1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 /* ethtool support for iavf */
5 #include "iavf.h"
6
7 #include <linux/uaccess.h>
8
9 /* ethtool statistics helpers */
10
11 /**
12 * struct iavf_stats - definition for an ethtool statistic
13 * @stat_string: statistic name to display in ethtool -S output
14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
15 * @stat_offset: offsetof() the stat from a base pointer
16 *
17 * This structure defines a statistic to be added to the ethtool stats buffer.
18 * It defines a statistic as offset from a common base pointer. Stats should
19 * be defined in constant arrays using the IAVF_STAT macro, with every element
20 * of the array using the same _type for calculating the sizeof_stat and
21 * stat_offset.
22 *
23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
25 * the iavf_add_ethtool_stat() helper function.
26 *
27 * The @stat_string is interpreted as a format string, allowing formatted
28 * values to be inserted while looping over multiple structures for a given
29 * statistics array. Thus, every statistic string in an array should have the
30 * same type and number of format specifiers, to be formatted by variadic
31 * arguments to the iavf_add_stat_string() helper function.
32 **/
33 struct iavf_stats {
34 char stat_string[ETH_GSTRING_LEN];
35 int sizeof_stat;
36 int stat_offset;
37 };
38
39 /* Helper macro to define an iavf_stat structure with proper size and type.
40 * Use this when defining constant statistics arrays. Note that @_type expects
41 * only a type name and is used multiple times.
42 */
43 #define IAVF_STAT(_type, _name, _stat) { \
44 .stat_string = _name, \
45 .sizeof_stat = sizeof_field(_type, _stat), \
46 .stat_offset = offsetof(_type, _stat) \
47 }
48
49 /* Helper macro for defining some statistics related to queues */
50 #define IAVF_QUEUE_STAT(_name, _stat) \
51 IAVF_STAT(struct iavf_ring, _name, _stat)
52
53 /* Stats associated with a Tx or Rx ring */
54 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
57 };
58
59 /**
60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
61 * @data: location to store the stat value
62 * @pointer: basis for where to copy from
63 * @stat: the stat definition
64 *
65 * Copies the stat data defined by the pointer and stat structure pair into
66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
68 */
69 static void
iavf_add_one_ethtool_stat(u64 * data,void * pointer,const struct iavf_stats * stat)70 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
71 const struct iavf_stats *stat)
72 {
73 char *p;
74
75 if (!pointer) {
76 /* ensure that the ethtool data buffer is zero'd for any stats
77 * which don't have a valid pointer.
78 */
79 *data = 0;
80 return;
81 }
82
83 p = (char *)pointer + stat->stat_offset;
84 switch (stat->sizeof_stat) {
85 case sizeof(u64):
86 *data = *((u64 *)p);
87 break;
88 case sizeof(u32):
89 *data = *((u32 *)p);
90 break;
91 case sizeof(u16):
92 *data = *((u16 *)p);
93 break;
94 case sizeof(u8):
95 *data = *((u8 *)p);
96 break;
97 default:
98 WARN_ONCE(1, "unexpected stat size for %s",
99 stat->stat_string);
100 *data = 0;
101 }
102 }
103
104 /**
105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
106 * @data: ethtool stats buffer
107 * @pointer: location to copy stats from
108 * @stats: array of stats to copy
109 * @size: the size of the stats definition
110 *
111 * Copy the stats defined by the stats array using the pointer as a base into
112 * the data buffer supplied by ethtool. Updates the data pointer to point to
113 * the next empty location for successive calls to __iavf_add_ethtool_stats.
114 * If pointer is null, set the data values to zero and update the pointer to
115 * skip these stats.
116 **/
117 static void
__iavf_add_ethtool_stats(u64 ** data,void * pointer,const struct iavf_stats stats[],const unsigned int size)118 __iavf_add_ethtool_stats(u64 **data, void *pointer,
119 const struct iavf_stats stats[],
120 const unsigned int size)
121 {
122 unsigned int i;
123
124 for (i = 0; i < size; i++)
125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
126 }
127
128 /**
129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
130 * @data: ethtool stats buffer
131 * @pointer: location where stats are stored
132 * @stats: static const array of stat definitions
133 *
134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
136 * ensuring that we pass the size associated with the given stats array.
137 *
138 * The parameter @stats is evaluated twice, so parameters with side effects
139 * should be avoided.
140 **/
141 #define iavf_add_ethtool_stats(data, pointer, stats) \
142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
143
144 /**
145 * iavf_add_queue_stats - copy queue statistics into supplied buffer
146 * @data: ethtool stats buffer
147 * @ring: the ring to copy
148 *
149 * Queue statistics must be copied while protected by
150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
152 * ring pointer is null, zero out the queue stat values and update the data
153 * pointer. Otherwise safely copy the stats from the ring into the supplied
154 * buffer and update the data pointer when finished.
155 *
156 * This function expects to be called while under rcu_read_lock().
157 **/
158 static void
iavf_add_queue_stats(u64 ** data,struct iavf_ring * ring)159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
160 {
161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
162 const struct iavf_stats *stats = iavf_gstrings_queue_stats;
163 unsigned int start;
164 unsigned int i;
165
166 /* To avoid invalid statistics values, ensure that we keep retrying
167 * the copy until we get a consistent value according to
168 * u64_stats_fetch_retry_irq. But first, make sure our ring is
169 * non-null before attempting to access its syncp.
170 */
171 do {
172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
173 for (i = 0; i < size; i++)
174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
176
177 /* Once we successfully copy the stats in, update the data pointer */
178 *data += size;
179 }
180
181 /**
182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer
183 * @p: ethtool supplied buffer
184 * @stats: stat definitions array
185 * @size: size of the stats array
186 *
187 * Format and copy the strings described by stats into the buffer pointed at
188 * by p.
189 **/
__iavf_add_stat_strings(u8 ** p,const struct iavf_stats stats[],const unsigned int size,...)190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
191 const unsigned int size, ...)
192 {
193 unsigned int i;
194
195 for (i = 0; i < size; i++) {
196 va_list args;
197
198 va_start(args, size);
199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
200 *p += ETH_GSTRING_LEN;
201 va_end(args);
202 }
203 }
204
205 /**
206 * iavf_add_stat_strings - copy stat strings into ethtool buffer
207 * @p: ethtool supplied buffer
208 * @stats: stat definitions array
209 *
210 * Format and copy the strings described by the const static stats value into
211 * the buffer pointed at by p.
212 *
213 * The parameter @stats is evaluated twice, so parameters with side effects
214 * should be avoided. Additionally, stats must be an array such that
215 * ARRAY_SIZE can be called on it.
216 **/
217 #define iavf_add_stat_strings(p, stats, ...) \
218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
219
220 #define VF_STAT(_name, _stat) \
221 IAVF_STAT(struct iavf_adapter, _name, _stat)
222
223 static const struct iavf_stats iavf_gstrings_stats[] = {
224 VF_STAT("rx_bytes", current_stats.rx_bytes),
225 VF_STAT("rx_unicast", current_stats.rx_unicast),
226 VF_STAT("rx_multicast", current_stats.rx_multicast),
227 VF_STAT("rx_broadcast", current_stats.rx_broadcast),
228 VF_STAT("rx_discards", current_stats.rx_discards),
229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
230 VF_STAT("tx_bytes", current_stats.tx_bytes),
231 VF_STAT("tx_unicast", current_stats.tx_unicast),
232 VF_STAT("tx_multicast", current_stats.tx_multicast),
233 VF_STAT("tx_broadcast", current_stats.tx_broadcast),
234 VF_STAT("tx_discards", current_stats.tx_discards),
235 VF_STAT("tx_errors", current_stats.tx_errors),
236 };
237
238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats)
239
240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats)
241
242 /* For now we have one and only one private flag and it is only defined
243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead
244 * of leaving all this code sitting around empty we will strip it unless
245 * our one private flag is actually available.
246 */
247 struct iavf_priv_flags {
248 char flag_string[ETH_GSTRING_LEN];
249 u32 flag;
250 bool read_only;
251 };
252
253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
254 .flag_string = _name, \
255 .flag = _flag, \
256 .read_only = _read_only, \
257 }
258
259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
261 };
262
263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
264
265 /**
266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings
267 * @netdev: network interface device structure
268 * @cmd: ethtool command
269 *
270 * Reports speed/duplex settings. Because this is a VF, we don't know what
271 * kind of link we really have, so we fake it.
272 **/
iavf_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)273 static int iavf_get_link_ksettings(struct net_device *netdev,
274 struct ethtool_link_ksettings *cmd)
275 {
276 struct iavf_adapter *adapter = netdev_priv(netdev);
277
278 ethtool_link_ksettings_zero_link_mode(cmd, supported);
279 cmd->base.autoneg = AUTONEG_DISABLE;
280 cmd->base.port = PORT_NONE;
281 cmd->base.duplex = DUPLEX_FULL;
282
283 if (ADV_LINK_SUPPORT(adapter)) {
284 if (adapter->link_speed_mbps &&
285 adapter->link_speed_mbps < U32_MAX)
286 cmd->base.speed = adapter->link_speed_mbps;
287 else
288 cmd->base.speed = SPEED_UNKNOWN;
289
290 return 0;
291 }
292
293 switch (adapter->link_speed) {
294 case VIRTCHNL_LINK_SPEED_40GB:
295 cmd->base.speed = SPEED_40000;
296 break;
297 case VIRTCHNL_LINK_SPEED_25GB:
298 cmd->base.speed = SPEED_25000;
299 break;
300 case VIRTCHNL_LINK_SPEED_20GB:
301 cmd->base.speed = SPEED_20000;
302 break;
303 case VIRTCHNL_LINK_SPEED_10GB:
304 cmd->base.speed = SPEED_10000;
305 break;
306 case VIRTCHNL_LINK_SPEED_5GB:
307 cmd->base.speed = SPEED_5000;
308 break;
309 case VIRTCHNL_LINK_SPEED_2_5GB:
310 cmd->base.speed = SPEED_2500;
311 break;
312 case VIRTCHNL_LINK_SPEED_1GB:
313 cmd->base.speed = SPEED_1000;
314 break;
315 case VIRTCHNL_LINK_SPEED_100MB:
316 cmd->base.speed = SPEED_100;
317 break;
318 default:
319 break;
320 }
321
322 return 0;
323 }
324
325 /**
326 * iavf_get_sset_count - Get length of string set
327 * @netdev: network interface device structure
328 * @sset: id of string set
329 *
330 * Reports size of various string tables.
331 **/
iavf_get_sset_count(struct net_device * netdev,int sset)332 static int iavf_get_sset_count(struct net_device *netdev, int sset)
333 {
334 if (sset == ETH_SS_STATS)
335 return IAVF_STATS_LEN +
336 (IAVF_QUEUE_STATS_LEN * 2 * IAVF_MAX_REQ_QUEUES);
337 else if (sset == ETH_SS_PRIV_FLAGS)
338 return IAVF_PRIV_FLAGS_STR_LEN;
339 else
340 return -EINVAL;
341 }
342
343 /**
344 * iavf_get_ethtool_stats - report device statistics
345 * @netdev: network interface device structure
346 * @stats: ethtool statistics structure
347 * @data: pointer to data buffer
348 *
349 * All statistics are added to the data buffer as an array of u64.
350 **/
iavf_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)351 static void iavf_get_ethtool_stats(struct net_device *netdev,
352 struct ethtool_stats *stats, u64 *data)
353 {
354 struct iavf_adapter *adapter = netdev_priv(netdev);
355 unsigned int i;
356
357 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
358
359 rcu_read_lock();
360 for (i = 0; i < IAVF_MAX_REQ_QUEUES; i++) {
361 struct iavf_ring *ring;
362
363 /* Avoid accessing un-allocated queues */
364 ring = (i < adapter->num_active_queues ?
365 &adapter->tx_rings[i] : NULL);
366 iavf_add_queue_stats(&data, ring);
367
368 /* Avoid accessing un-allocated queues */
369 ring = (i < adapter->num_active_queues ?
370 &adapter->rx_rings[i] : NULL);
371 iavf_add_queue_stats(&data, ring);
372 }
373 rcu_read_unlock();
374 }
375
376 /**
377 * iavf_get_priv_flag_strings - Get private flag strings
378 * @netdev: network interface device structure
379 * @data: buffer for string data
380 *
381 * Builds the private flags string table
382 **/
iavf_get_priv_flag_strings(struct net_device * netdev,u8 * data)383 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
384 {
385 unsigned int i;
386
387 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
388 snprintf(data, ETH_GSTRING_LEN, "%s",
389 iavf_gstrings_priv_flags[i].flag_string);
390 data += ETH_GSTRING_LEN;
391 }
392 }
393
394 /**
395 * iavf_get_stat_strings - Get stat strings
396 * @netdev: network interface device structure
397 * @data: buffer for string data
398 *
399 * Builds the statistics string table
400 **/
iavf_get_stat_strings(struct net_device * netdev,u8 * data)401 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
402 {
403 unsigned int i;
404
405 iavf_add_stat_strings(&data, iavf_gstrings_stats);
406
407 /* Queues are always allocated in pairs, so we just use num_tx_queues
408 * for both Tx and Rx queues.
409 */
410 for (i = 0; i < netdev->num_tx_queues; i++) {
411 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
412 "tx", i);
413 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
414 "rx", i);
415 }
416 }
417
418 /**
419 * iavf_get_strings - Get string set
420 * @netdev: network interface device structure
421 * @sset: id of string set
422 * @data: buffer for string data
423 *
424 * Builds string tables for various string sets
425 **/
iavf_get_strings(struct net_device * netdev,u32 sset,u8 * data)426 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
427 {
428 switch (sset) {
429 case ETH_SS_STATS:
430 iavf_get_stat_strings(netdev, data);
431 break;
432 case ETH_SS_PRIV_FLAGS:
433 iavf_get_priv_flag_strings(netdev, data);
434 break;
435 default:
436 break;
437 }
438 }
439
440 /**
441 * iavf_get_priv_flags - report device private flags
442 * @netdev: network interface device structure
443 *
444 * The get string set count and the string set should be matched for each
445 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags
446 * array.
447 *
448 * Returns a u32 bitmap of flags.
449 **/
iavf_get_priv_flags(struct net_device * netdev)450 static u32 iavf_get_priv_flags(struct net_device *netdev)
451 {
452 struct iavf_adapter *adapter = netdev_priv(netdev);
453 u32 i, ret_flags = 0;
454
455 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
456 const struct iavf_priv_flags *priv_flags;
457
458 priv_flags = &iavf_gstrings_priv_flags[i];
459
460 if (priv_flags->flag & adapter->flags)
461 ret_flags |= BIT(i);
462 }
463
464 return ret_flags;
465 }
466
467 /**
468 * iavf_set_priv_flags - set private flags
469 * @netdev: network interface device structure
470 * @flags: bit flags to be set
471 **/
iavf_set_priv_flags(struct net_device * netdev,u32 flags)472 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
473 {
474 struct iavf_adapter *adapter = netdev_priv(netdev);
475 u32 orig_flags, new_flags, changed_flags;
476 u32 i;
477
478 orig_flags = READ_ONCE(adapter->flags);
479 new_flags = orig_flags;
480
481 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
482 const struct iavf_priv_flags *priv_flags;
483
484 priv_flags = &iavf_gstrings_priv_flags[i];
485
486 if (flags & BIT(i))
487 new_flags |= priv_flags->flag;
488 else
489 new_flags &= ~(priv_flags->flag);
490
491 if (priv_flags->read_only &&
492 ((orig_flags ^ new_flags) & ~BIT(i)))
493 return -EOPNOTSUPP;
494 }
495
496 /* Before we finalize any flag changes, any checks which we need to
497 * perform to determine if the new flags will be supported should go
498 * here...
499 */
500
501 /* Compare and exchange the new flags into place. If we failed, that
502 * is if cmpxchg returns anything but the old value, this means
503 * something else must have modified the flags variable since we
504 * copied it. We'll just punt with an error and log something in the
505 * message buffer.
506 */
507 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
508 dev_warn(&adapter->pdev->dev,
509 "Unable to update adapter->flags as it was modified by another thread...\n");
510 return -EAGAIN;
511 }
512
513 changed_flags = orig_flags ^ new_flags;
514
515 /* Process any additional changes needed as a result of flag changes.
516 * The changed_flags value reflects the list of bits that were changed
517 * in the code above.
518 */
519
520 /* issue a reset to force legacy-rx change to take effect */
521 if (changed_flags & IAVF_FLAG_LEGACY_RX) {
522 if (netif_running(netdev)) {
523 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
524 queue_work(iavf_wq, &adapter->reset_task);
525 }
526 }
527
528 return 0;
529 }
530
531 /**
532 * iavf_get_msglevel - Get debug message level
533 * @netdev: network interface device structure
534 *
535 * Returns current debug message level.
536 **/
iavf_get_msglevel(struct net_device * netdev)537 static u32 iavf_get_msglevel(struct net_device *netdev)
538 {
539 struct iavf_adapter *adapter = netdev_priv(netdev);
540
541 return adapter->msg_enable;
542 }
543
544 /**
545 * iavf_set_msglevel - Set debug message level
546 * @netdev: network interface device structure
547 * @data: message level
548 *
549 * Set current debug message level. Higher values cause the driver to
550 * be noisier.
551 **/
iavf_set_msglevel(struct net_device * netdev,u32 data)552 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
553 {
554 struct iavf_adapter *adapter = netdev_priv(netdev);
555
556 if (IAVF_DEBUG_USER & data)
557 adapter->hw.debug_mask = data;
558 adapter->msg_enable = data;
559 }
560
561 /**
562 * iavf_get_drvinfo - Get driver info
563 * @netdev: network interface device structure
564 * @drvinfo: ethool driver info structure
565 *
566 * Returns information about the driver and device for display to the user.
567 **/
iavf_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)568 static void iavf_get_drvinfo(struct net_device *netdev,
569 struct ethtool_drvinfo *drvinfo)
570 {
571 struct iavf_adapter *adapter = netdev_priv(netdev);
572
573 strlcpy(drvinfo->driver, iavf_driver_name, 32);
574 strlcpy(drvinfo->fw_version, "N/A", 4);
575 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
576 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
577 }
578
579 /**
580 * iavf_get_ringparam - Get ring parameters
581 * @netdev: network interface device structure
582 * @ring: ethtool ringparam structure
583 *
584 * Returns current ring parameters. TX and RX rings are reported separately,
585 * but the number of rings is not reported.
586 **/
iavf_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)587 static void iavf_get_ringparam(struct net_device *netdev,
588 struct ethtool_ringparam *ring)
589 {
590 struct iavf_adapter *adapter = netdev_priv(netdev);
591
592 ring->rx_max_pending = IAVF_MAX_RXD;
593 ring->tx_max_pending = IAVF_MAX_TXD;
594 ring->rx_pending = adapter->rx_desc_count;
595 ring->tx_pending = adapter->tx_desc_count;
596 }
597
598 /**
599 * iavf_set_ringparam - Set ring parameters
600 * @netdev: network interface device structure
601 * @ring: ethtool ringparam structure
602 *
603 * Sets ring parameters. TX and RX rings are controlled separately, but the
604 * number of rings is not specified, so all rings get the same settings.
605 **/
iavf_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)606 static int iavf_set_ringparam(struct net_device *netdev,
607 struct ethtool_ringparam *ring)
608 {
609 struct iavf_adapter *adapter = netdev_priv(netdev);
610 u32 new_rx_count, new_tx_count;
611
612 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
613 return -EINVAL;
614
615 new_tx_count = clamp_t(u32, ring->tx_pending,
616 IAVF_MIN_TXD,
617 IAVF_MAX_TXD);
618 new_tx_count = ALIGN(new_tx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE);
619
620 new_rx_count = clamp_t(u32, ring->rx_pending,
621 IAVF_MIN_RXD,
622 IAVF_MAX_RXD);
623 new_rx_count = ALIGN(new_rx_count, IAVF_REQ_DESCRIPTOR_MULTIPLE);
624
625 /* if nothing to do return success */
626 if ((new_tx_count == adapter->tx_desc_count) &&
627 (new_rx_count == adapter->rx_desc_count))
628 return 0;
629
630 adapter->tx_desc_count = new_tx_count;
631 adapter->rx_desc_count = new_rx_count;
632
633 if (netif_running(netdev)) {
634 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
635 queue_work(iavf_wq, &adapter->reset_task);
636 }
637
638 return 0;
639 }
640
641 /**
642 * __iavf_get_coalesce - get per-queue coalesce settings
643 * @netdev: the netdev to check
644 * @ec: ethtool coalesce data structure
645 * @queue: which queue to pick
646 *
647 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
648 * are per queue. If queue is <0 then we default to queue 0 as the
649 * representative value.
650 **/
__iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)651 static int __iavf_get_coalesce(struct net_device *netdev,
652 struct ethtool_coalesce *ec, int queue)
653 {
654 struct iavf_adapter *adapter = netdev_priv(netdev);
655 struct iavf_vsi *vsi = &adapter->vsi;
656 struct iavf_ring *rx_ring, *tx_ring;
657
658 ec->tx_max_coalesced_frames = vsi->work_limit;
659 ec->rx_max_coalesced_frames = vsi->work_limit;
660
661 /* Rx and Tx usecs per queue value. If user doesn't specify the
662 * queue, return queue 0's value to represent.
663 */
664 if (queue < 0)
665 queue = 0;
666 else if (queue >= adapter->num_active_queues)
667 return -EINVAL;
668
669 rx_ring = &adapter->rx_rings[queue];
670 tx_ring = &adapter->tx_rings[queue];
671
672 if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
673 ec->use_adaptive_rx_coalesce = 1;
674
675 if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
676 ec->use_adaptive_tx_coalesce = 1;
677
678 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
679 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
680
681 return 0;
682 }
683
684 /**
685 * iavf_get_coalesce - Get interrupt coalescing settings
686 * @netdev: network interface device structure
687 * @ec: ethtool coalesce structure
688 * @kernel_coal: ethtool CQE mode setting structure
689 * @extack: extack for reporting error messages
690 *
691 * Returns current coalescing settings. This is referred to elsewhere in the
692 * driver as Interrupt Throttle Rate, as this is how the hardware describes
693 * this functionality. Note that if per-queue settings have been modified this
694 * only represents the settings of queue 0.
695 **/
iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)696 static int iavf_get_coalesce(struct net_device *netdev,
697 struct ethtool_coalesce *ec,
698 struct kernel_ethtool_coalesce *kernel_coal,
699 struct netlink_ext_ack *extack)
700 {
701 return __iavf_get_coalesce(netdev, ec, -1);
702 }
703
704 /**
705 * iavf_get_per_queue_coalesce - get coalesce values for specific queue
706 * @netdev: netdev to read
707 * @ec: coalesce settings from ethtool
708 * @queue: the queue to read
709 *
710 * Read specific queue's coalesce settings.
711 **/
iavf_get_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)712 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
713 struct ethtool_coalesce *ec)
714 {
715 return __iavf_get_coalesce(netdev, ec, queue);
716 }
717
718 /**
719 * iavf_set_itr_per_queue - set ITR values for specific queue
720 * @adapter: the VF adapter struct to set values for
721 * @ec: coalesce settings from ethtool
722 * @queue: the queue to modify
723 *
724 * Change the ITR settings for a specific queue.
725 **/
iavf_set_itr_per_queue(struct iavf_adapter * adapter,struct ethtool_coalesce * ec,int queue)726 static void iavf_set_itr_per_queue(struct iavf_adapter *adapter,
727 struct ethtool_coalesce *ec, int queue)
728 {
729 struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
730 struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
731 struct iavf_q_vector *q_vector;
732
733 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
734 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
735
736 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
737 if (!ec->use_adaptive_rx_coalesce)
738 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
739
740 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
741 if (!ec->use_adaptive_tx_coalesce)
742 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
743
744 q_vector = rx_ring->q_vector;
745 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
746
747 q_vector = tx_ring->q_vector;
748 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
749
750 /* The interrupt handler itself will take care of programming
751 * the Tx and Rx ITR values based on the values we have entered
752 * into the q_vector, no need to write the values now.
753 */
754 }
755
756 /**
757 * __iavf_set_coalesce - set coalesce settings for particular queue
758 * @netdev: the netdev to change
759 * @ec: ethtool coalesce settings
760 * @queue: the queue to change
761 *
762 * Sets the coalesce settings for a particular queue.
763 **/
__iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)764 static int __iavf_set_coalesce(struct net_device *netdev,
765 struct ethtool_coalesce *ec, int queue)
766 {
767 struct iavf_adapter *adapter = netdev_priv(netdev);
768 struct iavf_vsi *vsi = &adapter->vsi;
769 int i;
770
771 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq)
772 vsi->work_limit = ec->tx_max_coalesced_frames_irq;
773
774 if (ec->rx_coalesce_usecs == 0) {
775 if (ec->use_adaptive_rx_coalesce)
776 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
777 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
778 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
779 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
780 return -EINVAL;
781 } else if (ec->tx_coalesce_usecs == 0) {
782 if (ec->use_adaptive_tx_coalesce)
783 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
784 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
785 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
786 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
787 return -EINVAL;
788 }
789
790 /* Rx and Tx usecs has per queue value. If user doesn't specify the
791 * queue, apply to all queues.
792 */
793 if (queue < 0) {
794 for (i = 0; i < adapter->num_active_queues; i++)
795 iavf_set_itr_per_queue(adapter, ec, i);
796 } else if (queue < adapter->num_active_queues) {
797 iavf_set_itr_per_queue(adapter, ec, queue);
798 } else {
799 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
800 adapter->num_active_queues - 1);
801 return -EINVAL;
802 }
803
804 return 0;
805 }
806
807 /**
808 * iavf_set_coalesce - Set interrupt coalescing settings
809 * @netdev: network interface device structure
810 * @ec: ethtool coalesce structure
811 * @kernel_coal: ethtool CQE mode setting structure
812 * @extack: extack for reporting error messages
813 *
814 * Change current coalescing settings for every queue.
815 **/
iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)816 static int iavf_set_coalesce(struct net_device *netdev,
817 struct ethtool_coalesce *ec,
818 struct kernel_ethtool_coalesce *kernel_coal,
819 struct netlink_ext_ack *extack)
820 {
821 return __iavf_set_coalesce(netdev, ec, -1);
822 }
823
824 /**
825 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
826 * @netdev: the netdev to change
827 * @ec: ethtool's coalesce settings
828 * @queue: the queue to modify
829 *
830 * Modifies a specific queue's coalesce settings.
831 */
iavf_set_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)832 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
833 struct ethtool_coalesce *ec)
834 {
835 return __iavf_set_coalesce(netdev, ec, queue);
836 }
837
838 /**
839 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
840 * flow type values
841 * @flow: filter type to be converted
842 *
843 * Returns the corresponding ethtool flow type.
844 */
iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)845 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
846 {
847 switch (flow) {
848 case IAVF_FDIR_FLOW_IPV4_TCP:
849 return TCP_V4_FLOW;
850 case IAVF_FDIR_FLOW_IPV4_UDP:
851 return UDP_V4_FLOW;
852 case IAVF_FDIR_FLOW_IPV4_SCTP:
853 return SCTP_V4_FLOW;
854 case IAVF_FDIR_FLOW_IPV4_AH:
855 return AH_V4_FLOW;
856 case IAVF_FDIR_FLOW_IPV4_ESP:
857 return ESP_V4_FLOW;
858 case IAVF_FDIR_FLOW_IPV4_OTHER:
859 return IPV4_USER_FLOW;
860 case IAVF_FDIR_FLOW_IPV6_TCP:
861 return TCP_V6_FLOW;
862 case IAVF_FDIR_FLOW_IPV6_UDP:
863 return UDP_V6_FLOW;
864 case IAVF_FDIR_FLOW_IPV6_SCTP:
865 return SCTP_V6_FLOW;
866 case IAVF_FDIR_FLOW_IPV6_AH:
867 return AH_V6_FLOW;
868 case IAVF_FDIR_FLOW_IPV6_ESP:
869 return ESP_V6_FLOW;
870 case IAVF_FDIR_FLOW_IPV6_OTHER:
871 return IPV6_USER_FLOW;
872 case IAVF_FDIR_FLOW_NON_IP_L2:
873 return ETHER_FLOW;
874 default:
875 /* 0 is undefined ethtool flow */
876 return 0;
877 }
878 }
879
880 /**
881 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
882 * @eth: Ethtool flow type to be converted
883 *
884 * Returns flow enum
885 */
iavf_ethtool_flow_to_fltr(int eth)886 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
887 {
888 switch (eth) {
889 case TCP_V4_FLOW:
890 return IAVF_FDIR_FLOW_IPV4_TCP;
891 case UDP_V4_FLOW:
892 return IAVF_FDIR_FLOW_IPV4_UDP;
893 case SCTP_V4_FLOW:
894 return IAVF_FDIR_FLOW_IPV4_SCTP;
895 case AH_V4_FLOW:
896 return IAVF_FDIR_FLOW_IPV4_AH;
897 case ESP_V4_FLOW:
898 return IAVF_FDIR_FLOW_IPV4_ESP;
899 case IPV4_USER_FLOW:
900 return IAVF_FDIR_FLOW_IPV4_OTHER;
901 case TCP_V6_FLOW:
902 return IAVF_FDIR_FLOW_IPV6_TCP;
903 case UDP_V6_FLOW:
904 return IAVF_FDIR_FLOW_IPV6_UDP;
905 case SCTP_V6_FLOW:
906 return IAVF_FDIR_FLOW_IPV6_SCTP;
907 case AH_V6_FLOW:
908 return IAVF_FDIR_FLOW_IPV6_AH;
909 case ESP_V6_FLOW:
910 return IAVF_FDIR_FLOW_IPV6_ESP;
911 case IPV6_USER_FLOW:
912 return IAVF_FDIR_FLOW_IPV6_OTHER;
913 case ETHER_FLOW:
914 return IAVF_FDIR_FLOW_NON_IP_L2;
915 default:
916 return IAVF_FDIR_FLOW_NONE;
917 }
918 }
919
920 /**
921 * iavf_is_mask_valid - check mask field set
922 * @mask: full mask to check
923 * @field: field for which mask should be valid
924 *
925 * If the mask is fully set return true. If it is not valid for field return
926 * false.
927 */
iavf_is_mask_valid(u64 mask,u64 field)928 static bool iavf_is_mask_valid(u64 mask, u64 field)
929 {
930 return (mask & field) == field;
931 }
932
933 /**
934 * iavf_parse_rx_flow_user_data - deconstruct user-defined data
935 * @fsp: pointer to ethtool Rx flow specification
936 * @fltr: pointer to Flow Director filter for userdef data storage
937 *
938 * Returns 0 on success, negative error value on failure
939 */
940 static int
iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)941 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
942 struct iavf_fdir_fltr *fltr)
943 {
944 struct iavf_flex_word *flex;
945 int i, cnt = 0;
946
947 if (!(fsp->flow_type & FLOW_EXT))
948 return 0;
949
950 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
951 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0)
952 #define IAVF_USERDEF_FLEX_OFFS_S 16
953 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
954 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0)
955 u32 value = be32_to_cpu(fsp->h_ext.data[i]);
956 u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
957
958 if (!value || !mask)
959 continue;
960
961 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
962 return -EINVAL;
963
964 /* 504 is the maximum value for offsets, and offset is measured
965 * from the start of the MAC address.
966 */
967 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
968 flex = &fltr->flex_words[cnt++];
969 flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
970 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
971 IAVF_USERDEF_FLEX_OFFS_S;
972 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
973 return -EINVAL;
974 }
975
976 fltr->flex_cnt = cnt;
977
978 return 0;
979 }
980
981 /**
982 * iavf_fill_rx_flow_ext_data - fill the additional data
983 * @fsp: pointer to ethtool Rx flow specification
984 * @fltr: pointer to Flow Director filter to get additional data
985 */
986 static void
iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)987 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
988 struct iavf_fdir_fltr *fltr)
989 {
990 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
991 return;
992
993 fsp->flow_type |= FLOW_EXT;
994
995 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
996 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
997 }
998
999 /**
1000 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1001 * @adapter: the VF adapter structure that contains filter list
1002 * @cmd: ethtool command data structure to receive the filter data
1003 *
1004 * Returns 0 as expected for success by ethtool
1005 */
1006 static int
iavf_get_ethtool_fdir_entry(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1007 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1008 struct ethtool_rxnfc *cmd)
1009 {
1010 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1011 struct iavf_fdir_fltr *rule = NULL;
1012 int ret = 0;
1013
1014 if (!FDIR_FLTR_SUPPORT(adapter))
1015 return -EOPNOTSUPP;
1016
1017 spin_lock_bh(&adapter->fdir_fltr_lock);
1018
1019 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1020 if (!rule) {
1021 ret = -EINVAL;
1022 goto release_lock;
1023 }
1024
1025 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1026
1027 memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1028 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1029
1030 switch (fsp->flow_type) {
1031 case TCP_V4_FLOW:
1032 case UDP_V4_FLOW:
1033 case SCTP_V4_FLOW:
1034 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1035 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1036 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1037 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1038 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1039 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1040 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1041 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1042 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1043 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1044 break;
1045 case AH_V4_FLOW:
1046 case ESP_V4_FLOW:
1047 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1048 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1049 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1050 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1051 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1052 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1053 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1054 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1055 break;
1056 case IPV4_USER_FLOW:
1057 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1058 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1059 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1060 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1061 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1062 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1063 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1064 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1065 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1066 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1067 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1068 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1069 break;
1070 case TCP_V6_FLOW:
1071 case UDP_V6_FLOW:
1072 case SCTP_V6_FLOW:
1073 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1074 sizeof(struct in6_addr));
1075 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1076 sizeof(struct in6_addr));
1077 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1078 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1079 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1080 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1081 sizeof(struct in6_addr));
1082 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1083 sizeof(struct in6_addr));
1084 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1085 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1086 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1087 break;
1088 case AH_V6_FLOW:
1089 case ESP_V6_FLOW:
1090 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1091 sizeof(struct in6_addr));
1092 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1093 sizeof(struct in6_addr));
1094 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1095 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1096 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1097 sizeof(struct in6_addr));
1098 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1099 sizeof(struct in6_addr));
1100 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1101 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1102 break;
1103 case IPV6_USER_FLOW:
1104 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1105 sizeof(struct in6_addr));
1106 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1107 sizeof(struct in6_addr));
1108 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1109 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1110 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1111 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1112 sizeof(struct in6_addr));
1113 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1114 sizeof(struct in6_addr));
1115 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1116 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1117 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1118 break;
1119 case ETHER_FLOW:
1120 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1121 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1122 break;
1123 default:
1124 ret = -EINVAL;
1125 break;
1126 }
1127
1128 iavf_fill_rx_flow_ext_data(fsp, rule);
1129
1130 if (rule->action == VIRTCHNL_ACTION_DROP)
1131 fsp->ring_cookie = RX_CLS_FLOW_DISC;
1132 else
1133 fsp->ring_cookie = rule->q_index;
1134
1135 release_lock:
1136 spin_unlock_bh(&adapter->fdir_fltr_lock);
1137 return ret;
1138 }
1139
1140 /**
1141 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1142 * @adapter: the VF adapter structure containing the filter list
1143 * @cmd: ethtool command data structure
1144 * @rule_locs: ethtool array passed in from OS to receive filter IDs
1145 *
1146 * Returns 0 as expected for success by ethtool
1147 */
1148 static int
iavf_get_fdir_fltr_ids(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)1149 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1150 u32 *rule_locs)
1151 {
1152 struct iavf_fdir_fltr *fltr;
1153 unsigned int cnt = 0;
1154 int val = 0;
1155
1156 if (!FDIR_FLTR_SUPPORT(adapter))
1157 return -EOPNOTSUPP;
1158
1159 cmd->data = IAVF_MAX_FDIR_FILTERS;
1160
1161 spin_lock_bh(&adapter->fdir_fltr_lock);
1162
1163 list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1164 if (cnt == cmd->rule_cnt) {
1165 val = -EMSGSIZE;
1166 goto release_lock;
1167 }
1168 rule_locs[cnt] = fltr->loc;
1169 cnt++;
1170 }
1171
1172 release_lock:
1173 spin_unlock_bh(&adapter->fdir_fltr_lock);
1174 if (!val)
1175 cmd->rule_cnt = cnt;
1176
1177 return val;
1178 }
1179
1180 /**
1181 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1182 * @adapter: pointer to the VF adapter structure
1183 * @fsp: pointer to ethtool Rx flow specification
1184 * @fltr: filter structure
1185 */
1186 static int
iavf_add_fdir_fltr_info(struct iavf_adapter * adapter,struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)1187 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1188 struct iavf_fdir_fltr *fltr)
1189 {
1190 u32 flow_type, q_index = 0;
1191 enum virtchnl_action act;
1192 int err;
1193
1194 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1195 act = VIRTCHNL_ACTION_DROP;
1196 } else {
1197 q_index = fsp->ring_cookie;
1198 if (q_index >= adapter->num_active_queues)
1199 return -EINVAL;
1200
1201 act = VIRTCHNL_ACTION_QUEUE;
1202 }
1203
1204 fltr->action = act;
1205 fltr->loc = fsp->location;
1206 fltr->q_index = q_index;
1207
1208 if (fsp->flow_type & FLOW_EXT) {
1209 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1210 sizeof(fltr->ext_data.usr_def));
1211 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1212 sizeof(fltr->ext_mask.usr_def));
1213 }
1214
1215 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1216 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1217
1218 switch (flow_type) {
1219 case TCP_V4_FLOW:
1220 case UDP_V4_FLOW:
1221 case SCTP_V4_FLOW:
1222 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1223 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1224 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1225 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1226 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1227 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1228 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1229 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1230 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1231 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1232 break;
1233 case AH_V4_FLOW:
1234 case ESP_V4_FLOW:
1235 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1236 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1237 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1238 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1239 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1240 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1241 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1242 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1243 break;
1244 case IPV4_USER_FLOW:
1245 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1246 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1247 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1248 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1249 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1250 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1251 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1252 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1253 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1254 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1255 break;
1256 case TCP_V6_FLOW:
1257 case UDP_V6_FLOW:
1258 case SCTP_V6_FLOW:
1259 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1260 sizeof(struct in6_addr));
1261 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1262 sizeof(struct in6_addr));
1263 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1264 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1265 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1266 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1267 sizeof(struct in6_addr));
1268 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1269 sizeof(struct in6_addr));
1270 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1271 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1272 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1273 break;
1274 case AH_V6_FLOW:
1275 case ESP_V6_FLOW:
1276 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1277 sizeof(struct in6_addr));
1278 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1279 sizeof(struct in6_addr));
1280 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1281 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1282 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1283 sizeof(struct in6_addr));
1284 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1285 sizeof(struct in6_addr));
1286 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1287 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1288 break;
1289 case IPV6_USER_FLOW:
1290 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1291 sizeof(struct in6_addr));
1292 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1293 sizeof(struct in6_addr));
1294 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1295 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1296 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1297 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1298 sizeof(struct in6_addr));
1299 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1300 sizeof(struct in6_addr));
1301 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1302 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1303 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1304 break;
1305 case ETHER_FLOW:
1306 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1307 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1308 break;
1309 default:
1310 /* not doing un-parsed flow types */
1311 return -EINVAL;
1312 }
1313
1314 if (iavf_fdir_is_dup_fltr(adapter, fltr))
1315 return -EEXIST;
1316
1317 err = iavf_parse_rx_flow_user_data(fsp, fltr);
1318 if (err)
1319 return err;
1320
1321 return iavf_fill_fdir_add_msg(adapter, fltr);
1322 }
1323
1324 /**
1325 * iavf_add_fdir_ethtool - add Flow Director filter
1326 * @adapter: pointer to the VF adapter structure
1327 * @cmd: command to add Flow Director filter
1328 *
1329 * Returns 0 on success and negative values for failure
1330 */
iavf_add_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1331 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1332 {
1333 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1334 struct iavf_fdir_fltr *fltr;
1335 int count = 50;
1336 int err;
1337
1338 if (!FDIR_FLTR_SUPPORT(adapter))
1339 return -EOPNOTSUPP;
1340
1341 if (fsp->flow_type & FLOW_MAC_EXT)
1342 return -EINVAL;
1343
1344 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1345 dev_err(&adapter->pdev->dev,
1346 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1347 IAVF_MAX_FDIR_FILTERS);
1348 return -ENOSPC;
1349 }
1350
1351 spin_lock_bh(&adapter->fdir_fltr_lock);
1352 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1353 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1354 spin_unlock_bh(&adapter->fdir_fltr_lock);
1355 return -EEXIST;
1356 }
1357 spin_unlock_bh(&adapter->fdir_fltr_lock);
1358
1359 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1360 if (!fltr)
1361 return -ENOMEM;
1362
1363 while (!mutex_trylock(&adapter->crit_lock)) {
1364 if (--count == 0) {
1365 kfree(fltr);
1366 return -EINVAL;
1367 }
1368 udelay(1);
1369 }
1370
1371 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1372 if (err)
1373 goto ret;
1374
1375 spin_lock_bh(&adapter->fdir_fltr_lock);
1376 iavf_fdir_list_add_fltr(adapter, fltr);
1377 adapter->fdir_active_fltr++;
1378 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1379 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1380 spin_unlock_bh(&adapter->fdir_fltr_lock);
1381
1382 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1383
1384 ret:
1385 if (err && fltr)
1386 kfree(fltr);
1387
1388 mutex_unlock(&adapter->crit_lock);
1389 return err;
1390 }
1391
1392 /**
1393 * iavf_del_fdir_ethtool - delete Flow Director filter
1394 * @adapter: pointer to the VF adapter structure
1395 * @cmd: command to delete Flow Director filter
1396 *
1397 * Returns 0 on success and negative values for failure
1398 */
iavf_del_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1399 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1400 {
1401 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1402 struct iavf_fdir_fltr *fltr = NULL;
1403 int err = 0;
1404
1405 if (!FDIR_FLTR_SUPPORT(adapter))
1406 return -EOPNOTSUPP;
1407
1408 spin_lock_bh(&adapter->fdir_fltr_lock);
1409 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1410 if (fltr) {
1411 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1412 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1413 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1414 } else {
1415 err = -EBUSY;
1416 }
1417 } else if (adapter->fdir_active_fltr) {
1418 err = -EINVAL;
1419 }
1420 spin_unlock_bh(&adapter->fdir_fltr_lock);
1421
1422 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1423 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1424
1425 return err;
1426 }
1427
1428 /**
1429 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1430 * @cmd: ethtool rxnfc command
1431 *
1432 * This function parses the rxnfc command and returns intended
1433 * header types for RSS configuration
1434 */
iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc * cmd)1435 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1436 {
1437 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1438
1439 switch (cmd->flow_type) {
1440 case TCP_V4_FLOW:
1441 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1442 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1443 break;
1444 case UDP_V4_FLOW:
1445 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1446 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1447 break;
1448 case SCTP_V4_FLOW:
1449 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1450 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1451 break;
1452 case TCP_V6_FLOW:
1453 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1454 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1455 break;
1456 case UDP_V6_FLOW:
1457 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1458 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1459 break;
1460 case SCTP_V6_FLOW:
1461 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1462 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1463 break;
1464 default:
1465 break;
1466 }
1467
1468 return hdrs;
1469 }
1470
1471 /**
1472 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1473 * @cmd: ethtool rxnfc command
1474 *
1475 * This function parses the rxnfc command and returns intended hash fields for
1476 * RSS configuration
1477 */
iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc * cmd)1478 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1479 {
1480 u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1481
1482 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1483 switch (cmd->flow_type) {
1484 case TCP_V4_FLOW:
1485 case UDP_V4_FLOW:
1486 case SCTP_V4_FLOW:
1487 if (cmd->data & RXH_IP_SRC)
1488 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1489 if (cmd->data & RXH_IP_DST)
1490 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1491 break;
1492 case TCP_V6_FLOW:
1493 case UDP_V6_FLOW:
1494 case SCTP_V6_FLOW:
1495 if (cmd->data & RXH_IP_SRC)
1496 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1497 if (cmd->data & RXH_IP_DST)
1498 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1499 break;
1500 default:
1501 break;
1502 }
1503 }
1504
1505 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1506 switch (cmd->flow_type) {
1507 case TCP_V4_FLOW:
1508 case TCP_V6_FLOW:
1509 if (cmd->data & RXH_L4_B_0_1)
1510 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1511 if (cmd->data & RXH_L4_B_2_3)
1512 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1513 break;
1514 case UDP_V4_FLOW:
1515 case UDP_V6_FLOW:
1516 if (cmd->data & RXH_L4_B_0_1)
1517 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1518 if (cmd->data & RXH_L4_B_2_3)
1519 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1520 break;
1521 case SCTP_V4_FLOW:
1522 case SCTP_V6_FLOW:
1523 if (cmd->data & RXH_L4_B_0_1)
1524 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1525 if (cmd->data & RXH_L4_B_2_3)
1526 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1527 break;
1528 default:
1529 break;
1530 }
1531 }
1532
1533 return hfld;
1534 }
1535
1536 /**
1537 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1538 * @adapter: pointer to the VF adapter structure
1539 * @cmd: ethtool rxnfc command
1540 *
1541 * Returns Success if the flow input set is supported.
1542 */
1543 static int
iavf_set_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1544 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1545 struct ethtool_rxnfc *cmd)
1546 {
1547 struct iavf_adv_rss *rss_old, *rss_new;
1548 bool rss_new_add = false;
1549 int count = 50, err = 0;
1550 u64 hash_flds;
1551 u32 hdrs;
1552
1553 if (!ADV_RSS_SUPPORT(adapter))
1554 return -EOPNOTSUPP;
1555
1556 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1557 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1558 return -EINVAL;
1559
1560 hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1561 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1562 return -EINVAL;
1563
1564 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1565 if (!rss_new)
1566 return -ENOMEM;
1567
1568 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1569 kfree(rss_new);
1570 return -EINVAL;
1571 }
1572
1573 while (!mutex_trylock(&adapter->crit_lock)) {
1574 if (--count == 0) {
1575 kfree(rss_new);
1576 return -EINVAL;
1577 }
1578
1579 udelay(1);
1580 }
1581
1582 spin_lock_bh(&adapter->adv_rss_lock);
1583 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1584 if (rss_old) {
1585 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1586 err = -EBUSY;
1587 } else if (rss_old->hash_flds != hash_flds) {
1588 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1589 rss_old->hash_flds = hash_flds;
1590 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1591 sizeof(rss_new->cfg_msg));
1592 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1593 } else {
1594 err = -EEXIST;
1595 }
1596 } else {
1597 rss_new_add = true;
1598 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1599 rss_new->packet_hdrs = hdrs;
1600 rss_new->hash_flds = hash_flds;
1601 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1602 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1603 }
1604 spin_unlock_bh(&adapter->adv_rss_lock);
1605
1606 if (!err)
1607 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1608
1609 mutex_unlock(&adapter->crit_lock);
1610
1611 if (!rss_new_add)
1612 kfree(rss_new);
1613
1614 return err;
1615 }
1616
1617 /**
1618 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1619 * @adapter: pointer to the VF adapter structure
1620 * @cmd: ethtool rxnfc command
1621 *
1622 * Returns Success if the flow input set is supported.
1623 */
1624 static int
iavf_get_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1625 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1626 struct ethtool_rxnfc *cmd)
1627 {
1628 struct iavf_adv_rss *rss;
1629 u64 hash_flds;
1630 u32 hdrs;
1631
1632 if (!ADV_RSS_SUPPORT(adapter))
1633 return -EOPNOTSUPP;
1634
1635 cmd->data = 0;
1636
1637 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1638 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1639 return -EINVAL;
1640
1641 spin_lock_bh(&adapter->adv_rss_lock);
1642 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1643 if (rss)
1644 hash_flds = rss->hash_flds;
1645 else
1646 hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1647 spin_unlock_bh(&adapter->adv_rss_lock);
1648
1649 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1650 return -EINVAL;
1651
1652 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1653 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1654 cmd->data |= (u64)RXH_IP_SRC;
1655
1656 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1657 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1658 cmd->data |= (u64)RXH_IP_DST;
1659
1660 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1661 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1662 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1663 cmd->data |= (u64)RXH_L4_B_0_1;
1664
1665 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1666 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1667 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1668 cmd->data |= (u64)RXH_L4_B_2_3;
1669
1670 return 0;
1671 }
1672
1673 /**
1674 * iavf_set_rxnfc - command to set Rx flow rules.
1675 * @netdev: network interface device structure
1676 * @cmd: ethtool rxnfc command
1677 *
1678 * Returns 0 for success and negative values for errors
1679 */
iavf_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)1680 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1681 {
1682 struct iavf_adapter *adapter = netdev_priv(netdev);
1683 int ret = -EOPNOTSUPP;
1684
1685 switch (cmd->cmd) {
1686 case ETHTOOL_SRXCLSRLINS:
1687 ret = iavf_add_fdir_ethtool(adapter, cmd);
1688 break;
1689 case ETHTOOL_SRXCLSRLDEL:
1690 ret = iavf_del_fdir_ethtool(adapter, cmd);
1691 break;
1692 case ETHTOOL_SRXFH:
1693 ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1694 break;
1695 default:
1696 break;
1697 }
1698
1699 return ret;
1700 }
1701
1702 /**
1703 * iavf_get_rxnfc - command to get RX flow classification rules
1704 * @netdev: network interface device structure
1705 * @cmd: ethtool rxnfc command
1706 * @rule_locs: pointer to store rule locations
1707 *
1708 * Returns Success if the command is supported.
1709 **/
iavf_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1710 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1711 u32 *rule_locs)
1712 {
1713 struct iavf_adapter *adapter = netdev_priv(netdev);
1714 int ret = -EOPNOTSUPP;
1715
1716 switch (cmd->cmd) {
1717 case ETHTOOL_GRXRINGS:
1718 cmd->data = adapter->num_active_queues;
1719 ret = 0;
1720 break;
1721 case ETHTOOL_GRXCLSRLCNT:
1722 if (!FDIR_FLTR_SUPPORT(adapter))
1723 break;
1724 cmd->rule_cnt = adapter->fdir_active_fltr;
1725 cmd->data = IAVF_MAX_FDIR_FILTERS;
1726 ret = 0;
1727 break;
1728 case ETHTOOL_GRXCLSRULE:
1729 ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1730 break;
1731 case ETHTOOL_GRXCLSRLALL:
1732 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1733 break;
1734 case ETHTOOL_GRXFH:
1735 ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1736 break;
1737 default:
1738 break;
1739 }
1740
1741 return ret;
1742 }
1743 /**
1744 * iavf_get_channels: get the number of channels supported by the device
1745 * @netdev: network interface device structure
1746 * @ch: channel information structure
1747 *
1748 * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1749 * queue pair. Report one extra channel to match our "other" MSI-X vector.
1750 **/
iavf_get_channels(struct net_device * netdev,struct ethtool_channels * ch)1751 static void iavf_get_channels(struct net_device *netdev,
1752 struct ethtool_channels *ch)
1753 {
1754 struct iavf_adapter *adapter = netdev_priv(netdev);
1755
1756 /* Report maximum channels */
1757 ch->max_combined = adapter->vsi_res->num_queue_pairs;
1758
1759 ch->max_other = NONQ_VECS;
1760 ch->other_count = NONQ_VECS;
1761
1762 ch->combined_count = adapter->num_active_queues;
1763 }
1764
1765 /**
1766 * iavf_set_channels: set the new channel count
1767 * @netdev: network interface device structure
1768 * @ch: channel information structure
1769 *
1770 * Negotiate a new number of channels with the PF then do a reset. During
1771 * reset we'll realloc queues and fix the RSS table. Returns 0 on success,
1772 * negative on failure.
1773 **/
iavf_set_channels(struct net_device * netdev,struct ethtool_channels * ch)1774 static int iavf_set_channels(struct net_device *netdev,
1775 struct ethtool_channels *ch)
1776 {
1777 struct iavf_adapter *adapter = netdev_priv(netdev);
1778 u32 num_req = ch->combined_count;
1779
1780 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1781 adapter->num_tc) {
1782 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1783 return -EINVAL;
1784 }
1785
1786 /* All of these should have already been checked by ethtool before this
1787 * even gets to us, but just to be sure.
1788 */
1789 if (num_req > adapter->vsi_res->num_queue_pairs)
1790 return -EINVAL;
1791
1792 if (num_req == adapter->num_active_queues)
1793 return 0;
1794
1795 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1796 return -EINVAL;
1797
1798 adapter->num_req_queues = num_req;
1799 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1800 iavf_schedule_reset(adapter);
1801 return 0;
1802 }
1803
1804 /**
1805 * iavf_get_rxfh_key_size - get the RSS hash key size
1806 * @netdev: network interface device structure
1807 *
1808 * Returns the table size.
1809 **/
iavf_get_rxfh_key_size(struct net_device * netdev)1810 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1811 {
1812 struct iavf_adapter *adapter = netdev_priv(netdev);
1813
1814 return adapter->rss_key_size;
1815 }
1816
1817 /**
1818 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1819 * @netdev: network interface device structure
1820 *
1821 * Returns the table size.
1822 **/
iavf_get_rxfh_indir_size(struct net_device * netdev)1823 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1824 {
1825 struct iavf_adapter *adapter = netdev_priv(netdev);
1826
1827 return adapter->rss_lut_size;
1828 }
1829
1830 /**
1831 * iavf_get_rxfh - get the rx flow hash indirection table
1832 * @netdev: network interface device structure
1833 * @indir: indirection table
1834 * @key: hash key
1835 * @hfunc: hash function in use
1836 *
1837 * Reads the indirection table directly from the hardware. Always returns 0.
1838 **/
iavf_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)1839 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1840 u8 *hfunc)
1841 {
1842 struct iavf_adapter *adapter = netdev_priv(netdev);
1843 u16 i;
1844
1845 if (hfunc)
1846 *hfunc = ETH_RSS_HASH_TOP;
1847 if (!indir)
1848 return 0;
1849
1850 memcpy(key, adapter->rss_key, adapter->rss_key_size);
1851
1852 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1853 for (i = 0; i < adapter->rss_lut_size; i++)
1854 indir[i] = (u32)adapter->rss_lut[i];
1855
1856 return 0;
1857 }
1858
1859 /**
1860 * iavf_set_rxfh - set the rx flow hash indirection table
1861 * @netdev: network interface device structure
1862 * @indir: indirection table
1863 * @key: hash key
1864 * @hfunc: hash function to use
1865 *
1866 * Returns -EINVAL if the table specifies an inavlid queue id, otherwise
1867 * returns 0 after programming the table.
1868 **/
iavf_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)1869 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1870 const u8 *key, const u8 hfunc)
1871 {
1872 struct iavf_adapter *adapter = netdev_priv(netdev);
1873 u16 i;
1874
1875 /* We do not allow change in unsupported parameters */
1876 if (key ||
1877 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1878 return -EOPNOTSUPP;
1879 if (!indir)
1880 return 0;
1881
1882 if (key)
1883 memcpy(adapter->rss_key, key, adapter->rss_key_size);
1884
1885 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1886 for (i = 0; i < adapter->rss_lut_size; i++)
1887 adapter->rss_lut[i] = (u8)(indir[i]);
1888
1889 return iavf_config_rss(adapter);
1890 }
1891
1892 static const struct ethtool_ops iavf_ethtool_ops = {
1893 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1894 ETHTOOL_COALESCE_MAX_FRAMES |
1895 ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
1896 ETHTOOL_COALESCE_USE_ADAPTIVE,
1897 .get_drvinfo = iavf_get_drvinfo,
1898 .get_link = ethtool_op_get_link,
1899 .get_ringparam = iavf_get_ringparam,
1900 .set_ringparam = iavf_set_ringparam,
1901 .get_strings = iavf_get_strings,
1902 .get_ethtool_stats = iavf_get_ethtool_stats,
1903 .get_sset_count = iavf_get_sset_count,
1904 .get_priv_flags = iavf_get_priv_flags,
1905 .set_priv_flags = iavf_set_priv_flags,
1906 .get_msglevel = iavf_get_msglevel,
1907 .set_msglevel = iavf_set_msglevel,
1908 .get_coalesce = iavf_get_coalesce,
1909 .set_coalesce = iavf_set_coalesce,
1910 .get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1911 .set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1912 .set_rxnfc = iavf_set_rxnfc,
1913 .get_rxnfc = iavf_get_rxnfc,
1914 .get_rxfh_indir_size = iavf_get_rxfh_indir_size,
1915 .get_rxfh = iavf_get_rxfh,
1916 .set_rxfh = iavf_set_rxfh,
1917 .get_channels = iavf_get_channels,
1918 .set_channels = iavf_set_channels,
1919 .get_rxfh_key_size = iavf_get_rxfh_key_size,
1920 .get_link_ksettings = iavf_get_link_ksettings,
1921 };
1922
1923 /**
1924 * iavf_set_ethtool_ops - Initialize ethtool ops struct
1925 * @netdev: network interface device structure
1926 *
1927 * Sets ethtool ops struct in our netdev so that ethtool can call
1928 * our functions.
1929 **/
iavf_set_ethtool_ops(struct net_device * netdev)1930 void iavf_set_ethtool_ops(struct net_device *netdev)
1931 {
1932 netdev->ethtool_ops = &iavf_ethtool_ops;
1933 }
1934