1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69 };
70
alloc_nfs_open_dir_context(struct inode * dir,const struct cred * cred)71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
90 }
91 return ERR_PTR(-ENOMEM);
92 }
93
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
101 }
102
103 /*
104 * Open file
105 */
106 static int
nfs_opendir(struct inode * inode,struct file * filp)107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
111
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
120 }
121 filp->private_data = ctx;
122 out:
123 return res;
124 }
125
126 static int
nfs_closedir(struct inode * inode,struct file * filp)127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131 }
132
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138 };
139
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[];
145 };
146
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 struct dir_context *ctx;
151 unsigned long page_index;
152 u64 *dir_cookie;
153 u64 last_cookie;
154 loff_t current_index;
155 loff_t prev_index;
156
157 unsigned long dir_verifier;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
164
165 static
nfs_readdir_init_array(struct page * page)166 void nfs_readdir_init_array(struct page *page)
167 {
168 struct nfs_cache_array *array;
169
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
174 }
175
176 /*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179 static
nfs_readdir_clear_array(struct page * page)180 void nfs_readdir_clear_array(struct page *page)
181 {
182 struct nfs_cache_array *array;
183 int i;
184
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
190 }
191
192 /*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 string->len = len;
201 string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
204 /*
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
207 */
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
211 }
212
213 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
219
220 cache_entry = &array->array[array->size];
221
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
226
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237 out:
238 kunmap(page);
239 return ret;
240 }
241
242 static inline
is_32bit_api(void)243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 return in_compat_syscall();
247 #else
248 return (BITS_PER_LONG == 32);
249 #endif
250 }
251
252 static
nfs_readdir_use_cookie(const struct file * filp)253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 if ((filp->f_mode & FMODE_32BITHASH) ||
256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 return false;
258 return true;
259 }
260
261 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = true;
281 return -EBADCOOKIE;
282 }
283
284 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292
293 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->prev_index) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 if (nfs_readdir_use_cookie(desc->file))
327 desc->ctx->pos = *desc->dir_cookie;
328 else
329 desc->ctx->pos = new_pos;
330 desc->prev_index = new_pos;
331 desc->cache_entry_index = i;
332 return 0;
333 }
334 }
335 if (array->eof_index >= 0) {
336 status = -EBADCOOKIE;
337 if (*desc->dir_cookie == array->last_cookie)
338 desc->eof = true;
339 }
340 out:
341 return status;
342 }
343
344 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 struct nfs_cache_array *array;
348 int status;
349
350 array = kmap(desc->page);
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 kunmap(desc->page);
363 return status;
364 }
365
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 struct nfs_open_dir_context *ctx = file->private_data;
372 const struct cred *cred = ctx->cred;
373 unsigned long timestamp, gencount;
374 int error;
375
376 again:
377 timestamp = jiffies;
378 gencount = nfs_inc_attr_generation_counter();
379 desc->dir_verifier = nfs_save_change_attribute(inode);
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = false;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
396 }
397
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 struct inode *inode = file_inode(desc->file);
402 int error;
403
404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 if (error)
406 return error;
407 entry->fattr->time_start = desc->timestamp;
408 entry->fattr->gencount = desc->gencount;
409 return 0;
410 }
411
412 /* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
414 */
415 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 struct inode *inode;
419 struct nfs_inode *nfsi;
420
421 if (d_really_is_negative(dentry))
422 return 0;
423
424 inode = d_inode(dentry);
425 if (is_bad_inode(inode) || NFS_STALE(inode))
426 return 0;
427
428 nfsi = NFS_I(inode);
429 if (entry->fattr->fileid != nfsi->fileid)
430 return 0;
431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 return 0;
433 return 1;
434 }
435
436 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 return false;
441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 return true;
443 if (ctx->pos == 0)
444 return true;
445 return false;
446 }
447
448 /*
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
451 * directory.
452 */
nfs_advise_use_readdirplus(struct inode * dir)453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 struct nfs_inode *nfsi = NFS_I(dir);
456
457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 !list_empty(&nfsi->open_files))
459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461
462 /*
463 * This function is mainly for use by nfs_getattr().
464 *
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
468 * cache flush.
469 */
nfs_force_use_readdirplus(struct inode * dir)470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 struct nfs_inode *nfsi = NFS_I(dir);
473
474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 !list_empty(&nfsi->open_files)) {
476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 invalidate_mapping_pages(dir->i_mapping,
478 nfsi->page_index + 1, -1);
479 }
480 }
481
482 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 unsigned long dir_verifier)
485 {
486 struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 struct dentry *dentry;
489 struct dentry *alias;
490 struct inode *inode;
491 int status;
492
493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 return;
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 return;
497 if (filename.len == 0)
498 return;
499 /* Validate that the name doesn't contain any illegal '\0' */
500 if (strnlen(filename.name, filename.len) != filename.len)
501 return;
502 /* ...or '/' */
503 if (strnchr(filename.name, filename.len, '/'))
504 return;
505 if (filename.name[0] == '.') {
506 if (filename.len == 1)
507 return;
508 if (filename.len == 2 && filename.name[1] == '.')
509 return;
510 }
511 filename.hash = full_name_hash(parent, filename.name, filename.len);
512
513 dentry = d_lookup(parent, &filename);
514 again:
515 if (!dentry) {
516 dentry = d_alloc_parallel(parent, &filename, &wq);
517 if (IS_ERR(dentry))
518 return;
519 }
520 if (!d_in_lookup(dentry)) {
521 /* Is there a mountpoint here? If so, just exit */
522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 &entry->fattr->fsid))
524 goto out;
525 if (nfs_same_file(dentry, entry)) {
526 if (!entry->fh->size)
527 goto out;
528 nfs_set_verifier(dentry, dir_verifier);
529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 if (!status)
531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 goto out;
533 } else {
534 d_invalidate(dentry);
535 dput(dentry);
536 dentry = NULL;
537 goto again;
538 }
539 }
540 if (!entry->fh->size) {
541 d_lookup_done(dentry);
542 goto out;
543 }
544
545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 alias = d_splice_alias(inode, dentry);
547 d_lookup_done(dentry);
548 if (alias) {
549 if (IS_ERR(alias))
550 goto out;
551 dput(dentry);
552 dentry = alias;
553 }
554 nfs_set_verifier(dentry, dir_verifier);
555 out:
556 dput(dentry);
557 }
558
559 /* Perform conversion from xdr to cache array */
560 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 struct xdr_stream stream;
565 struct xdr_buf buf;
566 struct page *scratch;
567 struct nfs_cache_array *array;
568 unsigned int count = 0;
569 int status;
570
571 scratch = alloc_page(GFP_KERNEL);
572 if (scratch == NULL)
573 return -ENOMEM;
574
575 if (buflen == 0)
576 goto out_nopages;
577
578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580
581 do {
582 if (entry->label)
583 entry->label->len = NFS4_MAXLABELLEN;
584
585 status = xdr_decode(desc, entry, &stream);
586 if (status != 0) {
587 if (status == -EAGAIN)
588 status = 0;
589 break;
590 }
591
592 count++;
593
594 if (desc->plus)
595 nfs_prime_dcache(file_dentry(desc->file), entry,
596 desc->dir_verifier);
597
598 status = nfs_readdir_add_to_array(entry, page);
599 if (status != 0)
600 break;
601 } while (!entry->eof);
602
603 out_nopages:
604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 array = kmap(page);
606 array->eof_index = array->size;
607 status = 0;
608 kunmap(page);
609 }
610
611 put_page(scratch);
612 return status;
613 }
614
615 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 unsigned int i;
619 for (i = 0; i < npages; i++)
620 put_page(pages[i]);
621 }
622
623 /*
624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625 * to nfs_readdir_free_pages()
626 */
627 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 unsigned int i;
631
632 for (i = 0; i < npages; i++) {
633 struct page *page = alloc_page(GFP_KERNEL);
634 if (page == NULL)
635 goto out_freepages;
636 pages[i] = page;
637 }
638 return 0;
639
640 out_freepages:
641 nfs_readdir_free_pages(pages, i);
642 return -ENOMEM;
643 }
644
645 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 struct page *pages[NFS_MAX_READDIR_PAGES];
649 struct nfs_entry entry;
650 struct file *file = desc->file;
651 struct nfs_cache_array *array;
652 int status = -ENOMEM;
653 unsigned int array_size = ARRAY_SIZE(pages);
654
655 nfs_readdir_init_array(page);
656
657 entry.prev_cookie = 0;
658 entry.cookie = desc->last_cookie;
659 entry.eof = 0;
660 entry.fh = nfs_alloc_fhandle();
661 entry.fattr = nfs_alloc_fattr();
662 entry.server = NFS_SERVER(inode);
663 if (entry.fh == NULL || entry.fattr == NULL)
664 goto out;
665
666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 if (IS_ERR(entry.label)) {
668 status = PTR_ERR(entry.label);
669 goto out;
670 }
671
672 array = kmap(page);
673
674 status = nfs_readdir_alloc_pages(pages, array_size);
675 if (status < 0)
676 goto out_release_array;
677 do {
678 unsigned int pglen;
679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680
681 if (status < 0)
682 break;
683 pglen = status;
684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 if (status < 0) {
686 if (status == -ENOSPC)
687 status = 0;
688 break;
689 }
690 } while (array->eof_index < 0);
691
692 nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 kunmap(page);
695 nfs4_label_free(entry.label);
696 out:
697 nfs_free_fattr(entry.fattr);
698 nfs_free_fhandle(entry.fh);
699 return status;
700 }
701
702 /*
703 * Now we cache directories properly, by converting xdr information
704 * to an array that can be used for lookups later. This results in
705 * fewer cache pages, since we can store more information on each page.
706 * We only need to convert from xdr once so future lookups are much simpler
707 */
708 static
nfs_readdir_filler(void * data,struct page * page)709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 nfs_readdir_descriptor_t *desc = data;
712 struct inode *inode = file_inode(desc->file);
713 int ret;
714
715 ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 if (ret < 0)
717 goto error;
718 SetPageUptodate(page);
719
720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 /* Should never happen */
722 nfs_zap_mapping(inode, inode->i_mapping);
723 }
724 unlock_page(page);
725 return 0;
726 error:
727 nfs_readdir_clear_array(page);
728 unlock_page(page);
729 return ret;
730 }
731
732 static
cache_page_release(nfs_readdir_descriptor_t * desc)733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 put_page(desc->page);
736 desc->page = NULL;
737 }
738
739 static
get_cache_page(nfs_readdir_descriptor_t * desc)740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 return read_cache_page(desc->file->f_mapping, desc->page_index,
743 nfs_readdir_filler, desc);
744 }
745
746 /*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 * and locks the page to prevent removal from the page cache.
749 */
750 static
find_and_lock_cache_page(nfs_readdir_descriptor_t * desc)751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 struct inode *inode = file_inode(desc->file);
754 struct nfs_inode *nfsi = NFS_I(inode);
755 int res;
756
757 desc->page = get_cache_page(desc);
758 if (IS_ERR(desc->page))
759 return PTR_ERR(desc->page);
760 res = lock_page_killable(desc->page);
761 if (res != 0)
762 goto error;
763 res = -EAGAIN;
764 if (desc->page->mapping != NULL) {
765 res = nfs_readdir_search_array(desc);
766 if (res == 0) {
767 nfsi->page_index = desc->page_index;
768 return 0;
769 }
770 }
771 unlock_page(desc->page);
772 error:
773 cache_page_release(desc);
774 return res;
775 }
776
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 int res;
782
783 if (desc->page_index == 0) {
784 desc->current_index = 0;
785 desc->prev_index = 0;
786 desc->last_cookie = 0;
787 }
788 do {
789 res = find_and_lock_cache_page(desc);
790 } while (res == -EAGAIN);
791 return res;
792 }
793
794 /*
795 * Once we've found the start of the dirent within a page: fill 'er up...
796 */
797 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 struct file *file = desc->file;
801 int i = 0;
802 int res = 0;
803 struct nfs_cache_array *array = NULL;
804 struct nfs_open_dir_context *ctx = file->private_data;
805
806 array = kmap(desc->page);
807 for (i = desc->cache_entry_index; i < array->size; i++) {
808 struct nfs_cache_array_entry *ent;
809
810 ent = &array->array[i];
811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 desc->eof = true;
814 break;
815 }
816 if (i < (array->size-1))
817 *desc->dir_cookie = array->array[i+1].cookie;
818 else
819 *desc->dir_cookie = array->last_cookie;
820 if (nfs_readdir_use_cookie(file))
821 desc->ctx->pos = *desc->dir_cookie;
822 else
823 desc->ctx->pos++;
824 if (ctx->duped != 0)
825 ctx->duped = 1;
826 }
827 if (array->eof_index >= 0)
828 desc->eof = true;
829
830 kunmap(desc->page);
831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 (unsigned long long)*desc->dir_cookie, res);
833 return res;
834 }
835
836 /*
837 * If we cannot find a cookie in our cache, we suspect that this is
838 * because it points to a deleted file, so we ask the server to return
839 * whatever it thinks is the next entry. We then feed this to filldir.
840 * If all goes well, we should then be able to find our way round the
841 * cache on the next call to readdir_search_pagecache();
842 *
843 * NOTE: we cannot add the anonymous page to the pagecache because
844 * the data it contains might not be page aligned. Besides,
845 * we should already have a complete representation of the
846 * directory in the page cache by the time we get here.
847 */
848 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 struct page *page = NULL;
852 int status;
853 struct inode *inode = file_inode(desc->file);
854 struct nfs_open_dir_context *ctx = desc->file->private_data;
855
856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 (unsigned long long)*desc->dir_cookie);
858
859 page = alloc_page(GFP_HIGHUSER);
860 if (!page) {
861 status = -ENOMEM;
862 goto out;
863 }
864
865 desc->page_index = 0;
866 desc->last_cookie = *desc->dir_cookie;
867 desc->page = page;
868 ctx->duped = 0;
869
870 status = nfs_readdir_xdr_to_array(desc, page, inode);
871 if (status < 0)
872 goto out_release;
873
874 status = nfs_do_filldir(desc);
875
876 out_release:
877 nfs_readdir_clear_array(desc->page);
878 cache_page_release(desc);
879 out:
880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 __func__, status);
882 return status;
883 }
884
885 /* The file offset position represents the dirent entry number. A
886 last cookie cache takes care of the common case of reading the
887 whole directory.
888 */
nfs_readdir(struct file * file,struct dir_context * ctx)889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 struct dentry *dentry = file_dentry(file);
892 struct inode *inode = d_inode(dentry);
893 struct nfs_open_dir_context *dir_ctx = file->private_data;
894 nfs_readdir_descriptor_t my_desc = {
895 .file = file,
896 .ctx = ctx,
897 .dir_cookie = &dir_ctx->dir_cookie,
898 .plus = nfs_use_readdirplus(inode, ctx),
899 },
900 *desc = &my_desc;
901 int res = 0;
902
903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 file, (long long)ctx->pos);
905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906
907 /*
908 * ctx->pos points to the dirent entry number.
909 * *desc->dir_cookie has the cookie for the next entry. We have
910 * to either find the entry with the appropriate number or
911 * revalidate the cookie.
912 */
913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 res = nfs_revalidate_mapping(inode, file->f_mapping);
915 if (res < 0)
916 goto out;
917
918 do {
919 res = readdir_search_pagecache(desc);
920
921 if (res == -EBADCOOKIE) {
922 res = 0;
923 /* This means either end of directory */
924 if (*desc->dir_cookie && !desc->eof) {
925 /* Or that the server has 'lost' a cookie */
926 res = uncached_readdir(desc);
927 if (res == 0)
928 continue;
929 }
930 break;
931 }
932 if (res == -ETOOSMALL && desc->plus) {
933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 nfs_zap_caches(inode);
935 desc->page_index = 0;
936 desc->plus = false;
937 desc->eof = false;
938 continue;
939 }
940 if (res < 0)
941 break;
942
943 res = nfs_do_filldir(desc);
944 unlock_page(desc->page);
945 cache_page_release(desc);
946 if (res < 0)
947 break;
948 } while (!desc->eof);
949 out:
950 if (res > 0)
951 res = 0;
952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 return res;
954 }
955
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 struct nfs_open_dir_context *dir_ctx = filp->private_data;
959
960 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961 filp, offset, whence);
962
963 switch (whence) {
964 default:
965 return -EINVAL;
966 case SEEK_SET:
967 if (offset < 0)
968 return -EINVAL;
969 spin_lock(&filp->f_lock);
970 break;
971 case SEEK_CUR:
972 if (offset == 0)
973 return filp->f_pos;
974 spin_lock(&filp->f_lock);
975 offset += filp->f_pos;
976 if (offset < 0) {
977 spin_unlock(&filp->f_lock);
978 return -EINVAL;
979 }
980 }
981 if (offset != filp->f_pos) {
982 filp->f_pos = offset;
983 if (nfs_readdir_use_cookie(filp))
984 dir_ctx->dir_cookie = offset;
985 else
986 dir_ctx->dir_cookie = 0;
987 dir_ctx->duped = 0;
988 }
989 spin_unlock(&filp->f_lock);
990 return offset;
991 }
992
993 /*
994 * All directory operations under NFS are synchronous, so fsync()
995 * is a dummy operation.
996 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998 int datasync)
999 {
1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003 return 0;
1004 }
1005
1006 /**
1007 * nfs_force_lookup_revalidate - Mark the directory as having changed
1008 * @dir: pointer to directory inode
1009 *
1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011 * full lookup on all child dentries of 'dir' whenever a change occurs
1012 * on the server that might have invalidated our dcache.
1013 *
1014 * Note that we reserve bit '0' as a tag to let us know when a dentry
1015 * was revalidated while holding a delegation on its inode.
1016 *
1017 * The caller should be holding dir->i_lock
1018 */
nfs_force_lookup_revalidate(struct inode * dir)1019 void nfs_force_lookup_revalidate(struct inode *dir)
1020 {
1021 NFS_I(dir)->cache_change_attribute += 2;
1022 }
1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024
1025 /**
1026 * nfs_verify_change_attribute - Detects NFS remote directory changes
1027 * @dir: pointer to parent directory inode
1028 * @verf: previously saved change attribute
1029 *
1030 * Return "false" if the verifiers doesn't match the change attribute.
1031 * This would usually indicate that the directory contents have changed on
1032 * the server, and that any dentries need revalidating.
1033 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1034 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035 {
1036 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037 }
1038
nfs_set_verifier_delegated(unsigned long * verf)1039 static void nfs_set_verifier_delegated(unsigned long *verf)
1040 {
1041 *verf |= 1UL;
1042 }
1043
1044 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1045 static void nfs_unset_verifier_delegated(unsigned long *verf)
1046 {
1047 *verf &= ~1UL;
1048 }
1049 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050
nfs_test_verifier_delegated(unsigned long verf)1051 static bool nfs_test_verifier_delegated(unsigned long verf)
1052 {
1053 return verf & 1;
1054 }
1055
nfs_verifier_is_delegated(struct dentry * dentry)1056 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057 {
1058 return nfs_test_verifier_delegated(dentry->d_time);
1059 }
1060
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1061 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062 {
1063 struct inode *inode = d_inode(dentry);
1064
1065 if (!nfs_verifier_is_delegated(dentry) &&
1066 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1067 goto out;
1068 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069 nfs_set_verifier_delegated(&verf);
1070 out:
1071 dentry->d_time = verf;
1072 }
1073
1074 /**
1075 * nfs_set_verifier - save a parent directory verifier in the dentry
1076 * @dentry: pointer to dentry
1077 * @verf: verifier to save
1078 *
1079 * Saves the parent directory verifier in @dentry. If the inode has
1080 * a delegation, we also tag the dentry as having been revalidated
1081 * while holding a delegation so that we know we don't have to
1082 * look it up again after a directory change.
1083 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1084 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1085 {
1086
1087 spin_lock(&dentry->d_lock);
1088 nfs_set_verifier_locked(dentry, verf);
1089 spin_unlock(&dentry->d_lock);
1090 }
1091 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1092
1093 #if IS_ENABLED(CONFIG_NFS_V4)
1094 /**
1095 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1096 * @inode: pointer to inode
1097 *
1098 * Iterates through the dentries in the inode alias list and clears
1099 * the tag used to indicate that the dentry has been revalidated
1100 * while holding a delegation.
1101 * This function is intended for use when the delegation is being
1102 * returned or revoked.
1103 */
nfs_clear_verifier_delegated(struct inode * inode)1104 void nfs_clear_verifier_delegated(struct inode *inode)
1105 {
1106 struct dentry *alias;
1107
1108 if (!inode)
1109 return;
1110 spin_lock(&inode->i_lock);
1111 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1112 spin_lock(&alias->d_lock);
1113 nfs_unset_verifier_delegated(&alias->d_time);
1114 spin_unlock(&alias->d_lock);
1115 }
1116 spin_unlock(&inode->i_lock);
1117 }
1118 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1119 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1120
1121 /*
1122 * A check for whether or not the parent directory has changed.
1123 * In the case it has, we assume that the dentries are untrustworthy
1124 * and may need to be looked up again.
1125 * If rcu_walk prevents us from performing a full check, return 0.
1126 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1127 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1128 int rcu_walk)
1129 {
1130 if (IS_ROOT(dentry))
1131 return 1;
1132 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1133 return 0;
1134 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1135 return 0;
1136 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1137 if (nfs_mapping_need_revalidate_inode(dir)) {
1138 if (rcu_walk)
1139 return 0;
1140 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1141 return 0;
1142 }
1143 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1144 return 0;
1145 return 1;
1146 }
1147
1148 /*
1149 * Use intent information to check whether or not we're going to do
1150 * an O_EXCL create using this path component.
1151 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1152 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1153 {
1154 if (NFS_PROTO(dir)->version == 2)
1155 return 0;
1156 return flags & LOOKUP_EXCL;
1157 }
1158
1159 /*
1160 * Inode and filehandle revalidation for lookups.
1161 *
1162 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1163 * or if the intent information indicates that we're about to open this
1164 * particular file and the "nocto" mount flag is not set.
1165 *
1166 */
1167 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1168 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1169 {
1170 struct nfs_server *server = NFS_SERVER(inode);
1171 int ret;
1172
1173 if (IS_AUTOMOUNT(inode))
1174 return 0;
1175
1176 if (flags & LOOKUP_OPEN) {
1177 switch (inode->i_mode & S_IFMT) {
1178 case S_IFREG:
1179 /* A NFSv4 OPEN will revalidate later */
1180 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1181 goto out;
1182 fallthrough;
1183 case S_IFDIR:
1184 if (server->flags & NFS_MOUNT_NOCTO)
1185 break;
1186 /* NFS close-to-open cache consistency validation */
1187 goto out_force;
1188 }
1189 }
1190
1191 /* VFS wants an on-the-wire revalidation */
1192 if (flags & LOOKUP_REVAL)
1193 goto out_force;
1194 out:
1195 return (inode->i_nlink == 0) ? -ESTALE : 0;
1196 out_force:
1197 if (flags & LOOKUP_RCU)
1198 return -ECHILD;
1199 ret = __nfs_revalidate_inode(server, inode);
1200 if (ret != 0)
1201 return ret;
1202 goto out;
1203 }
1204
1205 /*
1206 * We judge how long we want to trust negative
1207 * dentries by looking at the parent inode mtime.
1208 *
1209 * If parent mtime has changed, we revalidate, else we wait for a
1210 * period corresponding to the parent's attribute cache timeout value.
1211 *
1212 * If LOOKUP_RCU prevents us from performing a full check, return 1
1213 * suggesting a reval is needed.
1214 *
1215 * Note that when creating a new file, or looking up a rename target,
1216 * then it shouldn't be necessary to revalidate a negative dentry.
1217 */
1218 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1219 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1220 unsigned int flags)
1221 {
1222 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1223 return 0;
1224 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1225 return 1;
1226 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1227 }
1228
1229 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1230 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1231 struct inode *inode, int error)
1232 {
1233 switch (error) {
1234 case 1:
1235 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1236 __func__, dentry);
1237 return 1;
1238 case 0:
1239 nfs_mark_for_revalidate(dir);
1240 if (inode && S_ISDIR(inode->i_mode)) {
1241 /* Purge readdir caches. */
1242 nfs_zap_caches(inode);
1243 /*
1244 * We can't d_drop the root of a disconnected tree:
1245 * its d_hash is on the s_anon list and d_drop() would hide
1246 * it from shrink_dcache_for_unmount(), leading to busy
1247 * inodes on unmount and further oopses.
1248 */
1249 if (IS_ROOT(dentry))
1250 return 1;
1251 }
1252 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1253 __func__, dentry);
1254 return 0;
1255 }
1256 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1257 __func__, dentry, error);
1258 return error;
1259 }
1260
1261 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1262 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1263 unsigned int flags)
1264 {
1265 int ret = 1;
1266 if (nfs_neg_need_reval(dir, dentry, flags)) {
1267 if (flags & LOOKUP_RCU)
1268 return -ECHILD;
1269 ret = 0;
1270 }
1271 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1272 }
1273
1274 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1275 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1276 struct inode *inode)
1277 {
1278 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1279 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1280 }
1281
1282 static int
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode)1283 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1284 struct inode *inode)
1285 {
1286 struct nfs_fh *fhandle;
1287 struct nfs_fattr *fattr;
1288 struct nfs4_label *label;
1289 unsigned long dir_verifier;
1290 int ret;
1291
1292 ret = -ENOMEM;
1293 fhandle = nfs_alloc_fhandle();
1294 fattr = nfs_alloc_fattr();
1295 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1296 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1297 goto out;
1298
1299 dir_verifier = nfs_save_change_attribute(dir);
1300 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1301 if (ret < 0) {
1302 switch (ret) {
1303 case -ESTALE:
1304 case -ENOENT:
1305 ret = 0;
1306 break;
1307 case -ETIMEDOUT:
1308 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1309 ret = 1;
1310 }
1311 goto out;
1312 }
1313 ret = 0;
1314 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1315 goto out;
1316 if (nfs_refresh_inode(inode, fattr) < 0)
1317 goto out;
1318
1319 nfs_setsecurity(inode, fattr, label);
1320 nfs_set_verifier(dentry, dir_verifier);
1321
1322 /* set a readdirplus hint that we had a cache miss */
1323 nfs_force_use_readdirplus(dir);
1324 ret = 1;
1325 out:
1326 nfs_free_fattr(fattr);
1327 nfs_free_fhandle(fhandle);
1328 nfs4_label_free(label);
1329 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1330 }
1331
1332 /*
1333 * This is called every time the dcache has a lookup hit,
1334 * and we should check whether we can really trust that
1335 * lookup.
1336 *
1337 * NOTE! The hit can be a negative hit too, don't assume
1338 * we have an inode!
1339 *
1340 * If the parent directory is seen to have changed, we throw out the
1341 * cached dentry and do a new lookup.
1342 */
1343 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1344 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1345 unsigned int flags)
1346 {
1347 struct inode *inode;
1348 int error;
1349
1350 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1351 inode = d_inode(dentry);
1352
1353 if (!inode)
1354 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1355
1356 if (is_bad_inode(inode)) {
1357 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1358 __func__, dentry);
1359 goto out_bad;
1360 }
1361
1362 if (nfs_verifier_is_delegated(dentry))
1363 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1364
1365 /* Force a full look up iff the parent directory has changed */
1366 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1367 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1368 error = nfs_lookup_verify_inode(inode, flags);
1369 if (error) {
1370 if (error == -ESTALE)
1371 nfs_zap_caches(dir);
1372 goto out_bad;
1373 }
1374 nfs_advise_use_readdirplus(dir);
1375 goto out_valid;
1376 }
1377
1378 if (flags & LOOKUP_RCU)
1379 return -ECHILD;
1380
1381 if (NFS_STALE(inode))
1382 goto out_bad;
1383
1384 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1385 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1386 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1387 return error;
1388 out_valid:
1389 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1390 out_bad:
1391 if (flags & LOOKUP_RCU)
1392 return -ECHILD;
1393 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1394 }
1395
1396 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1397 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1398 int (*reval)(struct inode *, struct dentry *, unsigned int))
1399 {
1400 struct dentry *parent;
1401 struct inode *dir;
1402 int ret;
1403
1404 if (flags & LOOKUP_RCU) {
1405 parent = READ_ONCE(dentry->d_parent);
1406 dir = d_inode_rcu(parent);
1407 if (!dir)
1408 return -ECHILD;
1409 ret = reval(dir, dentry, flags);
1410 if (parent != READ_ONCE(dentry->d_parent))
1411 return -ECHILD;
1412 } else {
1413 parent = dget_parent(dentry);
1414 ret = reval(d_inode(parent), dentry, flags);
1415 dput(parent);
1416 }
1417 return ret;
1418 }
1419
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1420 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1421 {
1422 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1423 }
1424
1425 /*
1426 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1427 * when we don't really care about the dentry name. This is called when a
1428 * pathwalk ends on a dentry that was not found via a normal lookup in the
1429 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1430 *
1431 * In this situation, we just want to verify that the inode itself is OK
1432 * since the dentry might have changed on the server.
1433 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1434 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1435 {
1436 struct inode *inode = d_inode(dentry);
1437 int error = 0;
1438
1439 /*
1440 * I believe we can only get a negative dentry here in the case of a
1441 * procfs-style symlink. Just assume it's correct for now, but we may
1442 * eventually need to do something more here.
1443 */
1444 if (!inode) {
1445 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1446 __func__, dentry);
1447 return 1;
1448 }
1449
1450 if (is_bad_inode(inode)) {
1451 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1452 __func__, dentry);
1453 return 0;
1454 }
1455
1456 error = nfs_lookup_verify_inode(inode, flags);
1457 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1458 __func__, inode->i_ino, error ? "invalid" : "valid");
1459 return !error;
1460 }
1461
1462 /*
1463 * This is called from dput() when d_count is going to 0.
1464 */
nfs_dentry_delete(const struct dentry * dentry)1465 static int nfs_dentry_delete(const struct dentry *dentry)
1466 {
1467 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1468 dentry, dentry->d_flags);
1469
1470 /* Unhash any dentry with a stale inode */
1471 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1472 return 1;
1473
1474 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1475 /* Unhash it, so that ->d_iput() would be called */
1476 return 1;
1477 }
1478 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1479 /* Unhash it, so that ancestors of killed async unlink
1480 * files will be cleaned up during umount */
1481 return 1;
1482 }
1483 return 0;
1484
1485 }
1486
1487 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1488 static void nfs_drop_nlink(struct inode *inode)
1489 {
1490 spin_lock(&inode->i_lock);
1491 /* drop the inode if we're reasonably sure this is the last link */
1492 if (inode->i_nlink > 0)
1493 drop_nlink(inode);
1494 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1495 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1496 | NFS_INO_INVALID_CTIME
1497 | NFS_INO_INVALID_OTHER
1498 | NFS_INO_REVAL_FORCED;
1499 spin_unlock(&inode->i_lock);
1500 }
1501
1502 /*
1503 * Called when the dentry loses inode.
1504 * We use it to clean up silly-renamed files.
1505 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1506 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1507 {
1508 if (S_ISDIR(inode->i_mode))
1509 /* drop any readdir cache as it could easily be old */
1510 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1511
1512 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1513 nfs_complete_unlink(dentry, inode);
1514 nfs_drop_nlink(inode);
1515 }
1516 iput(inode);
1517 }
1518
nfs_d_release(struct dentry * dentry)1519 static void nfs_d_release(struct dentry *dentry)
1520 {
1521 /* free cached devname value, if it survived that far */
1522 if (unlikely(dentry->d_fsdata)) {
1523 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1524 WARN_ON(1);
1525 else
1526 kfree(dentry->d_fsdata);
1527 }
1528 }
1529
1530 const struct dentry_operations nfs_dentry_operations = {
1531 .d_revalidate = nfs_lookup_revalidate,
1532 .d_weak_revalidate = nfs_weak_revalidate,
1533 .d_delete = nfs_dentry_delete,
1534 .d_iput = nfs_dentry_iput,
1535 .d_automount = nfs_d_automount,
1536 .d_release = nfs_d_release,
1537 };
1538 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1539
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1540 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1541 {
1542 struct dentry *res;
1543 struct inode *inode = NULL;
1544 struct nfs_fh *fhandle = NULL;
1545 struct nfs_fattr *fattr = NULL;
1546 struct nfs4_label *label = NULL;
1547 unsigned long dir_verifier;
1548 int error;
1549
1550 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1551 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1552
1553 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1554 return ERR_PTR(-ENAMETOOLONG);
1555
1556 /*
1557 * If we're doing an exclusive create, optimize away the lookup
1558 * but don't hash the dentry.
1559 */
1560 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1561 return NULL;
1562
1563 res = ERR_PTR(-ENOMEM);
1564 fhandle = nfs_alloc_fhandle();
1565 fattr = nfs_alloc_fattr();
1566 if (fhandle == NULL || fattr == NULL)
1567 goto out;
1568
1569 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1570 if (IS_ERR(label))
1571 goto out;
1572
1573 dir_verifier = nfs_save_change_attribute(dir);
1574 trace_nfs_lookup_enter(dir, dentry, flags);
1575 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1576 if (error == -ENOENT)
1577 goto no_entry;
1578 if (error < 0) {
1579 res = ERR_PTR(error);
1580 goto out_label;
1581 }
1582 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1583 res = ERR_CAST(inode);
1584 if (IS_ERR(res))
1585 goto out_label;
1586
1587 /* Notify readdir to use READDIRPLUS */
1588 nfs_force_use_readdirplus(dir);
1589
1590 no_entry:
1591 res = d_splice_alias(inode, dentry);
1592 if (res != NULL) {
1593 if (IS_ERR(res))
1594 goto out_label;
1595 dentry = res;
1596 }
1597 nfs_set_verifier(dentry, dir_verifier);
1598 out_label:
1599 trace_nfs_lookup_exit(dir, dentry, flags, error);
1600 nfs4_label_free(label);
1601 out:
1602 nfs_free_fattr(fattr);
1603 nfs_free_fhandle(fhandle);
1604 return res;
1605 }
1606 EXPORT_SYMBOL_GPL(nfs_lookup);
1607
1608 #if IS_ENABLED(CONFIG_NFS_V4)
1609 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1610
1611 const struct dentry_operations nfs4_dentry_operations = {
1612 .d_revalidate = nfs4_lookup_revalidate,
1613 .d_weak_revalidate = nfs_weak_revalidate,
1614 .d_delete = nfs_dentry_delete,
1615 .d_iput = nfs_dentry_iput,
1616 .d_automount = nfs_d_automount,
1617 .d_release = nfs_d_release,
1618 };
1619 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1620
flags_to_mode(int flags)1621 static fmode_t flags_to_mode(int flags)
1622 {
1623 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1624 if ((flags & O_ACCMODE) != O_WRONLY)
1625 res |= FMODE_READ;
1626 if ((flags & O_ACCMODE) != O_RDONLY)
1627 res |= FMODE_WRITE;
1628 return res;
1629 }
1630
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)1631 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1632 {
1633 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1634 }
1635
do_open(struct inode * inode,struct file * filp)1636 static int do_open(struct inode *inode, struct file *filp)
1637 {
1638 nfs_fscache_open_file(inode, filp);
1639 return 0;
1640 }
1641
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)1642 static int nfs_finish_open(struct nfs_open_context *ctx,
1643 struct dentry *dentry,
1644 struct file *file, unsigned open_flags)
1645 {
1646 int err;
1647
1648 err = finish_open(file, dentry, do_open);
1649 if (err)
1650 goto out;
1651 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1652 nfs_file_set_open_context(file, ctx);
1653 else
1654 err = -EOPENSTALE;
1655 out:
1656 return err;
1657 }
1658
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)1659 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1660 struct file *file, unsigned open_flags,
1661 umode_t mode)
1662 {
1663 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1664 struct nfs_open_context *ctx;
1665 struct dentry *res;
1666 struct iattr attr = { .ia_valid = ATTR_OPEN };
1667 struct inode *inode;
1668 unsigned int lookup_flags = 0;
1669 bool switched = false;
1670 int created = 0;
1671 int err;
1672
1673 /* Expect a negative dentry */
1674 BUG_ON(d_inode(dentry));
1675
1676 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1677 dir->i_sb->s_id, dir->i_ino, dentry);
1678
1679 err = nfs_check_flags(open_flags);
1680 if (err)
1681 return err;
1682
1683 /* NFS only supports OPEN on regular files */
1684 if ((open_flags & O_DIRECTORY)) {
1685 if (!d_in_lookup(dentry)) {
1686 /*
1687 * Hashed negative dentry with O_DIRECTORY: dentry was
1688 * revalidated and is fine, no need to perform lookup
1689 * again
1690 */
1691 return -ENOENT;
1692 }
1693 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1694 goto no_open;
1695 }
1696
1697 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1698 return -ENAMETOOLONG;
1699
1700 if (open_flags & O_CREAT) {
1701 struct nfs_server *server = NFS_SERVER(dir);
1702
1703 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1704 mode &= ~current_umask();
1705
1706 attr.ia_valid |= ATTR_MODE;
1707 attr.ia_mode = mode;
1708 }
1709 if (open_flags & O_TRUNC) {
1710 attr.ia_valid |= ATTR_SIZE;
1711 attr.ia_size = 0;
1712 }
1713
1714 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1715 d_drop(dentry);
1716 switched = true;
1717 dentry = d_alloc_parallel(dentry->d_parent,
1718 &dentry->d_name, &wq);
1719 if (IS_ERR(dentry))
1720 return PTR_ERR(dentry);
1721 if (unlikely(!d_in_lookup(dentry)))
1722 return finish_no_open(file, dentry);
1723 }
1724
1725 ctx = create_nfs_open_context(dentry, open_flags, file);
1726 err = PTR_ERR(ctx);
1727 if (IS_ERR(ctx))
1728 goto out;
1729
1730 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1731 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1732 if (created)
1733 file->f_mode |= FMODE_CREATED;
1734 if (IS_ERR(inode)) {
1735 err = PTR_ERR(inode);
1736 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1737 put_nfs_open_context(ctx);
1738 d_drop(dentry);
1739 switch (err) {
1740 case -ENOENT:
1741 d_splice_alias(NULL, dentry);
1742 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1743 break;
1744 case -EISDIR:
1745 case -ENOTDIR:
1746 goto no_open;
1747 case -ELOOP:
1748 if (!(open_flags & O_NOFOLLOW))
1749 goto no_open;
1750 break;
1751 /* case -EINVAL: */
1752 default:
1753 break;
1754 }
1755 goto out;
1756 }
1757
1758 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1759 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1760 put_nfs_open_context(ctx);
1761 out:
1762 if (unlikely(switched)) {
1763 d_lookup_done(dentry);
1764 dput(dentry);
1765 }
1766 return err;
1767
1768 no_open:
1769 res = nfs_lookup(dir, dentry, lookup_flags);
1770 if (switched) {
1771 d_lookup_done(dentry);
1772 if (!res)
1773 res = dentry;
1774 else
1775 dput(dentry);
1776 }
1777 if (IS_ERR(res))
1778 return PTR_ERR(res);
1779 return finish_no_open(file, res);
1780 }
1781 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1782
1783 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1784 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1785 unsigned int flags)
1786 {
1787 struct inode *inode;
1788
1789 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1790 goto full_reval;
1791 if (d_mountpoint(dentry))
1792 goto full_reval;
1793
1794 inode = d_inode(dentry);
1795
1796 /* We can't create new files in nfs_open_revalidate(), so we
1797 * optimize away revalidation of negative dentries.
1798 */
1799 if (inode == NULL)
1800 goto full_reval;
1801
1802 if (nfs_verifier_is_delegated(dentry))
1803 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1804
1805 /* NFS only supports OPEN on regular files */
1806 if (!S_ISREG(inode->i_mode))
1807 goto full_reval;
1808
1809 /* We cannot do exclusive creation on a positive dentry */
1810 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1811 goto reval_dentry;
1812
1813 /* Check if the directory changed */
1814 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1815 goto reval_dentry;
1816
1817 /* Let f_op->open() actually open (and revalidate) the file */
1818 return 1;
1819 reval_dentry:
1820 if (flags & LOOKUP_RCU)
1821 return -ECHILD;
1822 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1823
1824 full_reval:
1825 return nfs_do_lookup_revalidate(dir, dentry, flags);
1826 }
1827
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1828 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1829 {
1830 return __nfs_lookup_revalidate(dentry, flags,
1831 nfs4_do_lookup_revalidate);
1832 }
1833
1834 #endif /* CONFIG_NFSV4 */
1835
1836 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1837 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1838 struct nfs_fattr *fattr,
1839 struct nfs4_label *label)
1840 {
1841 struct dentry *parent = dget_parent(dentry);
1842 struct inode *dir = d_inode(parent);
1843 struct inode *inode;
1844 struct dentry *d;
1845 int error;
1846
1847 d_drop(dentry);
1848
1849 if (fhandle->size == 0) {
1850 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1851 if (error)
1852 goto out_error;
1853 }
1854 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1855 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1856 struct nfs_server *server = NFS_SB(dentry->d_sb);
1857 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1858 fattr, NULL, NULL);
1859 if (error < 0)
1860 goto out_error;
1861 }
1862 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1863 d = d_splice_alias(inode, dentry);
1864 out:
1865 dput(parent);
1866 return d;
1867 out_error:
1868 nfs_mark_for_revalidate(dir);
1869 d = ERR_PTR(error);
1870 goto out;
1871 }
1872 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1873
1874 /*
1875 * Code common to create, mkdir, and mknod.
1876 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1877 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1878 struct nfs_fattr *fattr,
1879 struct nfs4_label *label)
1880 {
1881 struct dentry *d;
1882
1883 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1884 if (IS_ERR(d))
1885 return PTR_ERR(d);
1886
1887 /* Callers don't care */
1888 dput(d);
1889 return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(nfs_instantiate);
1892
1893 /*
1894 * Following a failed create operation, we drop the dentry rather
1895 * than retain a negative dentry. This avoids a problem in the event
1896 * that the operation succeeded on the server, but an error in the
1897 * reply path made it appear to have failed.
1898 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1899 int nfs_create(struct inode *dir, struct dentry *dentry,
1900 umode_t mode, bool excl)
1901 {
1902 struct iattr attr;
1903 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1904 int error;
1905
1906 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1907 dir->i_sb->s_id, dir->i_ino, dentry);
1908
1909 attr.ia_mode = mode;
1910 attr.ia_valid = ATTR_MODE;
1911
1912 trace_nfs_create_enter(dir, dentry, open_flags);
1913 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1914 trace_nfs_create_exit(dir, dentry, open_flags, error);
1915 if (error != 0)
1916 goto out_err;
1917 return 0;
1918 out_err:
1919 d_drop(dentry);
1920 return error;
1921 }
1922 EXPORT_SYMBOL_GPL(nfs_create);
1923
1924 /*
1925 * See comments for nfs_proc_create regarding failed operations.
1926 */
1927 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1928 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1929 {
1930 struct iattr attr;
1931 int status;
1932
1933 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1934 dir->i_sb->s_id, dir->i_ino, dentry);
1935
1936 attr.ia_mode = mode;
1937 attr.ia_valid = ATTR_MODE;
1938
1939 trace_nfs_mknod_enter(dir, dentry);
1940 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1941 trace_nfs_mknod_exit(dir, dentry, status);
1942 if (status != 0)
1943 goto out_err;
1944 return 0;
1945 out_err:
1946 d_drop(dentry);
1947 return status;
1948 }
1949 EXPORT_SYMBOL_GPL(nfs_mknod);
1950
1951 /*
1952 * See comments for nfs_proc_create regarding failed operations.
1953 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1954 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1955 {
1956 struct iattr attr;
1957 int error;
1958
1959 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1960 dir->i_sb->s_id, dir->i_ino, dentry);
1961
1962 attr.ia_valid = ATTR_MODE;
1963 attr.ia_mode = mode | S_IFDIR;
1964
1965 trace_nfs_mkdir_enter(dir, dentry);
1966 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1967 trace_nfs_mkdir_exit(dir, dentry, error);
1968 if (error != 0)
1969 goto out_err;
1970 return 0;
1971 out_err:
1972 d_drop(dentry);
1973 return error;
1974 }
1975 EXPORT_SYMBOL_GPL(nfs_mkdir);
1976
nfs_dentry_handle_enoent(struct dentry * dentry)1977 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1978 {
1979 if (simple_positive(dentry))
1980 d_delete(dentry);
1981 }
1982
nfs_rmdir(struct inode * dir,struct dentry * dentry)1983 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1984 {
1985 int error;
1986
1987 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1988 dir->i_sb->s_id, dir->i_ino, dentry);
1989
1990 trace_nfs_rmdir_enter(dir, dentry);
1991 if (d_really_is_positive(dentry)) {
1992 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1993 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1994 /* Ensure the VFS deletes this inode */
1995 switch (error) {
1996 case 0:
1997 clear_nlink(d_inode(dentry));
1998 break;
1999 case -ENOENT:
2000 nfs_dentry_handle_enoent(dentry);
2001 }
2002 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2003 } else
2004 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2005 trace_nfs_rmdir_exit(dir, dentry, error);
2006
2007 return error;
2008 }
2009 EXPORT_SYMBOL_GPL(nfs_rmdir);
2010
2011 /*
2012 * Remove a file after making sure there are no pending writes,
2013 * and after checking that the file has only one user.
2014 *
2015 * We invalidate the attribute cache and free the inode prior to the operation
2016 * to avoid possible races if the server reuses the inode.
2017 */
nfs_safe_remove(struct dentry * dentry)2018 static int nfs_safe_remove(struct dentry *dentry)
2019 {
2020 struct inode *dir = d_inode(dentry->d_parent);
2021 struct inode *inode = d_inode(dentry);
2022 int error = -EBUSY;
2023
2024 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2025
2026 /* If the dentry was sillyrenamed, we simply call d_delete() */
2027 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2028 error = 0;
2029 goto out;
2030 }
2031
2032 trace_nfs_remove_enter(dir, dentry);
2033 if (inode != NULL) {
2034 error = NFS_PROTO(dir)->remove(dir, dentry);
2035 if (error == 0)
2036 nfs_drop_nlink(inode);
2037 } else
2038 error = NFS_PROTO(dir)->remove(dir, dentry);
2039 if (error == -ENOENT)
2040 nfs_dentry_handle_enoent(dentry);
2041 trace_nfs_remove_exit(dir, dentry, error);
2042 out:
2043 return error;
2044 }
2045
2046 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2047 * belongs to an active ".nfs..." file and we return -EBUSY.
2048 *
2049 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2050 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2051 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2052 {
2053 int error;
2054 int need_rehash = 0;
2055
2056 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2057 dir->i_ino, dentry);
2058
2059 trace_nfs_unlink_enter(dir, dentry);
2060 spin_lock(&dentry->d_lock);
2061 if (d_count(dentry) > 1) {
2062 spin_unlock(&dentry->d_lock);
2063 /* Start asynchronous writeout of the inode */
2064 write_inode_now(d_inode(dentry), 0);
2065 error = nfs_sillyrename(dir, dentry);
2066 goto out;
2067 }
2068 if (!d_unhashed(dentry)) {
2069 __d_drop(dentry);
2070 need_rehash = 1;
2071 }
2072 spin_unlock(&dentry->d_lock);
2073 error = nfs_safe_remove(dentry);
2074 if (!error || error == -ENOENT) {
2075 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2076 } else if (need_rehash)
2077 d_rehash(dentry);
2078 out:
2079 trace_nfs_unlink_exit(dir, dentry, error);
2080 return error;
2081 }
2082 EXPORT_SYMBOL_GPL(nfs_unlink);
2083
2084 /*
2085 * To create a symbolic link, most file systems instantiate a new inode,
2086 * add a page to it containing the path, then write it out to the disk
2087 * using prepare_write/commit_write.
2088 *
2089 * Unfortunately the NFS client can't create the in-core inode first
2090 * because it needs a file handle to create an in-core inode (see
2091 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2092 * symlink request has completed on the server.
2093 *
2094 * So instead we allocate a raw page, copy the symname into it, then do
2095 * the SYMLINK request with the page as the buffer. If it succeeds, we
2096 * now have a new file handle and can instantiate an in-core NFS inode
2097 * and move the raw page into its mapping.
2098 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)2099 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2100 {
2101 struct page *page;
2102 char *kaddr;
2103 struct iattr attr;
2104 unsigned int pathlen = strlen(symname);
2105 int error;
2106
2107 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2108 dir->i_ino, dentry, symname);
2109
2110 if (pathlen > PAGE_SIZE)
2111 return -ENAMETOOLONG;
2112
2113 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2114 attr.ia_valid = ATTR_MODE;
2115
2116 page = alloc_page(GFP_USER);
2117 if (!page)
2118 return -ENOMEM;
2119
2120 kaddr = page_address(page);
2121 memcpy(kaddr, symname, pathlen);
2122 if (pathlen < PAGE_SIZE)
2123 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2124
2125 trace_nfs_symlink_enter(dir, dentry);
2126 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2127 trace_nfs_symlink_exit(dir, dentry, error);
2128 if (error != 0) {
2129 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2130 dir->i_sb->s_id, dir->i_ino,
2131 dentry, symname, error);
2132 d_drop(dentry);
2133 __free_page(page);
2134 return error;
2135 }
2136
2137 /*
2138 * No big deal if we can't add this page to the page cache here.
2139 * READLINK will get the missing page from the server if needed.
2140 */
2141 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2142 GFP_KERNEL)) {
2143 SetPageUptodate(page);
2144 unlock_page(page);
2145 /*
2146 * add_to_page_cache_lru() grabs an extra page refcount.
2147 * Drop it here to avoid leaking this page later.
2148 */
2149 put_page(page);
2150 } else
2151 __free_page(page);
2152
2153 return 0;
2154 }
2155 EXPORT_SYMBOL_GPL(nfs_symlink);
2156
2157 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2158 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2159 {
2160 struct inode *inode = d_inode(old_dentry);
2161 int error;
2162
2163 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2164 old_dentry, dentry);
2165
2166 trace_nfs_link_enter(inode, dir, dentry);
2167 d_drop(dentry);
2168 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2169 if (error == 0) {
2170 ihold(inode);
2171 d_add(dentry, inode);
2172 }
2173 trace_nfs_link_exit(inode, dir, dentry, error);
2174 return error;
2175 }
2176 EXPORT_SYMBOL_GPL(nfs_link);
2177
2178 /*
2179 * RENAME
2180 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2181 * different file handle for the same inode after a rename (e.g. when
2182 * moving to a different directory). A fail-safe method to do so would
2183 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2184 * rename the old file using the sillyrename stuff. This way, the original
2185 * file in old_dir will go away when the last process iput()s the inode.
2186 *
2187 * FIXED.
2188 *
2189 * It actually works quite well. One needs to have the possibility for
2190 * at least one ".nfs..." file in each directory the file ever gets
2191 * moved or linked to which happens automagically with the new
2192 * implementation that only depends on the dcache stuff instead of
2193 * using the inode layer
2194 *
2195 * Unfortunately, things are a little more complicated than indicated
2196 * above. For a cross-directory move, we want to make sure we can get
2197 * rid of the old inode after the operation. This means there must be
2198 * no pending writes (if it's a file), and the use count must be 1.
2199 * If these conditions are met, we can drop the dentries before doing
2200 * the rename.
2201 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2202 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2203 struct inode *new_dir, struct dentry *new_dentry,
2204 unsigned int flags)
2205 {
2206 struct inode *old_inode = d_inode(old_dentry);
2207 struct inode *new_inode = d_inode(new_dentry);
2208 struct dentry *dentry = NULL, *rehash = NULL;
2209 struct rpc_task *task;
2210 int error = -EBUSY;
2211
2212 if (flags)
2213 return -EINVAL;
2214
2215 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2216 old_dentry, new_dentry,
2217 d_count(new_dentry));
2218
2219 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2220 /*
2221 * For non-directories, check whether the target is busy and if so,
2222 * make a copy of the dentry and then do a silly-rename. If the
2223 * silly-rename succeeds, the copied dentry is hashed and becomes
2224 * the new target.
2225 */
2226 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2227 /*
2228 * To prevent any new references to the target during the
2229 * rename, we unhash the dentry in advance.
2230 */
2231 if (!d_unhashed(new_dentry)) {
2232 d_drop(new_dentry);
2233 rehash = new_dentry;
2234 }
2235
2236 if (d_count(new_dentry) > 2) {
2237 int err;
2238
2239 /* copy the target dentry's name */
2240 dentry = d_alloc(new_dentry->d_parent,
2241 &new_dentry->d_name);
2242 if (!dentry)
2243 goto out;
2244
2245 /* silly-rename the existing target ... */
2246 err = nfs_sillyrename(new_dir, new_dentry);
2247 if (err)
2248 goto out;
2249
2250 new_dentry = dentry;
2251 rehash = NULL;
2252 new_inode = NULL;
2253 }
2254 }
2255
2256 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2257 if (IS_ERR(task)) {
2258 error = PTR_ERR(task);
2259 goto out;
2260 }
2261
2262 error = rpc_wait_for_completion_task(task);
2263 if (error != 0) {
2264 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2265 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2266 smp_wmb();
2267 } else
2268 error = task->tk_status;
2269 rpc_put_task(task);
2270 /* Ensure the inode attributes are revalidated */
2271 if (error == 0) {
2272 spin_lock(&old_inode->i_lock);
2273 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2274 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2275 | NFS_INO_INVALID_CTIME
2276 | NFS_INO_REVAL_FORCED;
2277 spin_unlock(&old_inode->i_lock);
2278 }
2279 out:
2280 if (rehash)
2281 d_rehash(rehash);
2282 trace_nfs_rename_exit(old_dir, old_dentry,
2283 new_dir, new_dentry, error);
2284 if (!error) {
2285 if (new_inode != NULL)
2286 nfs_drop_nlink(new_inode);
2287 /*
2288 * The d_move() should be here instead of in an async RPC completion
2289 * handler because we need the proper locks to move the dentry. If
2290 * we're interrupted by a signal, the async RPC completion handler
2291 * should mark the directories for revalidation.
2292 */
2293 d_move(old_dentry, new_dentry);
2294 nfs_set_verifier(old_dentry,
2295 nfs_save_change_attribute(new_dir));
2296 } else if (error == -ENOENT)
2297 nfs_dentry_handle_enoent(old_dentry);
2298
2299 /* new dentry created? */
2300 if (dentry)
2301 dput(dentry);
2302 return error;
2303 }
2304 EXPORT_SYMBOL_GPL(nfs_rename);
2305
2306 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2307 static LIST_HEAD(nfs_access_lru_list);
2308 static atomic_long_t nfs_access_nr_entries;
2309
2310 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2311 module_param(nfs_access_max_cachesize, ulong, 0644);
2312 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2313
nfs_access_free_entry(struct nfs_access_entry * entry)2314 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2315 {
2316 put_cred(entry->cred);
2317 kfree_rcu(entry, rcu_head);
2318 smp_mb__before_atomic();
2319 atomic_long_dec(&nfs_access_nr_entries);
2320 smp_mb__after_atomic();
2321 }
2322
nfs_access_free_list(struct list_head * head)2323 static void nfs_access_free_list(struct list_head *head)
2324 {
2325 struct nfs_access_entry *cache;
2326
2327 while (!list_empty(head)) {
2328 cache = list_entry(head->next, struct nfs_access_entry, lru);
2329 list_del(&cache->lru);
2330 nfs_access_free_entry(cache);
2331 }
2332 }
2333
2334 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2335 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2336 {
2337 LIST_HEAD(head);
2338 struct nfs_inode *nfsi, *next;
2339 struct nfs_access_entry *cache;
2340 long freed = 0;
2341
2342 spin_lock(&nfs_access_lru_lock);
2343 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2344 struct inode *inode;
2345
2346 if (nr_to_scan-- == 0)
2347 break;
2348 inode = &nfsi->vfs_inode;
2349 spin_lock(&inode->i_lock);
2350 if (list_empty(&nfsi->access_cache_entry_lru))
2351 goto remove_lru_entry;
2352 cache = list_entry(nfsi->access_cache_entry_lru.next,
2353 struct nfs_access_entry, lru);
2354 list_move(&cache->lru, &head);
2355 rb_erase(&cache->rb_node, &nfsi->access_cache);
2356 freed++;
2357 if (!list_empty(&nfsi->access_cache_entry_lru))
2358 list_move_tail(&nfsi->access_cache_inode_lru,
2359 &nfs_access_lru_list);
2360 else {
2361 remove_lru_entry:
2362 list_del_init(&nfsi->access_cache_inode_lru);
2363 smp_mb__before_atomic();
2364 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2365 smp_mb__after_atomic();
2366 }
2367 spin_unlock(&inode->i_lock);
2368 }
2369 spin_unlock(&nfs_access_lru_lock);
2370 nfs_access_free_list(&head);
2371 return freed;
2372 }
2373
2374 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2375 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2376 {
2377 int nr_to_scan = sc->nr_to_scan;
2378 gfp_t gfp_mask = sc->gfp_mask;
2379
2380 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2381 return SHRINK_STOP;
2382 return nfs_do_access_cache_scan(nr_to_scan);
2383 }
2384
2385
2386 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2387 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2388 {
2389 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2390 }
2391
2392 static void
nfs_access_cache_enforce_limit(void)2393 nfs_access_cache_enforce_limit(void)
2394 {
2395 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2396 unsigned long diff;
2397 unsigned int nr_to_scan;
2398
2399 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2400 return;
2401 nr_to_scan = 100;
2402 diff = nr_entries - nfs_access_max_cachesize;
2403 if (diff < nr_to_scan)
2404 nr_to_scan = diff;
2405 nfs_do_access_cache_scan(nr_to_scan);
2406 }
2407
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2408 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2409 {
2410 struct rb_root *root_node = &nfsi->access_cache;
2411 struct rb_node *n;
2412 struct nfs_access_entry *entry;
2413
2414 /* Unhook entries from the cache */
2415 while ((n = rb_first(root_node)) != NULL) {
2416 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2417 rb_erase(n, root_node);
2418 list_move(&entry->lru, head);
2419 }
2420 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2421 }
2422
nfs_access_zap_cache(struct inode * inode)2423 void nfs_access_zap_cache(struct inode *inode)
2424 {
2425 LIST_HEAD(head);
2426
2427 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2428 return;
2429 /* Remove from global LRU init */
2430 spin_lock(&nfs_access_lru_lock);
2431 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2432 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2433
2434 spin_lock(&inode->i_lock);
2435 __nfs_access_zap_cache(NFS_I(inode), &head);
2436 spin_unlock(&inode->i_lock);
2437 spin_unlock(&nfs_access_lru_lock);
2438 nfs_access_free_list(&head);
2439 }
2440 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2441
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2442 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2443 {
2444 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2445
2446 while (n != NULL) {
2447 struct nfs_access_entry *entry =
2448 rb_entry(n, struct nfs_access_entry, rb_node);
2449 int cmp = cred_fscmp(cred, entry->cred);
2450
2451 if (cmp < 0)
2452 n = n->rb_left;
2453 else if (cmp > 0)
2454 n = n->rb_right;
2455 else
2456 return entry;
2457 }
2458 return NULL;
2459 }
2460
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2461 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2462 {
2463 struct nfs_inode *nfsi = NFS_I(inode);
2464 struct nfs_access_entry *cache;
2465 bool retry = true;
2466 int err;
2467
2468 spin_lock(&inode->i_lock);
2469 for(;;) {
2470 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2471 goto out_zap;
2472 cache = nfs_access_search_rbtree(inode, cred);
2473 err = -ENOENT;
2474 if (cache == NULL)
2475 goto out;
2476 /* Found an entry, is our attribute cache valid? */
2477 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2478 break;
2479 if (!retry)
2480 break;
2481 err = -ECHILD;
2482 if (!may_block)
2483 goto out;
2484 spin_unlock(&inode->i_lock);
2485 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2486 if (err)
2487 return err;
2488 spin_lock(&inode->i_lock);
2489 retry = false;
2490 }
2491 res->cred = cache->cred;
2492 res->mask = cache->mask;
2493 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2494 err = 0;
2495 out:
2496 spin_unlock(&inode->i_lock);
2497 return err;
2498 out_zap:
2499 spin_unlock(&inode->i_lock);
2500 nfs_access_zap_cache(inode);
2501 return -ENOENT;
2502 }
2503
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res)2504 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2505 {
2506 /* Only check the most recently returned cache entry,
2507 * but do it without locking.
2508 */
2509 struct nfs_inode *nfsi = NFS_I(inode);
2510 struct nfs_access_entry *cache;
2511 int err = -ECHILD;
2512 struct list_head *lh;
2513
2514 rcu_read_lock();
2515 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2516 goto out;
2517 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2518 cache = list_entry(lh, struct nfs_access_entry, lru);
2519 if (lh == &nfsi->access_cache_entry_lru ||
2520 cred_fscmp(cred, cache->cred) != 0)
2521 cache = NULL;
2522 if (cache == NULL)
2523 goto out;
2524 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2525 goto out;
2526 res->cred = cache->cred;
2527 res->mask = cache->mask;
2528 err = 0;
2529 out:
2530 rcu_read_unlock();
2531 return err;
2532 }
2533
nfs_access_get_cached(struct inode * inode,const struct cred * cred,struct nfs_access_entry * res,bool may_block)2534 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2535 nfs_access_entry *res, bool may_block)
2536 {
2537 int status;
2538
2539 status = nfs_access_get_cached_rcu(inode, cred, res);
2540 if (status != 0)
2541 status = nfs_access_get_cached_locked(inode, cred, res,
2542 may_block);
2543
2544 return status;
2545 }
2546 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2547
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2548 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2549 {
2550 struct nfs_inode *nfsi = NFS_I(inode);
2551 struct rb_root *root_node = &nfsi->access_cache;
2552 struct rb_node **p = &root_node->rb_node;
2553 struct rb_node *parent = NULL;
2554 struct nfs_access_entry *entry;
2555 int cmp;
2556
2557 spin_lock(&inode->i_lock);
2558 while (*p != NULL) {
2559 parent = *p;
2560 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2561 cmp = cred_fscmp(set->cred, entry->cred);
2562
2563 if (cmp < 0)
2564 p = &parent->rb_left;
2565 else if (cmp > 0)
2566 p = &parent->rb_right;
2567 else
2568 goto found;
2569 }
2570 rb_link_node(&set->rb_node, parent, p);
2571 rb_insert_color(&set->rb_node, root_node);
2572 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2573 spin_unlock(&inode->i_lock);
2574 return;
2575 found:
2576 rb_replace_node(parent, &set->rb_node, root_node);
2577 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2578 list_del(&entry->lru);
2579 spin_unlock(&inode->i_lock);
2580 nfs_access_free_entry(entry);
2581 }
2582
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2583 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2584 {
2585 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2586 if (cache == NULL)
2587 return;
2588 RB_CLEAR_NODE(&cache->rb_node);
2589 cache->cred = get_cred(set->cred);
2590 cache->mask = set->mask;
2591
2592 /* The above field assignments must be visible
2593 * before this item appears on the lru. We cannot easily
2594 * use rcu_assign_pointer, so just force the memory barrier.
2595 */
2596 smp_wmb();
2597 nfs_access_add_rbtree(inode, cache);
2598
2599 /* Update accounting */
2600 smp_mb__before_atomic();
2601 atomic_long_inc(&nfs_access_nr_entries);
2602 smp_mb__after_atomic();
2603
2604 /* Add inode to global LRU list */
2605 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2606 spin_lock(&nfs_access_lru_lock);
2607 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2608 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2609 &nfs_access_lru_list);
2610 spin_unlock(&nfs_access_lru_lock);
2611 }
2612 nfs_access_cache_enforce_limit();
2613 }
2614 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2615
2616 #define NFS_MAY_READ (NFS_ACCESS_READ)
2617 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2618 NFS_ACCESS_EXTEND | \
2619 NFS_ACCESS_DELETE)
2620 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2621 NFS_ACCESS_EXTEND)
2622 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2623 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2624 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2625 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)2626 nfs_access_calc_mask(u32 access_result, umode_t umode)
2627 {
2628 int mask = 0;
2629
2630 if (access_result & NFS_MAY_READ)
2631 mask |= MAY_READ;
2632 if (S_ISDIR(umode)) {
2633 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2634 mask |= MAY_WRITE;
2635 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2636 mask |= MAY_EXEC;
2637 } else if (S_ISREG(umode)) {
2638 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2639 mask |= MAY_WRITE;
2640 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2641 mask |= MAY_EXEC;
2642 } else if (access_result & NFS_MAY_WRITE)
2643 mask |= MAY_WRITE;
2644 return mask;
2645 }
2646
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2647 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2648 {
2649 entry->mask = access_result;
2650 }
2651 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2652
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)2653 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2654 {
2655 struct nfs_access_entry cache;
2656 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2657 int cache_mask = -1;
2658 int status;
2659
2660 trace_nfs_access_enter(inode);
2661
2662 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2663 if (status == 0)
2664 goto out_cached;
2665
2666 status = -ECHILD;
2667 if (!may_block)
2668 goto out;
2669
2670 /*
2671 * Determine which access bits we want to ask for...
2672 */
2673 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2674 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2675 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2676 NFS_ACCESS_XALIST;
2677 }
2678 if (S_ISDIR(inode->i_mode))
2679 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2680 else
2681 cache.mask |= NFS_ACCESS_EXECUTE;
2682 cache.cred = cred;
2683 status = NFS_PROTO(inode)->access(inode, &cache);
2684 if (status != 0) {
2685 if (status == -ESTALE) {
2686 if (!S_ISDIR(inode->i_mode))
2687 nfs_set_inode_stale(inode);
2688 else
2689 nfs_zap_caches(inode);
2690 }
2691 goto out;
2692 }
2693 nfs_access_add_cache(inode, &cache);
2694 out_cached:
2695 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2696 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2697 status = -EACCES;
2698 out:
2699 trace_nfs_access_exit(inode, mask, cache_mask, status);
2700 return status;
2701 }
2702
nfs_open_permission_mask(int openflags)2703 static int nfs_open_permission_mask(int openflags)
2704 {
2705 int mask = 0;
2706
2707 if (openflags & __FMODE_EXEC) {
2708 /* ONLY check exec rights */
2709 mask = MAY_EXEC;
2710 } else {
2711 if ((openflags & O_ACCMODE) != O_WRONLY)
2712 mask |= MAY_READ;
2713 if ((openflags & O_ACCMODE) != O_RDONLY)
2714 mask |= MAY_WRITE;
2715 }
2716
2717 return mask;
2718 }
2719
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)2720 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2721 {
2722 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2723 }
2724 EXPORT_SYMBOL_GPL(nfs_may_open);
2725
nfs_execute_ok(struct inode * inode,int mask)2726 static int nfs_execute_ok(struct inode *inode, int mask)
2727 {
2728 struct nfs_server *server = NFS_SERVER(inode);
2729 int ret = 0;
2730
2731 if (S_ISDIR(inode->i_mode))
2732 return 0;
2733 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2734 if (mask & MAY_NOT_BLOCK)
2735 return -ECHILD;
2736 ret = __nfs_revalidate_inode(server, inode);
2737 }
2738 if (ret == 0 && !execute_ok(inode))
2739 ret = -EACCES;
2740 return ret;
2741 }
2742
nfs_permission(struct inode * inode,int mask)2743 int nfs_permission(struct inode *inode, int mask)
2744 {
2745 const struct cred *cred = current_cred();
2746 int res = 0;
2747
2748 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2749
2750 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2751 goto out;
2752 /* Is this sys_access() ? */
2753 if (mask & (MAY_ACCESS | MAY_CHDIR))
2754 goto force_lookup;
2755
2756 switch (inode->i_mode & S_IFMT) {
2757 case S_IFLNK:
2758 goto out;
2759 case S_IFREG:
2760 if ((mask & MAY_OPEN) &&
2761 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2762 return 0;
2763 break;
2764 case S_IFDIR:
2765 /*
2766 * Optimize away all write operations, since the server
2767 * will check permissions when we perform the op.
2768 */
2769 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2770 goto out;
2771 }
2772
2773 force_lookup:
2774 if (!NFS_PROTO(inode)->access)
2775 goto out_notsup;
2776
2777 res = nfs_do_access(inode, cred, mask);
2778 out:
2779 if (!res && (mask & MAY_EXEC))
2780 res = nfs_execute_ok(inode, mask);
2781
2782 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2783 inode->i_sb->s_id, inode->i_ino, mask, res);
2784 return res;
2785 out_notsup:
2786 if (mask & MAY_NOT_BLOCK)
2787 return -ECHILD;
2788
2789 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2790 if (res == 0)
2791 res = generic_permission(inode, mask);
2792 goto out;
2793 }
2794 EXPORT_SYMBOL_GPL(nfs_permission);
2795
2796 /*
2797 * Local variables:
2798 * version-control: t
2799 * kept-new-versions: 5
2800 * End:
2801 */
2802