1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
106 ni_delete_all(ni);
107
108 al_destroy(ni);
109
110 for (node = rb_first(&ni->mi_tree); node;) {
111 struct rb_node *next = rb_next(node);
112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113
114 rb_erase(node, &ni->mi_tree);
115 mi_put(mi);
116 node = next;
117 }
118
119 /* Bad inode always has mode == S_IFREG. */
120 if (ni->ni_flags & NI_FLAG_DIR)
121 indx_clear(&ni->dir);
122 else {
123 run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 if (ni->file.offs_page) {
126 /* On-demand allocated page for offsets. */
127 put_page(ni->file.offs_page);
128 ni->file.offs_page = NULL;
129 }
130 #endif
131 }
132
133 mi_clear(&ni->mi);
134 }
135
136 /*
137 * ni_load_mi_ex - Find mft_inode by record number.
138 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 int err;
142 struct mft_inode *r;
143
144 r = ni_find_mi(ni, rno);
145 if (r)
146 goto out;
147
148 err = mi_get(ni->mi.sbi, rno, &r);
149 if (err)
150 return err;
151
152 ni_add_mi(ni, r);
153
154 out:
155 if (mi)
156 *mi = r;
157 return 0;
158 }
159
160 /*
161 * ni_load_mi - Load mft_inode corresponded list_entry.
162 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 struct mft_inode **mi)
165 {
166 CLST rno;
167
168 if (!le) {
169 *mi = &ni->mi;
170 return 0;
171 }
172
173 rno = ino_get(&le->ref);
174 if (rno == ni->mi.rno) {
175 *mi = &ni->mi;
176 return 0;
177 }
178 return ni_load_mi_ex(ni, rno, mi);
179 }
180
181 /*
182 * ni_find_attr
183 *
184 * Return: Attribute and record this attribute belongs to.
185 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 const __le16 *name, u8 name_len, const CLST *vcn,
189 struct mft_inode **mi)
190 {
191 struct ATTR_LIST_ENTRY *le;
192 struct mft_inode *m;
193
194 if (!ni->attr_list.size ||
195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 if (le_o)
197 *le_o = NULL;
198 if (mi)
199 *mi = &ni->mi;
200
201 /* Look for required attribute in primary record. */
202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 }
204
205 /* First look for list entry of required type. */
206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 if (!le)
208 return NULL;
209
210 if (le_o)
211 *le_o = le;
212
213 /* Load record that contains this attribute. */
214 if (ni_load_mi(ni, le, &m))
215 return NULL;
216
217 /* Look for required attribute. */
218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219
220 if (!attr)
221 goto out;
222
223 if (!attr->non_res) {
224 if (vcn && *vcn)
225 goto out;
226 } else if (!vcn) {
227 if (attr->nres.svcn)
228 goto out;
229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 *vcn > le64_to_cpu(attr->nres.evcn)) {
231 goto out;
232 }
233
234 if (mi)
235 *mi = m;
236 return attr;
237
238 out:
239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
241 return NULL;
242 }
243
244 /*
245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
246 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248 struct ATTR_LIST_ENTRY **le,
249 struct mft_inode **mi)
250 {
251 struct mft_inode *mi2;
252 struct ATTR_LIST_ENTRY *le2;
253
254 /* Do we have an attribute list? */
255 if (!ni->attr_list.size) {
256 *le = NULL;
257 if (mi)
258 *mi = &ni->mi;
259 /* Enum attributes in primary record. */
260 return mi_enum_attr(&ni->mi, attr);
261 }
262
263 /* Get next list entry. */
264 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
265 if (!le2)
266 return NULL;
267
268 /* Load record that contains the required attribute. */
269 if (ni_load_mi(ni, le2, &mi2))
270 return NULL;
271
272 if (mi)
273 *mi = mi2;
274
275 /* Find attribute in loaded record. */
276 return rec_find_attr_le(mi2, le2);
277 }
278
279 /*
280 * ni_load_attr - Load attribute that contains given VCN.
281 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283 const __le16 *name, u8 name_len, CLST vcn,
284 struct mft_inode **pmi)
285 {
286 struct ATTR_LIST_ENTRY *le;
287 struct ATTRIB *attr;
288 struct mft_inode *mi;
289 struct ATTR_LIST_ENTRY *next;
290
291 if (!ni->attr_list.size) {
292 if (pmi)
293 *pmi = &ni->mi;
294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
295 }
296
297 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
298 if (!le)
299 return NULL;
300
301 /*
302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303 * So to find the ATTRIB segment that contains 'vcn' we should
304 * enumerate some entries.
305 */
306 if (vcn) {
307 for (;; le = next) {
308 next = al_find_ex(ni, le, type, name, name_len, NULL);
309 if (!next || le64_to_cpu(next->vcn) > vcn)
310 break;
311 }
312 }
313
314 if (ni_load_mi(ni, le, &mi))
315 return NULL;
316
317 if (pmi)
318 *pmi = mi;
319
320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
321 if (!attr)
322 return NULL;
323
324 if (!attr->non_res)
325 return attr;
326
327 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328 vcn <= le64_to_cpu(attr->nres.evcn))
329 return attr;
330
331 return NULL;
332 }
333
334 /*
335 * ni_load_all_mi - Load all subrecords.
336 */
ni_load_all_mi(struct ntfs_inode * ni)337 int ni_load_all_mi(struct ntfs_inode *ni)
338 {
339 int err;
340 struct ATTR_LIST_ENTRY *le;
341
342 if (!ni->attr_list.size)
343 return 0;
344
345 le = NULL;
346
347 while ((le = al_enumerate(ni, le))) {
348 CLST rno = ino_get(&le->ref);
349
350 if (rno == ni->mi.rno)
351 continue;
352
353 err = ni_load_mi_ex(ni, rno, NULL);
354 if (err)
355 return err;
356 }
357
358 return 0;
359 }
360
361 /*
362 * ni_add_subrecord - Allocate + format + attach a new subrecord.
363 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
365 {
366 struct mft_inode *m;
367
368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
369 if (!m)
370 return false;
371
372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
373 mi_put(m);
374 return false;
375 }
376
377 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
378
379 ni_add_mi(ni, m);
380 *mi = m;
381 return true;
382 }
383
384 /*
385 * ni_remove_attr - Remove all attributes for the given type/name/id.
386 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388 const __le16 *name, u8 name_len, bool base_only,
389 const __le16 *id)
390 {
391 int err;
392 struct ATTRIB *attr;
393 struct ATTR_LIST_ENTRY *le;
394 struct mft_inode *mi;
395 u32 type_in;
396 int diff;
397
398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
400 if (!attr)
401 return -ENOENT;
402
403 mi_remove_attr(ni, &ni->mi, attr);
404 return 0;
405 }
406
407 type_in = le32_to_cpu(type);
408 le = NULL;
409
410 for (;;) {
411 le = al_enumerate(ni, le);
412 if (!le)
413 return 0;
414
415 next_le2:
416 diff = le32_to_cpu(le->type) - type_in;
417 if (diff < 0)
418 continue;
419
420 if (diff > 0)
421 return 0;
422
423 if (le->name_len != name_len)
424 continue;
425
426 if (name_len &&
427 memcmp(le_name(le), name, name_len * sizeof(short)))
428 continue;
429
430 if (id && le->id != *id)
431 continue;
432 err = ni_load_mi(ni, le, &mi);
433 if (err)
434 return err;
435
436 al_remove_le(ni, le);
437
438 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
439 if (!attr)
440 return -ENOENT;
441
442 mi_remove_attr(ni, mi, attr);
443
444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
445 return 0;
446 goto next_le2;
447 }
448 }
449
450 /*
451 * ni_ins_new_attr - Insert the attribute into record.
452 *
453 * Return: Not full constructed attribute or NULL if not possible to create.
454 */
455 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
460 {
461 int err;
462 struct ATTRIB *attr;
463 bool le_added = false;
464 struct MFT_REF ref;
465
466 mi_get_ref(mi, &ref);
467
468 if (type != ATTR_LIST && !le && ni->attr_list.size) {
469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
470 &ref, &le);
471 if (err) {
472 /* No memory or no space. */
473 return ERR_PTR(err);
474 }
475 le_added = true;
476
477 /*
478 * al_add_le -> attr_set_size (list) -> ni_expand_list
479 * which moves some attributes out of primary record
480 * this means that name may point into moved memory
481 * reinit 'name' from le.
482 */
483 name = le->name;
484 }
485
486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
487 if (!attr) {
488 if (le_added)
489 al_remove_le(ni, le);
490 return NULL;
491 }
492
493 if (type == ATTR_LIST) {
494 /* Attr list is not in list entry array. */
495 goto out;
496 }
497
498 if (!le)
499 goto out;
500
501 /* Update ATTRIB Id and record reference. */
502 le->id = attr->id;
503 ni->attr_list.dirty = true;
504 le->ref = ref;
505
506 out:
507 if (ins_le)
508 *ins_le = le;
509 return attr;
510 }
511
512 /*
513 * ni_repack
514 *
515 * Random write access to sparsed or compressed file may result to
516 * not optimized packed runs.
517 * Here is the place to optimize it.
518 */
ni_repack(struct ntfs_inode * ni)519 static int ni_repack(struct ntfs_inode *ni)
520 {
521 #if 1
522 return 0;
523 #else
524 int err = 0;
525 struct ntfs_sb_info *sbi = ni->mi.sbi;
526 struct mft_inode *mi, *mi_p = NULL;
527 struct ATTRIB *attr = NULL, *attr_p;
528 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
529 CLST alloc = 0;
530 u8 cluster_bits = sbi->cluster_bits;
531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532 u32 roff, rs = sbi->record_size;
533 struct runs_tree run;
534
535 run_init(&run);
536
537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
538 if (!attr->non_res)
539 continue;
540
541 svcn = le64_to_cpu(attr->nres.svcn);
542 if (svcn != le64_to_cpu(le->vcn)) {
543 err = -EINVAL;
544 break;
545 }
546
547 if (!svcn) {
548 alloc = le64_to_cpu(attr->nres.alloc_size) >>
549 cluster_bits;
550 mi_p = NULL;
551 } else if (svcn != evcn + 1) {
552 err = -EINVAL;
553 break;
554 }
555
556 evcn = le64_to_cpu(attr->nres.evcn);
557
558 if (svcn > evcn + 1) {
559 err = -EINVAL;
560 break;
561 }
562
563 if (!mi_p) {
564 /* Do not try if not enough free space. */
565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
566 continue;
567
568 /* Do not try if last attribute segment. */
569 if (evcn + 1 == alloc)
570 continue;
571 run_close(&run);
572 }
573
574 roff = le16_to_cpu(attr->nres.run_off);
575
576 if (roff > le32_to_cpu(attr->size)) {
577 err = -EINVAL;
578 break;
579 }
580
581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
582 Add2Ptr(attr, roff),
583 le32_to_cpu(attr->size) - roff);
584 if (err < 0)
585 break;
586
587 if (!mi_p) {
588 mi_p = mi;
589 attr_p = attr;
590 svcn_p = svcn;
591 evcn_p = evcn;
592 le_p = le;
593 err = 0;
594 continue;
595 }
596
597 /*
598 * Run contains data from two records: mi_p and mi
599 * Try to pack in one.
600 */
601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
602 if (err)
603 break;
604
605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
606
607 if (next_svcn >= evcn + 1) {
608 /* We can remove this attribute segment. */
609 al_remove_le(ni, le);
610 mi_remove_attr(NULL, mi, attr);
611 le = le_p;
612 continue;
613 }
614
615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
616 mi->dirty = true;
617 ni->attr_list.dirty = true;
618
619 if (evcn + 1 == alloc) {
620 err = mi_pack_runs(mi, attr, &run,
621 evcn + 1 - next_svcn);
622 if (err)
623 break;
624 mi_p = NULL;
625 } else {
626 mi_p = mi;
627 attr_p = attr;
628 svcn_p = next_svcn;
629 evcn_p = evcn;
630 le_p = le;
631 run_truncate_head(&run, next_svcn);
632 }
633 }
634
635 if (err) {
636 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
638
639 /* Pack loaded but not packed runs. */
640 if (mi_p)
641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
642 }
643
644 run_close(&run);
645 return err;
646 #endif
647 }
648
649 /*
650 * ni_try_remove_attr_list
651 *
652 * Can we remove attribute list?
653 * Check the case when primary record contains enough space for all attributes.
654 */
ni_try_remove_attr_list(struct ntfs_inode * ni)655 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
656 {
657 int err = 0;
658 struct ntfs_sb_info *sbi = ni->mi.sbi;
659 struct ATTRIB *attr, *attr_list, *attr_ins;
660 struct ATTR_LIST_ENTRY *le;
661 struct mft_inode *mi;
662 u32 asize, free;
663 struct MFT_REF ref;
664 struct MFT_REC *mrec;
665 __le16 id;
666
667 if (!ni->attr_list.dirty)
668 return 0;
669
670 err = ni_repack(ni);
671 if (err)
672 return err;
673
674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
675 if (!attr_list)
676 return 0;
677
678 asize = le32_to_cpu(attr_list->size);
679
680 /* Free space in primary record without attribute list. */
681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682 mi_get_ref(&ni->mi, &ref);
683
684 le = NULL;
685 while ((le = al_enumerate(ni, le))) {
686 if (!memcmp(&le->ref, &ref, sizeof(ref)))
687 continue;
688
689 if (le->vcn)
690 return 0;
691
692 mi = ni_find_mi(ni, ino_get(&le->ref));
693 if (!mi)
694 return 0;
695
696 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697 le->name_len, &le->id);
698 if (!attr)
699 return 0;
700
701 asize = le32_to_cpu(attr->size);
702 if (asize > free)
703 return 0;
704
705 free -= asize;
706 }
707
708 /* Make a copy of primary record to restore if error. */
709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
710 if (!mrec)
711 return 0; /* Not critical. */
712
713 /* It seems that attribute list can be removed from primary record. */
714 mi_remove_attr(NULL, &ni->mi, attr_list);
715
716 /*
717 * Repeat the cycle above and copy all attributes to primary record.
718 * Do not remove original attributes from subrecords!
719 * It should be success!
720 */
721 le = NULL;
722 while ((le = al_enumerate(ni, le))) {
723 if (!memcmp(&le->ref, &ref, sizeof(ref)))
724 continue;
725
726 mi = ni_find_mi(ni, ino_get(&le->ref));
727 if (!mi) {
728 /* Should never happened, 'cause already checked. */
729 goto out;
730 }
731
732 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733 le->name_len, &le->id);
734 if (!attr) {
735 /* Should never happened, 'cause already checked. */
736 goto out;
737 }
738 asize = le32_to_cpu(attr->size);
739
740 /* Insert into primary record. */
741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
742 le->name_len, asize,
743 le16_to_cpu(attr->name_off));
744 if (!attr_ins) {
745 /*
746 * No space in primary record (already checked).
747 */
748 goto out;
749 }
750
751 /* Copy all except id. */
752 id = attr_ins->id;
753 memcpy(attr_ins, attr, asize);
754 attr_ins->id = id;
755 }
756
757 /*
758 * Repeat the cycle above and remove all attributes from subrecords.
759 */
760 le = NULL;
761 while ((le = al_enumerate(ni, le))) {
762 if (!memcmp(&le->ref, &ref, sizeof(ref)))
763 continue;
764
765 mi = ni_find_mi(ni, ino_get(&le->ref));
766 if (!mi)
767 continue;
768
769 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770 le->name_len, &le->id);
771 if (!attr)
772 continue;
773
774 /* Remove from original record. */
775 mi_remove_attr(NULL, mi, attr);
776 }
777
778 run_deallocate(sbi, &ni->attr_list.run, true);
779 run_close(&ni->attr_list.run);
780 ni->attr_list.size = 0;
781 kfree(ni->attr_list.le);
782 ni->attr_list.le = NULL;
783 ni->attr_list.dirty = false;
784
785 kfree(mrec);
786 return 0;
787 out:
788 /* Restore primary record. */
789 swap(mrec, ni->mi.mrec);
790 kfree(mrec);
791 return 0;
792 }
793
794 /*
795 * ni_create_attr_list - Generates an attribute list for this primary record.
796 */
ni_create_attr_list(struct ntfs_inode * ni)797 int ni_create_attr_list(struct ntfs_inode *ni)
798 {
799 struct ntfs_sb_info *sbi = ni->mi.sbi;
800 int err;
801 u32 lsize;
802 struct ATTRIB *attr;
803 struct ATTRIB *arr_move[7];
804 struct ATTR_LIST_ENTRY *le, *le_b[7];
805 struct MFT_REC *rec;
806 bool is_mft;
807 CLST rno = 0;
808 struct mft_inode *mi;
809 u32 free_b, nb, to_free, rs;
810 u16 sz;
811
812 is_mft = ni->mi.rno == MFT_REC_MFT;
813 rec = ni->mi.mrec;
814 rs = sbi->record_size;
815
816 /*
817 * Skip estimating exact memory requirement.
818 * Looks like one record_size is always enough.
819 */
820 le = kmalloc(al_aligned(rs), GFP_NOFS);
821 if (!le)
822 return -ENOMEM;
823
824 mi_get_ref(&ni->mi, &le->ref);
825 ni->attr_list.le = le;
826
827 attr = NULL;
828 nb = 0;
829 free_b = 0;
830 attr = NULL;
831
832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833 sz = le_size(attr->name_len);
834 le->type = attr->type;
835 le->size = cpu_to_le16(sz);
836 le->name_len = attr->name_len;
837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
838 le->vcn = 0;
839 if (le != ni->attr_list.le)
840 le->ref = ni->attr_list.le->ref;
841 le->id = attr->id;
842
843 if (attr->name_len)
844 memcpy(le->name, attr_name(attr),
845 sizeof(short) * attr->name_len);
846 else if (attr->type == ATTR_STD)
847 continue;
848 else if (attr->type == ATTR_LIST)
849 continue;
850 else if (is_mft && attr->type == ATTR_DATA)
851 continue;
852
853 if (!nb || nb < ARRAY_SIZE(arr_move)) {
854 le_b[nb] = le;
855 arr_move[nb++] = attr;
856 free_b += le32_to_cpu(attr->size);
857 }
858 }
859
860 lsize = PtrOffset(ni->attr_list.le, le);
861 ni->attr_list.size = lsize;
862
863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
864 if (to_free <= rs) {
865 to_free = 0;
866 } else {
867 to_free -= rs;
868
869 if (to_free > free_b) {
870 err = -EINVAL;
871 goto out;
872 }
873 }
874
875 /* Allocate child MFT. */
876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
877 if (err)
878 goto out;
879
880 err = -EINVAL;
881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882 while (to_free > 0) {
883 struct ATTRIB *b = arr_move[--nb];
884 u32 asize = le32_to_cpu(b->size);
885 u16 name_off = le16_to_cpu(b->name_off);
886
887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888 b->name_len, asize, name_off);
889 if (!attr)
890 goto out;
891
892 mi_get_ref(mi, &le_b[nb]->ref);
893 le_b[nb]->id = attr->id;
894
895 /* Copy all except id. */
896 memcpy(attr, b, asize);
897 attr->id = le_b[nb]->id;
898
899 /* Remove from primary record. */
900 if (!mi_remove_attr(NULL, &ni->mi, b))
901 goto out;
902
903 if (to_free <= asize)
904 break;
905 to_free -= asize;
906 if (!nb)
907 goto out;
908 }
909
910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
912 if (!attr)
913 goto out;
914
915 attr->non_res = 0;
916 attr->flags = 0;
917 attr->res.data_size = cpu_to_le32(lsize);
918 attr->res.data_off = SIZEOF_RESIDENT_LE;
919 attr->res.flags = 0;
920 attr->res.res = 0;
921
922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
923
924 ni->attr_list.dirty = false;
925
926 mark_inode_dirty(&ni->vfs_inode);
927 return 0;
928
929 out:
930 kfree(ni->attr_list.le);
931 ni->attr_list.le = NULL;
932 ni->attr_list.size = 0;
933 return err;
934 }
935
936 /*
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 struct ATTR_LIST_ENTRY **ins_le)
944 {
945 struct ATTRIB *attr;
946 struct mft_inode *mi;
947 CLST rno;
948 u64 vbo;
949 struct rb_node *node;
950 int err;
951 bool is_mft, is_mft_data;
952 struct ntfs_sb_info *sbi = ni->mi.sbi;
953
954 is_mft = ni->mi.rno == MFT_REC_MFT;
955 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956
957 if (asize > sbi->max_bytes_per_attr) {
958 err = -EINVAL;
959 goto out;
960 }
961
962 /*
963 * Standard information and attr_list cannot be made external.
964 * The Log File cannot have any external attributes.
965 */
966 if (type == ATTR_STD || type == ATTR_LIST ||
967 ni->mi.rno == MFT_REC_LOG) {
968 err = -EINVAL;
969 goto out;
970 }
971
972 /* Create attribute list if it is not already existed. */
973 if (!ni->attr_list.size) {
974 err = ni_create_attr_list(ni);
975 if (err)
976 goto out;
977 }
978
979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980
981 if (force_ext)
982 goto insert_ext;
983
984 /* Load all subrecords into memory. */
985 err = ni_load_all_mi(ni);
986 if (err)
987 goto out;
988
989 /* Check each of loaded subrecord. */
990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 mi = rb_entry(node, struct mft_inode, node);
992
993 if (is_mft_data &&
994 (mi_enum_attr(mi, NULL) ||
995 vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 /* We can't accept this record 'cause MFT's bootstrapping. */
997 continue;
998 }
999 if (is_mft &&
1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 /*
1002 * This child record already has a ATTR_DATA.
1003 * So it can't accept any other records.
1004 */
1005 continue;
1006 }
1007
1008 if ((type != ATTR_NAME || name_len) &&
1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 /* Only indexed attributes can share same record. */
1011 continue;
1012 }
1013
1014 /*
1015 * Do not try to insert this attribute
1016 * if there is no room in record.
1017 */
1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 continue;
1020
1021 /* Try to insert attribute into this subrecord. */
1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 name_off, svcn, ins_le);
1024 if (!attr)
1025 continue;
1026 if (IS_ERR(attr))
1027 return PTR_ERR(attr);
1028
1029 if (ins_attr)
1030 *ins_attr = attr;
1031 if (ins_mi)
1032 *ins_mi = mi;
1033 return 0;
1034 }
1035
1036 insert_ext:
1037 /* We have to allocate a new child subrecord. */
1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 if (err)
1040 goto out;
1041
1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 err = -EINVAL;
1044 goto out1;
1045 }
1046
1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 name_off, svcn, ins_le);
1049 if (!attr) {
1050 err = -EINVAL;
1051 goto out2;
1052 }
1053
1054 if (IS_ERR(attr)) {
1055 err = PTR_ERR(attr);
1056 goto out2;
1057 }
1058
1059 if (ins_attr)
1060 *ins_attr = attr;
1061 if (ins_mi)
1062 *ins_mi = mi;
1063
1064 return 0;
1065
1066 out2:
1067 ni_remove_mi(ni, mi);
1068 mi_put(mi);
1069
1070 out1:
1071 ntfs_mark_rec_free(sbi, rno, is_mft);
1072
1073 out:
1074 return err;
1075 }
1076
1077 /*
1078 * ni_insert_attr - Insert an attribute into the file.
1079 *
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1084 *
1085 * NOTE:
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1089 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 const __le16 *name, u8 name_len, u32 asize,
1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 struct mft_inode **ins_mi,
1094 struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 int err;
1098 struct ATTRIB *attr, *eattr;
1099 struct MFT_REC *rec;
1100 bool is_mft;
1101 struct ATTR_LIST_ENTRY *le;
1102 u32 list_reserve, max_free, free, used, t32;
1103 __le16 id;
1104 u16 t16;
1105
1106 is_mft = ni->mi.rno == MFT_REC_MFT;
1107 rec = ni->mi.mrec;
1108
1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 used = le32_to_cpu(rec->used);
1111 free = sbi->record_size - used;
1112
1113 if (is_mft && type != ATTR_LIST) {
1114 /* Reserve space for the ATTRIB list. */
1115 if (free < list_reserve)
1116 free = 0;
1117 else
1118 free -= list_reserve;
1119 }
1120
1121 if (asize <= free) {
1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 asize, name_off, svcn, ins_le);
1124 if (IS_ERR(attr)) {
1125 err = PTR_ERR(attr);
1126 goto out;
1127 }
1128
1129 if (attr) {
1130 if (ins_attr)
1131 *ins_attr = attr;
1132 if (ins_mi)
1133 *ins_mi = &ni->mi;
1134 err = 0;
1135 goto out;
1136 }
1137 }
1138
1139 if (!is_mft || type != ATTR_DATA || svcn) {
1140 /* This ATTRIB will be external. */
1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 svcn, name_off, false, ins_attr, ins_mi,
1143 ins_le);
1144 goto out;
1145 }
1146
1147 /*
1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 *
1150 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 * Evict as many other attributes as possible.
1152 */
1153 max_free = free;
1154
1155 /* Estimate the result of moving all possible attributes away. */
1156 attr = NULL;
1157
1158 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 if (attr->type == ATTR_STD)
1160 continue;
1161 if (attr->type == ATTR_LIST)
1162 continue;
1163 max_free += le32_to_cpu(attr->size);
1164 }
1165
1166 if (max_free < asize + list_reserve) {
1167 /* Impossible to insert this attribute into primary record. */
1168 err = -EINVAL;
1169 goto out;
1170 }
1171
1172 /* Start real attribute moving. */
1173 attr = NULL;
1174
1175 for (;;) {
1176 attr = mi_enum_attr(&ni->mi, attr);
1177 if (!attr) {
1178 /* We should never be here 'cause we have already check this case. */
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 /* Skip attributes that MUST be primary record. */
1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 continue;
1186
1187 le = NULL;
1188 if (ni->attr_list.size) {
1189 le = al_find_le(ni, NULL, attr);
1190 if (!le) {
1191 /* Really this is a serious bug. */
1192 err = -EINVAL;
1193 goto out;
1194 }
1195 }
1196
1197 t32 = le32_to_cpu(attr->size);
1198 t16 = le16_to_cpu(attr->name_off);
1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 attr->name_len, t32, attr_svcn(attr), t16,
1201 false, &eattr, NULL, NULL);
1202 if (err)
1203 return err;
1204
1205 id = eattr->id;
1206 memcpy(eattr, attr, t32);
1207 eattr->id = id;
1208
1209 /* Remove from primary record. */
1210 mi_remove_attr(NULL, &ni->mi, attr);
1211
1212 /* attr now points to next attribute. */
1213 if (attr->type == ATTR_END)
1214 goto out;
1215 }
1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 ;
1218
1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 name_off, svcn, ins_le);
1221 if (!attr) {
1222 err = -EINVAL;
1223 goto out;
1224 }
1225
1226 if (IS_ERR(attr)) {
1227 err = PTR_ERR(attr);
1228 goto out;
1229 }
1230
1231 if (ins_attr)
1232 *ins_attr = attr;
1233 if (ins_mi)
1234 *ins_mi = &ni->mi;
1235
1236 out:
1237 return err;
1238 }
1239
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 int err = 0;
1244 struct runs_tree *run = &ni->file.run;
1245 u32 asize, run_size, done = 0;
1246 struct ATTRIB *attr;
1247 struct rb_node *node;
1248 CLST mft_min, mft_new, svcn, evcn, plen;
1249 struct mft_inode *mi, *mi_min, *mi_new;
1250 struct ntfs_sb_info *sbi = ni->mi.sbi;
1251
1252 /* Find the nearest MFT. */
1253 mft_min = 0;
1254 mft_new = 0;
1255 mi_min = NULL;
1256
1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 mi = rb_entry(node, struct mft_inode, node);
1259
1260 attr = mi_enum_attr(mi, NULL);
1261
1262 if (!attr) {
1263 mft_min = mi->rno;
1264 mi_min = mi;
1265 break;
1266 }
1267 }
1268
1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 mft_new = 0;
1271 /* Really this is not critical. */
1272 } else if (mft_min > mft_new) {
1273 mft_min = mft_new;
1274 mi_min = mi_new;
1275 } else {
1276 ntfs_mark_rec_free(sbi, mft_new, true);
1277 mft_new = 0;
1278 ni_remove_mi(ni, mi_new);
1279 }
1280
1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 if (!attr) {
1283 err = -EINVAL;
1284 goto out;
1285 }
1286
1287 asize = le32_to_cpu(attr->size);
1288
1289 evcn = le64_to_cpu(attr->nres.evcn);
1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 if (evcn + 1 >= svcn) {
1292 err = -EINVAL;
1293 goto out;
1294 }
1295
1296 /*
1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 *
1299 * Update first part of ATTR_DATA in 'primary MFT.
1300 */
1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 asize - SIZEOF_NONRESIDENT, &plen);
1303 if (err < 0)
1304 goto out;
1305
1306 run_size = ALIGN(err, 8);
1307 err = 0;
1308
1309 if (plen < svcn) {
1310 err = -EINVAL;
1311 goto out;
1312 }
1313
1314 attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 /* 'done' - How many bytes of primary MFT becomes free. */
1317 done = asize - run_size - SIZEOF_NONRESIDENT;
1318 le32_sub_cpu(&ni->mi.mrec->used, done);
1319
1320 /* Estimate packed size (run_buf=NULL). */
1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 &plen);
1323 if (err < 0)
1324 goto out;
1325
1326 run_size = ALIGN(err, 8);
1327 err = 0;
1328
1329 if (plen < evcn + 1 - svcn) {
1330 err = -EINVAL;
1331 goto out;
1332 }
1333
1334 /*
1335 * This function may implicitly call expand attr_list.
1336 * Insert second part of ATTR_DATA in 'mi_min'.
1337 */
1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 SIZEOF_NONRESIDENT + run_size,
1340 SIZEOF_NONRESIDENT, svcn, NULL);
1341 if (!attr) {
1342 err = -EINVAL;
1343 goto out;
1344 }
1345
1346 if (IS_ERR(attr)) {
1347 err = PTR_ERR(attr);
1348 goto out;
1349 }
1350
1351 attr->non_res = 1;
1352 attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 attr->flags = 0;
1354
1355 /* This function can't fail - cause already checked above. */
1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 run_size, &plen);
1358
1359 attr->nres.svcn = cpu_to_le64(svcn);
1360 attr->nres.evcn = cpu_to_le64(evcn);
1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362
1363 out:
1364 if (mft_new) {
1365 ntfs_mark_rec_free(sbi, mft_new, true);
1366 ni_remove_mi(ni, mi_new);
1367 }
1368
1369 return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371
1372 /*
1373 * ni_expand_list - Move all possible attributes out of primary record.
1374 */
ni_expand_list(struct ntfs_inode * ni)1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 int err = 0;
1378 u32 asize, done = 0;
1379 struct ATTRIB *attr, *ins_attr;
1380 struct ATTR_LIST_ENTRY *le;
1381 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 struct MFT_REF ref;
1383
1384 mi_get_ref(&ni->mi, &ref);
1385 le = NULL;
1386
1387 while ((le = al_enumerate(ni, le))) {
1388 if (le->type == ATTR_STD)
1389 continue;
1390
1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 continue;
1393
1394 if (is_mft && le->type == ATTR_DATA)
1395 continue;
1396
1397 /* Find attribute in primary record. */
1398 attr = rec_find_attr_le(&ni->mi, le);
1399 if (!attr) {
1400 err = -EINVAL;
1401 goto out;
1402 }
1403
1404 asize = le32_to_cpu(attr->size);
1405
1406 /* Always insert into new record to avoid collisions (deep recursive). */
1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 attr->name_len, asize, attr_svcn(attr),
1409 le16_to_cpu(attr->name_off), true,
1410 &ins_attr, NULL, NULL);
1411
1412 if (err)
1413 goto out;
1414
1415 memcpy(ins_attr, attr, asize);
1416 ins_attr->id = le->id;
1417 /* Remove from primary record. */
1418 mi_remove_attr(NULL, &ni->mi, attr);
1419
1420 done += asize;
1421 goto out;
1422 }
1423
1424 if (!is_mft) {
1425 err = -EFBIG; /* Attr list is too big(?) */
1426 goto out;
1427 }
1428
1429 /* Split MFT data as much as possible. */
1430 err = ni_expand_mft_list(ni);
1431
1432 out:
1433 return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435
1436 /*
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1438 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 const __le16 *name, u8 name_len,
1441 const struct runs_tree *run, CLST svcn, CLST len,
1442 __le16 flags, struct ATTRIB **new_attr,
1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 int err;
1446 CLST plen;
1447 struct ATTRIB *attr;
1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1449 !svcn;
1450 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 u32 run_off = name_off + name_size;
1453 u32 run_size, asize;
1454 struct ntfs_sb_info *sbi = ni->mi.sbi;
1455
1456 /* Estimate packed size (run_buf=NULL). */
1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 &plen);
1459 if (err < 0)
1460 goto out;
1461
1462 run_size = ALIGN(err, 8);
1463
1464 if (plen < len) {
1465 err = -EINVAL;
1466 goto out;
1467 }
1468
1469 asize = run_off + run_size;
1470
1471 if (asize > sbi->max_bytes_per_attr) {
1472 err = -EINVAL;
1473 goto out;
1474 }
1475
1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 &attr, mi, le);
1478
1479 if (err)
1480 goto out;
1481
1482 attr->non_res = 1;
1483 attr->name_off = cpu_to_le16(name_off);
1484 attr->flags = flags;
1485
1486 /* This function can't fail - cause already checked above. */
1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488
1489 attr->nres.svcn = cpu_to_le64(svcn);
1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491
1492 if (new_attr)
1493 *new_attr = attr;
1494
1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496
1497 attr->nres.alloc_size =
1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 attr->nres.data_size = attr->nres.alloc_size;
1500 attr->nres.valid_size = attr->nres.alloc_size;
1501
1502 if (is_ext) {
1503 if (flags & ATTR_FLAG_COMPRESSED)
1504 attr->nres.c_unit = COMPRESSION_UNIT;
1505 attr->nres.total_size = attr->nres.alloc_size;
1506 }
1507
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * ni_insert_resident - Inserts new resident attribute.
1514 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 struct ATTRIB **new_attr, struct mft_inode **mi,
1518 struct ATTR_LIST_ENTRY **le)
1519 {
1520 int err;
1521 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 struct ATTRIB *attr;
1524
1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 0, &attr, mi, le);
1527 if (err)
1528 return err;
1529
1530 attr->non_res = 0;
1531 attr->flags = 0;
1532
1533 attr->res.data_size = cpu_to_le32(data_size);
1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 if (type == ATTR_NAME) {
1536 attr->res.flags = RESIDENT_FLAG_INDEXED;
1537
1538 /* is_attr_indexed(attr)) == true */
1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 ni->mi.dirty = true;
1541 }
1542 attr->res.res = 0;
1543
1544 if (new_attr)
1545 *new_attr = attr;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * ni_remove_attr_le - Remove attribute from record.
1552 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 mi_remove_attr(ni, mi, attr);
1557
1558 if (le)
1559 al_remove_le(ni, le);
1560 }
1561
1562 /*
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1564 *
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566 */
ni_delete_all(struct ntfs_inode * ni)1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 int err;
1570 struct ATTR_LIST_ENTRY *le = NULL;
1571 struct ATTRIB *attr = NULL;
1572 struct rb_node *node;
1573 u16 roff;
1574 u32 asize;
1575 CLST svcn, evcn;
1576 struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 bool nt3 = is_ntfs3(sbi);
1578 struct MFT_REF ref;
1579
1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 if (!nt3 || attr->name_len) {
1582 ;
1583 } else if (attr->type == ATTR_REPARSE) {
1584 mi_get_ref(&ni->mi, &ref);
1585 ntfs_remove_reparse(sbi, 0, &ref);
1586 } else if (attr->type == ATTR_ID && !attr->non_res &&
1587 le32_to_cpu(attr->res.data_size) >=
1588 sizeof(struct GUID)) {
1589 ntfs_objid_remove(sbi, resident_data(attr));
1590 }
1591
1592 if (!attr->non_res)
1593 continue;
1594
1595 svcn = le64_to_cpu(attr->nres.svcn);
1596 evcn = le64_to_cpu(attr->nres.evcn);
1597
1598 if (evcn + 1 <= svcn)
1599 continue;
1600
1601 asize = le32_to_cpu(attr->size);
1602 roff = le16_to_cpu(attr->nres.run_off);
1603
1604 if (roff > asize)
1605 return -EINVAL;
1606
1607 /* run==1 means unpack and deallocate. */
1608 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 Add2Ptr(attr, roff), asize - roff);
1610 }
1611
1612 if (ni->attr_list.size) {
1613 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614 al_destroy(ni);
1615 }
1616
1617 /* Free all subrecords. */
1618 for (node = rb_first(&ni->mi_tree); node;) {
1619 struct rb_node *next = rb_next(node);
1620 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621
1622 clear_rec_inuse(mi->mrec);
1623 mi->dirty = true;
1624 mi_write(mi, 0);
1625
1626 ntfs_mark_rec_free(sbi, mi->rno, false);
1627 ni_remove_mi(ni, mi);
1628 mi_put(mi);
1629 node = next;
1630 }
1631
1632 /* Free base record. */
1633 clear_rec_inuse(ni->mi.mrec);
1634 ni->mi.dirty = true;
1635 err = mi_write(&ni->mi, 0);
1636
1637 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638
1639 return err;
1640 }
1641
1642 /* ni_fname_name
1643 *
1644 * Return: File name attribute by its value.
1645 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 const struct le_str *uni,
1648 const struct MFT_REF *home_dir,
1649 struct mft_inode **mi,
1650 struct ATTR_LIST_ENTRY **le)
1651 {
1652 struct ATTRIB *attr = NULL;
1653 struct ATTR_FILE_NAME *fname;
1654
1655 if (le)
1656 *le = NULL;
1657
1658 /* Enumerate all names. */
1659 next:
1660 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661 if (!attr)
1662 return NULL;
1663
1664 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665 if (!fname)
1666 goto next;
1667
1668 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669 goto next;
1670
1671 if (!uni)
1672 return fname;
1673
1674 if (uni->len != fname->name_len)
1675 goto next;
1676
1677 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1678 false))
1679 goto next;
1680 return fname;
1681 }
1682
1683 /*
1684 * ni_fname_type
1685 *
1686 * Return: File name attribute with given type.
1687 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1688 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1689 struct mft_inode **mi,
1690 struct ATTR_LIST_ENTRY **le)
1691 {
1692 struct ATTRIB *attr = NULL;
1693 struct ATTR_FILE_NAME *fname;
1694
1695 *le = NULL;
1696
1697 if (name_type == FILE_NAME_POSIX)
1698 return NULL;
1699
1700 /* Enumerate all names. */
1701 for (;;) {
1702 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1703 if (!attr)
1704 return NULL;
1705
1706 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1707 if (fname && name_type == fname->type)
1708 return fname;
1709 }
1710 }
1711
1712 /*
1713 * ni_new_attr_flags
1714 *
1715 * Process compressed/sparsed in special way.
1716 * NOTE: You need to set ni->std_fa = new_fa
1717 * after this function to keep internal structures in consistency.
1718 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1719 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1720 {
1721 struct ATTRIB *attr;
1722 struct mft_inode *mi;
1723 __le16 new_aflags;
1724 u32 new_asize;
1725
1726 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1727 if (!attr)
1728 return -EINVAL;
1729
1730 new_aflags = attr->flags;
1731
1732 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1733 new_aflags |= ATTR_FLAG_SPARSED;
1734 else
1735 new_aflags &= ~ATTR_FLAG_SPARSED;
1736
1737 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1738 new_aflags |= ATTR_FLAG_COMPRESSED;
1739 else
1740 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1741
1742 if (new_aflags == attr->flags)
1743 return 0;
1744
1745 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1746 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1747 ntfs_inode_warn(&ni->vfs_inode,
1748 "file can't be sparsed and compressed");
1749 return -EOPNOTSUPP;
1750 }
1751
1752 if (!attr->non_res)
1753 goto out;
1754
1755 if (attr->nres.data_size) {
1756 ntfs_inode_warn(
1757 &ni->vfs_inode,
1758 "one can change sparsed/compressed only for empty files");
1759 return -EOPNOTSUPP;
1760 }
1761
1762 /* Resize nonresident empty attribute in-place only. */
1763 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1764 (SIZEOF_NONRESIDENT_EX + 8) :
1765 (SIZEOF_NONRESIDENT + 8);
1766
1767 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1768 return -EOPNOTSUPP;
1769
1770 if (new_aflags & ATTR_FLAG_SPARSED) {
1771 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1773 attr->nres.c_unit = 0;
1774 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1775 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1776 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1777 /* The only allowed: 16 clusters per frame. */
1778 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1779 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1780 } else {
1781 attr->name_off = SIZEOF_NONRESIDENT_LE;
1782 /* Normal files. */
1783 attr->nres.c_unit = 0;
1784 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1785 }
1786 attr->nres.run_off = attr->name_off;
1787 out:
1788 attr->flags = new_aflags;
1789 mi->dirty = true;
1790
1791 return 0;
1792 }
1793
1794 /*
1795 * ni_parse_reparse
1796 *
1797 * buffer - memory for reparse buffer header
1798 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1799 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1800 struct REPARSE_DATA_BUFFER *buffer)
1801 {
1802 const struct REPARSE_DATA_BUFFER *rp = NULL;
1803 u8 bits;
1804 u16 len;
1805 typeof(rp->CompressReparseBuffer) *cmpr;
1806
1807 /* Try to estimate reparse point. */
1808 if (!attr->non_res) {
1809 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1810 } else if (le64_to_cpu(attr->nres.data_size) >=
1811 sizeof(struct REPARSE_DATA_BUFFER)) {
1812 struct runs_tree run;
1813
1814 run_init(&run);
1815
1816 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1817 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1818 sizeof(struct REPARSE_DATA_BUFFER),
1819 NULL)) {
1820 rp = buffer;
1821 }
1822
1823 run_close(&run);
1824 }
1825
1826 if (!rp)
1827 return REPARSE_NONE;
1828
1829 len = le16_to_cpu(rp->ReparseDataLength);
1830 switch (rp->ReparseTag) {
1831 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1832 break; /* Symbolic link. */
1833 case IO_REPARSE_TAG_MOUNT_POINT:
1834 break; /* Mount points and junctions. */
1835 case IO_REPARSE_TAG_SYMLINK:
1836 break;
1837 case IO_REPARSE_TAG_COMPRESS:
1838 /*
1839 * WOF - Windows Overlay Filter - Used to compress files with
1840 * LZX/Xpress.
1841 *
1842 * Unlike native NTFS file compression, the Windows
1843 * Overlay Filter supports only read operations. This means
1844 * that it doesn't need to sector-align each compressed chunk,
1845 * so the compressed data can be packed more tightly together.
1846 * If you open the file for writing, the WOF just decompresses
1847 * the entire file, turning it back into a plain file.
1848 *
1849 * Ntfs3 driver decompresses the entire file only on write or
1850 * change size requests.
1851 */
1852
1853 cmpr = &rp->CompressReparseBuffer;
1854 if (len < sizeof(*cmpr) ||
1855 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1856 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1857 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1858 return REPARSE_NONE;
1859 }
1860
1861 switch (cmpr->CompressionFormat) {
1862 case WOF_COMPRESSION_XPRESS4K:
1863 bits = 0xc; // 4k
1864 break;
1865 case WOF_COMPRESSION_XPRESS8K:
1866 bits = 0xd; // 8k
1867 break;
1868 case WOF_COMPRESSION_XPRESS16K:
1869 bits = 0xe; // 16k
1870 break;
1871 case WOF_COMPRESSION_LZX32K:
1872 bits = 0xf; // 32k
1873 break;
1874 default:
1875 bits = 0x10; // 64k
1876 break;
1877 }
1878 ni_set_ext_compress_bits(ni, bits);
1879 return REPARSE_COMPRESSED;
1880
1881 case IO_REPARSE_TAG_DEDUP:
1882 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1883 return REPARSE_DEDUPLICATED;
1884
1885 default:
1886 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1887 break;
1888
1889 return REPARSE_NONE;
1890 }
1891
1892 if (buffer != rp)
1893 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1894
1895 /* Looks like normal symlink. */
1896 return REPARSE_LINK;
1897 }
1898
1899 /*
1900 * ni_fiemap - Helper for file_fiemap().
1901 *
1902 * Assumed ni_lock.
1903 * TODO: Less aggressive locks.
1904 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1905 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1906 __u64 vbo, __u64 len)
1907 {
1908 int err = 0;
1909 struct ntfs_sb_info *sbi = ni->mi.sbi;
1910 u8 cluster_bits = sbi->cluster_bits;
1911 struct runs_tree *run;
1912 struct rw_semaphore *run_lock;
1913 struct ATTRIB *attr;
1914 CLST vcn = vbo >> cluster_bits;
1915 CLST lcn, clen;
1916 u64 valid = ni->i_valid;
1917 u64 lbo, bytes;
1918 u64 end, alloc_size;
1919 size_t idx = -1;
1920 u32 flags;
1921 bool ok;
1922
1923 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1924 run = &ni->dir.alloc_run;
1925 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1926 ARRAY_SIZE(I30_NAME), NULL, NULL);
1927 run_lock = &ni->dir.run_lock;
1928 } else {
1929 run = &ni->file.run;
1930 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1931 NULL);
1932 if (!attr) {
1933 err = -EINVAL;
1934 goto out;
1935 }
1936 if (is_attr_compressed(attr)) {
1937 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1938 err = -EOPNOTSUPP;
1939 ntfs_inode_warn(
1940 &ni->vfs_inode,
1941 "fiemap is not supported for compressed file (cp -r)");
1942 goto out;
1943 }
1944 run_lock = &ni->file.run_lock;
1945 }
1946
1947 if (!attr || !attr->non_res) {
1948 err = fiemap_fill_next_extent(
1949 fieinfo, 0, 0,
1950 attr ? le32_to_cpu(attr->res.data_size) : 0,
1951 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1952 FIEMAP_EXTENT_MERGED);
1953 goto out;
1954 }
1955
1956 end = vbo + len;
1957 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1958 if (end > alloc_size)
1959 end = alloc_size;
1960
1961 down_read(run_lock);
1962
1963 while (vbo < end) {
1964 if (idx == -1) {
1965 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1966 } else {
1967 CLST vcn_next = vcn;
1968
1969 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1970 vcn == vcn_next;
1971 if (!ok)
1972 vcn = vcn_next;
1973 }
1974
1975 if (!ok) {
1976 up_read(run_lock);
1977 down_write(run_lock);
1978
1979 err = attr_load_runs_vcn(ni, attr->type,
1980 attr_name(attr),
1981 attr->name_len, run, vcn);
1982
1983 up_write(run_lock);
1984 down_read(run_lock);
1985
1986 if (err)
1987 break;
1988
1989 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1990
1991 if (!ok) {
1992 err = -EINVAL;
1993 break;
1994 }
1995 }
1996
1997 if (!clen) {
1998 err = -EINVAL; // ?
1999 break;
2000 }
2001
2002 if (lcn == SPARSE_LCN) {
2003 vcn += clen;
2004 vbo = (u64)vcn << cluster_bits;
2005 continue;
2006 }
2007
2008 flags = FIEMAP_EXTENT_MERGED;
2009 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2010 ;
2011 } else if (is_attr_compressed(attr)) {
2012 CLST clst_data;
2013
2014 err = attr_is_frame_compressed(
2015 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2016 if (err)
2017 break;
2018 if (clst_data < NTFS_LZNT_CLUSTERS)
2019 flags |= FIEMAP_EXTENT_ENCODED;
2020 } else if (is_attr_encrypted(attr)) {
2021 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2022 }
2023
2024 vbo = (u64)vcn << cluster_bits;
2025 bytes = (u64)clen << cluster_bits;
2026 lbo = (u64)lcn << cluster_bits;
2027
2028 vcn += clen;
2029
2030 if (vbo + bytes >= end)
2031 bytes = end - vbo;
2032
2033 if (vbo + bytes <= valid) {
2034 ;
2035 } else if (vbo >= valid) {
2036 flags |= FIEMAP_EXTENT_UNWRITTEN;
2037 } else {
2038 /* vbo < valid && valid < vbo + bytes */
2039 u64 dlen = valid - vbo;
2040
2041 if (vbo + dlen >= end)
2042 flags |= FIEMAP_EXTENT_LAST;
2043
2044 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2045 flags);
2046 if (err < 0)
2047 break;
2048 if (err == 1) {
2049 err = 0;
2050 break;
2051 }
2052
2053 vbo = valid;
2054 bytes -= dlen;
2055 if (!bytes)
2056 continue;
2057
2058 lbo += dlen;
2059 flags |= FIEMAP_EXTENT_UNWRITTEN;
2060 }
2061
2062 if (vbo + bytes >= end)
2063 flags |= FIEMAP_EXTENT_LAST;
2064
2065 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2066 if (err < 0)
2067 break;
2068 if (err == 1) {
2069 err = 0;
2070 break;
2071 }
2072
2073 vbo += bytes;
2074 }
2075
2076 up_read(run_lock);
2077
2078 out:
2079 return err;
2080 }
2081
2082 /*
2083 * ni_readpage_cmpr
2084 *
2085 * When decompressing, we typically obtain more than one page per reference.
2086 * We inject the additional pages into the page cache.
2087 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2088 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2089 {
2090 int err;
2091 struct ntfs_sb_info *sbi = ni->mi.sbi;
2092 struct address_space *mapping = page->mapping;
2093 pgoff_t index = page->index;
2094 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2095 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2096 u8 frame_bits;
2097 CLST frame;
2098 u32 i, idx, frame_size, pages_per_frame;
2099 gfp_t gfp_mask;
2100 struct page *pg;
2101
2102 if (vbo >= ni->vfs_inode.i_size) {
2103 SetPageUptodate(page);
2104 err = 0;
2105 goto out;
2106 }
2107
2108 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2109 /* Xpress or LZX. */
2110 frame_bits = ni_ext_compress_bits(ni);
2111 } else {
2112 /* LZNT compression. */
2113 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2114 }
2115 frame_size = 1u << frame_bits;
2116 frame = vbo >> frame_bits;
2117 frame_vbo = (u64)frame << frame_bits;
2118 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2119
2120 pages_per_frame = frame_size >> PAGE_SHIFT;
2121 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2122 if (!pages) {
2123 err = -ENOMEM;
2124 goto out;
2125 }
2126
2127 pages[idx] = page;
2128 index = frame_vbo >> PAGE_SHIFT;
2129 gfp_mask = mapping_gfp_mask(mapping);
2130
2131 for (i = 0; i < pages_per_frame; i++, index++) {
2132 if (i == idx)
2133 continue;
2134
2135 pg = find_or_create_page(mapping, index, gfp_mask);
2136 if (!pg) {
2137 err = -ENOMEM;
2138 goto out1;
2139 }
2140 pages[i] = pg;
2141 }
2142
2143 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2144
2145 out1:
2146 if (err)
2147 SetPageError(page);
2148
2149 for (i = 0; i < pages_per_frame; i++) {
2150 pg = pages[i];
2151 if (i == idx || !pg)
2152 continue;
2153 unlock_page(pg);
2154 put_page(pg);
2155 }
2156
2157 out:
2158 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2159 kfree(pages);
2160 unlock_page(page);
2161
2162 return err;
2163 }
2164
2165 #ifdef CONFIG_NTFS3_LZX_XPRESS
2166 /*
2167 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2168 *
2169 * Remove ATTR_DATA::WofCompressedData.
2170 * Remove ATTR_REPARSE.
2171 */
ni_decompress_file(struct ntfs_inode * ni)2172 int ni_decompress_file(struct ntfs_inode *ni)
2173 {
2174 struct ntfs_sb_info *sbi = ni->mi.sbi;
2175 struct inode *inode = &ni->vfs_inode;
2176 loff_t i_size = inode->i_size;
2177 struct address_space *mapping = inode->i_mapping;
2178 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2179 struct page **pages = NULL;
2180 struct ATTR_LIST_ENTRY *le;
2181 struct ATTRIB *attr;
2182 CLST vcn, cend, lcn, clen, end;
2183 pgoff_t index;
2184 u64 vbo;
2185 u8 frame_bits;
2186 u32 i, frame_size, pages_per_frame, bytes;
2187 struct mft_inode *mi;
2188 int err;
2189
2190 /* Clusters for decompressed data. */
2191 cend = bytes_to_cluster(sbi, i_size);
2192
2193 if (!i_size)
2194 goto remove_wof;
2195
2196 /* Check in advance. */
2197 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2198 err = -ENOSPC;
2199 goto out;
2200 }
2201
2202 frame_bits = ni_ext_compress_bits(ni);
2203 frame_size = 1u << frame_bits;
2204 pages_per_frame = frame_size >> PAGE_SHIFT;
2205 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2206 if (!pages) {
2207 err = -ENOMEM;
2208 goto out;
2209 }
2210
2211 /*
2212 * Step 1: Decompress data and copy to new allocated clusters.
2213 */
2214 index = 0;
2215 for (vbo = 0; vbo < i_size; vbo += bytes) {
2216 u32 nr_pages;
2217 bool new;
2218
2219 if (vbo + frame_size > i_size) {
2220 bytes = i_size - vbo;
2221 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2222 } else {
2223 nr_pages = pages_per_frame;
2224 bytes = frame_size;
2225 }
2226
2227 end = bytes_to_cluster(sbi, vbo + bytes);
2228
2229 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2230 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2231 &clen, &new, false);
2232 if (err)
2233 goto out;
2234 }
2235
2236 for (i = 0; i < pages_per_frame; i++, index++) {
2237 struct page *pg;
2238
2239 pg = find_or_create_page(mapping, index, gfp_mask);
2240 if (!pg) {
2241 while (i--) {
2242 unlock_page(pages[i]);
2243 put_page(pages[i]);
2244 }
2245 err = -ENOMEM;
2246 goto out;
2247 }
2248 pages[i] = pg;
2249 }
2250
2251 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2252
2253 if (!err) {
2254 down_read(&ni->file.run_lock);
2255 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2256 nr_pages, vbo, bytes,
2257 REQ_OP_WRITE);
2258 up_read(&ni->file.run_lock);
2259 }
2260
2261 for (i = 0; i < pages_per_frame; i++) {
2262 unlock_page(pages[i]);
2263 put_page(pages[i]);
2264 }
2265
2266 if (err)
2267 goto out;
2268
2269 cond_resched();
2270 }
2271
2272 remove_wof:
2273 /*
2274 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2275 * and ATTR_REPARSE.
2276 */
2277 attr = NULL;
2278 le = NULL;
2279 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2280 CLST svcn, evcn;
2281 u32 asize, roff;
2282
2283 if (attr->type == ATTR_REPARSE) {
2284 struct MFT_REF ref;
2285
2286 mi_get_ref(&ni->mi, &ref);
2287 ntfs_remove_reparse(sbi, 0, &ref);
2288 }
2289
2290 if (!attr->non_res)
2291 continue;
2292
2293 if (attr->type != ATTR_REPARSE &&
2294 (attr->type != ATTR_DATA ||
2295 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2296 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2297 continue;
2298
2299 svcn = le64_to_cpu(attr->nres.svcn);
2300 evcn = le64_to_cpu(attr->nres.evcn);
2301
2302 if (evcn + 1 <= svcn)
2303 continue;
2304
2305 asize = le32_to_cpu(attr->size);
2306 roff = le16_to_cpu(attr->nres.run_off);
2307
2308 if (roff > asize) {
2309 err = -EINVAL;
2310 goto out;
2311 }
2312
2313 /*run==1 Means unpack and deallocate. */
2314 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2315 Add2Ptr(attr, roff), asize - roff);
2316 }
2317
2318 /*
2319 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2320 */
2321 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2322 false, NULL);
2323 if (err)
2324 goto out;
2325
2326 /*
2327 * Step 4: Remove ATTR_REPARSE.
2328 */
2329 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2330 if (err)
2331 goto out;
2332
2333 /*
2334 * Step 5: Remove sparse flag from data attribute.
2335 */
2336 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2337 if (!attr) {
2338 err = -EINVAL;
2339 goto out;
2340 }
2341
2342 if (attr->non_res && is_attr_sparsed(attr)) {
2343 /* Sparsed attribute header is 8 bytes bigger than normal. */
2344 struct MFT_REC *rec = mi->mrec;
2345 u32 used = le32_to_cpu(rec->used);
2346 u32 asize = le32_to_cpu(attr->size);
2347 u16 roff = le16_to_cpu(attr->nres.run_off);
2348 char *rbuf = Add2Ptr(attr, roff);
2349
2350 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2351 attr->size = cpu_to_le32(asize - 8);
2352 attr->flags &= ~ATTR_FLAG_SPARSED;
2353 attr->nres.run_off = cpu_to_le16(roff - 8);
2354 attr->nres.c_unit = 0;
2355 rec->used = cpu_to_le32(used - 8);
2356 mi->dirty = true;
2357 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2358 FILE_ATTRIBUTE_REPARSE_POINT);
2359
2360 mark_inode_dirty(inode);
2361 }
2362
2363 /* Clear cached flag. */
2364 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2365 if (ni->file.offs_page) {
2366 put_page(ni->file.offs_page);
2367 ni->file.offs_page = NULL;
2368 }
2369 mapping->a_ops = &ntfs_aops;
2370
2371 out:
2372 kfree(pages);
2373 if (err)
2374 _ntfs_bad_inode(inode);
2375
2376 return err;
2377 }
2378
2379 /*
2380 * decompress_lzx_xpress - External compression LZX/Xpress.
2381 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2382 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2383 size_t cmpr_size, void *unc, size_t unc_size,
2384 u32 frame_size)
2385 {
2386 int err;
2387 void *ctx;
2388
2389 if (cmpr_size == unc_size) {
2390 /* Frame not compressed. */
2391 memcpy(unc, cmpr, unc_size);
2392 return 0;
2393 }
2394
2395 err = 0;
2396 if (frame_size == 0x8000) {
2397 mutex_lock(&sbi->compress.mtx_lzx);
2398 /* LZX: Frame compressed. */
2399 ctx = sbi->compress.lzx;
2400 if (!ctx) {
2401 /* Lazy initialize LZX decompress context. */
2402 ctx = lzx_allocate_decompressor();
2403 if (!ctx) {
2404 err = -ENOMEM;
2405 goto out1;
2406 }
2407
2408 sbi->compress.lzx = ctx;
2409 }
2410
2411 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2412 /* Treat all errors as "invalid argument". */
2413 err = -EINVAL;
2414 }
2415 out1:
2416 mutex_unlock(&sbi->compress.mtx_lzx);
2417 } else {
2418 /* XPRESS: Frame compressed. */
2419 mutex_lock(&sbi->compress.mtx_xpress);
2420 ctx = sbi->compress.xpress;
2421 if (!ctx) {
2422 /* Lazy initialize Xpress decompress context. */
2423 ctx = xpress_allocate_decompressor();
2424 if (!ctx) {
2425 err = -ENOMEM;
2426 goto out2;
2427 }
2428
2429 sbi->compress.xpress = ctx;
2430 }
2431
2432 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2433 /* Treat all errors as "invalid argument". */
2434 err = -EINVAL;
2435 }
2436 out2:
2437 mutex_unlock(&sbi->compress.mtx_xpress);
2438 }
2439 return err;
2440 }
2441 #endif
2442
2443 /*
2444 * ni_read_frame
2445 *
2446 * Pages - Array of locked pages.
2447 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2448 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2449 u32 pages_per_frame)
2450 {
2451 int err;
2452 struct ntfs_sb_info *sbi = ni->mi.sbi;
2453 u8 cluster_bits = sbi->cluster_bits;
2454 char *frame_ondisk = NULL;
2455 char *frame_mem = NULL;
2456 struct page **pages_disk = NULL;
2457 struct ATTR_LIST_ENTRY *le = NULL;
2458 struct runs_tree *run = &ni->file.run;
2459 u64 valid_size = ni->i_valid;
2460 u64 vbo_disk;
2461 size_t unc_size;
2462 u32 frame_size, i, npages_disk, ondisk_size;
2463 struct page *pg;
2464 struct ATTRIB *attr;
2465 CLST frame, clst_data;
2466
2467 /*
2468 * To simplify decompress algorithm do vmap for source
2469 * and target pages.
2470 */
2471 for (i = 0; i < pages_per_frame; i++)
2472 kmap(pages[i]);
2473
2474 frame_size = pages_per_frame << PAGE_SHIFT;
2475 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2476 if (!frame_mem) {
2477 err = -ENOMEM;
2478 goto out;
2479 }
2480
2481 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2482 if (!attr) {
2483 err = -ENOENT;
2484 goto out1;
2485 }
2486
2487 if (!attr->non_res) {
2488 u32 data_size = le32_to_cpu(attr->res.data_size);
2489
2490 memset(frame_mem, 0, frame_size);
2491 if (frame_vbo < data_size) {
2492 ondisk_size = data_size - frame_vbo;
2493 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2494 min(ondisk_size, frame_size));
2495 }
2496 err = 0;
2497 goto out1;
2498 }
2499
2500 if (frame_vbo >= valid_size) {
2501 memset(frame_mem, 0, frame_size);
2502 err = 0;
2503 goto out1;
2504 }
2505
2506 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2507 #ifndef CONFIG_NTFS3_LZX_XPRESS
2508 err = -EOPNOTSUPP;
2509 goto out1;
2510 #else
2511 u32 frame_bits = ni_ext_compress_bits(ni);
2512 u64 frame64 = frame_vbo >> frame_bits;
2513 u64 frames, vbo_data;
2514
2515 if (frame_size != (1u << frame_bits)) {
2516 err = -EINVAL;
2517 goto out1;
2518 }
2519 switch (frame_size) {
2520 case 0x1000:
2521 case 0x2000:
2522 case 0x4000:
2523 case 0x8000:
2524 break;
2525 default:
2526 /* Unknown compression. */
2527 err = -EOPNOTSUPP;
2528 goto out1;
2529 }
2530
2531 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2532 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2533 if (!attr) {
2534 ntfs_inode_err(
2535 &ni->vfs_inode,
2536 "external compressed file should contains data attribute \"WofCompressedData\"");
2537 err = -EINVAL;
2538 goto out1;
2539 }
2540
2541 if (!attr->non_res) {
2542 run = NULL;
2543 } else {
2544 run = run_alloc();
2545 if (!run) {
2546 err = -ENOMEM;
2547 goto out1;
2548 }
2549 }
2550
2551 frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2552
2553 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2554 frame_bits, &ondisk_size, &vbo_data);
2555 if (err)
2556 goto out2;
2557
2558 if (frame64 == frames) {
2559 unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2560 (frame_size - 1));
2561 ondisk_size = attr_size(attr) - vbo_data;
2562 } else {
2563 unc_size = frame_size;
2564 }
2565
2566 if (ondisk_size > frame_size) {
2567 err = -EINVAL;
2568 goto out2;
2569 }
2570
2571 if (!attr->non_res) {
2572 if (vbo_data + ondisk_size >
2573 le32_to_cpu(attr->res.data_size)) {
2574 err = -EINVAL;
2575 goto out1;
2576 }
2577
2578 err = decompress_lzx_xpress(
2579 sbi, Add2Ptr(resident_data(attr), vbo_data),
2580 ondisk_size, frame_mem, unc_size, frame_size);
2581 goto out1;
2582 }
2583 vbo_disk = vbo_data;
2584 /* Load all runs to read [vbo_disk-vbo_to). */
2585 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2586 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2587 vbo_data + ondisk_size);
2588 if (err)
2589 goto out2;
2590 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2591 PAGE_SIZE - 1) >>
2592 PAGE_SHIFT;
2593 #endif
2594 } else if (is_attr_compressed(attr)) {
2595 /* LZNT compression. */
2596 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2597 err = -EOPNOTSUPP;
2598 goto out1;
2599 }
2600
2601 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2602 err = -EOPNOTSUPP;
2603 goto out1;
2604 }
2605
2606 down_write(&ni->file.run_lock);
2607 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2608 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2609 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2610 up_write(&ni->file.run_lock);
2611 if (err)
2612 goto out1;
2613
2614 if (!clst_data) {
2615 memset(frame_mem, 0, frame_size);
2616 goto out1;
2617 }
2618
2619 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2620 ondisk_size = clst_data << cluster_bits;
2621
2622 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2623 /* Frame is not compressed. */
2624 down_read(&ni->file.run_lock);
2625 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2626 frame_vbo, ondisk_size,
2627 REQ_OP_READ);
2628 up_read(&ni->file.run_lock);
2629 goto out1;
2630 }
2631 vbo_disk = frame_vbo;
2632 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2633 } else {
2634 __builtin_unreachable();
2635 err = -EINVAL;
2636 goto out1;
2637 }
2638
2639 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2640 if (!pages_disk) {
2641 err = -ENOMEM;
2642 goto out2;
2643 }
2644
2645 for (i = 0; i < npages_disk; i++) {
2646 pg = alloc_page(GFP_KERNEL);
2647 if (!pg) {
2648 err = -ENOMEM;
2649 goto out3;
2650 }
2651 pages_disk[i] = pg;
2652 lock_page(pg);
2653 kmap(pg);
2654 }
2655
2656 /* Read 'ondisk_size' bytes from disk. */
2657 down_read(&ni->file.run_lock);
2658 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2659 ondisk_size, REQ_OP_READ);
2660 up_read(&ni->file.run_lock);
2661 if (err)
2662 goto out3;
2663
2664 /*
2665 * To simplify decompress algorithm do vmap for source and target pages.
2666 */
2667 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2668 if (!frame_ondisk) {
2669 err = -ENOMEM;
2670 goto out3;
2671 }
2672
2673 /* Decompress: Frame_ondisk -> frame_mem. */
2674 #ifdef CONFIG_NTFS3_LZX_XPRESS
2675 if (run != &ni->file.run) {
2676 /* LZX or XPRESS */
2677 err = decompress_lzx_xpress(
2678 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2679 ondisk_size, frame_mem, unc_size, frame_size);
2680 } else
2681 #endif
2682 {
2683 /* LZNT - Native NTFS compression. */
2684 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2685 frame_size);
2686 if ((ssize_t)unc_size < 0)
2687 err = unc_size;
2688 else if (!unc_size || unc_size > frame_size)
2689 err = -EINVAL;
2690 }
2691 if (!err && valid_size < frame_vbo + frame_size) {
2692 size_t ok = valid_size - frame_vbo;
2693
2694 memset(frame_mem + ok, 0, frame_size - ok);
2695 }
2696
2697 vunmap(frame_ondisk);
2698
2699 out3:
2700 for (i = 0; i < npages_disk; i++) {
2701 pg = pages_disk[i];
2702 if (pg) {
2703 kunmap(pg);
2704 unlock_page(pg);
2705 put_page(pg);
2706 }
2707 }
2708 kfree(pages_disk);
2709
2710 out2:
2711 #ifdef CONFIG_NTFS3_LZX_XPRESS
2712 if (run != &ni->file.run)
2713 run_free(run);
2714 #endif
2715 out1:
2716 vunmap(frame_mem);
2717 out:
2718 for (i = 0; i < pages_per_frame; i++) {
2719 pg = pages[i];
2720 kunmap(pg);
2721 ClearPageError(pg);
2722 SetPageUptodate(pg);
2723 }
2724
2725 return err;
2726 }
2727
2728 /*
2729 * ni_write_frame
2730 *
2731 * Pages - Array of locked pages.
2732 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2733 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2734 u32 pages_per_frame)
2735 {
2736 int err;
2737 struct ntfs_sb_info *sbi = ni->mi.sbi;
2738 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2739 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2740 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2741 CLST frame = frame_vbo >> frame_bits;
2742 char *frame_ondisk = NULL;
2743 struct page **pages_disk = NULL;
2744 struct ATTR_LIST_ENTRY *le = NULL;
2745 char *frame_mem;
2746 struct ATTRIB *attr;
2747 struct mft_inode *mi;
2748 u32 i;
2749 struct page *pg;
2750 size_t compr_size, ondisk_size;
2751 struct lznt *lznt;
2752
2753 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2754 if (!attr) {
2755 err = -ENOENT;
2756 goto out;
2757 }
2758
2759 if (WARN_ON(!is_attr_compressed(attr))) {
2760 err = -EINVAL;
2761 goto out;
2762 }
2763
2764 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2765 err = -EOPNOTSUPP;
2766 goto out;
2767 }
2768
2769 if (!attr->non_res) {
2770 down_write(&ni->file.run_lock);
2771 err = attr_make_nonresident(ni, attr, le, mi,
2772 le32_to_cpu(attr->res.data_size),
2773 &ni->file.run, &attr, pages[0]);
2774 up_write(&ni->file.run_lock);
2775 if (err)
2776 goto out;
2777 }
2778
2779 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2780 err = -EOPNOTSUPP;
2781 goto out;
2782 }
2783
2784 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2785 if (!pages_disk) {
2786 err = -ENOMEM;
2787 goto out;
2788 }
2789
2790 for (i = 0; i < pages_per_frame; i++) {
2791 pg = alloc_page(GFP_KERNEL);
2792 if (!pg) {
2793 err = -ENOMEM;
2794 goto out1;
2795 }
2796 pages_disk[i] = pg;
2797 lock_page(pg);
2798 kmap(pg);
2799 }
2800
2801 /* To simplify compress algorithm do vmap for source and target pages. */
2802 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2803 if (!frame_ondisk) {
2804 err = -ENOMEM;
2805 goto out1;
2806 }
2807
2808 for (i = 0; i < pages_per_frame; i++)
2809 kmap(pages[i]);
2810
2811 /* Map in-memory frame for read-only. */
2812 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2813 if (!frame_mem) {
2814 err = -ENOMEM;
2815 goto out2;
2816 }
2817
2818 mutex_lock(&sbi->compress.mtx_lznt);
2819 lznt = NULL;
2820 if (!sbi->compress.lznt) {
2821 /*
2822 * LZNT implements two levels of compression:
2823 * 0 - Standard compression
2824 * 1 - Best compression, requires a lot of cpu
2825 * use mount option?
2826 */
2827 lznt = get_lznt_ctx(0);
2828 if (!lznt) {
2829 mutex_unlock(&sbi->compress.mtx_lznt);
2830 err = -ENOMEM;
2831 goto out3;
2832 }
2833
2834 sbi->compress.lznt = lznt;
2835 lznt = NULL;
2836 }
2837
2838 /* Compress: frame_mem -> frame_ondisk */
2839 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2840 frame_size, sbi->compress.lznt);
2841 mutex_unlock(&sbi->compress.mtx_lznt);
2842 kfree(lznt);
2843
2844 if (compr_size + sbi->cluster_size > frame_size) {
2845 /* Frame is not compressed. */
2846 compr_size = frame_size;
2847 ondisk_size = frame_size;
2848 } else if (compr_size) {
2849 /* Frame is compressed. */
2850 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2851 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2852 } else {
2853 /* Frame is sparsed. */
2854 ondisk_size = 0;
2855 }
2856
2857 down_write(&ni->file.run_lock);
2858 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2859 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2860 up_write(&ni->file.run_lock);
2861 if (err)
2862 goto out2;
2863
2864 if (!ondisk_size)
2865 goto out2;
2866
2867 down_read(&ni->file.run_lock);
2868 err = ntfs_bio_pages(sbi, &ni->file.run,
2869 ondisk_size < frame_size ? pages_disk : pages,
2870 pages_per_frame, frame_vbo, ondisk_size,
2871 REQ_OP_WRITE);
2872 up_read(&ni->file.run_lock);
2873
2874 out3:
2875 vunmap(frame_mem);
2876
2877 out2:
2878 for (i = 0; i < pages_per_frame; i++)
2879 kunmap(pages[i]);
2880
2881 vunmap(frame_ondisk);
2882 out1:
2883 for (i = 0; i < pages_per_frame; i++) {
2884 pg = pages_disk[i];
2885 if (pg) {
2886 kunmap(pg);
2887 unlock_page(pg);
2888 put_page(pg);
2889 }
2890 }
2891 kfree(pages_disk);
2892 out:
2893 return err;
2894 }
2895
2896 /*
2897 * ni_remove_name - Removes name 'de' from MFT and from directory.
2898 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2899 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2900 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2901 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2902 {
2903 int err;
2904 struct ntfs_sb_info *sbi = ni->mi.sbi;
2905 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2906 struct ATTR_FILE_NAME *fname;
2907 struct ATTR_LIST_ENTRY *le;
2908 struct mft_inode *mi;
2909 u16 de_key_size = le16_to_cpu(de->key_size);
2910 u8 name_type;
2911
2912 *undo_step = 0;
2913
2914 /* Find name in record. */
2915 mi_get_ref(&dir_ni->mi, &de_name->home);
2916
2917 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2918 &de_name->home, &mi, &le);
2919 if (!fname)
2920 return -ENOENT;
2921
2922 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2923 name_type = paired_name(fname->type);
2924
2925 /* Mark ntfs as dirty. It will be cleared at umount. */
2926 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2927
2928 /* Step 1: Remove name from directory. */
2929 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2930 if (err)
2931 return err;
2932
2933 /* Step 2: Remove name from MFT. */
2934 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2935
2936 *undo_step = 2;
2937
2938 /* Get paired name. */
2939 fname = ni_fname_type(ni, name_type, &mi, &le);
2940 if (fname) {
2941 u16 de2_key_size = fname_full_size(fname);
2942
2943 *de2 = Add2Ptr(de, 1024);
2944 (*de2)->key_size = cpu_to_le16(de2_key_size);
2945
2946 memcpy(*de2 + 1, fname, de2_key_size);
2947
2948 /* Step 3: Remove paired name from directory. */
2949 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2950 de2_key_size, sbi);
2951 if (err)
2952 return err;
2953
2954 /* Step 4: Remove paired name from MFT. */
2955 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2956
2957 *undo_step = 4;
2958 }
2959 return 0;
2960 }
2961
2962 /*
2963 * ni_remove_name_undo - Paired function for ni_remove_name.
2964 *
2965 * Return: True if ok
2966 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2967 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2968 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2969 {
2970 struct ntfs_sb_info *sbi = ni->mi.sbi;
2971 struct ATTRIB *attr;
2972 u16 de_key_size;
2973
2974 switch (undo_step) {
2975 case 4:
2976 de_key_size = le16_to_cpu(de2->key_size);
2977 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2978 &attr, NULL, NULL))
2979 return false;
2980 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2981
2982 mi_get_ref(&ni->mi, &de2->ref);
2983 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2984 sizeof(struct NTFS_DE));
2985 de2->flags = 0;
2986 de2->res = 0;
2987
2988 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2989 return false;
2990 fallthrough;
2991
2992 case 2:
2993 de_key_size = le16_to_cpu(de->key_size);
2994
2995 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2996 &attr, NULL, NULL))
2997 return false;
2998
2999 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3000 mi_get_ref(&ni->mi, &de->ref);
3001
3002 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3003 return false;
3004 }
3005
3006 return true;
3007 }
3008
3009 /*
3010 * ni_add_name - Add new name into MFT and into directory.
3011 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3012 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3013 struct NTFS_DE *de)
3014 {
3015 int err;
3016 struct ntfs_sb_info *sbi = ni->mi.sbi;
3017 struct ATTRIB *attr;
3018 struct ATTR_LIST_ENTRY *le;
3019 struct mft_inode *mi;
3020 struct ATTR_FILE_NAME *fname;
3021 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3022 u16 de_key_size = le16_to_cpu(de->key_size);
3023
3024 if (sbi->options->windows_names &&
3025 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3026 return -EINVAL;
3027
3028 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3029 if (ni->mi.sbi->options->hide_dot_files) {
3030 if (de_name->name_len > 0 &&
3031 le16_to_cpu(de_name->name[0]) == '.')
3032 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3033 else
3034 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3035 }
3036
3037 mi_get_ref(&ni->mi, &de->ref);
3038 mi_get_ref(&dir_ni->mi, &de_name->home);
3039
3040 /* Fill duplicate from any ATTR_NAME. */
3041 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3042 if (fname)
3043 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3044 de_name->dup.fa = ni->std_fa;
3045
3046 /* Insert new name into MFT. */
3047 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3048 &mi, &le);
3049 if (err)
3050 return err;
3051
3052 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3053
3054 /* Insert new name into directory. */
3055 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3056 if (err)
3057 ni_remove_attr_le(ni, attr, mi, le);
3058
3059 return err;
3060 }
3061
3062 /*
3063 * ni_rename - Remove one name and insert new name.
3064 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3065 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3066 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3067 bool *is_bad)
3068 {
3069 int err;
3070 struct NTFS_DE *de2 = NULL;
3071 int undo = 0;
3072
3073 /*
3074 * There are two possible ways to rename:
3075 * 1) Add new name and remove old name.
3076 * 2) Remove old name and add new name.
3077 *
3078 * In most cases (not all!) adding new name into MFT and into directory can
3079 * allocate additional cluster(s).
3080 * Second way may result to bad inode if we can't add new name
3081 * and then can't restore (add) old name.
3082 */
3083
3084 /*
3085 * Way 1 - Add new + remove old.
3086 */
3087 err = ni_add_name(new_dir_ni, ni, new_de);
3088 if (!err) {
3089 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3090 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3091 *is_bad = true;
3092 }
3093
3094 /*
3095 * Way 2 - Remove old + add new.
3096 */
3097 /*
3098 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3099 * if (!err) {
3100 * err = ni_add_name(new_dir_ni, ni, new_de);
3101 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3102 * *is_bad = true;
3103 * }
3104 */
3105
3106 return err;
3107 }
3108
3109 /*
3110 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3111 */
ni_is_dirty(struct inode * inode)3112 bool ni_is_dirty(struct inode *inode)
3113 {
3114 struct ntfs_inode *ni = ntfs_i(inode);
3115 struct rb_node *node;
3116
3117 if (ni->mi.dirty || ni->attr_list.dirty ||
3118 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3119 return true;
3120
3121 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3122 if (rb_entry(node, struct mft_inode, node)->dirty)
3123 return true;
3124 }
3125
3126 return false;
3127 }
3128
3129 /*
3130 * ni_update_parent
3131 *
3132 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3133 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3134 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3135 int sync)
3136 {
3137 struct ATTRIB *attr;
3138 struct mft_inode *mi;
3139 struct ATTR_LIST_ENTRY *le = NULL;
3140 struct ntfs_sb_info *sbi = ni->mi.sbi;
3141 struct super_block *sb = sbi->sb;
3142 bool re_dirty = false;
3143
3144 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3145 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3146 attr = NULL;
3147 dup->alloc_size = 0;
3148 dup->data_size = 0;
3149 } else {
3150 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3151
3152 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3153 &mi);
3154 if (!attr) {
3155 dup->alloc_size = dup->data_size = 0;
3156 } else if (!attr->non_res) {
3157 u32 data_size = le32_to_cpu(attr->res.data_size);
3158
3159 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3160 dup->data_size = cpu_to_le64(data_size);
3161 } else {
3162 u64 new_valid = ni->i_valid;
3163 u64 data_size = le64_to_cpu(attr->nres.data_size);
3164 __le64 valid_le;
3165
3166 dup->alloc_size = is_attr_ext(attr) ?
3167 attr->nres.total_size :
3168 attr->nres.alloc_size;
3169 dup->data_size = attr->nres.data_size;
3170
3171 if (new_valid > data_size)
3172 new_valid = data_size;
3173
3174 valid_le = cpu_to_le64(new_valid);
3175 if (valid_le != attr->nres.valid_size) {
3176 attr->nres.valid_size = valid_le;
3177 mi->dirty = true;
3178 }
3179 }
3180 }
3181
3182 /* TODO: Fill reparse info. */
3183 dup->reparse = 0;
3184 dup->ea_size = 0;
3185
3186 if (ni->ni_flags & NI_FLAG_EA) {
3187 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3188 NULL);
3189 if (attr) {
3190 const struct EA_INFO *info;
3191
3192 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3193 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3194 if (info)
3195 dup->ea_size = info->size_pack;
3196 }
3197 }
3198
3199 attr = NULL;
3200 le = NULL;
3201
3202 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3203 &mi))) {
3204 struct inode *dir;
3205 struct ATTR_FILE_NAME *fname;
3206
3207 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3208 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3209 continue;
3210
3211 /* Check simple case when parent inode equals current inode. */
3212 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3213 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3214 continue;
3215 }
3216
3217 /* ntfs_iget5 may sleep. */
3218 dir = ntfs_iget5(sb, &fname->home, NULL);
3219 if (IS_ERR(dir)) {
3220 ntfs_inode_warn(
3221 &ni->vfs_inode,
3222 "failed to open parent directory r=%lx to update",
3223 (long)ino_get(&fname->home));
3224 continue;
3225 }
3226
3227 if (!is_bad_inode(dir)) {
3228 struct ntfs_inode *dir_ni = ntfs_i(dir);
3229
3230 if (!ni_trylock(dir_ni)) {
3231 re_dirty = true;
3232 } else {
3233 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3234 ni_unlock(dir_ni);
3235 memcpy(&fname->dup, dup, sizeof(fname->dup));
3236 mi->dirty = true;
3237 }
3238 }
3239 iput(dir);
3240 }
3241
3242 return re_dirty;
3243 }
3244
3245 /*
3246 * ni_write_inode - Write MFT base record and all subrecords to disk.
3247 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3248 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3249 {
3250 int err = 0, err2;
3251 struct ntfs_inode *ni = ntfs_i(inode);
3252 struct super_block *sb = inode->i_sb;
3253 struct ntfs_sb_info *sbi = sb->s_fs_info;
3254 bool re_dirty = false;
3255 struct ATTR_STD_INFO *std;
3256 struct rb_node *node, *next;
3257 struct NTFS_DUP_INFO dup;
3258
3259 if (is_bad_inode(inode) || sb_rdonly(sb))
3260 return 0;
3261
3262 if (!ni_trylock(ni)) {
3263 /* 'ni' is under modification, skip for now. */
3264 mark_inode_dirty_sync(inode);
3265 return 0;
3266 }
3267
3268 if (!ni->mi.mrec)
3269 goto out;
3270
3271 if (is_rec_inuse(ni->mi.mrec) &&
3272 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3273 bool modified = false;
3274 struct timespec64 ctime = inode_get_ctime(inode);
3275
3276 /* Update times in standard attribute. */
3277 std = ni_std(ni);
3278 if (!std) {
3279 err = -EINVAL;
3280 goto out;
3281 }
3282
3283 /* Update the access times if they have changed. */
3284 dup.m_time = kernel2nt(&inode->i_mtime);
3285 if (std->m_time != dup.m_time) {
3286 std->m_time = dup.m_time;
3287 modified = true;
3288 }
3289
3290 dup.c_time = kernel2nt(&ctime);
3291 if (std->c_time != dup.c_time) {
3292 std->c_time = dup.c_time;
3293 modified = true;
3294 }
3295
3296 dup.a_time = kernel2nt(&inode->i_atime);
3297 if (std->a_time != dup.a_time) {
3298 std->a_time = dup.a_time;
3299 modified = true;
3300 }
3301
3302 dup.fa = ni->std_fa;
3303 if (std->fa != dup.fa) {
3304 std->fa = dup.fa;
3305 modified = true;
3306 }
3307
3308 /* std attribute is always in primary MFT record. */
3309 if (modified)
3310 ni->mi.dirty = true;
3311
3312 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3313 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3314 /* Avoid __wait_on_freeing_inode(inode). */
3315 && (sb->s_flags & SB_ACTIVE)) {
3316 dup.cr_time = std->cr_time;
3317 /* Not critical if this function fail. */
3318 re_dirty = ni_update_parent(ni, &dup, sync);
3319
3320 if (re_dirty)
3321 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3322 else
3323 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3324 }
3325
3326 /* Update attribute list. */
3327 if (ni->attr_list.size && ni->attr_list.dirty) {
3328 if (inode->i_ino != MFT_REC_MFT || sync) {
3329 err = ni_try_remove_attr_list(ni);
3330 if (err)
3331 goto out;
3332 }
3333
3334 err = al_update(ni, sync);
3335 if (err)
3336 goto out;
3337 }
3338 }
3339
3340 for (node = rb_first(&ni->mi_tree); node; node = next) {
3341 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3342 bool is_empty;
3343
3344 next = rb_next(node);
3345
3346 if (!mi->dirty)
3347 continue;
3348
3349 is_empty = !mi_enum_attr(mi, NULL);
3350
3351 if (is_empty)
3352 clear_rec_inuse(mi->mrec);
3353
3354 err2 = mi_write(mi, sync);
3355 if (!err && err2)
3356 err = err2;
3357
3358 if (is_empty) {
3359 ntfs_mark_rec_free(sbi, mi->rno, false);
3360 rb_erase(node, &ni->mi_tree);
3361 mi_put(mi);
3362 }
3363 }
3364
3365 if (ni->mi.dirty) {
3366 err2 = mi_write(&ni->mi, sync);
3367 if (!err && err2)
3368 err = err2;
3369 }
3370 out:
3371 ni_unlock(ni);
3372
3373 if (err) {
3374 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3375 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3376 return err;
3377 }
3378
3379 if (re_dirty)
3380 mark_inode_dirty_sync(inode);
3381
3382 return 0;
3383 }
3384