1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/i2c/busses/i2c-tegra.c
4 *
5 * Copyright (C) 2010 Google, Inc.
6 * Author: Colin Cross <ccross@android.com>
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/kernel.h>
22 #include <linux/ktime.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29
30 #define BYTES_PER_FIFO_WORD 4
31
32 #define I2C_CNFG 0x000
33 #define I2C_CNFG_DEBOUNCE_CNT GENMASK(14, 12)
34 #define I2C_CNFG_PACKET_MODE_EN BIT(10)
35 #define I2C_CNFG_NEW_MASTER_FSM BIT(11)
36 #define I2C_CNFG_MULTI_MASTER_MODE BIT(17)
37 #define I2C_STATUS 0x01c
38 #define I2C_SL_CNFG 0x020
39 #define I2C_SL_CNFG_NACK BIT(1)
40 #define I2C_SL_CNFG_NEWSL BIT(2)
41 #define I2C_SL_ADDR1 0x02c
42 #define I2C_SL_ADDR2 0x030
43 #define I2C_TLOW_SEXT 0x034
44 #define I2C_TX_FIFO 0x050
45 #define I2C_RX_FIFO 0x054
46 #define I2C_PACKET_TRANSFER_STATUS 0x058
47 #define I2C_FIFO_CONTROL 0x05c
48 #define I2C_FIFO_CONTROL_TX_FLUSH BIT(1)
49 #define I2C_FIFO_CONTROL_RX_FLUSH BIT(0)
50 #define I2C_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 5)
51 #define I2C_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 2)
52 #define I2C_FIFO_STATUS 0x060
53 #define I2C_FIFO_STATUS_TX GENMASK(7, 4)
54 #define I2C_FIFO_STATUS_RX GENMASK(3, 0)
55 #define I2C_INT_MASK 0x064
56 #define I2C_INT_STATUS 0x068
57 #define I2C_INT_BUS_CLR_DONE BIT(11)
58 #define I2C_INT_PACKET_XFER_COMPLETE BIT(7)
59 #define I2C_INT_NO_ACK BIT(3)
60 #define I2C_INT_ARBITRATION_LOST BIT(2)
61 #define I2C_INT_TX_FIFO_DATA_REQ BIT(1)
62 #define I2C_INT_RX_FIFO_DATA_REQ BIT(0)
63 #define I2C_CLK_DIVISOR 0x06c
64 #define I2C_CLK_DIVISOR_STD_FAST_MODE GENMASK(31, 16)
65 #define I2C_CLK_DIVISOR_HSMODE GENMASK(15, 0)
66
67 #define DVC_CTRL_REG1 0x000
68 #define DVC_CTRL_REG1_INTR_EN BIT(10)
69 #define DVC_CTRL_REG3 0x008
70 #define DVC_CTRL_REG3_SW_PROG BIT(26)
71 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN BIT(30)
72 #define DVC_STATUS 0x00c
73 #define DVC_STATUS_I2C_DONE_INTR BIT(30)
74
75 #define I2C_ERR_NONE 0x00
76 #define I2C_ERR_NO_ACK BIT(0)
77 #define I2C_ERR_ARBITRATION_LOST BIT(1)
78 #define I2C_ERR_UNKNOWN_INTERRUPT BIT(2)
79 #define I2C_ERR_RX_BUFFER_OVERFLOW BIT(3)
80
81 #define PACKET_HEADER0_HEADER_SIZE GENMASK(29, 28)
82 #define PACKET_HEADER0_PACKET_ID GENMASK(23, 16)
83 #define PACKET_HEADER0_CONT_ID GENMASK(15, 12)
84 #define PACKET_HEADER0_PROTOCOL GENMASK(7, 4)
85 #define PACKET_HEADER0_PROTOCOL_I2C 1
86
87 #define I2C_HEADER_CONT_ON_NAK BIT(21)
88 #define I2C_HEADER_READ BIT(19)
89 #define I2C_HEADER_10BIT_ADDR BIT(18)
90 #define I2C_HEADER_IE_ENABLE BIT(17)
91 #define I2C_HEADER_REPEAT_START BIT(16)
92 #define I2C_HEADER_CONTINUE_XFER BIT(15)
93 #define I2C_HEADER_SLAVE_ADDR_SHIFT 1
94
95 #define I2C_BUS_CLEAR_CNFG 0x084
96 #define I2C_BC_SCLK_THRESHOLD GENMASK(23, 16)
97 #define I2C_BC_STOP_COND BIT(2)
98 #define I2C_BC_TERMINATE BIT(1)
99 #define I2C_BC_ENABLE BIT(0)
100 #define I2C_BUS_CLEAR_STATUS 0x088
101 #define I2C_BC_STATUS BIT(0)
102
103 #define I2C_CONFIG_LOAD 0x08c
104 #define I2C_MSTR_CONFIG_LOAD BIT(0)
105
106 #define I2C_CLKEN_OVERRIDE 0x090
107 #define I2C_MST_CORE_CLKEN_OVR BIT(0)
108
109 #define I2C_INTERFACE_TIMING_0 0x094
110 #define I2C_INTERFACE_TIMING_THIGH GENMASK(13, 8)
111 #define I2C_INTERFACE_TIMING_TLOW GENMASK(5, 0)
112 #define I2C_INTERFACE_TIMING_1 0x098
113 #define I2C_INTERFACE_TIMING_TBUF GENMASK(29, 24)
114 #define I2C_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
115 #define I2C_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
116 #define I2C_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
117
118 #define I2C_HS_INTERFACE_TIMING_0 0x09c
119 #define I2C_HS_INTERFACE_TIMING_THIGH GENMASK(13, 8)
120 #define I2C_HS_INTERFACE_TIMING_TLOW GENMASK(5, 0)
121 #define I2C_HS_INTERFACE_TIMING_1 0x0a0
122 #define I2C_HS_INTERFACE_TIMING_TSU_STO GENMASK(21, 16)
123 #define I2C_HS_INTERFACE_TIMING_THD_STA GENMASK(13, 8)
124 #define I2C_HS_INTERFACE_TIMING_TSU_STA GENMASK(5, 0)
125
126 #define I2C_MST_FIFO_CONTROL 0x0b4
127 #define I2C_MST_FIFO_CONTROL_RX_FLUSH BIT(0)
128 #define I2C_MST_FIFO_CONTROL_TX_FLUSH BIT(1)
129 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x) (((x) - 1) << 4)
130 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x) (((x) - 1) << 16)
131
132 #define I2C_MST_FIFO_STATUS 0x0b8
133 #define I2C_MST_FIFO_STATUS_TX GENMASK(23, 16)
134 #define I2C_MST_FIFO_STATUS_RX GENMASK(7, 0)
135
136 /* configuration load timeout in microseconds */
137 #define I2C_CONFIG_LOAD_TIMEOUT 1000000
138
139 /* packet header size in bytes */
140 #define I2C_PACKET_HEADER_SIZE 12
141
142 /*
143 * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
144 * avoid DMA overhead, otherwise external APB DMA controller will be used.
145 * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
146 * I2C_PACKET_HEADER_SIZE.
147 */
148 #define I2C_PIO_MODE_PREFERRED_LEN 32
149
150 /*
151 * msg_end_type: The bus control which needs to be sent at end of transfer.
152 * @MSG_END_STOP: Send stop pulse.
153 * @MSG_END_REPEAT_START: Send repeat-start.
154 * @MSG_END_CONTINUE: Don't send stop or repeat-start.
155 */
156 enum msg_end_type {
157 MSG_END_STOP,
158 MSG_END_REPEAT_START,
159 MSG_END_CONTINUE,
160 };
161
162 /**
163 * struct tegra_i2c_hw_feature : per hardware generation features
164 * @has_continue_xfer_support: continue-transfer supported
165 * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
166 * completion interrupt on per packet basis.
167 * @has_config_load_reg: Has the config load register to load the new
168 * configuration.
169 * @clk_divisor_hs_mode: Clock divisor in HS mode.
170 * @clk_divisor_std_mode: Clock divisor in standard mode. It is
171 * applicable if there is no fast clock source i.e. single clock
172 * source.
173 * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
174 * applicable if there is no fast clock source i.e. single clock
175 * source.
176 * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
177 * applicable if there is no fast clock source (i.e. single
178 * clock source).
179 * @has_multi_master_mode: The I2C controller supports running in single-master
180 * or multi-master mode.
181 * @has_slcg_override_reg: The I2C controller supports a register that
182 * overrides the second level clock gating.
183 * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
184 * provides additional features and allows for longer messages to
185 * be transferred in one go.
186 * @quirks: I2C adapter quirks for limiting write/read transfer size and not
187 * allowing 0 length transfers.
188 * @supports_bus_clear: Bus Clear support to recover from bus hang during
189 * SDA stuck low from device for some unknown reasons.
190 * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
191 * @tlow_std_mode: Low period of the clock in standard mode.
192 * @thigh_std_mode: High period of the clock in standard mode.
193 * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
194 * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
195 * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
196 * in standard mode.
197 * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
198 * conditions in fast/fast-plus modes.
199 * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
200 * in HS mode.
201 * @has_interface_timing_reg: Has interface timing register to program the tuned
202 * timing settings.
203 */
204 struct tegra_i2c_hw_feature {
205 bool has_continue_xfer_support;
206 bool has_per_pkt_xfer_complete_irq;
207 bool has_config_load_reg;
208 u32 clk_divisor_hs_mode;
209 u32 clk_divisor_std_mode;
210 u32 clk_divisor_fast_mode;
211 u32 clk_divisor_fast_plus_mode;
212 bool has_multi_master_mode;
213 bool has_slcg_override_reg;
214 bool has_mst_fifo;
215 const struct i2c_adapter_quirks *quirks;
216 bool supports_bus_clear;
217 bool has_apb_dma;
218 u32 tlow_std_mode;
219 u32 thigh_std_mode;
220 u32 tlow_fast_fastplus_mode;
221 u32 thigh_fast_fastplus_mode;
222 u32 setup_hold_time_std_mode;
223 u32 setup_hold_time_fast_fast_plus_mode;
224 u32 setup_hold_time_hs_mode;
225 bool has_interface_timing_reg;
226 };
227
228 /**
229 * struct tegra_i2c_dev - per device I2C context
230 * @dev: device reference for power management
231 * @hw: Tegra I2C HW feature
232 * @adapter: core I2C layer adapter information
233 * @div_clk: clock reference for div clock of I2C controller
234 * @clocks: array of I2C controller clocks
235 * @nclocks: number of clocks in the array
236 * @rst: reset control for the I2C controller
237 * @base: ioremapped registers cookie
238 * @base_phys: physical base address of the I2C controller
239 * @cont_id: I2C controller ID, used for packet header
240 * @irq: IRQ number of transfer complete interrupt
241 * @is_dvc: identifies the DVC I2C controller, has a different register layout
242 * @is_vi: identifies the VI I2C controller, has a different register layout
243 * @msg_complete: transfer completion notifier
244 * @msg_err: error code for completed message
245 * @msg_buf: pointer to current message data
246 * @msg_buf_remaining: size of unsent data in the message buffer
247 * @msg_read: indicates that the transfer is a read access
248 * @bus_clk_rate: current I2C bus clock rate
249 * @multimaster_mode: indicates that I2C controller is in multi-master mode
250 * @tx_dma_chan: DMA transmit channel
251 * @rx_dma_chan: DMA receive channel
252 * @dma_phys: handle to DMA resources
253 * @dma_buf: pointer to allocated DMA buffer
254 * @dma_buf_size: DMA buffer size
255 * @dma_mode: indicates active DMA transfer
256 * @dma_complete: DMA completion notifier
257 * @atomic_mode: indicates active atomic transfer
258 */
259 struct tegra_i2c_dev {
260 struct device *dev;
261 struct i2c_adapter adapter;
262
263 const struct tegra_i2c_hw_feature *hw;
264 struct reset_control *rst;
265 unsigned int cont_id;
266 unsigned int irq;
267
268 phys_addr_t base_phys;
269 void __iomem *base;
270
271 struct clk_bulk_data clocks[2];
272 unsigned int nclocks;
273
274 struct clk *div_clk;
275 u32 bus_clk_rate;
276
277 struct completion msg_complete;
278 size_t msg_buf_remaining;
279 int msg_err;
280 u8 *msg_buf;
281
282 struct completion dma_complete;
283 struct dma_chan *tx_dma_chan;
284 struct dma_chan *rx_dma_chan;
285 unsigned int dma_buf_size;
286 dma_addr_t dma_phys;
287 void *dma_buf;
288
289 bool multimaster_mode;
290 bool atomic_mode;
291 bool dma_mode;
292 bool msg_read;
293 bool is_dvc;
294 bool is_vi;
295 };
296
dvc_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)297 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
298 unsigned int reg)
299 {
300 writel_relaxed(val, i2c_dev->base + reg);
301 }
302
dvc_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)303 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
304 {
305 return readl_relaxed(i2c_dev->base + reg);
306 }
307
308 /*
309 * If necessary, i2c_writel() and i2c_readl() will offset the register
310 * in order to talk to the I2C block inside the DVC block.
311 */
tegra_i2c_reg_addr(struct tegra_i2c_dev * i2c_dev,unsigned int reg)312 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
313 {
314 if (i2c_dev->is_dvc)
315 reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
316 else if (i2c_dev->is_vi)
317 reg = 0xc00 + (reg << 2);
318
319 return reg;
320 }
321
i2c_writel(struct tegra_i2c_dev * i2c_dev,u32 val,unsigned int reg)322 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
323 {
324 writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
325
326 /* read back register to make sure that register writes completed */
327 if (reg != I2C_TX_FIFO)
328 readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
329 }
330
i2c_readl(struct tegra_i2c_dev * i2c_dev,unsigned int reg)331 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
332 {
333 return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 }
335
i2c_writesl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)336 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
337 unsigned int reg, unsigned int len)
338 {
339 writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
340 }
341
i2c_readsl(struct tegra_i2c_dev * i2c_dev,void * data,unsigned int reg,unsigned int len)342 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
343 unsigned int reg, unsigned int len)
344 {
345 readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
346 }
347
tegra_i2c_mask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)348 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
349 {
350 u32 int_mask;
351
352 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
353 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
354 }
355
tegra_i2c_unmask_irq(struct tegra_i2c_dev * i2c_dev,u32 mask)356 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
357 {
358 u32 int_mask;
359
360 int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
361 i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
362 }
363
tegra_i2c_dma_complete(void * args)364 static void tegra_i2c_dma_complete(void *args)
365 {
366 struct tegra_i2c_dev *i2c_dev = args;
367
368 complete(&i2c_dev->dma_complete);
369 }
370
tegra_i2c_dma_submit(struct tegra_i2c_dev * i2c_dev,size_t len)371 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
372 {
373 struct dma_async_tx_descriptor *dma_desc;
374 enum dma_transfer_direction dir;
375 struct dma_chan *chan;
376
377 dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
378
379 reinit_completion(&i2c_dev->dma_complete);
380
381 dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
382 chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
383
384 dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
385 len, dir, DMA_PREP_INTERRUPT |
386 DMA_CTRL_ACK);
387 if (!dma_desc) {
388 dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
389 i2c_dev->msg_read ? "RX" : "TX");
390 return -EINVAL;
391 }
392
393 dma_desc->callback = tegra_i2c_dma_complete;
394 dma_desc->callback_param = i2c_dev;
395
396 dmaengine_submit(dma_desc);
397 dma_async_issue_pending(chan);
398
399 return 0;
400 }
401
tegra_i2c_release_dma(struct tegra_i2c_dev * i2c_dev)402 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
403 {
404 if (i2c_dev->dma_buf) {
405 dma_free_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
406 i2c_dev->dma_buf, i2c_dev->dma_phys);
407 i2c_dev->dma_buf = NULL;
408 }
409
410 if (i2c_dev->tx_dma_chan) {
411 dma_release_channel(i2c_dev->tx_dma_chan);
412 i2c_dev->tx_dma_chan = NULL;
413 }
414
415 if (i2c_dev->rx_dma_chan) {
416 dma_release_channel(i2c_dev->rx_dma_chan);
417 i2c_dev->rx_dma_chan = NULL;
418 }
419 }
420
tegra_i2c_init_dma(struct tegra_i2c_dev * i2c_dev)421 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
422 {
423 struct dma_chan *chan;
424 dma_addr_t dma_phys;
425 u32 *dma_buf;
426 int err;
427
428 if (!i2c_dev->hw->has_apb_dma || i2c_dev->is_vi)
429 return 0;
430
431 if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
432 dev_dbg(i2c_dev->dev, "DMA support not enabled\n");
433 return 0;
434 }
435
436 chan = dma_request_chan(i2c_dev->dev, "rx");
437 if (IS_ERR(chan)) {
438 err = PTR_ERR(chan);
439 goto err_out;
440 }
441
442 i2c_dev->rx_dma_chan = chan;
443
444 chan = dma_request_chan(i2c_dev->dev, "tx");
445 if (IS_ERR(chan)) {
446 err = PTR_ERR(chan);
447 goto err_out;
448 }
449
450 i2c_dev->tx_dma_chan = chan;
451
452 i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
453 I2C_PACKET_HEADER_SIZE;
454
455 dma_buf = dma_alloc_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
456 &dma_phys, GFP_KERNEL | __GFP_NOWARN);
457 if (!dma_buf) {
458 dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
459 err = -ENOMEM;
460 goto err_out;
461 }
462
463 i2c_dev->dma_buf = dma_buf;
464 i2c_dev->dma_phys = dma_phys;
465
466 return 0;
467
468 err_out:
469 tegra_i2c_release_dma(i2c_dev);
470 if (err != -EPROBE_DEFER) {
471 dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
472 dev_err(i2c_dev->dev, "falling back to PIO\n");
473 return 0;
474 }
475
476 return err;
477 }
478
479 /*
480 * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
481 * block. This block is identical to the rest of the I2C blocks, except that
482 * it only supports master mode, it has registers moved around, and it needs
483 * some extra init to get it into I2C mode. The register moves are handled
484 * by i2c_readl() and i2c_writel().
485 */
tegra_dvc_init(struct tegra_i2c_dev * i2c_dev)486 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
487 {
488 u32 val;
489
490 val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
491 val |= DVC_CTRL_REG3_SW_PROG;
492 val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
493 dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
494
495 val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
496 val |= DVC_CTRL_REG1_INTR_EN;
497 dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
498 }
499
tegra_i2c_vi_init(struct tegra_i2c_dev * i2c_dev)500 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
501 {
502 u32 value;
503
504 value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
505 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
506 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
507
508 value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
509 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
510 FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
511 FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
512 i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
513
514 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
515 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
516 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
517
518 value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
519 FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
520 FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
521 i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
522
523 value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
524 i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
525
526 i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
527 }
528
tegra_i2c_poll_register(struct tegra_i2c_dev * i2c_dev,u32 reg,u32 mask,u32 delay_us,u32 timeout_us)529 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
530 u32 reg, u32 mask, u32 delay_us,
531 u32 timeout_us)
532 {
533 void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
534 u32 val;
535
536 if (!i2c_dev->atomic_mode)
537 return readl_relaxed_poll_timeout(addr, val, !(val & mask),
538 delay_us, timeout_us);
539
540 return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
541 delay_us, timeout_us);
542 }
543
tegra_i2c_flush_fifos(struct tegra_i2c_dev * i2c_dev)544 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
545 {
546 u32 mask, val, offset;
547 int err;
548
549 if (i2c_dev->hw->has_mst_fifo) {
550 mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
551 I2C_MST_FIFO_CONTROL_RX_FLUSH;
552 offset = I2C_MST_FIFO_CONTROL;
553 } else {
554 mask = I2C_FIFO_CONTROL_TX_FLUSH |
555 I2C_FIFO_CONTROL_RX_FLUSH;
556 offset = I2C_FIFO_CONTROL;
557 }
558
559 val = i2c_readl(i2c_dev, offset);
560 val |= mask;
561 i2c_writel(i2c_dev, val, offset);
562
563 err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
564 if (err) {
565 dev_err(i2c_dev->dev, "failed to flush FIFO\n");
566 return err;
567 }
568
569 return 0;
570 }
571
tegra_i2c_wait_for_config_load(struct tegra_i2c_dev * i2c_dev)572 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
573 {
574 int err;
575
576 if (!i2c_dev->hw->has_config_load_reg)
577 return 0;
578
579 i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
580
581 err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
582 1000, I2C_CONFIG_LOAD_TIMEOUT);
583 if (err) {
584 dev_err(i2c_dev->dev, "failed to load config\n");
585 return err;
586 }
587
588 return 0;
589 }
590
tegra_i2c_init(struct tegra_i2c_dev * i2c_dev)591 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
592 {
593 u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
594 int err;
595
596 /*
597 * The reset shouldn't ever fail in practice. The failure will be a
598 * sign of a severe problem that needs to be resolved. Still we don't
599 * want to fail the initialization completely because this may break
600 * kernel boot up since voltage regulators use I2C. Hence, we will
601 * emit a noisy warning on error, which won't stay unnoticed and
602 * won't hose machine entirely.
603 */
604 err = reset_control_reset(i2c_dev->rst);
605 WARN_ON_ONCE(err);
606
607 if (i2c_dev->is_dvc)
608 tegra_dvc_init(i2c_dev);
609
610 val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
611 FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
612
613 if (i2c_dev->hw->has_multi_master_mode)
614 val |= I2C_CNFG_MULTI_MASTER_MODE;
615
616 i2c_writel(i2c_dev, val, I2C_CNFG);
617 i2c_writel(i2c_dev, 0, I2C_INT_MASK);
618
619 if (i2c_dev->is_vi)
620 tegra_i2c_vi_init(i2c_dev);
621
622 switch (i2c_dev->bus_clk_rate) {
623 case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
624 default:
625 tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
626 thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
627 tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
628
629 if (i2c_dev->bus_clk_rate > I2C_MAX_FAST_MODE_FREQ)
630 non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
631 else
632 non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
633 break;
634
635 case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
636 tlow = i2c_dev->hw->tlow_std_mode;
637 thigh = i2c_dev->hw->thigh_std_mode;
638 tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
639 non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
640 break;
641 }
642
643 /* make sure clock divisor programmed correctly */
644 clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
645 i2c_dev->hw->clk_divisor_hs_mode) |
646 FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
647 i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
648
649 if (i2c_dev->hw->has_interface_timing_reg) {
650 val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
651 FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
652 i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
653 }
654
655 /*
656 * Configure setup and hold times only when tsu_thd is non-zero.
657 * Otherwise, preserve the chip default values.
658 */
659 if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
660 i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
661
662 clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
663
664 err = clk_set_rate(i2c_dev->div_clk,
665 i2c_dev->bus_clk_rate * clk_multiplier);
666 if (err) {
667 dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
668 return err;
669 }
670
671 if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
672 u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
673
674 sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
675 i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
676 i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
677 i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
678 }
679
680 err = tegra_i2c_flush_fifos(i2c_dev);
681 if (err)
682 return err;
683
684 if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
685 i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
686
687 err = tegra_i2c_wait_for_config_load(i2c_dev);
688 if (err)
689 return err;
690
691 return 0;
692 }
693
tegra_i2c_disable_packet_mode(struct tegra_i2c_dev * i2c_dev)694 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
695 {
696 u32 cnfg;
697
698 /*
699 * NACK interrupt is generated before the I2C controller generates
700 * the STOP condition on the bus. So, wait for 2 clock periods
701 * before disabling the controller so that the STOP condition has
702 * been delivered properly.
703 */
704 udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->bus_clk_rate));
705
706 cnfg = i2c_readl(i2c_dev, I2C_CNFG);
707 if (cnfg & I2C_CNFG_PACKET_MODE_EN)
708 i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
709
710 return tegra_i2c_wait_for_config_load(i2c_dev);
711 }
712
tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev * i2c_dev)713 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
714 {
715 size_t buf_remaining = i2c_dev->msg_buf_remaining;
716 unsigned int words_to_transfer, rx_fifo_avail;
717 u8 *buf = i2c_dev->msg_buf;
718 u32 val;
719
720 /*
721 * Catch overflow due to message fully sent before the check for
722 * RX FIFO availability.
723 */
724 if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
725 return -EINVAL;
726
727 if (i2c_dev->hw->has_mst_fifo) {
728 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
729 rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
730 } else {
731 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
732 rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
733 }
734
735 /* round down to exclude partial word at the end of buffer */
736 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
737 if (words_to_transfer > rx_fifo_avail)
738 words_to_transfer = rx_fifo_avail;
739
740 i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
741
742 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
743 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
744 rx_fifo_avail -= words_to_transfer;
745
746 /*
747 * If there is a partial word at the end of buffer, handle it
748 * manually to prevent overwriting past the end of buffer.
749 */
750 if (rx_fifo_avail > 0 && buf_remaining > 0) {
751 /*
752 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
753 * when (words_to_transfer was > rx_fifo_avail) earlier
754 * in this function.
755 */
756 val = i2c_readl(i2c_dev, I2C_RX_FIFO);
757 val = cpu_to_le32(val);
758 memcpy(buf, &val, buf_remaining);
759 buf_remaining = 0;
760 rx_fifo_avail--;
761 }
762
763 /* RX FIFO must be drained, otherwise it's an Overflow case. */
764 if (WARN_ON_ONCE(rx_fifo_avail))
765 return -EINVAL;
766
767 i2c_dev->msg_buf_remaining = buf_remaining;
768 i2c_dev->msg_buf = buf;
769
770 return 0;
771 }
772
tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev * i2c_dev)773 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
774 {
775 size_t buf_remaining = i2c_dev->msg_buf_remaining;
776 unsigned int words_to_transfer, tx_fifo_avail;
777 u8 *buf = i2c_dev->msg_buf;
778 u32 val;
779
780 if (i2c_dev->hw->has_mst_fifo) {
781 val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
782 tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
783 } else {
784 val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
785 tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
786 }
787
788 /* round down to exclude partial word at the end of buffer */
789 words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
790
791 /*
792 * This hunk pushes 4 bytes at a time into the TX FIFO.
793 *
794 * It's very common to have < 4 bytes, hence there is no word
795 * to push if we have less than 4 bytes to transfer.
796 */
797 if (words_to_transfer) {
798 if (words_to_transfer > tx_fifo_avail)
799 words_to_transfer = tx_fifo_avail;
800
801 /*
802 * Update state before writing to FIFO. Note that this may
803 * cause us to finish writing all bytes (AKA buf_remaining
804 * goes to 0), hence we have a potential for an interrupt
805 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
806 * is disabled at this point.
807 */
808 buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
809 tx_fifo_avail -= words_to_transfer;
810
811 i2c_dev->msg_buf_remaining = buf_remaining;
812 i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
813
814 i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
815
816 buf += words_to_transfer * BYTES_PER_FIFO_WORD;
817 }
818
819 /*
820 * If there is a partial word at the end of buffer, handle it manually
821 * to prevent reading past the end of buffer, which could cross a page
822 * boundary and fault.
823 */
824 if (tx_fifo_avail > 0 && buf_remaining > 0) {
825 /*
826 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
827 * when (words_to_transfer was > tx_fifo_avail) earlier
828 * in this function for non-zero words_to_transfer.
829 */
830 memcpy(&val, buf, buf_remaining);
831 val = le32_to_cpu(val);
832
833 i2c_dev->msg_buf_remaining = 0;
834 i2c_dev->msg_buf = NULL;
835
836 i2c_writel(i2c_dev, val, I2C_TX_FIFO);
837 }
838
839 return 0;
840 }
841
tegra_i2c_isr(int irq,void * dev_id)842 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
843 {
844 const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
845 struct tegra_i2c_dev *i2c_dev = dev_id;
846 u32 status;
847
848 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
849
850 if (status == 0) {
851 dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
852 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
853 i2c_readl(i2c_dev, I2C_STATUS),
854 i2c_readl(i2c_dev, I2C_CNFG));
855 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
856 goto err;
857 }
858
859 if (status & status_err) {
860 tegra_i2c_disable_packet_mode(i2c_dev);
861 if (status & I2C_INT_NO_ACK)
862 i2c_dev->msg_err |= I2C_ERR_NO_ACK;
863 if (status & I2C_INT_ARBITRATION_LOST)
864 i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
865 goto err;
866 }
867
868 /*
869 * I2C transfer is terminated during the bus clear, so skip
870 * processing the other interrupts.
871 */
872 if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
873 goto err;
874
875 if (!i2c_dev->dma_mode) {
876 if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
877 if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
878 /*
879 * Overflow error condition: message fully sent,
880 * with no XFER_COMPLETE interrupt but hardware
881 * asks to transfer more.
882 */
883 i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
884 goto err;
885 }
886 }
887
888 if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
889 if (i2c_dev->msg_buf_remaining)
890 tegra_i2c_fill_tx_fifo(i2c_dev);
891 else
892 tegra_i2c_mask_irq(i2c_dev,
893 I2C_INT_TX_FIFO_DATA_REQ);
894 }
895 }
896
897 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
898 if (i2c_dev->is_dvc)
899 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
900
901 /*
902 * During message read XFER_COMPLETE interrupt is triggered prior to
903 * DMA completion and during message write XFER_COMPLETE interrupt is
904 * triggered after DMA completion.
905 *
906 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
907 * so forcing msg_buf_remaining to 0 in DMA mode.
908 */
909 if (status & I2C_INT_PACKET_XFER_COMPLETE) {
910 if (i2c_dev->dma_mode)
911 i2c_dev->msg_buf_remaining = 0;
912 /*
913 * Underflow error condition: XFER_COMPLETE before message
914 * fully sent.
915 */
916 if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
917 i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
918 goto err;
919 }
920 complete(&i2c_dev->msg_complete);
921 }
922 goto done;
923 err:
924 /* mask all interrupts on error */
925 tegra_i2c_mask_irq(i2c_dev,
926 I2C_INT_NO_ACK |
927 I2C_INT_ARBITRATION_LOST |
928 I2C_INT_PACKET_XFER_COMPLETE |
929 I2C_INT_TX_FIFO_DATA_REQ |
930 I2C_INT_RX_FIFO_DATA_REQ);
931
932 if (i2c_dev->hw->supports_bus_clear)
933 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
934
935 i2c_writel(i2c_dev, status, I2C_INT_STATUS);
936
937 if (i2c_dev->is_dvc)
938 dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
939
940 if (i2c_dev->dma_mode) {
941 if (i2c_dev->msg_read)
942 dmaengine_terminate_async(i2c_dev->rx_dma_chan);
943 else
944 dmaengine_terminate_async(i2c_dev->tx_dma_chan);
945
946 complete(&i2c_dev->dma_complete);
947 }
948
949 complete(&i2c_dev->msg_complete);
950 done:
951 return IRQ_HANDLED;
952 }
953
tegra_i2c_config_fifo_trig(struct tegra_i2c_dev * i2c_dev,size_t len)954 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
955 size_t len)
956 {
957 struct dma_slave_config slv_config = {0};
958 u32 val, reg, dma_burst, reg_offset;
959 struct dma_chan *chan;
960 int err;
961
962 if (i2c_dev->hw->has_mst_fifo)
963 reg = I2C_MST_FIFO_CONTROL;
964 else
965 reg = I2C_FIFO_CONTROL;
966
967 if (i2c_dev->dma_mode) {
968 if (len & 0xF)
969 dma_burst = 1;
970 else if (len & 0x10)
971 dma_burst = 4;
972 else
973 dma_burst = 8;
974
975 if (i2c_dev->msg_read) {
976 chan = i2c_dev->rx_dma_chan;
977 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
978
979 slv_config.src_addr = i2c_dev->base_phys + reg_offset;
980 slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
981 slv_config.src_maxburst = dma_burst;
982
983 if (i2c_dev->hw->has_mst_fifo)
984 val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
985 else
986 val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
987 } else {
988 chan = i2c_dev->tx_dma_chan;
989 reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
990
991 slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
992 slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
993 slv_config.dst_maxburst = dma_burst;
994
995 if (i2c_dev->hw->has_mst_fifo)
996 val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
997 else
998 val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
999 }
1000
1001 slv_config.device_fc = true;
1002 err = dmaengine_slave_config(chan, &slv_config);
1003 if (err) {
1004 dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1005 dev_err(i2c_dev->dev, "falling back to PIO\n");
1006
1007 tegra_i2c_release_dma(i2c_dev);
1008 i2c_dev->dma_mode = false;
1009 } else {
1010 goto out;
1011 }
1012 }
1013
1014 if (i2c_dev->hw->has_mst_fifo)
1015 val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1016 I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1017 else
1018 val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1019 I2C_FIFO_CONTROL_RX_TRIG(1);
1020 out:
1021 i2c_writel(i2c_dev, val, reg);
1022 }
1023
tegra_i2c_poll_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1024 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1025 struct completion *complete,
1026 unsigned int timeout_ms)
1027 {
1028 ktime_t ktime = ktime_get();
1029 ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1030
1031 do {
1032 u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1033
1034 if (status)
1035 tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1036
1037 if (completion_done(complete)) {
1038 s64 delta = ktime_ms_delta(ktimeout, ktime);
1039
1040 return msecs_to_jiffies(delta) ?: 1;
1041 }
1042
1043 ktime = ktime_get();
1044
1045 } while (ktime_before(ktime, ktimeout));
1046
1047 return 0;
1048 }
1049
tegra_i2c_wait_completion(struct tegra_i2c_dev * i2c_dev,struct completion * complete,unsigned int timeout_ms)1050 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1051 struct completion *complete,
1052 unsigned int timeout_ms)
1053 {
1054 unsigned long ret;
1055
1056 if (i2c_dev->atomic_mode) {
1057 ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1058 } else {
1059 enable_irq(i2c_dev->irq);
1060 ret = wait_for_completion_timeout(complete,
1061 msecs_to_jiffies(timeout_ms));
1062 disable_irq(i2c_dev->irq);
1063
1064 /*
1065 * Under some rare circumstances (like running KASAN +
1066 * NFS root) CPU, which handles interrupt, may stuck in
1067 * uninterruptible state for a significant time. In this
1068 * case we will get timeout if I2C transfer is running on
1069 * a sibling CPU, despite of IRQ being raised.
1070 *
1071 * In order to handle this rare condition, the IRQ status
1072 * needs to be checked after timeout.
1073 */
1074 if (ret == 0)
1075 ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1076 }
1077
1078 return ret;
1079 }
1080
tegra_i2c_issue_bus_clear(struct i2c_adapter * adap)1081 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1082 {
1083 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1084 u32 val, time_left;
1085 int err;
1086
1087 reinit_completion(&i2c_dev->msg_complete);
1088
1089 val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1090 I2C_BC_TERMINATE;
1091 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1092
1093 err = tegra_i2c_wait_for_config_load(i2c_dev);
1094 if (err)
1095 return err;
1096
1097 val |= I2C_BC_ENABLE;
1098 i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1099 tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1100
1101 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1102 tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1103
1104 if (time_left == 0) {
1105 dev_err(i2c_dev->dev, "failed to clear bus\n");
1106 return -ETIMEDOUT;
1107 }
1108
1109 val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1110 if (!(val & I2C_BC_STATUS)) {
1111 dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1112 return -EIO;
1113 }
1114
1115 return -EAGAIN;
1116 }
1117
tegra_i2c_push_packet_header(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1118 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1119 struct i2c_msg *msg,
1120 enum msg_end_type end_state)
1121 {
1122 u32 *dma_buf = i2c_dev->dma_buf;
1123 u32 packet_header;
1124
1125 packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1126 FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1127 PACKET_HEADER0_PROTOCOL_I2C) |
1128 FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1129 FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1130
1131 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1132 *dma_buf++ = packet_header;
1133 else
1134 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1135
1136 packet_header = msg->len - 1;
1137
1138 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1139 *dma_buf++ = packet_header;
1140 else
1141 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1142
1143 packet_header = I2C_HEADER_IE_ENABLE;
1144
1145 if (end_state == MSG_END_CONTINUE)
1146 packet_header |= I2C_HEADER_CONTINUE_XFER;
1147 else if (end_state == MSG_END_REPEAT_START)
1148 packet_header |= I2C_HEADER_REPEAT_START;
1149
1150 if (msg->flags & I2C_M_TEN) {
1151 packet_header |= msg->addr;
1152 packet_header |= I2C_HEADER_10BIT_ADDR;
1153 } else {
1154 packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1155 }
1156
1157 if (msg->flags & I2C_M_IGNORE_NAK)
1158 packet_header |= I2C_HEADER_CONT_ON_NAK;
1159
1160 if (msg->flags & I2C_M_RD)
1161 packet_header |= I2C_HEADER_READ;
1162
1163 if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1164 *dma_buf++ = packet_header;
1165 else
1166 i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1167 }
1168
tegra_i2c_error_recover(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg)1169 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1170 struct i2c_msg *msg)
1171 {
1172 if (i2c_dev->msg_err == I2C_ERR_NONE)
1173 return 0;
1174
1175 tegra_i2c_init(i2c_dev);
1176
1177 /* start recovery upon arbitration loss in single master mode */
1178 if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1179 if (!i2c_dev->multimaster_mode)
1180 return i2c_recover_bus(&i2c_dev->adapter);
1181
1182 return -EAGAIN;
1183 }
1184
1185 if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1186 if (msg->flags & I2C_M_IGNORE_NAK)
1187 return 0;
1188
1189 return -EREMOTEIO;
1190 }
1191
1192 return -EIO;
1193 }
1194
tegra_i2c_xfer_msg(struct tegra_i2c_dev * i2c_dev,struct i2c_msg * msg,enum msg_end_type end_state)1195 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1196 struct i2c_msg *msg,
1197 enum msg_end_type end_state)
1198 {
1199 unsigned long time_left, xfer_time = 100;
1200 size_t xfer_size;
1201 u32 int_mask;
1202 int err;
1203
1204 err = tegra_i2c_flush_fifos(i2c_dev);
1205 if (err)
1206 return err;
1207
1208 i2c_dev->msg_buf = msg->buf;
1209 i2c_dev->msg_buf_remaining = msg->len;
1210 i2c_dev->msg_err = I2C_ERR_NONE;
1211 i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1212 reinit_completion(&i2c_dev->msg_complete);
1213
1214 if (i2c_dev->msg_read)
1215 xfer_size = msg->len;
1216 else
1217 xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1218
1219 xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1220
1221 i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1222 i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1223
1224 tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1225
1226 /*
1227 * Transfer time in mSec = Total bits / transfer rate
1228 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1229 */
1230 xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1231 i2c_dev->bus_clk_rate);
1232
1233 int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1234 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1235
1236 if (i2c_dev->dma_mode) {
1237 if (i2c_dev->msg_read) {
1238 dma_sync_single_for_device(i2c_dev->dev,
1239 i2c_dev->dma_phys,
1240 xfer_size, DMA_FROM_DEVICE);
1241
1242 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1243 if (err)
1244 return err;
1245 } else {
1246 dma_sync_single_for_cpu(i2c_dev->dev,
1247 i2c_dev->dma_phys,
1248 xfer_size, DMA_TO_DEVICE);
1249 }
1250 }
1251
1252 tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1253
1254 if (!i2c_dev->msg_read) {
1255 if (i2c_dev->dma_mode) {
1256 memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1257 msg->buf, msg->len);
1258
1259 dma_sync_single_for_device(i2c_dev->dev,
1260 i2c_dev->dma_phys,
1261 xfer_size, DMA_TO_DEVICE);
1262
1263 err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1264 if (err)
1265 return err;
1266 } else {
1267 tegra_i2c_fill_tx_fifo(i2c_dev);
1268 }
1269 }
1270
1271 if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1272 int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1273
1274 if (!i2c_dev->dma_mode) {
1275 if (msg->flags & I2C_M_RD)
1276 int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1277 else if (i2c_dev->msg_buf_remaining)
1278 int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1279 }
1280
1281 tegra_i2c_unmask_irq(i2c_dev, int_mask);
1282 dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1283 i2c_readl(i2c_dev, I2C_INT_MASK));
1284
1285 if (i2c_dev->dma_mode) {
1286 time_left = tegra_i2c_wait_completion(i2c_dev,
1287 &i2c_dev->dma_complete,
1288 xfer_time);
1289
1290 /*
1291 * Synchronize DMA first, since dmaengine_terminate_sync()
1292 * performs synchronization after the transfer's termination
1293 * and we want to get a completion if transfer succeeded.
1294 */
1295 dmaengine_synchronize(i2c_dev->msg_read ?
1296 i2c_dev->rx_dma_chan :
1297 i2c_dev->tx_dma_chan);
1298
1299 dmaengine_terminate_sync(i2c_dev->msg_read ?
1300 i2c_dev->rx_dma_chan :
1301 i2c_dev->tx_dma_chan);
1302
1303 if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1304 dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1305 tegra_i2c_init(i2c_dev);
1306 return -ETIMEDOUT;
1307 }
1308
1309 if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1310 dma_sync_single_for_cpu(i2c_dev->dev,
1311 i2c_dev->dma_phys,
1312 xfer_size, DMA_FROM_DEVICE);
1313
1314 memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1315 }
1316 }
1317
1318 time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1319 xfer_time);
1320
1321 tegra_i2c_mask_irq(i2c_dev, int_mask);
1322
1323 if (time_left == 0) {
1324 dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1325 tegra_i2c_init(i2c_dev);
1326 return -ETIMEDOUT;
1327 }
1328
1329 dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1330 time_left, completion_done(&i2c_dev->msg_complete),
1331 i2c_dev->msg_err);
1332
1333 i2c_dev->dma_mode = false;
1334
1335 err = tegra_i2c_error_recover(i2c_dev, msg);
1336 if (err)
1337 return err;
1338
1339 return 0;
1340 }
1341
tegra_i2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1342 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1343 int num)
1344 {
1345 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1346 int i, ret;
1347
1348 ret = pm_runtime_get_sync(i2c_dev->dev);
1349 if (ret < 0) {
1350 dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1351 pm_runtime_put_noidle(i2c_dev->dev);
1352 return ret;
1353 }
1354
1355 for (i = 0; i < num; i++) {
1356 enum msg_end_type end_type = MSG_END_STOP;
1357
1358 if (i < (num - 1)) {
1359 /* check whether follow up message is coming */
1360 if (msgs[i + 1].flags & I2C_M_NOSTART)
1361 end_type = MSG_END_CONTINUE;
1362 else
1363 end_type = MSG_END_REPEAT_START;
1364 }
1365 ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1366 if (ret)
1367 break;
1368 }
1369
1370 pm_runtime_put(i2c_dev->dev);
1371
1372 return ret ?: i;
1373 }
1374
tegra_i2c_xfer_atomic(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)1375 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1376 struct i2c_msg msgs[], int num)
1377 {
1378 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1379 int ret;
1380
1381 i2c_dev->atomic_mode = true;
1382 ret = tegra_i2c_xfer(adap, msgs, num);
1383 i2c_dev->atomic_mode = false;
1384
1385 return ret;
1386 }
1387
tegra_i2c_func(struct i2c_adapter * adap)1388 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1389 {
1390 struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1391 u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1392 I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1393
1394 if (i2c_dev->hw->has_continue_xfer_support)
1395 ret |= I2C_FUNC_NOSTART;
1396
1397 return ret;
1398 }
1399
1400 static const struct i2c_algorithm tegra_i2c_algo = {
1401 .master_xfer = tegra_i2c_xfer,
1402 .master_xfer_atomic = tegra_i2c_xfer_atomic,
1403 .functionality = tegra_i2c_func,
1404 };
1405
1406 /* payload size is only 12 bit */
1407 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1408 .flags = I2C_AQ_NO_ZERO_LEN,
1409 .max_read_len = SZ_4K,
1410 .max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1411 };
1412
1413 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1414 .flags = I2C_AQ_NO_ZERO_LEN,
1415 .max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1416 };
1417
1418 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1419 .recover_bus = tegra_i2c_issue_bus_clear,
1420 };
1421
1422 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1423 .has_continue_xfer_support = false,
1424 .has_per_pkt_xfer_complete_irq = false,
1425 .clk_divisor_hs_mode = 3,
1426 .clk_divisor_std_mode = 0,
1427 .clk_divisor_fast_mode = 0,
1428 .clk_divisor_fast_plus_mode = 0,
1429 .has_config_load_reg = false,
1430 .has_multi_master_mode = false,
1431 .has_slcg_override_reg = false,
1432 .has_mst_fifo = false,
1433 .quirks = &tegra_i2c_quirks,
1434 .supports_bus_clear = false,
1435 .has_apb_dma = true,
1436 .tlow_std_mode = 0x4,
1437 .thigh_std_mode = 0x2,
1438 .tlow_fast_fastplus_mode = 0x4,
1439 .thigh_fast_fastplus_mode = 0x2,
1440 .setup_hold_time_std_mode = 0x0,
1441 .setup_hold_time_fast_fast_plus_mode = 0x0,
1442 .setup_hold_time_hs_mode = 0x0,
1443 .has_interface_timing_reg = false,
1444 };
1445
1446 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1447 .has_continue_xfer_support = true,
1448 .has_per_pkt_xfer_complete_irq = false,
1449 .clk_divisor_hs_mode = 3,
1450 .clk_divisor_std_mode = 0,
1451 .clk_divisor_fast_mode = 0,
1452 .clk_divisor_fast_plus_mode = 0,
1453 .has_config_load_reg = false,
1454 .has_multi_master_mode = false,
1455 .has_slcg_override_reg = false,
1456 .has_mst_fifo = false,
1457 .quirks = &tegra_i2c_quirks,
1458 .supports_bus_clear = false,
1459 .has_apb_dma = true,
1460 .tlow_std_mode = 0x4,
1461 .thigh_std_mode = 0x2,
1462 .tlow_fast_fastplus_mode = 0x4,
1463 .thigh_fast_fastplus_mode = 0x2,
1464 .setup_hold_time_std_mode = 0x0,
1465 .setup_hold_time_fast_fast_plus_mode = 0x0,
1466 .setup_hold_time_hs_mode = 0x0,
1467 .has_interface_timing_reg = false,
1468 };
1469
1470 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1471 .has_continue_xfer_support = true,
1472 .has_per_pkt_xfer_complete_irq = true,
1473 .clk_divisor_hs_mode = 1,
1474 .clk_divisor_std_mode = 0x19,
1475 .clk_divisor_fast_mode = 0x19,
1476 .clk_divisor_fast_plus_mode = 0x10,
1477 .has_config_load_reg = false,
1478 .has_multi_master_mode = false,
1479 .has_slcg_override_reg = false,
1480 .has_mst_fifo = false,
1481 .quirks = &tegra_i2c_quirks,
1482 .supports_bus_clear = true,
1483 .has_apb_dma = true,
1484 .tlow_std_mode = 0x4,
1485 .thigh_std_mode = 0x2,
1486 .tlow_fast_fastplus_mode = 0x4,
1487 .thigh_fast_fastplus_mode = 0x2,
1488 .setup_hold_time_std_mode = 0x0,
1489 .setup_hold_time_fast_fast_plus_mode = 0x0,
1490 .setup_hold_time_hs_mode = 0x0,
1491 .has_interface_timing_reg = false,
1492 };
1493
1494 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1495 .has_continue_xfer_support = true,
1496 .has_per_pkt_xfer_complete_irq = true,
1497 .clk_divisor_hs_mode = 1,
1498 .clk_divisor_std_mode = 0x19,
1499 .clk_divisor_fast_mode = 0x19,
1500 .clk_divisor_fast_plus_mode = 0x10,
1501 .has_config_load_reg = true,
1502 .has_multi_master_mode = false,
1503 .has_slcg_override_reg = true,
1504 .has_mst_fifo = false,
1505 .quirks = &tegra_i2c_quirks,
1506 .supports_bus_clear = true,
1507 .has_apb_dma = true,
1508 .tlow_std_mode = 0x4,
1509 .thigh_std_mode = 0x2,
1510 .tlow_fast_fastplus_mode = 0x4,
1511 .thigh_fast_fastplus_mode = 0x2,
1512 .setup_hold_time_std_mode = 0x0,
1513 .setup_hold_time_fast_fast_plus_mode = 0x0,
1514 .setup_hold_time_hs_mode = 0x0,
1515 .has_interface_timing_reg = true,
1516 };
1517
1518 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1519 .has_continue_xfer_support = true,
1520 .has_per_pkt_xfer_complete_irq = true,
1521 .clk_divisor_hs_mode = 1,
1522 .clk_divisor_std_mode = 0x19,
1523 .clk_divisor_fast_mode = 0x19,
1524 .clk_divisor_fast_plus_mode = 0x10,
1525 .has_config_load_reg = true,
1526 .has_multi_master_mode = false,
1527 .has_slcg_override_reg = true,
1528 .has_mst_fifo = false,
1529 .quirks = &tegra_i2c_quirks,
1530 .supports_bus_clear = true,
1531 .has_apb_dma = true,
1532 .tlow_std_mode = 0x4,
1533 .thigh_std_mode = 0x2,
1534 .tlow_fast_fastplus_mode = 0x4,
1535 .thigh_fast_fastplus_mode = 0x2,
1536 .setup_hold_time_std_mode = 0,
1537 .setup_hold_time_fast_fast_plus_mode = 0,
1538 .setup_hold_time_hs_mode = 0,
1539 .has_interface_timing_reg = true,
1540 };
1541
1542 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1543 .has_continue_xfer_support = true,
1544 .has_per_pkt_xfer_complete_irq = true,
1545 .clk_divisor_hs_mode = 1,
1546 .clk_divisor_std_mode = 0x16,
1547 .clk_divisor_fast_mode = 0x19,
1548 .clk_divisor_fast_plus_mode = 0x10,
1549 .has_config_load_reg = true,
1550 .has_multi_master_mode = false,
1551 .has_slcg_override_reg = true,
1552 .has_mst_fifo = false,
1553 .quirks = &tegra_i2c_quirks,
1554 .supports_bus_clear = true,
1555 .has_apb_dma = false,
1556 .tlow_std_mode = 0x4,
1557 .thigh_std_mode = 0x3,
1558 .tlow_fast_fastplus_mode = 0x4,
1559 .thigh_fast_fastplus_mode = 0x2,
1560 .setup_hold_time_std_mode = 0,
1561 .setup_hold_time_fast_fast_plus_mode = 0,
1562 .setup_hold_time_hs_mode = 0,
1563 .has_interface_timing_reg = true,
1564 };
1565
1566 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1567 .has_continue_xfer_support = true,
1568 .has_per_pkt_xfer_complete_irq = true,
1569 .clk_divisor_hs_mode = 1,
1570 .clk_divisor_std_mode = 0x4f,
1571 .clk_divisor_fast_mode = 0x3c,
1572 .clk_divisor_fast_plus_mode = 0x16,
1573 .has_config_load_reg = true,
1574 .has_multi_master_mode = true,
1575 .has_slcg_override_reg = true,
1576 .has_mst_fifo = true,
1577 .quirks = &tegra194_i2c_quirks,
1578 .supports_bus_clear = true,
1579 .has_apb_dma = false,
1580 .tlow_std_mode = 0x8,
1581 .thigh_std_mode = 0x7,
1582 .tlow_fast_fastplus_mode = 0x2,
1583 .thigh_fast_fastplus_mode = 0x2,
1584 .setup_hold_time_std_mode = 0x08080808,
1585 .setup_hold_time_fast_fast_plus_mode = 0x02020202,
1586 .setup_hold_time_hs_mode = 0x090909,
1587 .has_interface_timing_reg = true,
1588 };
1589
1590 static const struct of_device_id tegra_i2c_of_match[] = {
1591 { .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1592 { .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1593 { .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1594 { .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1595 { .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1596 { .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1597 { .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1598 { .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1599 { .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1600 {},
1601 };
1602 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1603
tegra_i2c_parse_dt(struct tegra_i2c_dev * i2c_dev)1604 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1605 {
1606 struct device_node *np = i2c_dev->dev->of_node;
1607 bool multi_mode;
1608 int err;
1609
1610 err = of_property_read_u32(np, "clock-frequency",
1611 &i2c_dev->bus_clk_rate);
1612 if (err)
1613 i2c_dev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ;
1614
1615 multi_mode = of_property_read_bool(np, "multi-master");
1616 i2c_dev->multimaster_mode = multi_mode;
1617
1618 if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1619 i2c_dev->is_dvc = true;
1620
1621 if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1622 i2c_dev->is_vi = true;
1623 }
1624
tegra_i2c_init_clocks(struct tegra_i2c_dev * i2c_dev)1625 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1626 {
1627 int err;
1628
1629 i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1630
1631 if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1632 i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1633
1634 if (i2c_dev->is_vi)
1635 i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1636
1637 err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1638 i2c_dev->clocks);
1639 if (err)
1640 return err;
1641
1642 err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1643 if (err)
1644 return err;
1645
1646 i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1647
1648 if (!i2c_dev->multimaster_mode)
1649 return 0;
1650
1651 err = clk_enable(i2c_dev->div_clk);
1652 if (err) {
1653 dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1654 goto unprepare_clocks;
1655 }
1656
1657 return 0;
1658
1659 unprepare_clocks:
1660 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1661
1662 return err;
1663 }
1664
tegra_i2c_release_clocks(struct tegra_i2c_dev * i2c_dev)1665 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1666 {
1667 if (i2c_dev->multimaster_mode)
1668 clk_disable(i2c_dev->div_clk);
1669
1670 clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1671 }
1672
tegra_i2c_init_hardware(struct tegra_i2c_dev * i2c_dev)1673 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1674 {
1675 int ret;
1676
1677 ret = pm_runtime_get_sync(i2c_dev->dev);
1678 if (ret < 0)
1679 dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1680 else
1681 ret = tegra_i2c_init(i2c_dev);
1682
1683 pm_runtime_put(i2c_dev->dev);
1684
1685 return ret;
1686 }
1687
tegra_i2c_probe(struct platform_device * pdev)1688 static int tegra_i2c_probe(struct platform_device *pdev)
1689 {
1690 struct tegra_i2c_dev *i2c_dev;
1691 struct resource *res;
1692 int err;
1693
1694 i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1695 if (!i2c_dev)
1696 return -ENOMEM;
1697
1698 platform_set_drvdata(pdev, i2c_dev);
1699
1700 init_completion(&i2c_dev->msg_complete);
1701 init_completion(&i2c_dev->dma_complete);
1702
1703 i2c_dev->hw = of_device_get_match_data(&pdev->dev);
1704 i2c_dev->cont_id = pdev->id;
1705 i2c_dev->dev = &pdev->dev;
1706
1707 i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1708 if (IS_ERR(i2c_dev->base))
1709 return PTR_ERR(i2c_dev->base);
1710
1711 i2c_dev->base_phys = res->start;
1712
1713 err = platform_get_irq(pdev, 0);
1714 if (err < 0)
1715 return err;
1716
1717 i2c_dev->irq = err;
1718
1719 /* interrupt will be enabled during of transfer time */
1720 irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1721
1722 err = devm_request_irq(i2c_dev->dev, i2c_dev->irq, tegra_i2c_isr,
1723 IRQF_NO_SUSPEND, dev_name(i2c_dev->dev),
1724 i2c_dev);
1725 if (err)
1726 return err;
1727
1728 i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1729 if (IS_ERR(i2c_dev->rst)) {
1730 dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1731 "failed to get reset control\n");
1732 return PTR_ERR(i2c_dev->rst);
1733 }
1734
1735 tegra_i2c_parse_dt(i2c_dev);
1736
1737 err = tegra_i2c_init_clocks(i2c_dev);
1738 if (err)
1739 return err;
1740
1741 err = tegra_i2c_init_dma(i2c_dev);
1742 if (err)
1743 goto release_clocks;
1744
1745 /*
1746 * VI I2C is in VE power domain which is not always ON and not
1747 * IRQ-safe. Thus, IRQ-safe device shouldn't be attached to a
1748 * non IRQ-safe domain because this prevents powering off the power
1749 * domain.
1750 *
1751 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1752 * be used for atomic transfers.
1753 */
1754 if (!i2c_dev->is_vi)
1755 pm_runtime_irq_safe(i2c_dev->dev);
1756
1757 pm_runtime_enable(i2c_dev->dev);
1758
1759 err = tegra_i2c_init_hardware(i2c_dev);
1760 if (err)
1761 goto release_rpm;
1762
1763 i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1764 i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1765 i2c_dev->adapter.dev.parent = i2c_dev->dev;
1766 i2c_dev->adapter.retries = 1;
1767 i2c_dev->adapter.timeout = 6 * HZ;
1768 i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1769 i2c_dev->adapter.owner = THIS_MODULE;
1770 i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1771 i2c_dev->adapter.algo = &tegra_i2c_algo;
1772 i2c_dev->adapter.nr = pdev->id;
1773
1774 if (i2c_dev->hw->supports_bus_clear)
1775 i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1776
1777 strlcpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1778 sizeof(i2c_dev->adapter.name));
1779
1780 err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1781 if (err)
1782 goto release_rpm;
1783
1784 return 0;
1785
1786 release_rpm:
1787 pm_runtime_disable(i2c_dev->dev);
1788
1789 tegra_i2c_release_dma(i2c_dev);
1790 release_clocks:
1791 tegra_i2c_release_clocks(i2c_dev);
1792
1793 return err;
1794 }
1795
tegra_i2c_remove(struct platform_device * pdev)1796 static int tegra_i2c_remove(struct platform_device *pdev)
1797 {
1798 struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1799
1800 i2c_del_adapter(&i2c_dev->adapter);
1801 pm_runtime_disable(i2c_dev->dev);
1802
1803 tegra_i2c_release_dma(i2c_dev);
1804 tegra_i2c_release_clocks(i2c_dev);
1805
1806 return 0;
1807 }
1808
tegra_i2c_runtime_resume(struct device * dev)1809 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1810 {
1811 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1812 int err;
1813
1814 err = pinctrl_pm_select_default_state(dev);
1815 if (err)
1816 return err;
1817
1818 err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1819 if (err)
1820 return err;
1821
1822 /*
1823 * VI I2C device is attached to VE power domain which goes through
1824 * power ON/OFF during runtime PM resume/suspend, meaning that
1825 * controller needs to be re-initialized after power ON.
1826 */
1827 if (i2c_dev->is_vi) {
1828 err = tegra_i2c_init(i2c_dev);
1829 if (err)
1830 goto disable_clocks;
1831 }
1832
1833 return 0;
1834
1835 disable_clocks:
1836 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1837
1838 return err;
1839 }
1840
tegra_i2c_runtime_suspend(struct device * dev)1841 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1842 {
1843 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1844
1845 clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1846
1847 return pinctrl_pm_select_idle_state(dev);
1848 }
1849
tegra_i2c_suspend(struct device * dev)1850 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1851 {
1852 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1853 int err;
1854
1855 i2c_mark_adapter_suspended(&i2c_dev->adapter);
1856
1857 if (!pm_runtime_status_suspended(dev)) {
1858 err = tegra_i2c_runtime_suspend(dev);
1859 if (err)
1860 return err;
1861 }
1862
1863 return 0;
1864 }
1865
tegra_i2c_resume(struct device * dev)1866 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1867 {
1868 struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1869 int err;
1870
1871 /*
1872 * We need to ensure that clocks are enabled so that registers can be
1873 * restored in tegra_i2c_init().
1874 */
1875 err = tegra_i2c_runtime_resume(dev);
1876 if (err)
1877 return err;
1878
1879 err = tegra_i2c_init(i2c_dev);
1880 if (err)
1881 return err;
1882
1883 /*
1884 * In case we are runtime suspended, disable clocks again so that we
1885 * don't unbalance the clock reference counts during the next runtime
1886 * resume transition.
1887 */
1888 if (pm_runtime_status_suspended(dev)) {
1889 err = tegra_i2c_runtime_suspend(dev);
1890 if (err)
1891 return err;
1892 }
1893
1894 i2c_mark_adapter_resumed(&i2c_dev->adapter);
1895
1896 return 0;
1897 }
1898
1899 static const struct dev_pm_ops tegra_i2c_pm = {
1900 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1901 SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1902 NULL)
1903 };
1904
1905 static struct platform_driver tegra_i2c_driver = {
1906 .probe = tegra_i2c_probe,
1907 .remove = tegra_i2c_remove,
1908 .driver = {
1909 .name = "tegra-i2c",
1910 .of_match_table = tegra_i2c_of_match,
1911 .pm = &tegra_i2c_pm,
1912 },
1913 };
1914 module_platform_driver(tegra_i2c_driver);
1915
1916 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1917 MODULE_AUTHOR("Colin Cross");
1918 MODULE_LICENSE("GPL v2");
1919