1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51 
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55 
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62 
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67 
68 static int load_elf_binary(struct linux_binprm *bprm);
69 
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75 
76 /*
77  * If we don't support core dumping, then supply a NULL so we
78  * don't even try.
79  */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump	NULL
84 #endif
85 
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN	PAGE_SIZE
90 #endif
91 
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS	0
94 #endif
95 
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99 
100 static struct linux_binfmt elf_format = {
101 	.module		= THIS_MODULE,
102 	.load_binary	= load_elf_binary,
103 	.load_shlib	= load_elf_library,
104 	.core_dump	= elf_core_dump,
105 	.min_coredump	= ELF_EXEC_PAGESIZE,
106 };
107 
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109 
set_brk(unsigned long start,unsigned long end,int prot)110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 	start = ELF_PAGEALIGN(start);
113 	end = ELF_PAGEALIGN(end);
114 	if (end > start) {
115 		/*
116 		 * Map the last of the bss segment.
117 		 * If the header is requesting these pages to be
118 		 * executable, honour that (ppc32 needs this).
119 		 */
120 		int error = vm_brk_flags(start, end - start,
121 				prot & PROT_EXEC ? VM_EXEC : 0);
122 		if (error)
123 			return error;
124 	}
125 	current->mm->start_brk = current->mm->brk = end;
126 	return 0;
127 }
128 
129 /* We need to explicitly zero any fractional pages
130    after the data section (i.e. bss).  This would
131    contain the junk from the file that should not
132    be in memory
133  */
padzero(unsigned long elf_bss)134 static int padzero(unsigned long elf_bss)
135 {
136 	unsigned long nbyte;
137 
138 	nbyte = ELF_PAGEOFFSET(elf_bss);
139 	if (nbyte) {
140 		nbyte = ELF_MIN_ALIGN - nbyte;
141 		if (clear_user((void __user *) elf_bss, nbyte))
142 			return -EFAULT;
143 	}
144 	return 0;
145 }
146 
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 	old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 	(((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
160 #endif
161 
162 #ifndef ELF_BASE_PLATFORM
163 /*
164  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166  * will be copied to the user stack in the same manner as AT_PLATFORM.
167  */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170 
171 static int
create_elf_tables(struct linux_binprm * bprm,const struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr,unsigned long e_entry)172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 		unsigned long load_addr, unsigned long interp_load_addr,
174 		unsigned long e_entry)
175 {
176 	struct mm_struct *mm = current->mm;
177 	unsigned long p = bprm->p;
178 	int argc = bprm->argc;
179 	int envc = bprm->envc;
180 	elf_addr_t __user *sp;
181 	elf_addr_t __user *u_platform;
182 	elf_addr_t __user *u_base_platform;
183 	elf_addr_t __user *u_rand_bytes;
184 	const char *k_platform = ELF_PLATFORM;
185 	const char *k_base_platform = ELF_BASE_PLATFORM;
186 	unsigned char k_rand_bytes[16];
187 	int items;
188 	elf_addr_t *elf_info;
189 	int ei_index;
190 	const struct cred *cred = current_cred();
191 	struct vm_area_struct *vma;
192 
193 	/*
194 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
195 	 * evictions by the processes running on the same package. One
196 	 * thing we can do is to shuffle the initial stack for them.
197 	 */
198 
199 	p = arch_align_stack(p);
200 
201 	/*
202 	 * If this architecture has a platform capability string, copy it
203 	 * to userspace.  In some cases (Sparc), this info is impossible
204 	 * for userspace to get any other way, in others (i386) it is
205 	 * merely difficult.
206 	 */
207 	u_platform = NULL;
208 	if (k_platform) {
209 		size_t len = strlen(k_platform) + 1;
210 
211 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
212 		if (copy_to_user(u_platform, k_platform, len))
213 			return -EFAULT;
214 	}
215 
216 	/*
217 	 * If this architecture has a "base" platform capability
218 	 * string, copy it to userspace.
219 	 */
220 	u_base_platform = NULL;
221 	if (k_base_platform) {
222 		size_t len = strlen(k_base_platform) + 1;
223 
224 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
225 		if (copy_to_user(u_base_platform, k_base_platform, len))
226 			return -EFAULT;
227 	}
228 
229 	/*
230 	 * Generate 16 random bytes for userspace PRNG seeding.
231 	 */
232 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
233 	u_rand_bytes = (elf_addr_t __user *)
234 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
235 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
236 		return -EFAULT;
237 
238 	/* Create the ELF interpreter info */
239 	elf_info = (elf_addr_t *)mm->saved_auxv;
240 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
241 #define NEW_AUX_ENT(id, val) \
242 	do { \
243 		*elf_info++ = id; \
244 		*elf_info++ = val; \
245 	} while (0)
246 
247 #ifdef ARCH_DLINFO
248 	/*
249 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
250 	 * AUXV.
251 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
252 	 * ARCH_DLINFO changes
253 	 */
254 	ARCH_DLINFO;
255 #endif
256 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
257 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
258 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
259 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
260 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
261 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
262 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
263 	NEW_AUX_ENT(AT_FLAGS, 0);
264 	NEW_AUX_ENT(AT_ENTRY, e_entry);
265 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
266 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
267 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
268 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
269 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
270 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
271 #ifdef ELF_HWCAP2
272 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
273 #endif
274 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
275 	if (k_platform) {
276 		NEW_AUX_ENT(AT_PLATFORM,
277 			    (elf_addr_t)(unsigned long)u_platform);
278 	}
279 	if (k_base_platform) {
280 		NEW_AUX_ENT(AT_BASE_PLATFORM,
281 			    (elf_addr_t)(unsigned long)u_base_platform);
282 	}
283 	if (bprm->have_execfd) {
284 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
285 	}
286 #undef NEW_AUX_ENT
287 	/* AT_NULL is zero; clear the rest too */
288 	memset(elf_info, 0, (char *)mm->saved_auxv +
289 			sizeof(mm->saved_auxv) - (char *)elf_info);
290 
291 	/* And advance past the AT_NULL entry.  */
292 	elf_info += 2;
293 
294 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
295 	sp = STACK_ADD(p, ei_index);
296 
297 	items = (argc + 1) + (envc + 1) + 1;
298 	bprm->p = STACK_ROUND(sp, items);
299 
300 	/* Point sp at the lowest address on the stack */
301 #ifdef CONFIG_STACK_GROWSUP
302 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
303 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
304 #else
305 	sp = (elf_addr_t __user *)bprm->p;
306 #endif
307 
308 
309 	/*
310 	 * Grow the stack manually; some architectures have a limit on how
311 	 * far ahead a user-space access may be in order to grow the stack.
312 	 */
313 	if (mmap_read_lock_killable(mm))
314 		return -EINTR;
315 	vma = find_extend_vma(mm, bprm->p);
316 	mmap_read_unlock(mm);
317 	if (!vma)
318 		return -EFAULT;
319 
320 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
321 	if (put_user(argc, sp++))
322 		return -EFAULT;
323 
324 	/* Populate list of argv pointers back to argv strings. */
325 	p = mm->arg_end = mm->arg_start;
326 	while (argc-- > 0) {
327 		size_t len;
328 		if (put_user((elf_addr_t)p, sp++))
329 			return -EFAULT;
330 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 		if (!len || len > MAX_ARG_STRLEN)
332 			return -EINVAL;
333 		p += len;
334 	}
335 	if (put_user(0, sp++))
336 		return -EFAULT;
337 	mm->arg_end = p;
338 
339 	/* Populate list of envp pointers back to envp strings. */
340 	mm->env_end = mm->env_start = p;
341 	while (envc-- > 0) {
342 		size_t len;
343 		if (put_user((elf_addr_t)p, sp++))
344 			return -EFAULT;
345 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
346 		if (!len || len > MAX_ARG_STRLEN)
347 			return -EINVAL;
348 		p += len;
349 	}
350 	if (put_user(0, sp++))
351 		return -EFAULT;
352 	mm->env_end = p;
353 
354 	/* Put the elf_info on the stack in the right place.  */
355 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
356 		return -EFAULT;
357 	return 0;
358 }
359 
elf_map(struct file * filep,unsigned long addr,const struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)360 static unsigned long elf_map(struct file *filep, unsigned long addr,
361 		const struct elf_phdr *eppnt, int prot, int type,
362 		unsigned long total_size)
363 {
364 	unsigned long map_addr;
365 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
366 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
367 	addr = ELF_PAGESTART(addr);
368 	size = ELF_PAGEALIGN(size);
369 
370 	/* mmap() will return -EINVAL if given a zero size, but a
371 	 * segment with zero filesize is perfectly valid */
372 	if (!size)
373 		return addr;
374 
375 	/*
376 	* total_size is the size of the ELF (interpreter) image.
377 	* The _first_ mmap needs to know the full size, otherwise
378 	* randomization might put this image into an overlapping
379 	* position with the ELF binary image. (since size < total_size)
380 	* So we first map the 'big' image - and unmap the remainder at
381 	* the end. (which unmap is needed for ELF images with holes.)
382 	*/
383 	if (total_size) {
384 		total_size = ELF_PAGEALIGN(total_size);
385 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
386 		if (!BAD_ADDR(map_addr))
387 			vm_munmap(map_addr+size, total_size-size);
388 	} else
389 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
390 
391 	if ((type & MAP_FIXED_NOREPLACE) &&
392 	    PTR_ERR((void *)map_addr) == -EEXIST)
393 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
394 			task_pid_nr(current), current->comm, (void *)addr);
395 
396 	return(map_addr);
397 }
398 
total_mapping_size(const struct elf_phdr * cmds,int nr)399 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
400 {
401 	int i, first_idx = -1, last_idx = -1;
402 
403 	for (i = 0; i < nr; i++) {
404 		if (cmds[i].p_type == PT_LOAD) {
405 			last_idx = i;
406 			if (first_idx == -1)
407 				first_idx = i;
408 		}
409 	}
410 	if (first_idx == -1)
411 		return 0;
412 
413 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
414 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
415 }
416 
elf_read(struct file * file,void * buf,size_t len,loff_t pos)417 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
418 {
419 	ssize_t rv;
420 
421 	rv = kernel_read(file, buf, len, &pos);
422 	if (unlikely(rv != len)) {
423 		return (rv < 0) ? rv : -EIO;
424 	}
425 	return 0;
426 }
427 
maximum_alignment(struct elf_phdr * cmds,int nr)428 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
429 {
430 	unsigned long alignment = 0;
431 	int i;
432 
433 	for (i = 0; i < nr; i++) {
434 		if (cmds[i].p_type == PT_LOAD) {
435 			unsigned long p_align = cmds[i].p_align;
436 
437 			/* skip non-power of two alignments as invalid */
438 			if (!is_power_of_2(p_align))
439 				continue;
440 			alignment = max(alignment, p_align);
441 		}
442 	}
443 
444 	/* ensure we align to at least one page */
445 	return ELF_PAGEALIGN(alignment);
446 }
447 
448 /**
449  * load_elf_phdrs() - load ELF program headers
450  * @elf_ex:   ELF header of the binary whose program headers should be loaded
451  * @elf_file: the opened ELF binary file
452  *
453  * Loads ELF program headers from the binary file elf_file, which has the ELF
454  * header pointed to by elf_ex, into a newly allocated array. The caller is
455  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
456  */
load_elf_phdrs(const struct elfhdr * elf_ex,struct file * elf_file)457 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
458 				       struct file *elf_file)
459 {
460 	struct elf_phdr *elf_phdata = NULL;
461 	int retval, err = -1;
462 	unsigned int size;
463 
464 	/*
465 	 * If the size of this structure has changed, then punt, since
466 	 * we will be doing the wrong thing.
467 	 */
468 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
469 		goto out;
470 
471 	/* Sanity check the number of program headers... */
472 	/* ...and their total size. */
473 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
474 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
475 		goto out;
476 
477 	elf_phdata = kmalloc(size, GFP_KERNEL);
478 	if (!elf_phdata)
479 		goto out;
480 
481 	/* Read in the program headers */
482 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
483 	if (retval < 0) {
484 		err = retval;
485 		goto out;
486 	}
487 
488 	/* Success! */
489 	err = 0;
490 out:
491 	if (err) {
492 		kfree(elf_phdata);
493 		elf_phdata = NULL;
494 	}
495 	return elf_phdata;
496 }
497 
498 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
499 
500 /**
501  * struct arch_elf_state - arch-specific ELF loading state
502  *
503  * This structure is used to preserve architecture specific data during
504  * the loading of an ELF file, throughout the checking of architecture
505  * specific ELF headers & through to the point where the ELF load is
506  * known to be proceeding (ie. SET_PERSONALITY).
507  *
508  * This implementation is a dummy for architectures which require no
509  * specific state.
510  */
511 struct arch_elf_state {
512 };
513 
514 #define INIT_ARCH_ELF_STATE {}
515 
516 /**
517  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
518  * @ehdr:	The main ELF header
519  * @phdr:	The program header to check
520  * @elf:	The open ELF file
521  * @is_interp:	True if the phdr is from the interpreter of the ELF being
522  *		loaded, else false.
523  * @state:	Architecture-specific state preserved throughout the process
524  *		of loading the ELF.
525  *
526  * Inspects the program header phdr to validate its correctness and/or
527  * suitability for the system. Called once per ELF program header in the
528  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
529  * interpreter.
530  *
531  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532  *         with that return code.
533  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)534 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
535 				   struct elf_phdr *phdr,
536 				   struct file *elf, bool is_interp,
537 				   struct arch_elf_state *state)
538 {
539 	/* Dummy implementation, always proceed */
540 	return 0;
541 }
542 
543 /**
544  * arch_check_elf() - check an ELF executable
545  * @ehdr:	The main ELF header
546  * @has_interp:	True if the ELF has an interpreter, else false.
547  * @interp_ehdr: The interpreter's ELF header
548  * @state:	Architecture-specific state preserved throughout the process
549  *		of loading the ELF.
550  *
551  * Provides a final opportunity for architecture code to reject the loading
552  * of the ELF & cause an exec syscall to return an error. This is called after
553  * all program headers to be checked by arch_elf_pt_proc have been.
554  *
555  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
556  *         with that return code.
557  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)558 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
559 				 struct elfhdr *interp_ehdr,
560 				 struct arch_elf_state *state)
561 {
562 	/* Dummy implementation, always proceed */
563 	return 0;
564 }
565 
566 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
567 
make_prot(u32 p_flags,struct arch_elf_state * arch_state,bool has_interp,bool is_interp)568 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
569 			    bool has_interp, bool is_interp)
570 {
571 	int prot = 0;
572 
573 	if (p_flags & PF_R)
574 		prot |= PROT_READ;
575 	if (p_flags & PF_W)
576 		prot |= PROT_WRITE;
577 	if (p_flags & PF_X)
578 		prot |= PROT_EXEC;
579 
580 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
581 }
582 
583 /* This is much more generalized than the library routine read function,
584    so we keep this separate.  Technically the library read function
585    is only provided so that we can read a.out libraries that have
586    an ELF header */
587 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long no_base,struct elf_phdr * interp_elf_phdata,struct arch_elf_state * arch_state)588 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
589 		struct file *interpreter,
590 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
591 		struct arch_elf_state *arch_state)
592 {
593 	struct elf_phdr *eppnt;
594 	unsigned long load_addr = 0;
595 	int load_addr_set = 0;
596 	unsigned long last_bss = 0, elf_bss = 0;
597 	int bss_prot = 0;
598 	unsigned long error = ~0UL;
599 	unsigned long total_size;
600 	int i;
601 
602 	/* First of all, some simple consistency checks */
603 	if (interp_elf_ex->e_type != ET_EXEC &&
604 	    interp_elf_ex->e_type != ET_DYN)
605 		goto out;
606 	if (!elf_check_arch(interp_elf_ex) ||
607 	    elf_check_fdpic(interp_elf_ex))
608 		goto out;
609 	if (!interpreter->f_op->mmap)
610 		goto out;
611 
612 	total_size = total_mapping_size(interp_elf_phdata,
613 					interp_elf_ex->e_phnum);
614 	if (!total_size) {
615 		error = -EINVAL;
616 		goto out;
617 	}
618 
619 	eppnt = interp_elf_phdata;
620 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
621 		if (eppnt->p_type == PT_LOAD) {
622 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
623 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
624 						 true, true);
625 			unsigned long vaddr = 0;
626 			unsigned long k, map_addr;
627 
628 			vaddr = eppnt->p_vaddr;
629 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
630 				elf_type |= MAP_FIXED_NOREPLACE;
631 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
632 				load_addr = -vaddr;
633 
634 			map_addr = elf_map(interpreter, load_addr + vaddr,
635 					eppnt, elf_prot, elf_type, total_size);
636 			total_size = 0;
637 			error = map_addr;
638 			if (BAD_ADDR(map_addr))
639 				goto out;
640 
641 			if (!load_addr_set &&
642 			    interp_elf_ex->e_type == ET_DYN) {
643 				load_addr = map_addr - ELF_PAGESTART(vaddr);
644 				load_addr_set = 1;
645 			}
646 
647 			/*
648 			 * Check to see if the section's size will overflow the
649 			 * allowed task size. Note that p_filesz must always be
650 			 * <= p_memsize so it's only necessary to check p_memsz.
651 			 */
652 			k = load_addr + eppnt->p_vaddr;
653 			if (BAD_ADDR(k) ||
654 			    eppnt->p_filesz > eppnt->p_memsz ||
655 			    eppnt->p_memsz > TASK_SIZE ||
656 			    TASK_SIZE - eppnt->p_memsz < k) {
657 				error = -ENOMEM;
658 				goto out;
659 			}
660 
661 			/*
662 			 * Find the end of the file mapping for this phdr, and
663 			 * keep track of the largest address we see for this.
664 			 */
665 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
666 			if (k > elf_bss)
667 				elf_bss = k;
668 
669 			/*
670 			 * Do the same thing for the memory mapping - between
671 			 * elf_bss and last_bss is the bss section.
672 			 */
673 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
674 			if (k > last_bss) {
675 				last_bss = k;
676 				bss_prot = elf_prot;
677 			}
678 		}
679 	}
680 
681 	/*
682 	 * Now fill out the bss section: first pad the last page from
683 	 * the file up to the page boundary, and zero it from elf_bss
684 	 * up to the end of the page.
685 	 */
686 	if (padzero(elf_bss)) {
687 		error = -EFAULT;
688 		goto out;
689 	}
690 	/*
691 	 * Next, align both the file and mem bss up to the page size,
692 	 * since this is where elf_bss was just zeroed up to, and where
693 	 * last_bss will end after the vm_brk_flags() below.
694 	 */
695 	elf_bss = ELF_PAGEALIGN(elf_bss);
696 	last_bss = ELF_PAGEALIGN(last_bss);
697 	/* Finally, if there is still more bss to allocate, do it. */
698 	if (last_bss > elf_bss) {
699 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
700 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
701 		if (error)
702 			goto out;
703 	}
704 
705 	error = load_addr;
706 out:
707 	return error;
708 }
709 
710 /*
711  * These are the functions used to load ELF style executables and shared
712  * libraries.  There is no binary dependent code anywhere else.
713  */
714 
parse_elf_property(const char * data,size_t * off,size_t datasz,struct arch_elf_state * arch,bool have_prev_type,u32 * prev_type)715 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
716 			      struct arch_elf_state *arch,
717 			      bool have_prev_type, u32 *prev_type)
718 {
719 	size_t o, step;
720 	const struct gnu_property *pr;
721 	int ret;
722 
723 	if (*off == datasz)
724 		return -ENOENT;
725 
726 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
727 		return -EIO;
728 	o = *off;
729 	datasz -= *off;
730 
731 	if (datasz < sizeof(*pr))
732 		return -ENOEXEC;
733 	pr = (const struct gnu_property *)(data + o);
734 	o += sizeof(*pr);
735 	datasz -= sizeof(*pr);
736 
737 	if (pr->pr_datasz > datasz)
738 		return -ENOEXEC;
739 
740 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
741 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
742 	if (step > datasz)
743 		return -ENOEXEC;
744 
745 	/* Properties are supposed to be unique and sorted on pr_type: */
746 	if (have_prev_type && pr->pr_type <= *prev_type)
747 		return -ENOEXEC;
748 	*prev_type = pr->pr_type;
749 
750 	ret = arch_parse_elf_property(pr->pr_type, data + o,
751 				      pr->pr_datasz, ELF_COMPAT, arch);
752 	if (ret)
753 		return ret;
754 
755 	*off = o + step;
756 	return 0;
757 }
758 
759 #define NOTE_DATA_SZ SZ_1K
760 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
761 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
762 
parse_elf_properties(struct file * f,const struct elf_phdr * phdr,struct arch_elf_state * arch)763 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
764 				struct arch_elf_state *arch)
765 {
766 	union {
767 		struct elf_note nhdr;
768 		char data[NOTE_DATA_SZ];
769 	} note;
770 	loff_t pos;
771 	ssize_t n;
772 	size_t off, datasz;
773 	int ret;
774 	bool have_prev_type;
775 	u32 prev_type;
776 
777 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
778 		return 0;
779 
780 	/* load_elf_binary() shouldn't call us unless this is true... */
781 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
782 		return -ENOEXEC;
783 
784 	/* If the properties are crazy large, that's too bad (for now): */
785 	if (phdr->p_filesz > sizeof(note))
786 		return -ENOEXEC;
787 
788 	pos = phdr->p_offset;
789 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
790 
791 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
792 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
793 		return -EIO;
794 
795 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
796 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
797 	    strncmp(note.data + sizeof(note.nhdr),
798 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
799 		return -ENOEXEC;
800 
801 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
802 		       ELF_GNU_PROPERTY_ALIGN);
803 	if (off > n)
804 		return -ENOEXEC;
805 
806 	if (note.nhdr.n_descsz > n - off)
807 		return -ENOEXEC;
808 	datasz = off + note.nhdr.n_descsz;
809 
810 	have_prev_type = false;
811 	do {
812 		ret = parse_elf_property(note.data, &off, datasz, arch,
813 					 have_prev_type, &prev_type);
814 		have_prev_type = true;
815 	} while (!ret);
816 
817 	return ret == -ENOENT ? 0 : ret;
818 }
819 
load_elf_binary(struct linux_binprm * bprm)820 static int load_elf_binary(struct linux_binprm *bprm)
821 {
822 	struct file *interpreter = NULL; /* to shut gcc up */
823  	unsigned long load_addr = 0, load_bias = 0;
824 	int load_addr_set = 0;
825 	unsigned long error;
826 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
827 	struct elf_phdr *elf_property_phdata = NULL;
828 	unsigned long elf_bss, elf_brk;
829 	int bss_prot = 0;
830 	int retval, i;
831 	unsigned long elf_entry;
832 	unsigned long e_entry;
833 	unsigned long interp_load_addr = 0;
834 	unsigned long start_code, end_code, start_data, end_data;
835 	unsigned long reloc_func_desc __maybe_unused = 0;
836 	int executable_stack = EXSTACK_DEFAULT;
837 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
838 	struct elfhdr *interp_elf_ex = NULL;
839 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
840 	struct mm_struct *mm;
841 	struct pt_regs *regs;
842 
843 	retval = -ENOEXEC;
844 	/* First of all, some simple consistency checks */
845 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 		goto out;
847 
848 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
849 		goto out;
850 	if (!elf_check_arch(elf_ex))
851 		goto out;
852 	if (elf_check_fdpic(elf_ex))
853 		goto out;
854 	if (!bprm->file->f_op->mmap)
855 		goto out;
856 
857 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
858 	if (!elf_phdata)
859 		goto out;
860 
861 	elf_ppnt = elf_phdata;
862 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
863 		char *elf_interpreter;
864 
865 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
866 			elf_property_phdata = elf_ppnt;
867 			continue;
868 		}
869 
870 		if (elf_ppnt->p_type != PT_INTERP)
871 			continue;
872 
873 		/*
874 		 * This is the program interpreter used for shared libraries -
875 		 * for now assume that this is an a.out format binary.
876 		 */
877 		retval = -ENOEXEC;
878 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
879 			goto out_free_ph;
880 
881 		retval = -ENOMEM;
882 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
883 		if (!elf_interpreter)
884 			goto out_free_ph;
885 
886 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 				  elf_ppnt->p_offset);
888 		if (retval < 0)
889 			goto out_free_interp;
890 		/* make sure path is NULL terminated */
891 		retval = -ENOEXEC;
892 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
893 			goto out_free_interp;
894 
895 		interpreter = open_exec(elf_interpreter);
896 		kfree(elf_interpreter);
897 		retval = PTR_ERR(interpreter);
898 		if (IS_ERR(interpreter))
899 			goto out_free_ph;
900 
901 		/*
902 		 * If the binary is not readable then enforce mm->dumpable = 0
903 		 * regardless of the interpreter's permissions.
904 		 */
905 		would_dump(bprm, interpreter);
906 
907 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
908 		if (!interp_elf_ex) {
909 			retval = -ENOMEM;
910 			goto out_free_ph;
911 		}
912 
913 		/* Get the exec headers */
914 		retval = elf_read(interpreter, interp_elf_ex,
915 				  sizeof(*interp_elf_ex), 0);
916 		if (retval < 0)
917 			goto out_free_dentry;
918 
919 		break;
920 
921 out_free_interp:
922 		kfree(elf_interpreter);
923 		goto out_free_ph;
924 	}
925 
926 	elf_ppnt = elf_phdata;
927 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
928 		switch (elf_ppnt->p_type) {
929 		case PT_GNU_STACK:
930 			if (elf_ppnt->p_flags & PF_X)
931 				executable_stack = EXSTACK_ENABLE_X;
932 			else
933 				executable_stack = EXSTACK_DISABLE_X;
934 			break;
935 
936 		case PT_LOPROC ... PT_HIPROC:
937 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
938 						  bprm->file, false,
939 						  &arch_state);
940 			if (retval)
941 				goto out_free_dentry;
942 			break;
943 		}
944 
945 	/* Some simple consistency checks for the interpreter */
946 	if (interpreter) {
947 		retval = -ELIBBAD;
948 		/* Not an ELF interpreter */
949 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
950 			goto out_free_dentry;
951 		/* Verify the interpreter has a valid arch */
952 		if (!elf_check_arch(interp_elf_ex) ||
953 		    elf_check_fdpic(interp_elf_ex))
954 			goto out_free_dentry;
955 
956 		/* Load the interpreter program headers */
957 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
958 						   interpreter);
959 		if (!interp_elf_phdata)
960 			goto out_free_dentry;
961 
962 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
963 		elf_property_phdata = NULL;
964 		elf_ppnt = interp_elf_phdata;
965 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
966 			switch (elf_ppnt->p_type) {
967 			case PT_GNU_PROPERTY:
968 				elf_property_phdata = elf_ppnt;
969 				break;
970 
971 			case PT_LOPROC ... PT_HIPROC:
972 				retval = arch_elf_pt_proc(interp_elf_ex,
973 							  elf_ppnt, interpreter,
974 							  true, &arch_state);
975 				if (retval)
976 					goto out_free_dentry;
977 				break;
978 			}
979 	}
980 
981 	retval = parse_elf_properties(interpreter ?: bprm->file,
982 				      elf_property_phdata, &arch_state);
983 	if (retval)
984 		goto out_free_dentry;
985 
986 	/*
987 	 * Allow arch code to reject the ELF at this point, whilst it's
988 	 * still possible to return an error to the code that invoked
989 	 * the exec syscall.
990 	 */
991 	retval = arch_check_elf(elf_ex,
992 				!!interpreter, interp_elf_ex,
993 				&arch_state);
994 	if (retval)
995 		goto out_free_dentry;
996 
997 	/* Flush all traces of the currently running executable */
998 	retval = begin_new_exec(bprm);
999 	if (retval)
1000 		goto out_free_dentry;
1001 
1002 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1003 	   may depend on the personality.  */
1004 	SET_PERSONALITY2(*elf_ex, &arch_state);
1005 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1006 		current->personality |= READ_IMPLIES_EXEC;
1007 
1008 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1009 		current->flags |= PF_RANDOMIZE;
1010 
1011 	setup_new_exec(bprm);
1012 
1013 	/* Do this so that we can load the interpreter, if need be.  We will
1014 	   change some of these later */
1015 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1016 				 executable_stack);
1017 	if (retval < 0)
1018 		goto out_free_dentry;
1019 
1020 	elf_bss = 0;
1021 	elf_brk = 0;
1022 
1023 	start_code = ~0UL;
1024 	end_code = 0;
1025 	start_data = 0;
1026 	end_data = 0;
1027 
1028 	/* Now we do a little grungy work by mmapping the ELF image into
1029 	   the correct location in memory. */
1030 	for(i = 0, elf_ppnt = elf_phdata;
1031 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1032 		int elf_prot, elf_flags;
1033 		unsigned long k, vaddr;
1034 		unsigned long total_size = 0;
1035 		unsigned long alignment;
1036 
1037 		if (elf_ppnt->p_type != PT_LOAD)
1038 			continue;
1039 
1040 		if (unlikely (elf_brk > elf_bss)) {
1041 			unsigned long nbyte;
1042 
1043 			/* There was a PT_LOAD segment with p_memsz > p_filesz
1044 			   before this one. Map anonymous pages, if needed,
1045 			   and clear the area.  */
1046 			retval = set_brk(elf_bss + load_bias,
1047 					 elf_brk + load_bias,
1048 					 bss_prot);
1049 			if (retval)
1050 				goto out_free_dentry;
1051 			nbyte = ELF_PAGEOFFSET(elf_bss);
1052 			if (nbyte) {
1053 				nbyte = ELF_MIN_ALIGN - nbyte;
1054 				if (nbyte > elf_brk - elf_bss)
1055 					nbyte = elf_brk - elf_bss;
1056 				if (clear_user((void __user *)elf_bss +
1057 							load_bias, nbyte)) {
1058 					/*
1059 					 * This bss-zeroing can fail if the ELF
1060 					 * file specifies odd protections. So
1061 					 * we don't check the return value
1062 					 */
1063 				}
1064 			}
1065 		}
1066 
1067 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1068 				     !!interpreter, false);
1069 
1070 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1071 
1072 		vaddr = elf_ppnt->p_vaddr;
1073 		/*
1074 		 * If we are loading ET_EXEC or we have already performed
1075 		 * the ET_DYN load_addr calculations, proceed normally.
1076 		 */
1077 		if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1078 			elf_flags |= MAP_FIXED;
1079 		} else if (elf_ex->e_type == ET_DYN) {
1080 			/*
1081 			 * This logic is run once for the first LOAD Program
1082 			 * Header for ET_DYN binaries to calculate the
1083 			 * randomization (load_bias) for all the LOAD
1084 			 * Program Headers, and to calculate the entire
1085 			 * size of the ELF mapping (total_size). (Note that
1086 			 * load_addr_set is set to true later once the
1087 			 * initial mapping is performed.)
1088 			 *
1089 			 * There are effectively two types of ET_DYN
1090 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1091 			 * and loaders (ET_DYN without INTERP, since they
1092 			 * _are_ the ELF interpreter). The loaders must
1093 			 * be loaded away from programs since the program
1094 			 * may otherwise collide with the loader (especially
1095 			 * for ET_EXEC which does not have a randomized
1096 			 * position). For example to handle invocations of
1097 			 * "./ld.so someprog" to test out a new version of
1098 			 * the loader, the subsequent program that the
1099 			 * loader loads must avoid the loader itself, so
1100 			 * they cannot share the same load range. Sufficient
1101 			 * room for the brk must be allocated with the
1102 			 * loader as well, since brk must be available with
1103 			 * the loader.
1104 			 *
1105 			 * Therefore, programs are loaded offset from
1106 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1107 			 * independently randomized mmap region (0 load_bias
1108 			 * without MAP_FIXED).
1109 			 */
1110 			if (interpreter) {
1111 				load_bias = ELF_ET_DYN_BASE;
1112 				if (current->flags & PF_RANDOMIZE)
1113 					load_bias += arch_mmap_rnd();
1114 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1115 				if (alignment)
1116 					load_bias &= ~(alignment - 1);
1117 				elf_flags |= MAP_FIXED;
1118 			} else
1119 				load_bias = 0;
1120 
1121 			/*
1122 			 * Since load_bias is used for all subsequent loading
1123 			 * calculations, we must lower it by the first vaddr
1124 			 * so that the remaining calculations based on the
1125 			 * ELF vaddrs will be correctly offset. The result
1126 			 * is then page aligned.
1127 			 */
1128 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1129 
1130 			total_size = total_mapping_size(elf_phdata,
1131 							elf_ex->e_phnum);
1132 			if (!total_size) {
1133 				retval = -EINVAL;
1134 				goto out_free_dentry;
1135 			}
1136 		}
1137 
1138 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1139 				elf_prot, elf_flags, total_size);
1140 		if (BAD_ADDR(error)) {
1141 			retval = IS_ERR((void *)error) ?
1142 				PTR_ERR((void*)error) : -EINVAL;
1143 			goto out_free_dentry;
1144 		}
1145 
1146 		if (!load_addr_set) {
1147 			load_addr_set = 1;
1148 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1149 			if (elf_ex->e_type == ET_DYN) {
1150 				load_bias += error -
1151 				             ELF_PAGESTART(load_bias + vaddr);
1152 				load_addr += load_bias;
1153 				reloc_func_desc = load_bias;
1154 			}
1155 		}
1156 		k = elf_ppnt->p_vaddr;
1157 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1158 			start_code = k;
1159 		if (start_data < k)
1160 			start_data = k;
1161 
1162 		/*
1163 		 * Check to see if the section's size will overflow the
1164 		 * allowed task size. Note that p_filesz must always be
1165 		 * <= p_memsz so it is only necessary to check p_memsz.
1166 		 */
1167 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1168 		    elf_ppnt->p_memsz > TASK_SIZE ||
1169 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1170 			/* set_brk can never work. Avoid overflows. */
1171 			retval = -EINVAL;
1172 			goto out_free_dentry;
1173 		}
1174 
1175 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1176 
1177 		if (k > elf_bss)
1178 			elf_bss = k;
1179 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1180 			end_code = k;
1181 		if (end_data < k)
1182 			end_data = k;
1183 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1184 		if (k > elf_brk) {
1185 			bss_prot = elf_prot;
1186 			elf_brk = k;
1187 		}
1188 	}
1189 
1190 	e_entry = elf_ex->e_entry + load_bias;
1191 	elf_bss += load_bias;
1192 	elf_brk += load_bias;
1193 	start_code += load_bias;
1194 	end_code += load_bias;
1195 	start_data += load_bias;
1196 	end_data += load_bias;
1197 
1198 	/* Calling set_brk effectively mmaps the pages that we need
1199 	 * for the bss and break sections.  We must do this before
1200 	 * mapping in the interpreter, to make sure it doesn't wind
1201 	 * up getting placed where the bss needs to go.
1202 	 */
1203 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1204 	if (retval)
1205 		goto out_free_dentry;
1206 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1207 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1208 		goto out_free_dentry;
1209 	}
1210 
1211 	if (interpreter) {
1212 		elf_entry = load_elf_interp(interp_elf_ex,
1213 					    interpreter,
1214 					    load_bias, interp_elf_phdata,
1215 					    &arch_state);
1216 		if (!IS_ERR((void *)elf_entry)) {
1217 			/*
1218 			 * load_elf_interp() returns relocation
1219 			 * adjustment
1220 			 */
1221 			interp_load_addr = elf_entry;
1222 			elf_entry += interp_elf_ex->e_entry;
1223 		}
1224 		if (BAD_ADDR(elf_entry)) {
1225 			retval = IS_ERR((void *)elf_entry) ?
1226 					(int)elf_entry : -EINVAL;
1227 			goto out_free_dentry;
1228 		}
1229 		reloc_func_desc = interp_load_addr;
1230 
1231 		allow_write_access(interpreter);
1232 		fput(interpreter);
1233 
1234 		kfree(interp_elf_ex);
1235 		kfree(interp_elf_phdata);
1236 	} else {
1237 		elf_entry = e_entry;
1238 		if (BAD_ADDR(elf_entry)) {
1239 			retval = -EINVAL;
1240 			goto out_free_dentry;
1241 		}
1242 	}
1243 
1244 	kfree(elf_phdata);
1245 
1246 	set_binfmt(&elf_format);
1247 
1248 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1249 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1250 	if (retval < 0)
1251 		goto out;
1252 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1253 
1254 	retval = create_elf_tables(bprm, elf_ex,
1255 			  load_addr, interp_load_addr, e_entry);
1256 	if (retval < 0)
1257 		goto out;
1258 
1259 	mm = current->mm;
1260 	mm->end_code = end_code;
1261 	mm->start_code = start_code;
1262 	mm->start_data = start_data;
1263 	mm->end_data = end_data;
1264 	mm->start_stack = bprm->p;
1265 
1266 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1267 		/*
1268 		 * For architectures with ELF randomization, when executing
1269 		 * a loader directly (i.e. no interpreter listed in ELF
1270 		 * headers), move the brk area out of the mmap region
1271 		 * (since it grows up, and may collide early with the stack
1272 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1273 		 */
1274 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1275 		    elf_ex->e_type == ET_DYN && !interpreter) {
1276 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1277 		}
1278 
1279 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1280 #ifdef compat_brk_randomized
1281 		current->brk_randomized = 1;
1282 #endif
1283 	}
1284 
1285 	if (current->personality & MMAP_PAGE_ZERO) {
1286 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1287 		   and some applications "depend" upon this behavior.
1288 		   Since we do not have the power to recompile these, we
1289 		   emulate the SVr4 behavior. Sigh. */
1290 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1291 				MAP_FIXED | MAP_PRIVATE, 0);
1292 	}
1293 
1294 	regs = current_pt_regs();
1295 #ifdef ELF_PLAT_INIT
1296 	/*
1297 	 * The ABI may specify that certain registers be set up in special
1298 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1299 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1300 	 * that the e_entry field is the address of the function descriptor
1301 	 * for the startup routine, rather than the address of the startup
1302 	 * routine itself.  This macro performs whatever initialization to
1303 	 * the regs structure is required as well as any relocations to the
1304 	 * function descriptor entries when executing dynamically links apps.
1305 	 */
1306 	ELF_PLAT_INIT(regs, reloc_func_desc);
1307 #endif
1308 
1309 	finalize_exec(bprm);
1310 	start_thread(regs, elf_entry, bprm->p);
1311 	retval = 0;
1312 out:
1313 	return retval;
1314 
1315 	/* error cleanup */
1316 out_free_dentry:
1317 	kfree(interp_elf_ex);
1318 	kfree(interp_elf_phdata);
1319 	allow_write_access(interpreter);
1320 	if (interpreter)
1321 		fput(interpreter);
1322 out_free_ph:
1323 	kfree(elf_phdata);
1324 	goto out;
1325 }
1326 
1327 #ifdef CONFIG_USELIB
1328 /* This is really simpleminded and specialized - we are loading an
1329    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1330 static int load_elf_library(struct file *file)
1331 {
1332 	struct elf_phdr *elf_phdata;
1333 	struct elf_phdr *eppnt;
1334 	unsigned long elf_bss, bss, len;
1335 	int retval, error, i, j;
1336 	struct elfhdr elf_ex;
1337 
1338 	error = -ENOEXEC;
1339 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1340 	if (retval < 0)
1341 		goto out;
1342 
1343 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1344 		goto out;
1345 
1346 	/* First of all, some simple consistency checks */
1347 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1348 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1349 		goto out;
1350 	if (elf_check_fdpic(&elf_ex))
1351 		goto out;
1352 
1353 	/* Now read in all of the header information */
1354 
1355 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1356 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1357 
1358 	error = -ENOMEM;
1359 	elf_phdata = kmalloc(j, GFP_KERNEL);
1360 	if (!elf_phdata)
1361 		goto out;
1362 
1363 	eppnt = elf_phdata;
1364 	error = -ENOEXEC;
1365 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1366 	if (retval < 0)
1367 		goto out_free_ph;
1368 
1369 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1370 		if ((eppnt + i)->p_type == PT_LOAD)
1371 			j++;
1372 	if (j != 1)
1373 		goto out_free_ph;
1374 
1375 	while (eppnt->p_type != PT_LOAD)
1376 		eppnt++;
1377 
1378 	/* Now use mmap to map the library into memory. */
1379 	error = vm_mmap(file,
1380 			ELF_PAGESTART(eppnt->p_vaddr),
1381 			(eppnt->p_filesz +
1382 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1383 			PROT_READ | PROT_WRITE | PROT_EXEC,
1384 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1385 			(eppnt->p_offset -
1386 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1387 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1388 		goto out_free_ph;
1389 
1390 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1391 	if (padzero(elf_bss)) {
1392 		error = -EFAULT;
1393 		goto out_free_ph;
1394 	}
1395 
1396 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1397 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1398 	if (bss > len) {
1399 		error = vm_brk(len, bss - len);
1400 		if (error)
1401 			goto out_free_ph;
1402 	}
1403 	error = 0;
1404 
1405 out_free_ph:
1406 	kfree(elf_phdata);
1407 out:
1408 	return error;
1409 }
1410 #endif /* #ifdef CONFIG_USELIB */
1411 
1412 #ifdef CONFIG_ELF_CORE
1413 /*
1414  * ELF core dumper
1415  *
1416  * Modelled on fs/exec.c:aout_core_dump()
1417  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1418  */
1419 
1420 /* An ELF note in memory */
1421 struct memelfnote
1422 {
1423 	const char *name;
1424 	int type;
1425 	unsigned int datasz;
1426 	void *data;
1427 };
1428 
notesize(struct memelfnote * en)1429 static int notesize(struct memelfnote *en)
1430 {
1431 	int sz;
1432 
1433 	sz = sizeof(struct elf_note);
1434 	sz += roundup(strlen(en->name) + 1, 4);
1435 	sz += roundup(en->datasz, 4);
1436 
1437 	return sz;
1438 }
1439 
writenote(struct memelfnote * men,struct coredump_params * cprm)1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1441 {
1442 	struct elf_note en;
1443 	en.n_namesz = strlen(men->name) + 1;
1444 	en.n_descsz = men->datasz;
1445 	en.n_type = men->type;
1446 
1447 	return dump_emit(cprm, &en, sizeof(en)) &&
1448 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1449 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1450 }
1451 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1452 static void fill_elf_header(struct elfhdr *elf, int segs,
1453 			    u16 machine, u32 flags)
1454 {
1455 	memset(elf, 0, sizeof(*elf));
1456 
1457 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1458 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1459 	elf->e_ident[EI_DATA] = ELF_DATA;
1460 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1461 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1462 
1463 	elf->e_type = ET_CORE;
1464 	elf->e_machine = machine;
1465 	elf->e_version = EV_CURRENT;
1466 	elf->e_phoff = sizeof(struct elfhdr);
1467 	elf->e_flags = flags;
1468 	elf->e_ehsize = sizeof(struct elfhdr);
1469 	elf->e_phentsize = sizeof(struct elf_phdr);
1470 	elf->e_phnum = segs;
1471 }
1472 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1474 {
1475 	phdr->p_type = PT_NOTE;
1476 	phdr->p_offset = offset;
1477 	phdr->p_vaddr = 0;
1478 	phdr->p_paddr = 0;
1479 	phdr->p_filesz = sz;
1480 	phdr->p_memsz = 0;
1481 	phdr->p_flags = 0;
1482 	phdr->p_align = 0;
1483 }
1484 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1485 static void fill_note(struct memelfnote *note, const char *name, int type,
1486 		unsigned int sz, void *data)
1487 {
1488 	note->name = name;
1489 	note->type = type;
1490 	note->datasz = sz;
1491 	note->data = data;
1492 }
1493 
1494 /*
1495  * fill up all the fields in prstatus from the given task struct, except
1496  * registers which need to be filled up separately.
1497  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1498 static void fill_prstatus(struct elf_prstatus *prstatus,
1499 		struct task_struct *p, long signr)
1500 {
1501 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1502 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1503 	prstatus->pr_sighold = p->blocked.sig[0];
1504 	rcu_read_lock();
1505 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1506 	rcu_read_unlock();
1507 	prstatus->pr_pid = task_pid_vnr(p);
1508 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1509 	prstatus->pr_sid = task_session_vnr(p);
1510 	if (thread_group_leader(p)) {
1511 		struct task_cputime cputime;
1512 
1513 		/*
1514 		 * This is the record for the group leader.  It shows the
1515 		 * group-wide total, not its individual thread total.
1516 		 */
1517 		thread_group_cputime(p, &cputime);
1518 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1519 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1520 	} else {
1521 		u64 utime, stime;
1522 
1523 		task_cputime(p, &utime, &stime);
1524 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1525 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1526 	}
1527 
1528 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1529 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1530 }
1531 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1533 		       struct mm_struct *mm)
1534 {
1535 	const struct cred *cred;
1536 	unsigned int i, len;
1537 
1538 	/* first copy the parameters from user space */
1539 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1540 
1541 	len = mm->arg_end - mm->arg_start;
1542 	if (len >= ELF_PRARGSZ)
1543 		len = ELF_PRARGSZ-1;
1544 	if (copy_from_user(&psinfo->pr_psargs,
1545 		           (const char __user *)mm->arg_start, len))
1546 		return -EFAULT;
1547 	for(i = 0; i < len; i++)
1548 		if (psinfo->pr_psargs[i] == 0)
1549 			psinfo->pr_psargs[i] = ' ';
1550 	psinfo->pr_psargs[len] = 0;
1551 
1552 	rcu_read_lock();
1553 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1554 	rcu_read_unlock();
1555 	psinfo->pr_pid = task_pid_vnr(p);
1556 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1557 	psinfo->pr_sid = task_session_vnr(p);
1558 
1559 	i = p->state ? ffz(~p->state) + 1 : 0;
1560 	psinfo->pr_state = i;
1561 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1562 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1563 	psinfo->pr_nice = task_nice(p);
1564 	psinfo->pr_flag = p->flags;
1565 	rcu_read_lock();
1566 	cred = __task_cred(p);
1567 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1568 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1569 	rcu_read_unlock();
1570 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1571 
1572 	return 0;
1573 }
1574 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1576 {
1577 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1578 	int i = 0;
1579 	do
1580 		i += 2;
1581 	while (auxv[i - 2] != AT_NULL);
1582 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1583 }
1584 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const kernel_siginfo_t * siginfo)1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1586 		const kernel_siginfo_t *siginfo)
1587 {
1588 	copy_siginfo_to_external(csigdata, siginfo);
1589 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1590 }
1591 
1592 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1593 /*
1594  * Format of NT_FILE note:
1595  *
1596  * long count     -- how many files are mapped
1597  * long page_size -- units for file_ofs
1598  * array of [COUNT] elements of
1599  *   long start
1600  *   long end
1601  *   long file_ofs
1602  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1603  */
fill_files_note(struct memelfnote * note)1604 static int fill_files_note(struct memelfnote *note)
1605 {
1606 	struct mm_struct *mm = current->mm;
1607 	struct vm_area_struct *vma;
1608 	unsigned count, size, names_ofs, remaining, n;
1609 	user_long_t *data;
1610 	user_long_t *start_end_ofs;
1611 	char *name_base, *name_curpos;
1612 
1613 	/* *Estimated* file count and total data size needed */
1614 	count = mm->map_count;
1615 	if (count > UINT_MAX / 64)
1616 		return -EINVAL;
1617 	size = count * 64;
1618 
1619 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1620  alloc:
1621 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1622 		return -EINVAL;
1623 	size = round_up(size, PAGE_SIZE);
1624 	/*
1625 	 * "size" can be 0 here legitimately.
1626 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1627 	 */
1628 	data = kvmalloc(size, GFP_KERNEL);
1629 	if (ZERO_OR_NULL_PTR(data))
1630 		return -ENOMEM;
1631 
1632 	start_end_ofs = data + 2;
1633 	name_base = name_curpos = ((char *)data) + names_ofs;
1634 	remaining = size - names_ofs;
1635 	count = 0;
1636 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1637 		struct file *file;
1638 		const char *filename;
1639 
1640 		file = vma->vm_file;
1641 		if (!file)
1642 			continue;
1643 		filename = file_path(file, name_curpos, remaining);
1644 		if (IS_ERR(filename)) {
1645 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1646 				kvfree(data);
1647 				size = size * 5 / 4;
1648 				goto alloc;
1649 			}
1650 			continue;
1651 		}
1652 
1653 		/* file_path() fills at the end, move name down */
1654 		/* n = strlen(filename) + 1: */
1655 		n = (name_curpos + remaining) - filename;
1656 		remaining = filename - name_curpos;
1657 		memmove(name_curpos, filename, n);
1658 		name_curpos += n;
1659 
1660 		*start_end_ofs++ = vma->vm_start;
1661 		*start_end_ofs++ = vma->vm_end;
1662 		*start_end_ofs++ = vma->vm_pgoff;
1663 		count++;
1664 	}
1665 
1666 	/* Now we know exact count of files, can store it */
1667 	data[0] = count;
1668 	data[1] = PAGE_SIZE;
1669 	/*
1670 	 * Count usually is less than mm->map_count,
1671 	 * we need to move filenames down.
1672 	 */
1673 	n = mm->map_count - count;
1674 	if (n != 0) {
1675 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1676 		memmove(name_base - shift_bytes, name_base,
1677 			name_curpos - name_base);
1678 		name_curpos -= shift_bytes;
1679 	}
1680 
1681 	size = name_curpos - (char *)data;
1682 	fill_note(note, "CORE", NT_FILE, size, data);
1683 	return 0;
1684 }
1685 
1686 #ifdef CORE_DUMP_USE_REGSET
1687 #include <linux/regset.h>
1688 
1689 struct elf_thread_core_info {
1690 	struct elf_thread_core_info *next;
1691 	struct task_struct *task;
1692 	struct elf_prstatus prstatus;
1693 	struct memelfnote notes[];
1694 };
1695 
1696 struct elf_note_info {
1697 	struct elf_thread_core_info *thread;
1698 	struct memelfnote psinfo;
1699 	struct memelfnote signote;
1700 	struct memelfnote auxv;
1701 	struct memelfnote files;
1702 	user_siginfo_t csigdata;
1703 	size_t size;
1704 	int thread_notes;
1705 };
1706 
1707 /*
1708  * When a regset has a writeback hook, we call it on each thread before
1709  * dumping user memory.  On register window machines, this makes sure the
1710  * user memory backing the register data is up to date before we read it.
1711  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1712 static void do_thread_regset_writeback(struct task_struct *task,
1713 				       const struct user_regset *regset)
1714 {
1715 	if (regset->writeback)
1716 		regset->writeback(task, regset, 1);
1717 }
1718 
1719 #ifndef PRSTATUS_SIZE
1720 #define PRSTATUS_SIZE(S, R) sizeof(S)
1721 #endif
1722 
1723 #ifndef SET_PR_FPVALID
1724 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1725 #endif
1726 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1727 static int fill_thread_core_info(struct elf_thread_core_info *t,
1728 				 const struct user_regset_view *view,
1729 				 long signr, size_t *total)
1730 {
1731 	unsigned int i;
1732 	int regset0_size;
1733 
1734 	/*
1735 	 * NT_PRSTATUS is the one special case, because the regset data
1736 	 * goes into the pr_reg field inside the note contents, rather
1737 	 * than being the whole note contents.  We fill the reset in here.
1738 	 * We assume that regset 0 is NT_PRSTATUS.
1739 	 */
1740 	fill_prstatus(&t->prstatus, t->task, signr);
1741 	regset0_size = regset_get(t->task, &view->regsets[0],
1742 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1743 	if (regset0_size < 0)
1744 		return 0;
1745 
1746 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1747 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1748 	*total += notesize(&t->notes[0]);
1749 
1750 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1751 
1752 	/*
1753 	 * Each other regset might generate a note too.  For each regset
1754 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1755 	 * all zero and we'll know to skip writing it later.
1756 	 */
1757 	for (i = 1; i < view->n; ++i) {
1758 		const struct user_regset *regset = &view->regsets[i];
1759 		int note_type = regset->core_note_type;
1760 		bool is_fpreg = note_type == NT_PRFPREG;
1761 		void *data;
1762 		int ret;
1763 
1764 		do_thread_regset_writeback(t->task, regset);
1765 		if (!note_type) // not for coredumps
1766 			continue;
1767 		if (regset->active && regset->active(t->task, regset) <= 0)
1768 			continue;
1769 
1770 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1771 		if (ret < 0)
1772 			continue;
1773 
1774 		if (is_fpreg)
1775 			SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1776 
1777 		fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1778 			  note_type, ret, data);
1779 
1780 		*total += notesize(&t->notes[i]);
1781 	}
1782 
1783 	return 1;
1784 }
1785 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const kernel_siginfo_t * siginfo,struct pt_regs * regs)1786 static int fill_note_info(struct elfhdr *elf, int phdrs,
1787 			  struct elf_note_info *info,
1788 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1789 {
1790 	struct task_struct *dump_task = current;
1791 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1792 	struct elf_thread_core_info *t;
1793 	struct elf_prpsinfo *psinfo;
1794 	struct core_thread *ct;
1795 	unsigned int i;
1796 
1797 	info->size = 0;
1798 	info->thread = NULL;
1799 
1800 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801 	if (psinfo == NULL) {
1802 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1803 		return 0;
1804 	}
1805 
1806 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1807 
1808 	/*
1809 	 * Figure out how many notes we're going to need for each thread.
1810 	 */
1811 	info->thread_notes = 0;
1812 	for (i = 0; i < view->n; ++i)
1813 		if (view->regsets[i].core_note_type != 0)
1814 			++info->thread_notes;
1815 
1816 	/*
1817 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1818 	 * since it is our one special case.
1819 	 */
1820 	if (unlikely(info->thread_notes == 0) ||
1821 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822 		WARN_ON(1);
1823 		return 0;
1824 	}
1825 
1826 	/*
1827 	 * Initialize the ELF file header.
1828 	 */
1829 	fill_elf_header(elf, phdrs,
1830 			view->e_machine, view->e_flags);
1831 
1832 	/*
1833 	 * Allocate a structure for each thread.
1834 	 */
1835 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1836 		t = kzalloc(offsetof(struct elf_thread_core_info,
1837 				     notes[info->thread_notes]),
1838 			    GFP_KERNEL);
1839 		if (unlikely(!t))
1840 			return 0;
1841 
1842 		t->task = ct->task;
1843 		if (ct->task == dump_task || !info->thread) {
1844 			t->next = info->thread;
1845 			info->thread = t;
1846 		} else {
1847 			/*
1848 			 * Make sure to keep the original task at
1849 			 * the head of the list.
1850 			 */
1851 			t->next = info->thread->next;
1852 			info->thread->next = t;
1853 		}
1854 	}
1855 
1856 	/*
1857 	 * Now fill in each thread's information.
1858 	 */
1859 	for (t = info->thread; t != NULL; t = t->next)
1860 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1861 			return 0;
1862 
1863 	/*
1864 	 * Fill in the two process-wide notes.
1865 	 */
1866 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1867 	info->size += notesize(&info->psinfo);
1868 
1869 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1870 	info->size += notesize(&info->signote);
1871 
1872 	fill_auxv_note(&info->auxv, current->mm);
1873 	info->size += notesize(&info->auxv);
1874 
1875 	if (fill_files_note(&info->files) == 0)
1876 		info->size += notesize(&info->files);
1877 
1878 	return 1;
1879 }
1880 
get_note_info_size(struct elf_note_info * info)1881 static size_t get_note_info_size(struct elf_note_info *info)
1882 {
1883 	return info->size;
1884 }
1885 
1886 /*
1887  * Write all the notes for each thread.  When writing the first thread, the
1888  * process-wide notes are interleaved after the first thread-specific note.
1889  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1890 static int write_note_info(struct elf_note_info *info,
1891 			   struct coredump_params *cprm)
1892 {
1893 	bool first = true;
1894 	struct elf_thread_core_info *t = info->thread;
1895 
1896 	do {
1897 		int i;
1898 
1899 		if (!writenote(&t->notes[0], cprm))
1900 			return 0;
1901 
1902 		if (first && !writenote(&info->psinfo, cprm))
1903 			return 0;
1904 		if (first && !writenote(&info->signote, cprm))
1905 			return 0;
1906 		if (first && !writenote(&info->auxv, cprm))
1907 			return 0;
1908 		if (first && info->files.data &&
1909 				!writenote(&info->files, cprm))
1910 			return 0;
1911 
1912 		for (i = 1; i < info->thread_notes; ++i)
1913 			if (t->notes[i].data &&
1914 			    !writenote(&t->notes[i], cprm))
1915 				return 0;
1916 
1917 		first = false;
1918 		t = t->next;
1919 	} while (t);
1920 
1921 	return 1;
1922 }
1923 
free_note_info(struct elf_note_info * info)1924 static void free_note_info(struct elf_note_info *info)
1925 {
1926 	struct elf_thread_core_info *threads = info->thread;
1927 	while (threads) {
1928 		unsigned int i;
1929 		struct elf_thread_core_info *t = threads;
1930 		threads = t->next;
1931 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1932 		for (i = 1; i < info->thread_notes; ++i)
1933 			kfree(t->notes[i].data);
1934 		kfree(t);
1935 	}
1936 	kfree(info->psinfo.data);
1937 	kvfree(info->files.data);
1938 }
1939 
1940 #else
1941 
1942 /* Here is the structure in which status of each thread is captured. */
1943 struct elf_thread_status
1944 {
1945 	struct list_head list;
1946 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1947 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1948 	struct task_struct *thread;
1949 	struct memelfnote notes[3];
1950 	int num_notes;
1951 };
1952 
1953 /*
1954  * In order to add the specific thread information for the elf file format,
1955  * we need to keep a linked list of every threads pr_status and then create
1956  * a single section for them in the final core file.
1957  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1958 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1959 {
1960 	int sz = 0;
1961 	struct task_struct *p = t->thread;
1962 	t->num_notes = 0;
1963 
1964 	fill_prstatus(&t->prstatus, p, signr);
1965 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1966 
1967 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1968 		  &(t->prstatus));
1969 	t->num_notes++;
1970 	sz += notesize(&t->notes[0]);
1971 
1972 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1973 								&t->fpu))) {
1974 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1975 			  &(t->fpu));
1976 		t->num_notes++;
1977 		sz += notesize(&t->notes[1]);
1978 	}
1979 	return sz;
1980 }
1981 
1982 struct elf_note_info {
1983 	struct memelfnote *notes;
1984 	struct memelfnote *notes_files;
1985 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1986 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1987 	struct list_head thread_list;
1988 	elf_fpregset_t *fpu;
1989 	user_siginfo_t csigdata;
1990 	int thread_status_size;
1991 	int numnote;
1992 };
1993 
elf_note_info_init(struct elf_note_info * info)1994 static int elf_note_info_init(struct elf_note_info *info)
1995 {
1996 	memset(info, 0, sizeof(*info));
1997 	INIT_LIST_HEAD(&info->thread_list);
1998 
1999 	/* Allocate space for ELF notes */
2000 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2001 	if (!info->notes)
2002 		return 0;
2003 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2004 	if (!info->psinfo)
2005 		return 0;
2006 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2007 	if (!info->prstatus)
2008 		return 0;
2009 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2010 	if (!info->fpu)
2011 		return 0;
2012 	return 1;
2013 }
2014 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const kernel_siginfo_t * siginfo,struct pt_regs * regs)2015 static int fill_note_info(struct elfhdr *elf, int phdrs,
2016 			  struct elf_note_info *info,
2017 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2018 {
2019 	struct core_thread *ct;
2020 	struct elf_thread_status *ets;
2021 
2022 	if (!elf_note_info_init(info))
2023 		return 0;
2024 
2025 	for (ct = current->mm->core_state->dumper.next;
2026 					ct; ct = ct->next) {
2027 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2028 		if (!ets)
2029 			return 0;
2030 
2031 		ets->thread = ct->task;
2032 		list_add(&ets->list, &info->thread_list);
2033 	}
2034 
2035 	list_for_each_entry(ets, &info->thread_list, list) {
2036 		int sz;
2037 
2038 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2039 		info->thread_status_size += sz;
2040 	}
2041 	/* now collect the dump for the current */
2042 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2043 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2044 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2045 
2046 	/* Set up header */
2047 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2048 
2049 	/*
2050 	 * Set up the notes in similar form to SVR4 core dumps made
2051 	 * with info from their /proc.
2052 	 */
2053 
2054 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2055 		  sizeof(*info->prstatus), info->prstatus);
2056 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2057 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2058 		  sizeof(*info->psinfo), info->psinfo);
2059 
2060 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2061 	fill_auxv_note(info->notes + 3, current->mm);
2062 	info->numnote = 4;
2063 
2064 	if (fill_files_note(info->notes + info->numnote) == 0) {
2065 		info->notes_files = info->notes + info->numnote;
2066 		info->numnote++;
2067 	}
2068 
2069 	/* Try to dump the FPU. */
2070 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2071 							       info->fpu);
2072 	if (info->prstatus->pr_fpvalid)
2073 		fill_note(info->notes + info->numnote++,
2074 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2075 	return 1;
2076 }
2077 
get_note_info_size(struct elf_note_info * info)2078 static size_t get_note_info_size(struct elf_note_info *info)
2079 {
2080 	int sz = 0;
2081 	int i;
2082 
2083 	for (i = 0; i < info->numnote; i++)
2084 		sz += notesize(info->notes + i);
2085 
2086 	sz += info->thread_status_size;
2087 
2088 	return sz;
2089 }
2090 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2091 static int write_note_info(struct elf_note_info *info,
2092 			   struct coredump_params *cprm)
2093 {
2094 	struct elf_thread_status *ets;
2095 	int i;
2096 
2097 	for (i = 0; i < info->numnote; i++)
2098 		if (!writenote(info->notes + i, cprm))
2099 			return 0;
2100 
2101 	/* write out the thread status notes section */
2102 	list_for_each_entry(ets, &info->thread_list, list) {
2103 		for (i = 0; i < ets->num_notes; i++)
2104 			if (!writenote(&ets->notes[i], cprm))
2105 				return 0;
2106 	}
2107 
2108 	return 1;
2109 }
2110 
free_note_info(struct elf_note_info * info)2111 static void free_note_info(struct elf_note_info *info)
2112 {
2113 	while (!list_empty(&info->thread_list)) {
2114 		struct list_head *tmp = info->thread_list.next;
2115 		list_del(tmp);
2116 		kfree(list_entry(tmp, struct elf_thread_status, list));
2117 	}
2118 
2119 	/* Free data possibly allocated by fill_files_note(): */
2120 	if (info->notes_files)
2121 		kvfree(info->notes_files->data);
2122 
2123 	kfree(info->prstatus);
2124 	kfree(info->psinfo);
2125 	kfree(info->notes);
2126 	kfree(info->fpu);
2127 }
2128 
2129 #endif
2130 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2131 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2132 			     elf_addr_t e_shoff, int segs)
2133 {
2134 	elf->e_shoff = e_shoff;
2135 	elf->e_shentsize = sizeof(*shdr4extnum);
2136 	elf->e_shnum = 1;
2137 	elf->e_shstrndx = SHN_UNDEF;
2138 
2139 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2140 
2141 	shdr4extnum->sh_type = SHT_NULL;
2142 	shdr4extnum->sh_size = elf->e_shnum;
2143 	shdr4extnum->sh_link = elf->e_shstrndx;
2144 	shdr4extnum->sh_info = segs;
2145 }
2146 
2147 /*
2148  * Actual dumper
2149  *
2150  * This is a two-pass process; first we find the offsets of the bits,
2151  * and then they are actually written out.  If we run out of core limit
2152  * we just truncate.
2153  */
elf_core_dump(struct coredump_params * cprm)2154 static int elf_core_dump(struct coredump_params *cprm)
2155 {
2156 	int has_dumped = 0;
2157 	int vma_count, segs, i;
2158 	size_t vma_data_size;
2159 	struct elfhdr elf;
2160 	loff_t offset = 0, dataoff;
2161 	struct elf_note_info info = { };
2162 	struct elf_phdr *phdr4note = NULL;
2163 	struct elf_shdr *shdr4extnum = NULL;
2164 	Elf_Half e_phnum;
2165 	elf_addr_t e_shoff;
2166 	struct core_vma_metadata *vma_meta;
2167 
2168 	if (dump_vma_snapshot(cprm, &vma_count, &vma_meta, &vma_data_size))
2169 		return 0;
2170 
2171 	/*
2172 	 * The number of segs are recored into ELF header as 16bit value.
2173 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2174 	 */
2175 	segs = vma_count + elf_core_extra_phdrs();
2176 
2177 	/* for notes section */
2178 	segs++;
2179 
2180 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2181 	 * this, kernel supports extended numbering. Have a look at
2182 	 * include/linux/elf.h for further information. */
2183 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2184 
2185 	/*
2186 	 * Collect all the non-memory information about the process for the
2187 	 * notes.  This also sets up the file header.
2188 	 */
2189 	if (!fill_note_info(&elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2190 		goto end_coredump;
2191 
2192 	has_dumped = 1;
2193 
2194 	offset += sizeof(elf);				/* Elf header */
2195 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2196 
2197 	/* Write notes phdr entry */
2198 	{
2199 		size_t sz = get_note_info_size(&info);
2200 
2201 		sz += elf_coredump_extra_notes_size();
2202 
2203 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2204 		if (!phdr4note)
2205 			goto end_coredump;
2206 
2207 		fill_elf_note_phdr(phdr4note, sz, offset);
2208 		offset += sz;
2209 	}
2210 
2211 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2212 
2213 	offset += vma_data_size;
2214 	offset += elf_core_extra_data_size();
2215 	e_shoff = offset;
2216 
2217 	if (e_phnum == PN_XNUM) {
2218 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2219 		if (!shdr4extnum)
2220 			goto end_coredump;
2221 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2222 	}
2223 
2224 	offset = dataoff;
2225 
2226 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2227 		goto end_coredump;
2228 
2229 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2230 		goto end_coredump;
2231 
2232 	/* Write program headers for segments dump */
2233 	for (i = 0; i < vma_count; i++) {
2234 		struct core_vma_metadata *meta = vma_meta + i;
2235 		struct elf_phdr phdr;
2236 
2237 		phdr.p_type = PT_LOAD;
2238 		phdr.p_offset = offset;
2239 		phdr.p_vaddr = meta->start;
2240 		phdr.p_paddr = 0;
2241 		phdr.p_filesz = meta->dump_size;
2242 		phdr.p_memsz = meta->end - meta->start;
2243 		offset += phdr.p_filesz;
2244 		phdr.p_flags = 0;
2245 		if (meta->flags & VM_READ)
2246 			phdr.p_flags |= PF_R;
2247 		if (meta->flags & VM_WRITE)
2248 			phdr.p_flags |= PF_W;
2249 		if (meta->flags & VM_EXEC)
2250 			phdr.p_flags |= PF_X;
2251 		phdr.p_align = ELF_EXEC_PAGESIZE;
2252 
2253 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2254 			goto end_coredump;
2255 	}
2256 
2257 	if (!elf_core_write_extra_phdrs(cprm, offset))
2258 		goto end_coredump;
2259 
2260  	/* write out the notes section */
2261 	if (!write_note_info(&info, cprm))
2262 		goto end_coredump;
2263 
2264 	if (elf_coredump_extra_notes_write(cprm))
2265 		goto end_coredump;
2266 
2267 	/* Align to page */
2268 	if (!dump_skip(cprm, dataoff - cprm->pos))
2269 		goto end_coredump;
2270 
2271 	for (i = 0; i < vma_count; i++) {
2272 		struct core_vma_metadata *meta = vma_meta + i;
2273 
2274 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2275 			goto end_coredump;
2276 	}
2277 	dump_truncate(cprm);
2278 
2279 	if (!elf_core_write_extra_data(cprm))
2280 		goto end_coredump;
2281 
2282 	if (e_phnum == PN_XNUM) {
2283 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2284 			goto end_coredump;
2285 	}
2286 
2287 end_coredump:
2288 	free_note_info(&info);
2289 	kfree(shdr4extnum);
2290 	kvfree(vma_meta);
2291 	kfree(phdr4note);
2292 	return has_dumped;
2293 }
2294 
2295 #endif		/* CONFIG_ELF_CORE */
2296 
init_elf_binfmt(void)2297 static int __init init_elf_binfmt(void)
2298 {
2299 	register_binfmt(&elf_format);
2300 	return 0;
2301 }
2302 
exit_elf_binfmt(void)2303 static void __exit exit_elf_binfmt(void)
2304 {
2305 	/* Remove the COFF and ELF loaders. */
2306 	unregister_binfmt(&elf_format);
2307 }
2308 
2309 core_initcall(init_elf_binfmt);
2310 module_exit(exit_elf_binfmt);
2311 MODULE_LICENSE("GPL");
2312