_ACA;
1564 default:
1565 return -1;
1566 }
1567 }
1568
1569 /**
1570 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1571 * @ch: SRPT RDMA channel.
1572 * @recv_ioctx: Receive I/O context.
1573 * @send_ioctx: Send I/O context.
1574 *
1575 * Returns 0 if and only if the request will be processed by the target core.
1576 *
1577 * For more information about SRP_TSK_MGMT information units, see also section
1578 * 6.7 in the SRP r16a document.
1579 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1580 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1581 struct srpt_recv_ioctx *recv_ioctx,
1582 struct srpt_send_ioctx *send_ioctx)
1583 {
1584 struct srp_tsk_mgmt *srp_tsk;
1585 struct se_cmd *cmd;
1586 struct se_session *sess = ch->sess;
1587 int tcm_tmr;
1588 int rc;
1589
1590 BUG_ON(!send_ioctx);
1591
1592 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1593 cmd = &send_ioctx->cmd;
1594
1595 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1596 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1597 ch->sess);
1598
1599 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1600 send_ioctx->cmd.tag = srp_tsk->tag;
1601 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1602 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1603 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1604 GFP_KERNEL, srp_tsk->task_tag,
1605 TARGET_SCF_ACK_KREF);
1606 if (rc != 0) {
1607 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1608 cmd->se_tfo->queue_tm_rsp(cmd);
1609 }
1610 return;
1611 }
1612
1613 /**
1614 * srpt_handle_new_iu - process a newly received information unit
1615 * @ch: RDMA channel through which the information unit has been received.
1616 * @recv_ioctx: Receive I/O context associated with the information unit.
1617 */
1618 static bool
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx)1619 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1620 {
1621 struct srpt_send_ioctx *send_ioctx = NULL;
1622 struct srp_cmd *srp_cmd;
1623 bool res = false;
1624 u8 opcode;
1625
1626 BUG_ON(!ch);
1627 BUG_ON(!recv_ioctx);
1628
1629 if (unlikely(ch->state == CH_CONNECTING))
1630 goto push;
1631
1632 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1633 recv_ioctx->ioctx.dma,
1634 recv_ioctx->ioctx.offset + srp_max_req_size,
1635 DMA_FROM_DEVICE);
1636
1637 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1638 opcode = srp_cmd->opcode;
1639 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1640 send_ioctx = srpt_get_send_ioctx(ch);
1641 if (unlikely(!send_ioctx))
1642 goto push;
1643 }
1644
1645 if (!list_empty(&recv_ioctx->wait_list)) {
1646 WARN_ON_ONCE(!ch->processing_wait_list);
1647 list_del_init(&recv_ioctx->wait_list);
1648 }
1649
1650 switch (opcode) {
1651 case SRP_CMD:
1652 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1653 break;
1654 case SRP_TSK_MGMT:
1655 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1656 break;
1657 case SRP_I_LOGOUT:
1658 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1659 break;
1660 case SRP_CRED_RSP:
1661 pr_debug("received SRP_CRED_RSP\n");
1662 break;
1663 case SRP_AER_RSP:
1664 pr_debug("received SRP_AER_RSP\n");
1665 break;
1666 case SRP_RSP:
1667 pr_err("Received SRP_RSP\n");
1668 break;
1669 default:
1670 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1671 break;
1672 }
1673
1674 if (!send_ioctx || !send_ioctx->recv_ioctx)
1675 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1676 res = true;
1677
1678 out:
1679 return res;
1680
1681 push:
1682 if (list_empty(&recv_ioctx->wait_list)) {
1683 WARN_ON_ONCE(ch->processing_wait_list);
1684 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1685 }
1686 goto out;
1687 }
1688
srpt_recv_done(struct ib_cq * cq,struct ib_wc * wc)1689 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1690 {
1691 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1692 struct srpt_recv_ioctx *ioctx =
1693 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1694
1695 if (wc->status == IB_WC_SUCCESS) {
1696 int req_lim;
1697
1698 req_lim = atomic_dec_return(&ch->req_lim);
1699 if (unlikely(req_lim < 0))
1700 pr_err("req_lim = %d < 0\n", req_lim);
1701 ioctx->byte_len = wc->byte_len;
1702 srpt_handle_new_iu(ch, ioctx);
1703 } else {
1704 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1705 ioctx, wc->status);
1706 }
1707 }
1708
1709 /*
1710 * This function must be called from the context in which RDMA completions are
1711 * processed because it accesses the wait list without protection against
1712 * access from other threads.
1713 */
srpt_process_wait_list(struct srpt_rdma_ch * ch)1714 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1715 {
1716 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1717
1718 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1719
1720 if (list_empty(&ch->cmd_wait_list))
1721 return;
1722
1723 WARN_ON_ONCE(ch->processing_wait_list);
1724 ch->processing_wait_list = true;
1725 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1726 wait_list) {
1727 if (!srpt_handle_new_iu(ch, recv_ioctx))
1728 break;
1729 }
1730 ch->processing_wait_list = false;
1731 }
1732
1733 /**
1734 * srpt_send_done - send completion callback
1735 * @cq: Completion queue.
1736 * @wc: Work completion.
1737 *
1738 * Note: Although this has not yet been observed during tests, at least in
1739 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1740 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1741 * value in each response is set to one, and it is possible that this response
1742 * makes the initiator send a new request before the send completion for that
1743 * response has been processed. This could e.g. happen if the call to
1744 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1745 * if IB retransmission causes generation of the send completion to be
1746 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1747 * are queued on cmd_wait_list. The code below processes these delayed
1748 * requests one at a time.
1749 */
srpt_send_done(struct ib_cq * cq,struct ib_wc * wc)1750 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1751 {
1752 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1753 struct srpt_send_ioctx *ioctx =
1754 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1755 enum srpt_command_state state;
1756
1757 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1758
1759 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1760 state != SRPT_STATE_MGMT_RSP_SENT);
1761
1762 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1763
1764 if (wc->status != IB_WC_SUCCESS)
1765 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1766 ioctx, wc->status);
1767
1768 if (state != SRPT_STATE_DONE) {
1769 transport_generic_free_cmd(&ioctx->cmd, 0);
1770 } else {
1771 pr_err("IB completion has been received too late for wr_id = %u.\n",
1772 ioctx->ioctx.index);
1773 }
1774
1775 srpt_process_wait_list(ch);
1776 }
1777
1778 /**
1779 * srpt_create_ch_ib - create receive and send completion queues
1780 * @ch: SRPT RDMA channel.
1781 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)1782 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1783 {
1784 struct ib_qp_init_attr *qp_init;
1785 struct srpt_port *sport = ch->sport;
1786 struct srpt_device *sdev = sport->sdev;
1787 const struct ib_device_attr *attrs = &sdev->device->attrs;
1788 int sq_size = sport->port_attrib.srp_sq_size;
1789 int i, ret;
1790
1791 WARN_ON(ch->rq_size < 1);
1792
1793 ret = -ENOMEM;
1794 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1795 if (!qp_init)
1796 goto out;
1797
1798 retry:
1799 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1800 IB_POLL_WORKQUEUE);
1801 if (IS_ERR(ch->cq)) {
1802 ret = PTR_ERR(ch->cq);
1803 pr_err("failed to create CQ cqe= %d ret= %d\n",
1804 ch->rq_size + sq_size, ret);
1805 goto out;
1806 }
1807 ch->cq_size = ch->rq_size + sq_size;
1808
1809 qp_init->qp_context = (void *)ch;
1810 qp_init->event_handler
1811 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1812 qp_init->send_cq = ch->cq;
1813 qp_init->recv_cq = ch->cq;
1814 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1815 qp_init->qp_type = IB_QPT_RC;
1816 /*
1817 * We divide up our send queue size into half SEND WRs to send the
1818 * completions, and half R/W contexts to actually do the RDMA
1819 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1820 * both both, as RDMA contexts will also post completions for the
1821 * RDMA READ case.
1822 */
1823 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1824 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1825 qp_init->cap.max_send_sge = attrs->max_send_sge;
1826 qp_init->cap.max_recv_sge = 1;
1827 qp_init->port_num = ch->sport->port;
1828 if (sdev->use_srq)
1829 qp_init->srq = sdev->srq;
1830 else
1831 qp_init->cap.max_recv_wr = ch->rq_size;
1832
1833 if (ch->using_rdma_cm) {
1834 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1835 ch->qp = ch->rdma_cm.cm_id->qp;
1836 } else {
1837 ch->qp = ib_create_qp(sdev->pd, qp_init);
1838 if (!IS_ERR(ch->qp)) {
1839 ret = srpt_init_ch_qp(ch, ch->qp);
1840 if (ret)
1841 ib_destroy_qp(ch->qp);
1842 } else {
1843 ret = PTR_ERR(ch->qp);
1844 }
1845 }
1846 if (ret) {
1847 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1848
1849 if (retry) {
1850 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1851 sq_size, ret);
1852 ib_cq_pool_put(ch->cq, ch->cq_size);
1853 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1854 goto retry;
1855 } else {
1856 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1857 sq_size, ret);
1858 goto err_destroy_cq;
1859 }
1860 }
1861
1862 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1863
1864 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1865 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1866 qp_init->cap.max_send_wr, ch);
1867
1868 if (!sdev->use_srq)
1869 for (i = 0; i < ch->rq_size; i++)
1870 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1871
1872 out:
1873 kfree(qp_init);
1874 return ret;
1875
1876 err_destroy_cq:
1877 ch->qp = NULL;
1878 ib_cq_pool_put(ch->cq, ch->cq_size);
1879 goto out;
1880 }
1881
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)1882 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1883 {
1884 ib_destroy_qp(ch->qp);
1885 ib_cq_pool_put(ch->cq, ch->cq_size);
1886 }
1887
1888 /**
1889 * srpt_close_ch - close a RDMA channel
1890 * @ch: SRPT RDMA channel.
1891 *
1892 * Make sure all resources associated with the channel will be deallocated at
1893 * an appropriate time.
1894 *
1895 * Returns true if and only if the channel state has been modified into
1896 * CH_DRAINING.
1897 */
srpt_close_ch(struct srpt_rdma_ch * ch)1898 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1899 {
1900 int ret;
1901
1902 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1903 pr_debug("%s: already closed\n", ch->sess_name);
1904 return false;
1905 }
1906
1907 kref_get(&ch->kref);
1908
1909 ret = srpt_ch_qp_err(ch);
1910 if (ret < 0)
1911 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1912 ch->sess_name, ch->qp->qp_num, ret);
1913
1914 ret = srpt_zerolength_write(ch);
1915 if (ret < 0) {
1916 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1917 ch->sess_name, ch->qp->qp_num, ret);
1918 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1919 schedule_work(&ch->release_work);
1920 else
1921 WARN_ON_ONCE(true);
1922 }
1923
1924 kref_put(&ch->kref, srpt_free_ch);
1925
1926 return true;
1927 }
1928
1929 /*
1930 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1931 * reached the connected state, close it. If a channel is in the connected
1932 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1933 * the responsibility of the caller to ensure that this function is not
1934 * invoked concurrently with the code that accepts a connection. This means
1935 * that this function must either be invoked from inside a CM callback
1936 * function or that it must be invoked with the srpt_port.mutex held.
1937 */
srpt_disconnect_ch(struct srpt_rdma_ch * ch)1938 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1939 {
1940 int ret;
1941
1942 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1943 return -ENOTCONN;
1944
1945 if (ch->using_rdma_cm) {
1946 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1947 } else {
1948 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1949 if (ret < 0)
1950 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1951 }
1952
1953 if (ret < 0 && srpt_close_ch(ch))
1954 ret = 0;
1955
1956 return ret;
1957 }
1958
1959 /* Send DREQ and wait for DREP. */
srpt_disconnect_ch_sync(struct srpt_rdma_ch * ch)1960 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1961 {
1962 DECLARE_COMPLETION_ONSTACK(closed);
1963 struct srpt_port *sport = ch->sport;
1964
1965 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1966 ch->state);
1967
1968 ch->closed = &closed;
1969
1970 mutex_lock(&sport->mutex);
1971 srpt_disconnect_ch(ch);
1972 mutex_unlock(&sport->mutex);
1973
1974 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1975 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1976 ch->sess_name, ch->qp->qp_num, ch->state);
1977
1978 }
1979
__srpt_close_all_ch(struct srpt_port * sport)1980 static void __srpt_close_all_ch(struct srpt_port *sport)
1981 {
1982 struct srpt_nexus *nexus;
1983 struct srpt_rdma_ch *ch;
1984
1985 lockdep_assert_held(&sport->mutex);
1986
1987 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1988 list_for_each_entry(ch, &nexus->ch_list, list) {
1989 if (srpt_disconnect_ch(ch) >= 0)
1990 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
1991 ch->sess_name, ch->qp->qp_num,
1992 dev_name(&sport->sdev->device->dev),
1993 sport->port);
1994 srpt_close_ch(ch);
1995 }
1996 }
1997 }
1998
1999 /*
2000 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2001 * it does not yet exist.
2002 */
srpt_get_nexus(struct srpt_port * sport,const u8 i_port_id[16],const u8 t_port_id[16])2003 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2004 const u8 i_port_id[16],
2005 const u8 t_port_id[16])
2006 {
2007 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2008
2009 for (;;) {
2010 mutex_lock(&sport->mutex);
2011 list_for_each_entry(n, &sport->nexus_list, entry) {
2012 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2013 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2014 nexus = n;
2015 break;
2016 }
2017 }
2018 if (!nexus && tmp_nexus) {
2019 list_add_tail_rcu(&tmp_nexus->entry,
2020 &sport->nexus_list);
2021 swap(nexus, tmp_nexus);
2022 }
2023 mutex_unlock(&sport->mutex);
2024
2025 if (nexus)
2026 break;
2027 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2028 if (!tmp_nexus) {
2029 nexus = ERR_PTR(-ENOMEM);
2030 break;
2031 }
2032 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2033 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2034 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2035 }
2036
2037 kfree(tmp_nexus);
2038
2039 return nexus;
2040 }
2041
srpt_set_enabled(struct srpt_port * sport,bool enabled)2042 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2043 __must_hold(&sport->mutex)
2044 {
2045 lockdep_assert_held(&sport->mutex);
2046
2047 if (sport->enabled == enabled)
2048 return;
2049 sport->enabled = enabled;
2050 if (!enabled)
2051 __srpt_close_all_ch(sport);
2052 }
2053
srpt_drop_sport_ref(struct srpt_port * sport)2054 static void srpt_drop_sport_ref(struct srpt_port *sport)
2055 {
2056 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2057 complete(sport->freed_channels);
2058 }
2059
srpt_free_ch(struct kref * kref)2060 static void srpt_free_ch(struct kref *kref)
2061 {
2062 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2063
2064 srpt_drop_sport_ref(ch->sport);
2065 kfree_rcu(ch, rcu);
2066 }
2067
2068 /*
2069 * Shut down the SCSI target session, tell the connection manager to
2070 * disconnect the associated RDMA channel, transition the QP to the error
2071 * state and remove the channel from the channel list. This function is
2072 * typically called from inside srpt_zerolength_write_done(). Concurrent
2073 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2074 * as long as the channel is on sport->nexus_list.
2075 */
srpt_release_channel_work(struct work_struct * w)2076 static void srpt_release_channel_work(struct work_struct *w)
2077 {
2078 struct srpt_rdma_ch *ch;
2079 struct srpt_device *sdev;
2080 struct srpt_port *sport;
2081 struct se_session *se_sess;
2082
2083 ch = container_of(w, struct srpt_rdma_ch, release_work);
2084 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2085
2086 sdev = ch->sport->sdev;
2087 BUG_ON(!sdev);
2088
2089 se_sess = ch->sess;
2090 BUG_ON(!se_sess);
2091
2092 target_stop_session(se_sess);
2093 target_wait_for_sess_cmds(se_sess);
2094
2095 target_remove_session(se_sess);
2096 ch->sess = NULL;
2097
2098 if (ch->using_rdma_cm)
2099 rdma_destroy_id(ch->rdma_cm.cm_id);
2100 else
2101 ib_destroy_cm_id(ch->ib_cm.cm_id);
2102
2103 sport = ch->sport;
2104 mutex_lock(&sport->mutex);
2105 list_del_rcu(&ch->list);
2106 mutex_unlock(&sport->mutex);
2107
2108 if (ch->closed)
2109 complete(ch->closed);
2110
2111 srpt_destroy_ch_ib(ch);
2112
2113 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2114 ch->sport->sdev, ch->rq_size,
2115 ch->rsp_buf_cache, DMA_TO_DEVICE);
2116
2117 kmem_cache_destroy(ch->rsp_buf_cache);
2118
2119 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2120 sdev, ch->rq_size,
2121 ch->req_buf_cache, DMA_FROM_DEVICE);
2122
2123 kmem_cache_destroy(ch->req_buf_cache);
2124
2125 kref_put(&ch->kref, srpt_free_ch);
2126 }
2127
2128 /**
2129 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2130 * @sdev: HCA through which the login request was received.
2131 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2132 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2133 * @port_num: Port through which the REQ message was received.
2134 * @pkey: P_Key of the incoming connection.
2135 * @req: SRP login request.
2136 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2137 * the login request.
2138 *
2139 * Ownership of the cm_id is transferred to the target session if this
2140 * function returns zero. Otherwise the caller remains the owner of cm_id.
2141 */
srpt_cm_req_recv(struct srpt_device * const sdev,struct ib_cm_id * ib_cm_id,struct rdma_cm_id * rdma_cm_id,u8 port_num,__be16 pkey,const struct srp_login_req * req,const char * src_addr)2142 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2143 struct ib_cm_id *ib_cm_id,
2144 struct rdma_cm_id *rdma_cm_id,
2145 u8 port_num, __be16 pkey,
2146 const struct srp_login_req *req,
2147 const char *src_addr)
2148 {
2149 struct srpt_port *sport = &sdev->port[port_num - 1];
2150 struct srpt_nexus *nexus;
2151 struct srp_login_rsp *rsp = NULL;
2152 struct srp_login_rej *rej = NULL;
2153 union {
2154 struct rdma_conn_param rdma_cm;
2155 struct ib_cm_rep_param ib_cm;
2156 } *rep_param = NULL;
2157 struct srpt_rdma_ch *ch = NULL;
2158 char i_port_id[36];
2159 u32 it_iu_len;
2160 int i, tag_num, tag_size, ret;
2161 struct srpt_tpg *stpg;
2162
2163 WARN_ON_ONCE(irqs_disabled());
2164
2165 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2166
2167 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2168 req->initiator_port_id, req->target_port_id, it_iu_len,
2169 port_num, &sport->gid, be16_to_cpu(pkey));
2170
2171 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2172 req->target_port_id);
2173 if (IS_ERR(nexus)) {
2174 ret = PTR_ERR(nexus);
2175 goto out;
2176 }
2177
2178 ret = -ENOMEM;
2179 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2180 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2181 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2182 if (!rsp || !rej || !rep_param)
2183 goto out;
2184
2185 ret = -EINVAL;
2186 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2187 rej->reason = cpu_to_be32(
2188 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2189 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2190 it_iu_len, 64, srp_max_req_size);
2191 goto reject;
2192 }
2193
2194 if (!sport->enabled) {
2195 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2196 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2197 dev_name(&sport->sdev->device->dev), port_num);
2198 goto reject;
2199 }
2200
2201 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2202 || *(__be64 *)(req->target_port_id + 8) !=
2203 cpu_to_be64(srpt_service_guid)) {
2204 rej->reason = cpu_to_be32(
2205 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2206 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2207 goto reject;
2208 }
2209
2210 ret = -ENOMEM;
2211 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2212 if (!ch) {
2213 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2214 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2215 goto reject;
2216 }
2217
2218 kref_init(&ch->kref);
2219 ch->pkey = be16_to_cpu(pkey);
2220 ch->nexus = nexus;
2221 ch->zw_cqe.done = srpt_zerolength_write_done;
2222 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2223 ch->sport = sport;
2224 if (rdma_cm_id) {
2225 ch->using_rdma_cm = true;
2226 ch->rdma_cm.cm_id = rdma_cm_id;
2227 rdma_cm_id->context = ch;
2228 } else {
2229 ch->ib_cm.cm_id = ib_cm_id;
2230 ib_cm_id->context = ch;
2231 }
2232 /*
2233 * ch->rq_size should be at least as large as the initiator queue
2234 * depth to avoid that the initiator driver has to report QUEUE_FULL
2235 * to the SCSI mid-layer.
2236 */
2237 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2238 spin_lock_init(&ch->spinlock);
2239 ch->state = CH_CONNECTING;
2240 INIT_LIST_HEAD(&ch->cmd_wait_list);
2241 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2242
2243 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2244 512, 0, NULL);
2245 if (!ch->rsp_buf_cache)
2246 goto free_ch;
2247
2248 ch->ioctx_ring = (struct srpt_send_ioctx **)
2249 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2250 sizeof(*ch->ioctx_ring[0]),
2251 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2252 if (!ch->ioctx_ring) {
2253 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2254 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2255 goto free_rsp_cache;
2256 }
2257
2258 for (i = 0; i < ch->rq_size; i++)
2259 ch->ioctx_ring[i]->ch = ch;
2260 if (!sdev->use_srq) {
2261 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2262 be16_to_cpu(req->imm_data_offset) : 0;
2263 u16 alignment_offset;
2264 u32 req_sz;
2265
2266 if (req->req_flags & SRP_IMMED_REQUESTED)
2267 pr_debug("imm_data_offset = %d\n",
2268 be16_to_cpu(req->imm_data_offset));
2269 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2270 ch->imm_data_offset = imm_data_offset;
2271 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2272 } else {
2273 ch->imm_data_offset = 0;
2274 }
2275 alignment_offset = round_up(imm_data_offset, 512) -
2276 imm_data_offset;
2277 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2278 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2279 512, 0, NULL);
2280 if (!ch->req_buf_cache)
2281 goto free_rsp_ring;
2282
2283 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2284 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2285 sizeof(*ch->ioctx_recv_ring[0]),
2286 ch->req_buf_cache,
2287 alignment_offset,
2288 DMA_FROM_DEVICE);
2289 if (!ch->ioctx_recv_ring) {
2290 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2291 rej->reason =
2292 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2293 goto free_recv_cache;
2294 }
2295 for (i = 0; i < ch->rq_size; i++)
2296 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2297 }
2298
2299 ret = srpt_create_ch_ib(ch);
2300 if (ret) {
2301 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2302 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2303 goto free_recv_ring;
2304 }
2305
2306 strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2307 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2308 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2309 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2310
2311 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2312 i_port_id);
2313
2314 tag_num = ch->rq_size;
2315 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2316
2317 if (sport->guid_id) {
2318 mutex_lock(&sport->guid_id->mutex);
2319 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2320 if (!IS_ERR_OR_NULL(ch->sess))
2321 break;
2322 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2323 tag_size, TARGET_PROT_NORMAL,
2324 ch->sess_name, ch, NULL);
2325 }
2326 mutex_unlock(&sport->guid_id->mutex);
2327 }
2328
2329 if (sport->gid_id) {
2330 mutex_lock(&sport->gid_id->mutex);
2331 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2332 if (!IS_ERR_OR_NULL(ch->sess))
2333 break;
2334 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2335 tag_size, TARGET_PROT_NORMAL, i_port_id,
2336 ch, NULL);
2337 if (!IS_ERR_OR_NULL(ch->sess))
2338 break;
2339 /* Retry without leading "0x" */
2340 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2341 tag_size, TARGET_PROT_NORMAL,
2342 i_port_id + 2, ch, NULL);
2343 }
2344 mutex_unlock(&sport->gid_id->mutex);
2345 }
2346
2347 if (IS_ERR_OR_NULL(ch->sess)) {
2348 WARN_ON_ONCE(ch->sess == NULL);
2349 ret = PTR_ERR(ch->sess);
2350 ch->sess = NULL;
2351 pr_info("Rejected login for initiator %s: ret = %d.\n",
2352 ch->sess_name, ret);
2353 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2354 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2355 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2356 goto destroy_ib;
2357 }
2358
2359 /*
2360 * Once a session has been created destruction of srpt_rdma_ch objects
2361 * will decrement sport->refcount. Hence increment sport->refcount now.
2362 */
2363 atomic_inc(&sport->refcount);
2364
2365 mutex_lock(&sport->mutex);
2366
2367 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2368 struct srpt_rdma_ch *ch2;
2369
2370 list_for_each_entry(ch2, &nexus->ch_list, list) {
2371 if (srpt_disconnect_ch(ch2) < 0)
2372 continue;
2373 pr_info("Relogin - closed existing channel %s\n",
2374 ch2->sess_name);
2375 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2376 }
2377 } else {
2378 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2379 }
2380
2381 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2382
2383 if (!sport->enabled) {
2384 rej->reason = cpu_to_be32(
2385 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2386 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2387 dev_name(&sdev->device->dev), port_num);
2388 mutex_unlock(&sport->mutex);
2389 ret = -EINVAL;
2390 goto reject;
2391 }
2392
2393 mutex_unlock(&sport->mutex);
2394
2395 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2396 if (ret) {
2397 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2398 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2399 ret);
2400 goto reject;
2401 }
2402
2403 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2404 ch->sess_name, ch);
2405
2406 /* create srp_login_response */
2407 rsp->opcode = SRP_LOGIN_RSP;
2408 rsp->tag = req->tag;
2409 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2410 rsp->max_ti_iu_len = req->req_it_iu_len;
2411 ch->max_ti_iu_len = it_iu_len;
2412 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2413 SRP_BUF_FORMAT_INDIRECT);
2414 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2415 atomic_set(&ch->req_lim, ch->rq_size);
2416 atomic_set(&ch->req_lim_delta, 0);
2417
2418 /* create cm reply */
2419 if (ch->using_rdma_cm) {
2420 rep_param->rdma_cm.private_data = (void *)rsp;
2421 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2422 rep_param->rdma_cm.rnr_retry_count = 7;
2423 rep_param->rdma_cm.flow_control = 1;
2424 rep_param->rdma_cm.responder_resources = 4;
2425 rep_param->rdma_cm.initiator_depth = 4;
2426 } else {
2427 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2428 rep_param->ib_cm.private_data = (void *)rsp;
2429 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2430 rep_param->ib_cm.rnr_retry_count = 7;
2431 rep_param->ib_cm.flow_control = 1;
2432 rep_param->ib_cm.failover_accepted = 0;
2433 rep_param->ib_cm.srq = 1;
2434 rep_param->ib_cm.responder_resources = 4;
2435 rep_param->ib_cm.initiator_depth = 4;
2436 }
2437
2438 /*
2439 * Hold the sport mutex while accepting a connection to avoid that
2440 * srpt_disconnect_ch() is invoked concurrently with this code.
2441 */
2442 mutex_lock(&sport->mutex);
2443 if (sport->enabled && ch->state == CH_CONNECTING) {
2444 if (ch->using_rdma_cm)
2445 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2446 else
2447 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2448 } else {
2449 ret = -EINVAL;
2450 }
2451 mutex_unlock(&sport->mutex);
2452
2453 switch (ret) {
2454 case 0:
2455 break;
2456 case -EINVAL:
2457 goto reject;
2458 default:
2459 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2460 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2461 ret);
2462 goto reject;
2463 }
2464
2465 goto out;
2466
2467 destroy_ib:
2468 srpt_destroy_ch_ib(ch);
2469
2470 free_recv_ring:
2471 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2472 ch->sport->sdev, ch->rq_size,
2473 ch->req_buf_cache, DMA_FROM_DEVICE);
2474
2475 free_recv_cache:
2476 kmem_cache_destroy(ch->req_buf_cache);
2477
2478 free_rsp_ring:
2479 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2480 ch->sport->sdev, ch->rq_size,
2481 ch->rsp_buf_cache, DMA_TO_DEVICE);
2482
2483 free_rsp_cache:
2484 kmem_cache_destroy(ch->rsp_buf_cache);
2485
2486 free_ch:
2487 if (rdma_cm_id)
2488 rdma_cm_id->context = NULL;
2489 else
2490 ib_cm_id->context = NULL;
2491 kfree(ch);
2492 ch = NULL;
2493
2494 WARN_ON_ONCE(ret == 0);
2495
2496 reject:
2497 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2498 rej->opcode = SRP_LOGIN_REJ;
2499 rej->tag = req->tag;
2500 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2501 SRP_BUF_FORMAT_INDIRECT);
2502
2503 if (rdma_cm_id)
2504 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2505 IB_CM_REJ_CONSUMER_DEFINED);
2506 else
2507 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2508 rej, sizeof(*rej));
2509
2510 if (ch && ch->sess) {
2511 srpt_close_ch(ch);
2512 /*
2513 * Tell the caller not to free cm_id since
2514 * srpt_release_channel_work() will do that.
2515 */
2516 ret = 0;
2517 }
2518
2519 out:
2520 kfree(rep_param);
2521 kfree(rsp);
2522 kfree(rej);
2523
2524 return ret;
2525 }
2526
srpt_ib_cm_req_recv(struct ib_cm_id * cm_id,const struct ib_cm_req_event_param * param,void * private_data)2527 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2528 const struct ib_cm_req_event_param *param,
2529 void *private_data)
2530 {
2531 char sguid[40];
2532
2533 srpt_format_guid(sguid, sizeof(sguid),
2534 ¶m->primary_path->dgid.global.interface_id);
2535
2536 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2537 param->primary_path->pkey,
2538 private_data, sguid);
2539 }
2540
srpt_rdma_cm_req_recv(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2541 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2542 struct rdma_cm_event *event)
2543 {
2544 struct srpt_device *sdev;
2545 struct srp_login_req req;
2546 const struct srp_login_req_rdma *req_rdma;
2547 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2548 char src_addr[40];
2549
2550 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2551 if (!sdev)
2552 return -ECONNREFUSED;
2553
2554 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2555 return -EINVAL;
2556
2557 /* Transform srp_login_req_rdma into srp_login_req. */
2558 req_rdma = event->param.conn.private_data;
2559 memset(&req, 0, sizeof(req));
2560 req.opcode = req_rdma->opcode;
2561 req.tag = req_rdma->tag;
2562 req.req_it_iu_len = req_rdma->req_it_iu_len;
2563 req.req_buf_fmt = req_rdma->req_buf_fmt;
2564 req.req_flags = req_rdma->req_flags;
2565 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2566 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2567 req.imm_data_offset = req_rdma->imm_data_offset;
2568
2569 snprintf(src_addr, sizeof(src_addr), "%pIS",
2570 &cm_id->route.addr.src_addr);
2571
2572 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2573 path_rec ? path_rec->pkey : 0, &req, src_addr);
2574 }
2575
srpt_cm_rej_recv(struct srpt_rdma_ch * ch,enum ib_cm_rej_reason reason,const u8 * private_data,u8 private_data_len)2576 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2577 enum ib_cm_rej_reason reason,
2578 const u8 *private_data,
2579 u8 private_data_len)
2580 {
2581 char *priv = NULL;
2582 int i;
2583
2584 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2585 GFP_KERNEL))) {
2586 for (i = 0; i < private_data_len; i++)
2587 sprintf(priv + 3 * i, " %02x", private_data[i]);
2588 }
2589 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2590 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2591 "; private data" : "", priv ? priv : " (?)");
2592 kfree(priv);
2593 }
2594
2595 /**
2596 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2597 * @ch: SRPT RDMA channel.
2598 *
2599 * An RTU (ready to use) message indicates that the connection has been
2600 * established and that the recipient may begin transmitting.
2601 */
srpt_cm_rtu_recv(struct srpt_rdma_ch * ch)2602 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2603 {
2604 int ret;
2605
2606 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2607 if (ret < 0) {
2608 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2609 ch->qp->qp_num);
2610 srpt_close_ch(ch);
2611 return;
2612 }
2613
2614 /*
2615 * Note: calling srpt_close_ch() if the transition to the LIVE state
2616 * fails is not necessary since that means that that function has
2617 * already been invoked from another thread.
2618 */
2619 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2620 pr_err("%s-%d: channel transition to LIVE state failed\n",
2621 ch->sess_name, ch->qp->qp_num);
2622 return;
2623 }
2624
2625 /* Trigger wait list processing. */
2626 ret = srpt_zerolength_write(ch);
2627 WARN_ONCE(ret < 0, "%d\n", ret);
2628 }
2629
2630 /**
2631 * srpt_cm_handler - IB connection manager callback function
2632 * @cm_id: IB/CM connection identifier.
2633 * @event: IB/CM event.
2634 *
2635 * A non-zero return value will cause the caller destroy the CM ID.
2636 *
2637 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2638 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2639 * a non-zero value in any other case will trigger a race with the
2640 * ib_destroy_cm_id() call in srpt_release_channel().
2641 */
srpt_cm_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event)2642 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2643 const struct ib_cm_event *event)
2644 {
2645 struct srpt_rdma_ch *ch = cm_id->context;
2646 int ret;
2647
2648 ret = 0;
2649 switch (event->event) {
2650 case IB_CM_REQ_RECEIVED:
2651 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2652 event->private_data);
2653 break;
2654 case IB_CM_REJ_RECEIVED:
2655 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2656 event->private_data,
2657 IB_CM_REJ_PRIVATE_DATA_SIZE);
2658 break;
2659 case IB_CM_RTU_RECEIVED:
2660 case IB_CM_USER_ESTABLISHED:
2661 srpt_cm_rtu_recv(ch);
2662 break;
2663 case IB_CM_DREQ_RECEIVED:
2664 srpt_disconnect_ch(ch);
2665 break;
2666 case IB_CM_DREP_RECEIVED:
2667 pr_info("Received CM DREP message for ch %s-%d.\n",
2668 ch->sess_name, ch->qp->qp_num);
2669 srpt_close_ch(ch);
2670 break;
2671 case IB_CM_TIMEWAIT_EXIT:
2672 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2673 ch->sess_name, ch->qp->qp_num);
2674 srpt_close_ch(ch);
2675 break;
2676 case IB_CM_REP_ERROR:
2677 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2678 ch->qp->qp_num);
2679 break;
2680 case IB_CM_DREQ_ERROR:
2681 pr_info("Received CM DREQ ERROR event.\n");
2682 break;
2683 case IB_CM_MRA_RECEIVED:
2684 pr_info("Received CM MRA event\n");
2685 break;
2686 default:
2687 pr_err("received unrecognized CM event %d\n", event->event);
2688 break;
2689 }
2690
2691 return ret;
2692 }
2693
srpt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2694 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2695 struct rdma_cm_event *event)
2696 {
2697 struct srpt_rdma_ch *ch = cm_id->context;
2698 int ret = 0;
2699
2700 switch (event->event) {
2701 case RDMA_CM_EVENT_CONNECT_REQUEST:
2702 ret = srpt_rdma_cm_req_recv(cm_id, event);
2703 break;
2704 case RDMA_CM_EVENT_REJECTED:
2705 srpt_cm_rej_recv(ch, event->status,
2706 event->param.conn.private_data,
2707 event->param.conn.private_data_len);
2708 break;
2709 case RDMA_CM_EVENT_ESTABLISHED:
2710 srpt_cm_rtu_recv(ch);
2711 break;
2712 case RDMA_CM_EVENT_DISCONNECTED:
2713 if (ch->state < CH_DISCONNECTING)
2714 srpt_disconnect_ch(ch);
2715 else
2716 srpt_close_ch(ch);
2717 break;
2718 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2719 srpt_close_ch(ch);
2720 break;
2721 case RDMA_CM_EVENT_UNREACHABLE:
2722 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2723 ch->qp->qp_num);
2724 break;
2725 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2726 case RDMA_CM_EVENT_ADDR_CHANGE:
2727 break;
2728 default:
2729 pr_err("received unrecognized RDMA CM event %d\n",
2730 event->event);
2731 break;
2732 }
2733
2734 return ret;
2735 }
2736
2737 /*
2738 * srpt_write_pending - Start data transfer from initiator to target (write).
2739 */
srpt_write_pending(struct se_cmd * se_cmd)2740 static int srpt_write_pending(struct se_cmd *se_cmd)
2741 {
2742 struct srpt_send_ioctx *ioctx =
2743 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2744 struct srpt_rdma_ch *ch = ioctx->ch;
2745 struct ib_send_wr *first_wr = NULL;
2746 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2747 enum srpt_command_state new_state;
2748 int ret, i;
2749
2750 if (ioctx->recv_ioctx) {
2751 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2752 target_execute_cmd(&ioctx->cmd);
2753 return 0;
2754 }
2755
2756 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2757 WARN_ON(new_state == SRPT_STATE_DONE);
2758
2759 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2760 pr_warn("%s: IB send queue full (needed %d)\n",
2761 __func__, ioctx->n_rdma);
2762 ret = -ENOMEM;
2763 goto out_undo;
2764 }
2765
2766 cqe->done = srpt_rdma_read_done;
2767 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2768 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2769
2770 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2771 cqe, first_wr);
2772 cqe = NULL;
2773 }
2774
2775 ret = ib_post_send(ch->qp, first_wr, NULL);
2776 if (ret) {
2777 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2778 __func__, ret, ioctx->n_rdma,
2779 atomic_read(&ch->sq_wr_avail));
2780 goto out_undo;
2781 }
2782
2783 return 0;
2784 out_undo:
2785 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2786 return ret;
2787 }
2788
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2789 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2790 {
2791 switch (tcm_mgmt_status) {
2792 case TMR_FUNCTION_COMPLETE:
2793 return SRP_TSK_MGMT_SUCCESS;
2794 case TMR_FUNCTION_REJECTED:
2795 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2796 }
2797 return SRP_TSK_MGMT_FAILED;
2798 }
2799
2800 /**
2801 * srpt_queue_response - transmit the response to a SCSI command
2802 * @cmd: SCSI target command.
2803 *
2804 * Callback function called by the TCM core. Must not block since it can be
2805 * invoked on the context of the IB completion handler.
2806 */
srpt_queue_response(struct se_cmd * cmd)2807 static void srpt_queue_response(struct se_cmd *cmd)
2808 {
2809 struct srpt_send_ioctx *ioctx =
2810 container_of(cmd, struct srpt_send_ioctx, cmd);
2811 struct srpt_rdma_ch *ch = ioctx->ch;
2812 struct srpt_device *sdev = ch->sport->sdev;
2813 struct ib_send_wr send_wr, *first_wr = &send_wr;
2814 struct ib_sge sge;
2815 enum srpt_command_state state;
2816 int resp_len, ret, i;
2817 u8 srp_tm_status;
2818
2819 state = ioctx->state;
2820 switch (state) {
2821 case SRPT_STATE_NEW:
2822 case SRPT_STATE_DATA_IN:
2823 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2824 break;
2825 case SRPT_STATE_MGMT:
2826 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2827 break;
2828 default:
2829 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2830 ch, ioctx->ioctx.index, ioctx->state);
2831 break;
2832 }
2833
2834 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2835 return;
2836
2837 /* For read commands, transfer the data to the initiator. */
2838 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2839 ioctx->cmd.data_length &&
2840 !ioctx->queue_status_only) {
2841 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2842 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2843
2844 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2845 ch->sport->port, NULL, first_wr);
2846 }
2847 }
2848
2849 if (state != SRPT_STATE_MGMT)
2850 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2851 cmd->scsi_status);
2852 else {
2853 srp_tm_status
2854 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2855 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2856 ioctx->cmd.tag);
2857 }
2858
2859 atomic_inc(&ch->req_lim);
2860
2861 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2862 &ch->sq_wr_avail) < 0)) {
2863 pr_warn("%s: IB send queue full (needed %d)\n",
2864 __func__, ioctx->n_rdma);
2865 goto out;
2866 }
2867
2868 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2869 DMA_TO_DEVICE);
2870
2871 sge.addr = ioctx->ioctx.dma;
2872 sge.length = resp_len;
2873 sge.lkey = sdev->lkey;
2874
2875 ioctx->ioctx.cqe.done = srpt_send_done;
2876 send_wr.next = NULL;
2877 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2878 send_wr.sg_list = &sge;
2879 send_wr.num_sge = 1;
2880 send_wr.opcode = IB_WR_SEND;
2881 send_wr.send_flags = IB_SEND_SIGNALED;
2882
2883 ret = ib_post_send(ch->qp, first_wr, NULL);
2884 if (ret < 0) {
2885 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2886 __func__, ioctx->cmd.tag, ret);
2887 goto out;
2888 }
2889
2890 return;
2891
2892 out:
2893 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2894 atomic_dec(&ch->req_lim);
2895 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2896 target_put_sess_cmd(&ioctx->cmd);
2897 }
2898
srpt_queue_data_in(struct se_cmd * cmd)2899 static int srpt_queue_data_in(struct se_cmd *cmd)
2900 {
2901 srpt_queue_response(cmd);
2902 return 0;
2903 }
2904
srpt_queue_tm_rsp(struct se_cmd * cmd)2905 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2906 {
2907 srpt_queue_response(cmd);
2908 }
2909
2910 /*
2911 * This function is called for aborted commands if no response is sent to the
2912 * initiator. Make sure that the credits freed by aborting a command are
2913 * returned to the initiator the next time a response is sent by incrementing
2914 * ch->req_lim_delta.
2915 */
srpt_aborted_task(struct se_cmd * cmd)2916 static void srpt_aborted_task(struct se_cmd *cmd)
2917 {
2918 struct srpt_send_ioctx *ioctx = container_of(cmd,
2919 struct srpt_send_ioctx, cmd);
2920 struct srpt_rdma_ch *ch = ioctx->ch;
2921
2922 atomic_inc(&ch->req_lim_delta);
2923 }
2924
srpt_queue_status(struct se_cmd * cmd)2925 static int srpt_queue_status(struct se_cmd *cmd)
2926 {
2927 struct srpt_send_ioctx *ioctx;
2928
2929 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2930 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2931 if (cmd->se_cmd_flags &
2932 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2933 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2934 ioctx->queue_status_only = true;
2935 srpt_queue_response(cmd);
2936 return 0;
2937 }
2938
srpt_refresh_port_work(struct work_struct * work)2939 static void srpt_refresh_port_work(struct work_struct *work)
2940 {
2941 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2942
2943 srpt_refresh_port(sport);
2944 }
2945
2946 /**
2947 * srpt_release_sport - disable login and wait for associated channels
2948 * @sport: SRPT HCA port.
2949 */
srpt_release_sport(struct srpt_port * sport)2950 static int srpt_release_sport(struct srpt_port *sport)
2951 {
2952 DECLARE_COMPLETION_ONSTACK(c);
2953 struct srpt_nexus *nexus, *next_n;
2954 struct srpt_rdma_ch *ch;
2955
2956 WARN_ON_ONCE(irqs_disabled());
2957
2958 sport->freed_channels = &c;
2959
2960 mutex_lock(&sport->mutex);
2961 srpt_set_enabled(sport, false);
2962 mutex_unlock(&sport->mutex);
2963
2964 while (atomic_read(&sport->refcount) > 0 &&
2965 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2966 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2967 dev_name(&sport->sdev->device->dev), sport->port,
2968 atomic_read(&sport->refcount));
2969 rcu_read_lock();
2970 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2971 list_for_each_entry(ch, &nexus->ch_list, list) {
2972 pr_info("%s-%d: state %s\n",
2973 ch->sess_name, ch->qp->qp_num,
2974 get_ch_state_name(ch->state));
2975 }
2976 }
2977 rcu_read_unlock();
2978 }
2979
2980 mutex_lock(&sport->mutex);
2981 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2982 list_del(&nexus->entry);
2983 kfree_rcu(nexus, rcu);
2984 }
2985 mutex_unlock(&sport->mutex);
2986
2987 return 0;
2988 }
2989
2990 struct port_and_port_id {
2991 struct srpt_port *sport;
2992 struct srpt_port_id **port_id;
2993 };
2994
__srpt_lookup_port(const char * name)2995 static struct port_and_port_id __srpt_lookup_port(const char *name)
2996 {
2997 struct ib_device *dev;
2998 struct srpt_device *sdev;
2999 struct srpt_port *sport;
3000 int i;
3001
3002 list_for_each_entry(sdev, &srpt_dev_list, list) {
3003 dev = sdev->device;
3004 if (!dev)
3005 continue;
3006
3007 for (i = 0; i < dev->phys_port_cnt; i++) {
3008 sport = &sdev->port[i];
3009
3010 if (strcmp(sport->guid_name, name) == 0) {
3011 kref_get(&sdev->refcnt);
3012 return (struct port_and_port_id){
3013 sport, &sport->guid_id};
3014 }
3015 if (strcmp(sport->gid_name, name) == 0) {
3016 kref_get(&sdev->refcnt);
3017 return (struct port_and_port_id){
3018 sport, &sport->gid_id};
3019 }
3020 }
3021 }
3022
3023 return (struct port_and_port_id){};
3024 }
3025
3026 /**
3027 * srpt_lookup_port() - Look up an RDMA port by name
3028 * @name: ASCII port name
3029 *
3030 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3031 * The caller must drop that reference count by calling srpt_port_put_ref().
3032 */
srpt_lookup_port(const char * name)3033 static struct port_and_port_id srpt_lookup_port(const char *name)
3034 {
3035 struct port_and_port_id papi;
3036
3037 spin_lock(&srpt_dev_lock);
3038 papi = __srpt_lookup_port(name);
3039 spin_unlock(&srpt_dev_lock);
3040
3041 return papi;
3042 }
3043
srpt_free_srq(struct srpt_device * sdev)3044 static void srpt_free_srq(struct srpt_device *sdev)
3045 {
3046 if (!sdev->srq)
3047 return;
3048
3049 ib_destroy_srq(sdev->srq);
3050 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3051 sdev->srq_size, sdev->req_buf_cache,
3052 DMA_FROM_DEVICE);
3053 kmem_cache_destroy(sdev->req_buf_cache);
3054 sdev->srq = NULL;
3055 }
3056
srpt_alloc_srq(struct srpt_device * sdev)3057 static int srpt_alloc_srq(struct srpt_device *sdev)
3058 {
3059 struct ib_srq_init_attr srq_attr = {
3060 .event_handler = srpt_srq_event,
3061 .srq_context = (void *)sdev,
3062 .attr.max_wr = sdev->srq_size,
3063 .attr.max_sge = 1,
3064 .srq_type = IB_SRQT_BASIC,
3065 };
3066 struct ib_device *device = sdev->device;
3067 struct ib_srq *srq;
3068 int i;
3069
3070 WARN_ON_ONCE(sdev->srq);
3071 srq = ib_create_srq(sdev->pd, &srq_attr);
3072 if (IS_ERR(srq)) {
3073 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3074 return PTR_ERR(srq);
3075 }
3076
3077 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3078 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3079
3080 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3081 srp_max_req_size, 0, 0, NULL);
3082 if (!sdev->req_buf_cache)
3083 goto free_srq;
3084
3085 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3086 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3087 sizeof(*sdev->ioctx_ring[0]),
3088 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3089 if (!sdev->ioctx_ring)
3090 goto free_cache;
3091
3092 sdev->use_srq = true;
3093 sdev->srq = srq;
3094
3095 for (i = 0; i < sdev->srq_size; ++i) {
3096 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3097 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3098 }
3099
3100 return 0;
3101
3102 free_cache:
3103 kmem_cache_destroy(sdev->req_buf_cache);
3104
3105 free_srq:
3106 ib_destroy_srq(srq);
3107 return -ENOMEM;
3108 }
3109
srpt_use_srq(struct srpt_device * sdev,bool use_srq)3110 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3111 {
3112 struct ib_device *device = sdev->device;
3113 int ret = 0;
3114
3115 if (!use_srq) {
3116 srpt_free_srq(sdev);
3117 sdev->use_srq = false;
3118 } else if (use_srq && !sdev->srq) {
3119 ret = srpt_alloc_srq(sdev);
3120 }
3121 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3122 dev_name(&device->dev), sdev->use_srq, ret);
3123 return ret;
3124 }
3125
srpt_free_sdev(struct kref * refcnt)3126 static void srpt_free_sdev(struct kref *refcnt)
3127 {
3128 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3129
3130 kfree(sdev);
3131 }
3132
srpt_sdev_put(struct srpt_device * sdev)3133 static void srpt_sdev_put(struct srpt_device *sdev)
3134 {
3135 kref_put(&sdev->refcnt, srpt_free_sdev);
3136 }
3137
3138 /**
3139 * srpt_add_one - InfiniBand device addition callback function
3140 * @device: Describes a HCA.
3141 */
srpt_add_one(struct ib_device * device)3142 static int srpt_add_one(struct ib_device *device)
3143 {
3144 struct srpt_device *sdev;
3145 struct srpt_port *sport;
3146 int ret;
3147 u32 i;
3148
3149 pr_debug("device = %p\n", device);
3150
3151 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3152 GFP_KERNEL);
3153 if (!sdev)
3154 return -ENOMEM;
3155
3156 kref_init(&sdev->refcnt);
3157 sdev->device = device;
3158 mutex_init(&sdev->sdev_mutex);
3159
3160 sdev->pd = ib_alloc_pd(device, 0);
3161 if (IS_ERR(sdev->pd)) {
3162 ret = PTR_ERR(sdev->pd);
3163 goto free_dev;
3164 }
3165
3166 sdev->lkey = sdev->pd->local_dma_lkey;
3167
3168 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3169
3170 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3171
3172 if (!srpt_service_guid)
3173 srpt_service_guid = be64_to_cpu(device->node_guid);
3174
3175 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3176 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3177 if (IS_ERR(sdev->cm_id)) {
3178 pr_info("ib_create_cm_id() failed: %ld\n",
3179 PTR_ERR(sdev->cm_id));
3180 ret = PTR_ERR(sdev->cm_id);
3181 sdev->cm_id = NULL;
3182 if (!rdma_cm_id)
3183 goto err_ring;
3184 }
3185
3186 /* print out target login information */
3187 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3188 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3189
3190 /*
3191 * We do not have a consistent service_id (ie. also id_ext of target_id)
3192 * to identify this target. We currently use the guid of the first HCA
3193 * in the system as service_id; therefore, the target_id will change
3194 * if this HCA is gone bad and replaced by different HCA
3195 */
3196 ret = sdev->cm_id ?
3197 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) :
3198 0;
3199 if (ret < 0) {
3200 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3201 sdev->cm_id->state);
3202 goto err_cm;
3203 }
3204
3205 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3206 srpt_event_handler);
3207 ib_register_event_handler(&sdev->event_handler);
3208
3209 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3210 sport = &sdev->port[i - 1];
3211 INIT_LIST_HEAD(&sport->nexus_list);
3212 mutex_init(&sport->mutex);
3213 sport->sdev = sdev;
3214 sport->port = i;
3215 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3216 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3217 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3218 sport->port_attrib.use_srq = false;
3219 INIT_WORK(&sport->work, srpt_refresh_port_work);
3220
3221 ret = srpt_refresh_port(sport);
3222 if (ret) {
3223 pr_err("MAD registration failed for %s-%d.\n",
3224 dev_name(&sdev->device->dev), i);
3225 i--;
3226 goto err_port;
3227 }
3228 }
3229
3230 spin_lock(&srpt_dev_lock);
3231 list_add_tail(&sdev->list, &srpt_dev_list);
3232 spin_unlock(&srpt_dev_lock);
3233
3234 ib_set_client_data(device, &srpt_client, sdev);
3235 pr_debug("added %s.\n", dev_name(&device->dev));
3236 return 0;
3237
3238 err_port:
3239 srpt_unregister_mad_agent(sdev, i);
3240 ib_unregister_event_handler(&sdev->event_handler);
3241 err_cm:
3242 if (sdev->cm_id)
3243 ib_destroy_cm_id(sdev->cm_id);
3244 err_ring:
3245 srpt_free_srq(sdev);
3246 ib_dealloc_pd(sdev->pd);
3247 free_dev:
3248 srpt_sdev_put(sdev);
3249 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3250 return ret;
3251 }
3252
3253 /**
3254 * srpt_remove_one - InfiniBand device removal callback function
3255 * @device: Describes a HCA.
3256 * @client_data: The value passed as the third argument to ib_set_client_data().
3257 */
srpt_remove_one(struct ib_device * device,void * client_data)3258 static void srpt_remove_one(struct ib_device *device, void *client_data)
3259 {
3260 struct srpt_device *sdev = client_data;
3261 int i;
3262
3263 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3264
3265 ib_unregister_event_handler(&sdev->event_handler);
3266
3267 /* Cancel any work queued by the just unregistered IB event handler. */
3268 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3269 cancel_work_sync(&sdev->port[i].work);
3270
3271 if (sdev->cm_id)
3272 ib_destroy_cm_id(sdev->cm_id);
3273
3274 ib_set_client_data(device, &srpt_client, NULL);
3275
3276 /*
3277 * Unregistering a target must happen after destroying sdev->cm_id
3278 * such that no new SRP_LOGIN_REQ information units can arrive while
3279 * destroying the target.
3280 */
3281 spin_lock(&srpt_dev_lock);
3282 list_del(&sdev->list);
3283 spin_unlock(&srpt_dev_lock);
3284
3285 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3286 srpt_release_sport(&sdev->port[i]);
3287
3288 srpt_free_srq(sdev);
3289
3290 ib_dealloc_pd(sdev->pd);
3291
3292 srpt_sdev_put(sdev);
3293 }
3294
3295 static struct ib_client srpt_client = {
3296 .name = DRV_NAME,
3297 .add = srpt_add_one,
3298 .remove = srpt_remove_one
3299 };
3300
srpt_check_true(struct se_portal_group * se_tpg)3301 static int srpt_check_true(struct se_portal_group *se_tpg)
3302 {
3303 return 1;
3304 }
3305
srpt_tpg_to_sport(struct se_portal_group * tpg)3306 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3307 {
3308 return tpg->se_tpg_wwn->priv;
3309 }
3310
srpt_wwn_to_sport_id(struct se_wwn * wwn)3311 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3312 {
3313 struct srpt_port *sport = wwn->priv;
3314
3315 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3316 return sport->guid_id;
3317 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3318 return sport->gid_id;
3319 WARN_ON_ONCE(true);
3320 return NULL;
3321 }
3322
srpt_get_fabric_wwn(struct se_portal_group * tpg)3323 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3324 {
3325 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3326
3327 return stpg->sport_id->name;
3328 }
3329
srpt_get_tag(struct se_portal_group * tpg)3330 static u16 srpt_get_tag(struct se_portal_group *tpg)
3331 {
3332 return 1;
3333 }
3334
srpt_release_cmd(struct se_cmd * se_cmd)3335 static void srpt_release_cmd(struct se_cmd *se_cmd)
3336 {
3337 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3338 struct srpt_send_ioctx, cmd);
3339 struct srpt_rdma_ch *ch = ioctx->ch;
3340 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3341
3342 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3343 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3344
3345 if (recv_ioctx) {
3346 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3347 ioctx->recv_ioctx = NULL;
3348 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3349 }
3350
3351 if (ioctx->n_rw_ctx) {
3352 srpt_free_rw_ctxs(ch, ioctx);
3353 ioctx->n_rw_ctx = 0;
3354 }
3355
3356 target_free_tag(se_cmd->se_sess, se_cmd);
3357 }
3358
3359 /**
3360 * srpt_close_session - forcibly close a session
3361 * @se_sess: SCSI target session.
3362 *
3363 * Callback function invoked by the TCM core to clean up sessions associated
3364 * with a node ACL when the user invokes
3365 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3366 */
srpt_close_session(struct se_session * se_sess)3367 static void srpt_close_session(struct se_session *se_sess)
3368 {
3369 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3370
3371 srpt_disconnect_ch_sync(ch);
3372 }
3373
3374 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3375 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3376 {
3377 struct srpt_send_ioctx *ioctx;
3378
3379 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3380 return ioctx->state;
3381 }
3382
srpt_parse_guid(u64 * guid,const char * name)3383 static int srpt_parse_guid(u64 *guid, const char *name)
3384 {
3385 u16 w[4];
3386 int ret = -EINVAL;
3387
3388 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3389 goto out;
3390 *guid = get_unaligned_be64(w);
3391 ret = 0;
3392 out:
3393 return ret;
3394 }
3395
3396 /**
3397 * srpt_parse_i_port_id - parse an initiator port ID
3398 * @name: ASCII representation of a 128-bit initiator port ID.
3399 * @i_port_id: Binary 128-bit port ID.
3400 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3401 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3402 {
3403 const char *p;
3404 unsigned len, count, leading_zero_bytes;
3405 int ret;
3406
3407 p = name;
3408 if (strncasecmp(p, "0x", 2) == 0)
3409 p += 2;
3410 ret = -EINVAL;
3411 len = strlen(p);
3412 if (len % 2)
3413 goto out;
3414 count = min(len / 2, 16U);
3415 leading_zero_bytes = 16 - count;
3416 memset(i_port_id, 0, leading_zero_bytes);
3417 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3418
3419 out:
3420 return ret;
3421 }
3422
3423 /*
3424 * configfs callback function invoked for mkdir
3425 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3426 *
3427 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3428 * target_alloc_session() calls in this driver. Examples of valid initiator
3429 * port IDs:
3430 * 0x0000000000000000505400fffe4a0b7b
3431 * 0000000000000000505400fffe4a0b7b
3432 * 5054:00ff:fe4a:0b7b
3433 * 192.168.122.76
3434 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3435 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3436 {
3437 struct sockaddr_storage sa;
3438 u64 guid;
3439 u8 i_port_id[16];
3440 int ret;
3441
3442 ret = srpt_parse_guid(&guid, name);
3443 if (ret < 0)
3444 ret = srpt_parse_i_port_id(i_port_id, name);
3445 if (ret < 0)
3446 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3447 &sa);
3448 if (ret < 0)
3449 pr_err("invalid initiator port ID %s\n", name);
3450 return ret;
3451 }
3452
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3453 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3454 char *page)
3455 {
3456 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3457 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3458
3459 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3460 }
3461
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3462 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3463 const char *page, size_t count)
3464 {
3465 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3466 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3467 unsigned long val;
3468 int ret;
3469
3470 ret = kstrtoul(page, 0, &val);
3471 if (ret < 0) {
3472 pr_err("kstrtoul() failed with ret: %d\n", ret);
3473 return -EINVAL;
3474 }
3475 if (val > MAX_SRPT_RDMA_SIZE) {
3476 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3477 MAX_SRPT_RDMA_SIZE);
3478 return -EINVAL;
3479 }
3480 if (val < DEFAULT_MAX_RDMA_SIZE) {
3481 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3482 val, DEFAULT_MAX_RDMA_SIZE);
3483 return -EINVAL;
3484 }
3485 sport->port_attrib.srp_max_rdma_size = val;
3486
3487 return count;
3488 }
3489
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3490 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3491 char *page)
3492 {
3493 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3495
3496 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3497 }
3498
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3499 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3500 const char *page, size_t count)
3501 {
3502 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3504 unsigned long val;
3505 int ret;
3506
3507 ret = kstrtoul(page, 0, &val);
3508 if (ret < 0) {
3509 pr_err("kstrtoul() failed with ret: %d\n", ret);
3510 return -EINVAL;
3511 }
3512 if (val > MAX_SRPT_RSP_SIZE) {
3513 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3514 MAX_SRPT_RSP_SIZE);
3515 return -EINVAL;
3516 }
3517 if (val < MIN_MAX_RSP_SIZE) {
3518 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3519 MIN_MAX_RSP_SIZE);
3520 return -EINVAL;
3521 }
3522 sport->port_attrib.srp_max_rsp_size = val;
3523
3524 return count;
3525 }
3526
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3527 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3528 char *page)
3529 {
3530 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3532
3533 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3534 }
3535
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3536 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3537 const char *page, size_t count)
3538 {
3539 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3541 unsigned long val;
3542 int ret;
3543
3544 ret = kstrtoul(page, 0, &val);
3545 if (ret < 0) {
3546 pr_err("kstrtoul() failed with ret: %d\n", ret);
3547 return -EINVAL;
3548 }
3549 if (val > MAX_SRPT_SRQ_SIZE) {
3550 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3551 MAX_SRPT_SRQ_SIZE);
3552 return -EINVAL;
3553 }
3554 if (val < MIN_SRPT_SRQ_SIZE) {
3555 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3556 MIN_SRPT_SRQ_SIZE);
3557 return -EINVAL;
3558 }
3559 sport->port_attrib.srp_sq_size = val;
3560
3561 return count;
3562 }
3563
srpt_tpg_attrib_use_srq_show(struct config_item * item,char * page)3564 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3565 char *page)
3566 {
3567 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3569
3570 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3571 }
3572
srpt_tpg_attrib_use_srq_store(struct config_item * item,const char * page,size_t count)3573 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3574 const char *page, size_t count)
3575 {
3576 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3578 struct srpt_device *sdev = sport->sdev;
3579 unsigned long val;
3580 bool enabled;
3581 int ret;
3582
3583 ret = kstrtoul(page, 0, &val);
3584 if (ret < 0)
3585 return ret;
3586 if (val != !!val)
3587 return -EINVAL;
3588
3589 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3590 if (ret < 0)
3591 return ret;
3592 ret = mutex_lock_interruptible(&sport->mutex);
3593 if (ret < 0)
3594 goto unlock_sdev;
3595 enabled = sport->enabled;
3596 /* Log out all initiator systems before changing 'use_srq'. */
3597 srpt_set_enabled(sport, false);
3598 sport->port_attrib.use_srq = val;
3599 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3600 srpt_set_enabled(sport, enabled);
3601 ret = count;
3602 mutex_unlock(&sport->mutex);
3603 unlock_sdev:
3604 mutex_unlock(&sdev->sdev_mutex);
3605
3606 return ret;
3607 }
3608
3609 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3610 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3611 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3612 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3613
3614 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3615 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3616 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3617 &srpt_tpg_attrib_attr_srp_sq_size,
3618 &srpt_tpg_attrib_attr_use_srq,
3619 NULL,
3620 };
3621
srpt_create_rdma_id(struct sockaddr * listen_addr)3622 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3623 {
3624 struct rdma_cm_id *rdma_cm_id;
3625 int ret;
3626
3627 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3628 NULL, RDMA_PS_TCP, IB_QPT_RC);
3629 if (IS_ERR(rdma_cm_id)) {
3630 pr_err("RDMA/CM ID creation failed: %ld\n",
3631 PTR_ERR(rdma_cm_id));
3632 goto out;
3633 }
3634
3635 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3636 if (ret) {
3637 char addr_str[64];
3638
3639 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3640 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3641 addr_str, ret);
3642 rdma_destroy_id(rdma_cm_id);
3643 rdma_cm_id = ERR_PTR(ret);
3644 goto out;
3645 }
3646
3647 ret = rdma_listen(rdma_cm_id, 128);
3648 if (ret) {
3649 pr_err("rdma_listen() failed: %d\n", ret);
3650 rdma_destroy_id(rdma_cm_id);
3651 rdma_cm_id = ERR_PTR(ret);
3652 }
3653
3654 out:
3655 return rdma_cm_id;
3656 }
3657
srpt_rdma_cm_port_show(struct config_item * item,char * page)3658 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3659 {
3660 return sysfs_emit(page, "%d\n", rdma_cm_port);
3661 }
3662
srpt_rdma_cm_port_store(struct config_item * item,const char * page,size_t count)3663 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3664 const char *page, size_t count)
3665 {
3666 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3667 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3668 struct rdma_cm_id *new_id = NULL;
3669 u16 val;
3670 int ret;
3671
3672 ret = kstrtou16(page, 0, &val);
3673 if (ret < 0)
3674 return ret;
3675 ret = count;
3676 if (rdma_cm_port == val)
3677 goto out;
3678
3679 if (val) {
3680 addr6.sin6_port = cpu_to_be16(val);
3681 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3682 if (IS_ERR(new_id)) {
3683 addr4.sin_port = cpu_to_be16(val);
3684 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3685 if (IS_ERR(new_id)) {
3686 ret = PTR_ERR(new_id);
3687 goto out;
3688 }
3689 }
3690 }
3691
3692 mutex_lock(&rdma_cm_mutex);
3693 rdma_cm_port = val;
3694 swap(rdma_cm_id, new_id);
3695 mutex_unlock(&rdma_cm_mutex);
3696
3697 if (new_id)
3698 rdma_destroy_id(new_id);
3699 ret = count;
3700 out:
3701 return ret;
3702 }
3703
3704 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3705
3706 static struct configfs_attribute *srpt_da_attrs[] = {
3707 &srpt_attr_rdma_cm_port,
3708 NULL,
3709 };
3710
srpt_enable_tpg(struct se_portal_group * se_tpg,bool enable)3711 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3712 {
3713 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3714
3715 mutex_lock(&sport->mutex);
3716 srpt_set_enabled(sport, enable);
3717 mutex_unlock(&sport->mutex);
3718
3719 return 0;
3720 }
3721
3722 /**
3723 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3724 * @wwn: Corresponds to $driver/$port.
3725 * @name: $tpg.
3726 */
srpt_make_tpg(struct se_wwn * wwn,const char * name)3727 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3728 const char *name)
3729 {
3730 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3731 struct srpt_tpg *stpg;
3732 int res = -ENOMEM;
3733
3734 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3735 if (!stpg)
3736 return ERR_PTR(res);
3737 stpg->sport_id = sport_id;
3738 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3739 if (res) {
3740 kfree(stpg);
3741 return ERR_PTR(res);
3742 }
3743
3744 mutex_lock(&sport_id->mutex);
3745 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3746 mutex_unlock(&sport_id->mutex);
3747
3748 return &stpg->tpg;
3749 }
3750
3751 /**
3752 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3753 * @tpg: Target portal group to deregister.
3754 */
srpt_drop_tpg(struct se_portal_group * tpg)3755 static void srpt_drop_tpg(struct se_portal_group *tpg)
3756 {
3757 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3758 struct srpt_port_id *sport_id = stpg->sport_id;
3759 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3760
3761 mutex_lock(&sport_id->mutex);
3762 list_del(&stpg->entry);
3763 mutex_unlock(&sport_id->mutex);
3764
3765 sport->enabled = false;
3766 core_tpg_deregister(tpg);
3767 kfree(stpg);
3768 }
3769
3770 /**
3771 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3772 * @tf: Not used.
3773 * @group: Not used.
3774 * @name: $port.
3775 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3776 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3777 struct config_group *group,
3778 const char *name)
3779 {
3780 struct port_and_port_id papi = srpt_lookup_port(name);
3781 struct srpt_port *sport = papi.sport;
3782 struct srpt_port_id *port_id;
3783
3784 if (!papi.port_id)
3785 return ERR_PTR(-EINVAL);
3786 if (*papi.port_id) {
3787 /* Attempt to create a directory that already exists. */
3788 WARN_ON_ONCE(true);
3789 return &(*papi.port_id)->wwn;
3790 }
3791 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3792 if (!port_id) {
3793 srpt_sdev_put(sport->sdev);
3794 return ERR_PTR(-ENOMEM);
3795 }
3796 mutex_init(&port_id->mutex);
3797 INIT_LIST_HEAD(&port_id->tpg_list);
3798 port_id->wwn.priv = sport;
3799 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3800 sport->gid_name, ARRAY_SIZE(port_id->name));
3801
3802 *papi.port_id = port_id;
3803
3804 return &port_id->wwn;
3805 }
3806
3807 /**
3808 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3809 * @wwn: $port.
3810 */
srpt_drop_tport(struct se_wwn * wwn)3811 static void srpt_drop_tport(struct se_wwn *wwn)
3812 {
3813 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3814 struct srpt_port *sport = wwn->priv;
3815
3816 if (sport->guid_id == port_id)
3817 sport->guid_id = NULL;
3818 else if (sport->gid_id == port_id)
3819 sport->gid_id = NULL;
3820 else
3821 WARN_ON_ONCE(true);
3822
3823 srpt_sdev_put(sport->sdev);
3824 kfree(port_id);
3825 }
3826
srpt_wwn_version_show(struct config_item * item,char * buf)3827 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3828 {
3829 return sysfs_emit(buf, "\n");
3830 }
3831
3832 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3833
3834 static struct configfs_attribute *srpt_wwn_attrs[] = {
3835 &srpt_wwn_attr_version,
3836 NULL,
3837 };
3838
3839 static const struct target_core_fabric_ops srpt_template = {
3840 .module = THIS_MODULE,
3841 .fabric_name = "srpt",
3842 .tpg_get_wwn = srpt_get_fabric_wwn,
3843 .tpg_get_tag = srpt_get_tag,
3844 .tpg_check_demo_mode_cache = srpt_check_true,
3845 .tpg_check_demo_mode_write_protect = srpt_check_true,
3846 .release_cmd = srpt_release_cmd,
3847 .check_stop_free = srpt_check_stop_free,
3848 .close_session = srpt_close_session,
3849 .sess_get_initiator_sid = NULL,
3850 .write_pending = srpt_write_pending,
3851 .get_cmd_state = srpt_get_tcm_cmd_state,
3852 .queue_data_in = srpt_queue_data_in,
3853 .queue_status = srpt_queue_status,
3854 .queue_tm_rsp = srpt_queue_tm_rsp,
3855 .aborted_task = srpt_aborted_task,
3856 /*
3857 * Setup function pointers for generic logic in
3858 * target_core_fabric_configfs.c
3859 */
3860 .fabric_make_wwn = srpt_make_tport,
3861 .fabric_drop_wwn = srpt_drop_tport,
3862 .fabric_make_tpg = srpt_make_tpg,
3863 .fabric_enable_tpg = srpt_enable_tpg,
3864 .fabric_drop_tpg = srpt_drop_tpg,
3865 .fabric_init_nodeacl = srpt_init_nodeacl,
3866
3867 .tfc_discovery_attrs = srpt_da_attrs,
3868 .tfc_wwn_attrs = srpt_wwn_attrs,
3869 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3870 };
3871
3872 /**
3873 * srpt_init_module - kernel module initialization
3874 *
3875 * Note: Since ib_register_client() registers callback functions, and since at
3876 * least one of these callback functions (srpt_add_one()) calls target core
3877 * functions, this driver must be registered with the target core before
3878 * ib_register_client() is called.
3879 */
srpt_init_module(void)3880 static int __init srpt_init_module(void)
3881 {
3882 int ret;
3883
3884 ret = -EINVAL;
3885 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3886 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3887 srp_max_req_size, MIN_MAX_REQ_SIZE);
3888 goto out;
3889 }
3890
3891 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3892 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3893 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3894 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3895 goto out;
3896 }
3897
3898 ret = target_register_template(&srpt_template);
3899 if (ret)
3900 goto out;
3901
3902 ret = ib_register_client(&srpt_client);
3903 if (ret) {
3904 pr_err("couldn't register IB client\n");
3905 goto out_unregister_target;
3906 }
3907
3908 return 0;
3909
3910 out_unregister_target:
3911 target_unregister_template(&srpt_template);
3912 out:
3913 return ret;
3914 }
3915
srpt_cleanup_module(void)3916 static void __exit srpt_cleanup_module(void)
3917 {
3918 if (rdma_cm_id)
3919 rdma_destroy_id(rdma_cm_id);
3920 ib_unregister_client(&srpt_client);
3921 target_unregister_template(&srpt_template);
3922 }
3923
3924 module_init(srpt_init_module);
3925 module_exit(srpt_cleanup_module);
3926