1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * FarSync WAN driver for Linux (2.6.x kernel version)
4 *
5 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 *
7 * Copyright (C) 2001-2004 FarSite Communications Ltd.
8 * www.farsite.co.uk
9 *
10 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
11 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/version.h>
19 #include <linux/pci.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/if.h>
27 #include <linux/hdlc.h>
28 #include <asm/io.h>
29 #include <linux/uaccess.h>
30
31 #include "farsync.h"
32
33 /*
34 * Module info
35 */
36 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38 MODULE_LICENSE("GPL");
39
40 /* Driver configuration and global parameters
41 * ==========================================
42 */
43
44 /* Number of ports (per card) and cards supported
45 */
46 #define FST_MAX_PORTS 4
47 #define FST_MAX_CARDS 32
48
49 /* Default parameters for the link
50 */
51 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
52 * useful */
53 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
54 * of frames on the way down to the card
55 * so that we can keep the card busy
56 * and maximise throughput
57 */
58 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
59 * network layer */
60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer */
62 #define FST_MAX_MTU 8000 /* Huge but possible */
63 #define FST_DEF_MTU 1500 /* Common sane value */
64
65 #define FST_TX_TIMEOUT (2*HZ)
66
67 #ifdef ARPHRD_RAWHDLC
68 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
69 #else
70 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
71 #endif
72
73 /*
74 * Modules parameters and associated variables
75 */
76 static int fst_txq_low = FST_LOW_WATER_MARK;
77 static int fst_txq_high = FST_HIGH_WATER_MARK;
78 static int fst_max_reads = 7;
79 static int fst_excluded_cards = 0;
80 static int fst_excluded_list[FST_MAX_CARDS];
81
82 module_param(fst_txq_low, int, 0);
83 module_param(fst_txq_high, int, 0);
84 module_param(fst_max_reads, int, 0);
85 module_param(fst_excluded_cards, int, 0);
86 module_param_array(fst_excluded_list, int, NULL, 0);
87
88 /* Card shared memory layout
89 * =========================
90 */
91 #pragma pack(1)
92
93 /* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
97 *
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
102 */
103 #define SMC_VERSION 24
104
105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
106
107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure */
109 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
110 * buffers */
111
112 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
113 #define LEN_RX_BUFFER 8192
114
115 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
116 #define LEN_SMALL_RX_BUFFER 256
117
118 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
119 #define NUM_RX_BUFFER 8
120
121 /* Interrupt retry time in milliseconds */
122 #define INT_RETRY_TIME 2
123
124 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
125 * of buffer descriptors. The structure is almost identical to that used
126 * in the LANCE Ethernet controllers. Details available as PDF from the
127 * AMD web site: https://www.amd.com/products/epd/processors/\
128 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
129 */
130 struct txdesc { /* Transmit descriptor */
131 volatile u16 ladr; /* Low order address of packet. This is a
132 * linear address in the Am186 memory space
133 */
134 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
135 * bits must be zero
136 */
137 volatile u8 bits; /* Status and config */
138 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
139 * Transmit terminal count interrupt enable in
140 * top bit.
141 */
142 u16 unused; /* Not used in Tx */
143 };
144
145 struct rxdesc { /* Receive descriptor */
146 volatile u16 ladr; /* Low order address of packet */
147 volatile u8 hadr; /* High order address */
148 volatile u8 bits; /* Status and config */
149 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
150 * Receive terminal count interrupt enable in
151 * top bit.
152 */
153 volatile u16 mcnt; /* Message byte count (15 bits) */
154 };
155
156 /* Convert a length into the 15 bit 2's complement */
157 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
158 /* Since we need to set the high bit to enable the completion interrupt this
159 * can be made a lot simpler
160 */
161 #define cnv_bcnt(len) (-(len))
162
163 /* Status and config bits for the above */
164 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
165 #define TX_STP 0x02 /* Tx: start of packet */
166 #define TX_ENP 0x01 /* Tx: end of packet */
167 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
168 #define RX_FRAM 0x20 /* Rx: framing error */
169 #define RX_OFLO 0x10 /* Rx: overflow error */
170 #define RX_CRC 0x08 /* Rx: CRC error */
171 #define RX_HBUF 0x04 /* Rx: buffer error */
172 #define RX_STP 0x02 /* Rx: start of packet */
173 #define RX_ENP 0x01 /* Rx: end of packet */
174
175 /* Interrupts from the card are caused by various events which are presented
176 * in a circular buffer as several events may be processed on one physical int
177 */
178 #define MAX_CIRBUFF 32
179
180 struct cirbuff {
181 u8 rdindex; /* read, then increment and wrap */
182 u8 wrindex; /* write, then increment and wrap */
183 u8 evntbuff[MAX_CIRBUFF];
184 };
185
186 /* Interrupt event codes.
187 * Where appropriate the two low order bits indicate the port number
188 */
189 #define CTLA_CHG 0x18 /* Control signal changed */
190 #define CTLB_CHG 0x19
191 #define CTLC_CHG 0x1A
192 #define CTLD_CHG 0x1B
193
194 #define INIT_CPLT 0x20 /* Initialisation complete */
195 #define INIT_FAIL 0x21 /* Initialisation failed */
196
197 #define ABTA_SENT 0x24 /* Abort sent */
198 #define ABTB_SENT 0x25
199 #define ABTC_SENT 0x26
200 #define ABTD_SENT 0x27
201
202 #define TXA_UNDF 0x28 /* Transmission underflow */
203 #define TXB_UNDF 0x29
204 #define TXC_UNDF 0x2A
205 #define TXD_UNDF 0x2B
206
207 #define F56_INT 0x2C
208 #define M32_INT 0x2D
209
210 #define TE1_ALMA 0x30
211
212 /* Port physical configuration. See farsync.h for field values */
213 struct port_cfg {
214 u16 lineInterface; /* Physical interface type */
215 u8 x25op; /* Unused at present */
216 u8 internalClock; /* 1 => internal clock, 0 => external */
217 u8 transparentMode; /* 1 => on, 0 => off */
218 u8 invertClock; /* 0 => normal, 1 => inverted */
219 u8 padBytes[6]; /* Padding */
220 u32 lineSpeed; /* Speed in bps */
221 };
222
223 /* TE1 port physical configuration */
224 struct su_config {
225 u32 dataRate;
226 u8 clocking;
227 u8 framing;
228 u8 structure;
229 u8 interface;
230 u8 coding;
231 u8 lineBuildOut;
232 u8 equalizer;
233 u8 transparentMode;
234 u8 loopMode;
235 u8 range;
236 u8 txBufferMode;
237 u8 rxBufferMode;
238 u8 startingSlot;
239 u8 losThreshold;
240 u8 enableIdleCode;
241 u8 idleCode;
242 u8 spare[44];
243 };
244
245 /* TE1 Status */
246 struct su_status {
247 u32 receiveBufferDelay;
248 u32 framingErrorCount;
249 u32 codeViolationCount;
250 u32 crcErrorCount;
251 u32 lineAttenuation;
252 u8 portStarted;
253 u8 lossOfSignal;
254 u8 receiveRemoteAlarm;
255 u8 alarmIndicationSignal;
256 u8 spare[40];
257 };
258
259 /* Finally sling all the above together into the shared memory structure.
260 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261 * evolving under NT for some time so I guess we're stuck with it.
262 * The structure starts at offset SMC_BASE.
263 * See farsync.h for some field values.
264 */
265 struct fst_shared {
266 /* DMA descriptor rings */
267 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
268 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
269
270 /* Obsolete small buffers */
271 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
272 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
273
274 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
275 * 0xFF => halted
276 */
277
278 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
279 * set to 0xEE by host to acknowledge interrupt
280 */
281
282 u16 smcVersion; /* Must match SMC_VERSION */
283
284 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
285 * version, RR = revision and BB = build
286 */
287
288 u16 txa_done; /* Obsolete completion flags */
289 u16 rxa_done;
290 u16 txb_done;
291 u16 rxb_done;
292 u16 txc_done;
293 u16 rxc_done;
294 u16 txd_done;
295 u16 rxd_done;
296
297 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
298
299 struct cirbuff interruptEvent; /* interrupt causes */
300
301 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
302 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
303
304 struct port_cfg portConfig[FST_MAX_PORTS];
305
306 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
307
308 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
309
310 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
311 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
312
313 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
314 u16 cardMailbox[4]; /* Not used */
315
316 /* Number of times the card thinks the host has
317 * missed an interrupt by not acknowledging
318 * within 2mS (I guess NT has problems)
319 */
320 u32 interruptRetryCount;
321
322 /* Driver private data used as an ID. We'll not
323 * use this as I'd rather keep such things
324 * in main memory rather than on the PCI bus
325 */
326 u32 portHandle[FST_MAX_PORTS];
327
328 /* Count of Tx underflows for stats */
329 u32 transmitBufferUnderflow[FST_MAX_PORTS];
330
331 /* Debounced V.24 control input status */
332 u32 v24DebouncedSts[FST_MAX_PORTS];
333
334 /* Adapter debounce timers. Don't touch */
335 u32 ctsTimer[FST_MAX_PORTS];
336 u32 ctsTimerRun[FST_MAX_PORTS];
337 u32 dcdTimer[FST_MAX_PORTS];
338 u32 dcdTimerRun[FST_MAX_PORTS];
339
340 u32 numberOfPorts; /* Number of ports detected at startup */
341
342 u16 _reserved[64];
343
344 u16 cardMode; /* Bit-mask to enable features:
345 * Bit 0: 1 enables LED identify mode
346 */
347
348 u16 portScheduleOffset;
349
350 struct su_config suConfig; /* TE1 Bits */
351 struct su_status suStatus;
352
353 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
354 * the structure and marks the end of shared
355 * memory. Adapter code initializes it as
356 * END_SIG.
357 */
358 };
359
360 /* endOfSmcSignature value */
361 #define END_SIG 0x12345678
362
363 /* Mailbox values. (portMailbox) */
364 #define NOP 0 /* No operation */
365 #define ACK 1 /* Positive acknowledgement to PC driver */
366 #define NAK 2 /* Negative acknowledgement to PC driver */
367 #define STARTPORT 3 /* Start an HDLC port */
368 #define STOPPORT 4 /* Stop an HDLC port */
369 #define ABORTTX 5 /* Abort the transmitter for a port */
370 #define SETV24O 6 /* Set V24 outputs */
371
372 /* PLX Chip Register Offsets */
373 #define CNTRL_9052 0x50 /* Control Register */
374 #define CNTRL_9054 0x6c /* Control Register */
375
376 #define INTCSR_9052 0x4c /* Interrupt control/status register */
377 #define INTCSR_9054 0x68 /* Interrupt control/status register */
378
379 /* 9054 DMA Registers */
380 /*
381 * Note that we will be using DMA Channel 0 for copying rx data
382 * and Channel 1 for copying tx data
383 */
384 #define DMAMODE0 0x80
385 #define DMAPADR0 0x84
386 #define DMALADR0 0x88
387 #define DMASIZ0 0x8c
388 #define DMADPR0 0x90
389 #define DMAMODE1 0x94
390 #define DMAPADR1 0x98
391 #define DMALADR1 0x9c
392 #define DMASIZ1 0xa0
393 #define DMADPR1 0xa4
394 #define DMACSR0 0xa8
395 #define DMACSR1 0xa9
396 #define DMAARB 0xac
397 #define DMATHR 0xb0
398 #define DMADAC0 0xb4
399 #define DMADAC1 0xb8
400 #define DMAMARBR 0xac
401
402 #define FST_MIN_DMA_LEN 64
403 #define FST_RX_DMA_INT 0x01
404 #define FST_TX_DMA_INT 0x02
405 #define FST_CARD_INT 0x04
406
407 /* Larger buffers are positioned in memory at offset BFM_BASE */
408 struct buf_window {
409 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
410 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
411 };
412
413 /* Calculate offset of a buffer object within the shared memory window */
414 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
415
416 #pragma pack()
417
418 /* Device driver private information
419 * =================================
420 */
421 /* Per port (line or channel) information
422 */
423 struct fst_port_info {
424 struct net_device *dev; /* Device struct - must be first */
425 struct fst_card_info *card; /* Card we're associated with */
426 int index; /* Port index on the card */
427 int hwif; /* Line hardware (lineInterface copy) */
428 int run; /* Port is running */
429 int mode; /* Normal or FarSync raw */
430 int rxpos; /* Next Rx buffer to use */
431 int txpos; /* Next Tx buffer to use */
432 int txipos; /* Next Tx buffer to check for free */
433 int start; /* Indication of start/stop to network */
434 /*
435 * A sixteen entry transmit queue
436 */
437 int txqs; /* index to get next buffer to tx */
438 int txqe; /* index to queue next packet */
439 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
440 int rxqdepth;
441 };
442
443 /* Per card information
444 */
445 struct fst_card_info {
446 char __iomem *mem; /* Card memory mapped to kernel space */
447 char __iomem *ctlmem; /* Control memory for PCI cards */
448 unsigned int phys_mem; /* Physical memory window address */
449 unsigned int phys_ctlmem; /* Physical control memory address */
450 unsigned int irq; /* Interrupt request line number */
451 unsigned int nports; /* Number of serial ports */
452 unsigned int type; /* Type index of card */
453 unsigned int state; /* State of card */
454 spinlock_t card_lock; /* Lock for SMP access */
455 unsigned short pci_conf; /* PCI card config in I/O space */
456 /* Per port info */
457 struct fst_port_info ports[FST_MAX_PORTS];
458 struct pci_dev *device; /* Information about the pci device */
459 int card_no; /* Inst of the card on the system */
460 int family; /* TxP or TxU */
461 int dmarx_in_progress;
462 int dmatx_in_progress;
463 unsigned long int_count;
464 unsigned long int_time_ave;
465 void *rx_dma_handle_host;
466 dma_addr_t rx_dma_handle_card;
467 void *tx_dma_handle_host;
468 dma_addr_t tx_dma_handle_card;
469 struct sk_buff *dma_skb_rx;
470 struct fst_port_info *dma_port_rx;
471 struct fst_port_info *dma_port_tx;
472 int dma_len_rx;
473 int dma_len_tx;
474 int dma_txpos;
475 int dma_rxpos;
476 };
477
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P) ((P)->dev)
481
482
483 /*
484 * Shared memory window access macros
485 *
486 * We have a nice memory based structure above, which could be directly
487 * mapped on i386 but might not work on other architectures unless we use
488 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489 * physical offsets so we have to convert. The only saving grace is that
490 * this should all collapse back to a simple indirection eventually.
491 */
492 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
493
494 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
495 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
497
498 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
499 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
501
502 /*
503 * Debug support
504 */
505 #if FST_DEBUG
506
507 static int fst_debug_mask = { FST_DEBUG };
508
509 /* Most common debug activity is to print something if the corresponding bit
510 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511 * support variable numbers of macro parameters. The inverted if prevents us
512 * eating someone else's else clause.
513 */
514 #define dbg(F, fmt, args...) \
515 do { \
516 if (fst_debug_mask & (F)) \
517 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
518 } while (0)
519 #else
520 #define dbg(F, fmt, args...) \
521 do { \
522 if (0) \
523 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
524 } while (0)
525 #endif
526
527 /*
528 * PCI ID lookup table
529 */
530 static const struct pci_device_id fst_pci_dev_id[] = {
531 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
532 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
533
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
536
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
539
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
542
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
545
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
548
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 {0,} /* End */
552 };
553
554 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
555
556 /*
557 * Device Driver Work Queues
558 *
559 * So that we don't spend too much time processing events in the
560 * Interrupt Service routine, we will declare a work queue per Card
561 * and make the ISR schedule a task in the queue for later execution.
562 * In the 2.4 Kernel we used to use the immediate queue for BH's
563 * Now that they are gone, tasklets seem to be much better than work
564 * queues.
565 */
566
567 static void do_bottom_half_tx(struct fst_card_info *card);
568 static void do_bottom_half_rx(struct fst_card_info *card);
569 static void fst_process_tx_work_q(unsigned long work_q);
570 static void fst_process_int_work_q(unsigned long work_q);
571
572 static DECLARE_TASKLET_OLD(fst_tx_task, fst_process_tx_work_q);
573 static DECLARE_TASKLET_OLD(fst_int_task, fst_process_int_work_q);
574
575 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
576 static spinlock_t fst_work_q_lock;
577 static u64 fst_work_txq;
578 static u64 fst_work_intq;
579
580 static void
fst_q_work_item(u64 * queue,int card_index)581 fst_q_work_item(u64 * queue, int card_index)
582 {
583 unsigned long flags;
584 u64 mask;
585
586 /*
587 * Grab the queue exclusively
588 */
589 spin_lock_irqsave(&fst_work_q_lock, flags);
590
591 /*
592 * Making an entry in the queue is simply a matter of setting
593 * a bit for the card indicating that there is work to do in the
594 * bottom half for the card. Note the limitation of 64 cards.
595 * That ought to be enough
596 */
597 mask = (u64)1 << card_index;
598 *queue |= mask;
599 spin_unlock_irqrestore(&fst_work_q_lock, flags);
600 }
601
602 static void
fst_process_tx_work_q(unsigned long work_q)603 fst_process_tx_work_q(unsigned long /*void **/work_q)
604 {
605 unsigned long flags;
606 u64 work_txq;
607 int i;
608
609 /*
610 * Grab the queue exclusively
611 */
612 dbg(DBG_TX, "fst_process_tx_work_q\n");
613 spin_lock_irqsave(&fst_work_q_lock, flags);
614 work_txq = fst_work_txq;
615 fst_work_txq = 0;
616 spin_unlock_irqrestore(&fst_work_q_lock, flags);
617
618 /*
619 * Call the bottom half for each card with work waiting
620 */
621 for (i = 0; i < FST_MAX_CARDS; i++) {
622 if (work_txq & 0x01) {
623 if (fst_card_array[i] != NULL) {
624 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
625 do_bottom_half_tx(fst_card_array[i]);
626 }
627 }
628 work_txq = work_txq >> 1;
629 }
630 }
631
632 static void
fst_process_int_work_q(unsigned long work_q)633 fst_process_int_work_q(unsigned long /*void **/work_q)
634 {
635 unsigned long flags;
636 u64 work_intq;
637 int i;
638
639 /*
640 * Grab the queue exclusively
641 */
642 dbg(DBG_INTR, "fst_process_int_work_q\n");
643 spin_lock_irqsave(&fst_work_q_lock, flags);
644 work_intq = fst_work_intq;
645 fst_work_intq = 0;
646 spin_unlock_irqrestore(&fst_work_q_lock, flags);
647
648 /*
649 * Call the bottom half for each card with work waiting
650 */
651 for (i = 0; i < FST_MAX_CARDS; i++) {
652 if (work_intq & 0x01) {
653 if (fst_card_array[i] != NULL) {
654 dbg(DBG_INTR,
655 "Calling rx & tx bh for card %d\n", i);
656 do_bottom_half_rx(fst_card_array[i]);
657 do_bottom_half_tx(fst_card_array[i]);
658 }
659 }
660 work_intq = work_intq >> 1;
661 }
662 }
663
664 /* Card control functions
665 * ======================
666 */
667 /* Place the processor in reset state
668 *
669 * Used to be a simple write to card control space but a glitch in the latest
670 * AMD Am186CH processor means that we now have to do it by asserting and de-
671 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
672 * at offset 9052_CNTRL. Note the updates for the TXU.
673 */
674 static inline void
fst_cpureset(struct fst_card_info * card)675 fst_cpureset(struct fst_card_info *card)
676 {
677 unsigned char interrupt_line_register;
678 unsigned int regval;
679
680 if (card->family == FST_FAMILY_TXU) {
681 if (pci_read_config_byte
682 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
683 dbg(DBG_ASS,
684 "Error in reading interrupt line register\n");
685 }
686 /*
687 * Assert PLX software reset and Am186 hardware reset
688 * and then deassert the PLX software reset but 186 still in reset
689 */
690 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
691 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
692 /*
693 * We are delaying here to allow the 9054 to reset itself
694 */
695 usleep_range(10, 20);
696 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
697 /*
698 * We are delaying here to allow the 9054 to reload its eeprom
699 */
700 usleep_range(10, 20);
701 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
702
703 if (pci_write_config_byte
704 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
705 dbg(DBG_ASS,
706 "Error in writing interrupt line register\n");
707 }
708
709 } else {
710 regval = inl(card->pci_conf + CNTRL_9052);
711
712 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
713 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
714 }
715 }
716
717 /* Release the processor from reset
718 */
719 static inline void
fst_cpurelease(struct fst_card_info * card)720 fst_cpurelease(struct fst_card_info *card)
721 {
722 if (card->family == FST_FAMILY_TXU) {
723 /*
724 * Force posted writes to complete
725 */
726 (void) readb(card->mem);
727
728 /*
729 * Release LRESET DO = 1
730 * Then release Local Hold, DO = 1
731 */
732 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
733 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
734 } else {
735 (void) readb(card->ctlmem);
736 }
737 }
738
739 /* Clear the cards interrupt flag
740 */
741 static inline void
fst_clear_intr(struct fst_card_info * card)742 fst_clear_intr(struct fst_card_info *card)
743 {
744 if (card->family == FST_FAMILY_TXU) {
745 (void) readb(card->ctlmem);
746 } else {
747 /* Poke the appropriate PLX chip register (same as enabling interrupts)
748 */
749 outw(0x0543, card->pci_conf + INTCSR_9052);
750 }
751 }
752
753 /* Enable card interrupts
754 */
755 static inline void
fst_enable_intr(struct fst_card_info * card)756 fst_enable_intr(struct fst_card_info *card)
757 {
758 if (card->family == FST_FAMILY_TXU) {
759 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
760 } else {
761 outw(0x0543, card->pci_conf + INTCSR_9052);
762 }
763 }
764
765 /* Disable card interrupts
766 */
767 static inline void
fst_disable_intr(struct fst_card_info * card)768 fst_disable_intr(struct fst_card_info *card)
769 {
770 if (card->family == FST_FAMILY_TXU) {
771 outl(0x00000000, card->pci_conf + INTCSR_9054);
772 } else {
773 outw(0x0000, card->pci_conf + INTCSR_9052);
774 }
775 }
776
777 /* Process the result of trying to pass a received frame up the stack
778 */
779 static void
fst_process_rx_status(int rx_status,char * name)780 fst_process_rx_status(int rx_status, char *name)
781 {
782 switch (rx_status) {
783 case NET_RX_SUCCESS:
784 {
785 /*
786 * Nothing to do here
787 */
788 break;
789 }
790 case NET_RX_DROP:
791 {
792 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
793 break;
794 }
795 }
796 }
797
798 /* Initilaise DMA for PLX 9054
799 */
800 static inline void
fst_init_dma(struct fst_card_info * card)801 fst_init_dma(struct fst_card_info *card)
802 {
803 /*
804 * This is only required for the PLX 9054
805 */
806 if (card->family == FST_FAMILY_TXU) {
807 pci_set_master(card->device);
808 outl(0x00020441, card->pci_conf + DMAMODE0);
809 outl(0x00020441, card->pci_conf + DMAMODE1);
810 outl(0x0, card->pci_conf + DMATHR);
811 }
812 }
813
814 /* Tx dma complete interrupt
815 */
816 static void
fst_tx_dma_complete(struct fst_card_info * card,struct fst_port_info * port,int len,int txpos)817 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
818 int len, int txpos)
819 {
820 struct net_device *dev = port_to_dev(port);
821
822 /*
823 * Everything is now set, just tell the card to go
824 */
825 dbg(DBG_TX, "fst_tx_dma_complete\n");
826 FST_WRB(card, txDescrRing[port->index][txpos].bits,
827 DMA_OWN | TX_STP | TX_ENP);
828 dev->stats.tx_packets++;
829 dev->stats.tx_bytes += len;
830 netif_trans_update(dev);
831 }
832
833 /*
834 * Mark it for our own raw sockets interface
835 */
farsync_type_trans(struct sk_buff * skb,struct net_device * dev)836 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
837 {
838 skb->dev = dev;
839 skb_reset_mac_header(skb);
840 skb->pkt_type = PACKET_HOST;
841 return htons(ETH_P_CUST);
842 }
843
844 /* Rx dma complete interrupt
845 */
846 static void
fst_rx_dma_complete(struct fst_card_info * card,struct fst_port_info * port,int len,struct sk_buff * skb,int rxp)847 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
848 int len, struct sk_buff *skb, int rxp)
849 {
850 struct net_device *dev = port_to_dev(port);
851 int pi;
852 int rx_status;
853
854 dbg(DBG_TX, "fst_rx_dma_complete\n");
855 pi = port->index;
856 skb_put_data(skb, card->rx_dma_handle_host, len);
857
858 /* Reset buffer descriptor */
859 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
860
861 /* Update stats */
862 dev->stats.rx_packets++;
863 dev->stats.rx_bytes += len;
864
865 /* Push upstream */
866 dbg(DBG_RX, "Pushing the frame up the stack\n");
867 if (port->mode == FST_RAW)
868 skb->protocol = farsync_type_trans(skb, dev);
869 else
870 skb->protocol = hdlc_type_trans(skb, dev);
871 rx_status = netif_rx(skb);
872 fst_process_rx_status(rx_status, port_to_dev(port)->name);
873 if (rx_status == NET_RX_DROP)
874 dev->stats.rx_dropped++;
875 }
876
877 /*
878 * Receive a frame through the DMA
879 */
880 static inline void
fst_rx_dma(struct fst_card_info * card,dma_addr_t dma,u32 mem,int len)881 fst_rx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
882 {
883 /*
884 * This routine will setup the DMA and start it
885 */
886
887 dbg(DBG_RX, "In fst_rx_dma %x %x %d\n", (u32)dma, mem, len);
888 if (card->dmarx_in_progress) {
889 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
890 }
891
892 outl(dma, card->pci_conf + DMAPADR0); /* Copy to here */
893 outl(mem, card->pci_conf + DMALADR0); /* from here */
894 outl(len, card->pci_conf + DMASIZ0); /* for this length */
895 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
896
897 /*
898 * We use the dmarx_in_progress flag to flag the channel as busy
899 */
900 card->dmarx_in_progress = 1;
901 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
902 }
903
904 /*
905 * Send a frame through the DMA
906 */
907 static inline void
fst_tx_dma(struct fst_card_info * card,dma_addr_t dma,u32 mem,int len)908 fst_tx_dma(struct fst_card_info *card, dma_addr_t dma, u32 mem, int len)
909 {
910 /*
911 * This routine will setup the DMA and start it.
912 */
913
914 dbg(DBG_TX, "In fst_tx_dma %x %x %d\n", (u32)dma, mem, len);
915 if (card->dmatx_in_progress) {
916 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
917 }
918
919 outl(dma, card->pci_conf + DMAPADR1); /* Copy from here */
920 outl(mem, card->pci_conf + DMALADR1); /* to here */
921 outl(len, card->pci_conf + DMASIZ1); /* for this length */
922 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
923
924 /*
925 * We use the dmatx_in_progress to flag the channel as busy
926 */
927 card->dmatx_in_progress = 1;
928 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
929 }
930
931 /* Issue a Mailbox command for a port.
932 * Note we issue them on a fire and forget basis, not expecting to see an
933 * error and not waiting for completion.
934 */
935 static void
fst_issue_cmd(struct fst_port_info * port,unsigned short cmd)936 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
937 {
938 struct fst_card_info *card;
939 unsigned short mbval;
940 unsigned long flags;
941 int safety;
942
943 card = port->card;
944 spin_lock_irqsave(&card->card_lock, flags);
945 mbval = FST_RDW(card, portMailbox[port->index][0]);
946
947 safety = 0;
948 /* Wait for any previous command to complete */
949 while (mbval > NAK) {
950 spin_unlock_irqrestore(&card->card_lock, flags);
951 schedule_timeout_uninterruptible(1);
952 spin_lock_irqsave(&card->card_lock, flags);
953
954 if (++safety > 2000) {
955 pr_err("Mailbox safety timeout\n");
956 break;
957 }
958
959 mbval = FST_RDW(card, portMailbox[port->index][0]);
960 }
961 if (safety > 0) {
962 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
963 }
964 if (mbval == NAK) {
965 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
966 }
967
968 FST_WRW(card, portMailbox[port->index][0], cmd);
969
970 if (cmd == ABORTTX || cmd == STARTPORT) {
971 port->txpos = 0;
972 port->txipos = 0;
973 port->start = 0;
974 }
975
976 spin_unlock_irqrestore(&card->card_lock, flags);
977 }
978
979 /* Port output signals control
980 */
981 static inline void
fst_op_raise(struct fst_port_info * port,unsigned int outputs)982 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
983 {
984 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
985 FST_WRL(port->card, v24OpSts[port->index], outputs);
986
987 if (port->run)
988 fst_issue_cmd(port, SETV24O);
989 }
990
991 static inline void
fst_op_lower(struct fst_port_info * port,unsigned int outputs)992 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
993 {
994 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
995 FST_WRL(port->card, v24OpSts[port->index], outputs);
996
997 if (port->run)
998 fst_issue_cmd(port, SETV24O);
999 }
1000
1001 /*
1002 * Setup port Rx buffers
1003 */
1004 static void
fst_rx_config(struct fst_port_info * port)1005 fst_rx_config(struct fst_port_info *port)
1006 {
1007 int i;
1008 int pi;
1009 unsigned int offset;
1010 unsigned long flags;
1011 struct fst_card_info *card;
1012
1013 pi = port->index;
1014 card = port->card;
1015 spin_lock_irqsave(&card->card_lock, flags);
1016 for (i = 0; i < NUM_RX_BUFFER; i++) {
1017 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1018
1019 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1020 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1021 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1022 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1023 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1024 }
1025 port->rxpos = 0;
1026 spin_unlock_irqrestore(&card->card_lock, flags);
1027 }
1028
1029 /*
1030 * Setup port Tx buffers
1031 */
1032 static void
fst_tx_config(struct fst_port_info * port)1033 fst_tx_config(struct fst_port_info *port)
1034 {
1035 int i;
1036 int pi;
1037 unsigned int offset;
1038 unsigned long flags;
1039 struct fst_card_info *card;
1040
1041 pi = port->index;
1042 card = port->card;
1043 spin_lock_irqsave(&card->card_lock, flags);
1044 for (i = 0; i < NUM_TX_BUFFER; i++) {
1045 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1046
1047 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1048 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1049 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1050 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1051 }
1052 port->txpos = 0;
1053 port->txipos = 0;
1054 port->start = 0;
1055 spin_unlock_irqrestore(&card->card_lock, flags);
1056 }
1057
1058 /* TE1 Alarm change interrupt event
1059 */
1060 static void
fst_intr_te1_alarm(struct fst_card_info * card,struct fst_port_info * port)1061 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1062 {
1063 u8 los;
1064 u8 rra;
1065 u8 ais;
1066
1067 los = FST_RDB(card, suStatus.lossOfSignal);
1068 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1069 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1070
1071 if (los) {
1072 /*
1073 * Lost the link
1074 */
1075 if (netif_carrier_ok(port_to_dev(port))) {
1076 dbg(DBG_INTR, "Net carrier off\n");
1077 netif_carrier_off(port_to_dev(port));
1078 }
1079 } else {
1080 /*
1081 * Link available
1082 */
1083 if (!netif_carrier_ok(port_to_dev(port))) {
1084 dbg(DBG_INTR, "Net carrier on\n");
1085 netif_carrier_on(port_to_dev(port));
1086 }
1087 }
1088
1089 if (los)
1090 dbg(DBG_INTR, "Assert LOS Alarm\n");
1091 else
1092 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1093 if (rra)
1094 dbg(DBG_INTR, "Assert RRA Alarm\n");
1095 else
1096 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1097
1098 if (ais)
1099 dbg(DBG_INTR, "Assert AIS Alarm\n");
1100 else
1101 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1102 }
1103
1104 /* Control signal change interrupt event
1105 */
1106 static void
fst_intr_ctlchg(struct fst_card_info * card,struct fst_port_info * port)1107 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1108 {
1109 int signals;
1110
1111 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1112
1113 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1114 ? IPSTS_INDICATE : IPSTS_DCD)) {
1115 if (!netif_carrier_ok(port_to_dev(port))) {
1116 dbg(DBG_INTR, "DCD active\n");
1117 netif_carrier_on(port_to_dev(port));
1118 }
1119 } else {
1120 if (netif_carrier_ok(port_to_dev(port))) {
1121 dbg(DBG_INTR, "DCD lost\n");
1122 netif_carrier_off(port_to_dev(port));
1123 }
1124 }
1125 }
1126
1127 /* Log Rx Errors
1128 */
1129 static void
fst_log_rx_error(struct fst_card_info * card,struct fst_port_info * port,unsigned char dmabits,int rxp,unsigned short len)1130 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1131 unsigned char dmabits, int rxp, unsigned short len)
1132 {
1133 struct net_device *dev = port_to_dev(port);
1134
1135 /*
1136 * Increment the appropriate error counter
1137 */
1138 dev->stats.rx_errors++;
1139 if (dmabits & RX_OFLO) {
1140 dev->stats.rx_fifo_errors++;
1141 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1142 card->card_no, port->index, rxp);
1143 }
1144 if (dmabits & RX_CRC) {
1145 dev->stats.rx_crc_errors++;
1146 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1147 card->card_no, port->index);
1148 }
1149 if (dmabits & RX_FRAM) {
1150 dev->stats.rx_frame_errors++;
1151 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1152 card->card_no, port->index);
1153 }
1154 if (dmabits == (RX_STP | RX_ENP)) {
1155 dev->stats.rx_length_errors++;
1156 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1157 len, card->card_no, port->index);
1158 }
1159 }
1160
1161 /* Rx Error Recovery
1162 */
1163 static void
fst_recover_rx_error(struct fst_card_info * card,struct fst_port_info * port,unsigned char dmabits,int rxp,unsigned short len)1164 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1165 unsigned char dmabits, int rxp, unsigned short len)
1166 {
1167 int i;
1168 int pi;
1169
1170 pi = port->index;
1171 /*
1172 * Discard buffer descriptors until we see the start of the
1173 * next frame. Note that for long frames this could be in
1174 * a subsequent interrupt.
1175 */
1176 i = 0;
1177 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1178 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1179 rxp = (rxp+1) % NUM_RX_BUFFER;
1180 if (++i > NUM_RX_BUFFER) {
1181 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1182 " than we have\n");
1183 break;
1184 }
1185 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1186 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1187 }
1188 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1189
1190 /* Discard the terminal buffer */
1191 if (!(dmabits & DMA_OWN)) {
1192 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1193 rxp = (rxp+1) % NUM_RX_BUFFER;
1194 }
1195 port->rxpos = rxp;
1196 return;
1197
1198 }
1199
1200 /* Rx complete interrupt
1201 */
1202 static void
fst_intr_rx(struct fst_card_info * card,struct fst_port_info * port)1203 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1204 {
1205 unsigned char dmabits;
1206 int pi;
1207 int rxp;
1208 int rx_status;
1209 unsigned short len;
1210 struct sk_buff *skb;
1211 struct net_device *dev = port_to_dev(port);
1212
1213 /* Check we have a buffer to process */
1214 pi = port->index;
1215 rxp = port->rxpos;
1216 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1217 if (dmabits & DMA_OWN) {
1218 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1219 pi, rxp);
1220 return;
1221 }
1222 if (card->dmarx_in_progress) {
1223 return;
1224 }
1225
1226 /* Get buffer length */
1227 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1228 /* Discard the CRC */
1229 len -= 2;
1230 if (len == 0) {
1231 /*
1232 * This seems to happen on the TE1 interface sometimes
1233 * so throw the frame away and log the event.
1234 */
1235 pr_err("Frame received with 0 length. Card %d Port %d\n",
1236 card->card_no, port->index);
1237 /* Return descriptor to card */
1238 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1239
1240 rxp = (rxp+1) % NUM_RX_BUFFER;
1241 port->rxpos = rxp;
1242 return;
1243 }
1244
1245 /* Check buffer length and for other errors. We insist on one packet
1246 * in one buffer. This simplifies things greatly and since we've
1247 * allocated 8K it shouldn't be a real world limitation
1248 */
1249 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1250 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1251 fst_log_rx_error(card, port, dmabits, rxp, len);
1252 fst_recover_rx_error(card, port, dmabits, rxp, len);
1253 return;
1254 }
1255
1256 /* Allocate SKB */
1257 if ((skb = dev_alloc_skb(len)) == NULL) {
1258 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1259
1260 dev->stats.rx_dropped++;
1261
1262 /* Return descriptor to card */
1263 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1264
1265 rxp = (rxp+1) % NUM_RX_BUFFER;
1266 port->rxpos = rxp;
1267 return;
1268 }
1269
1270 /*
1271 * We know the length we need to receive, len.
1272 * It's not worth using the DMA for reads of less than
1273 * FST_MIN_DMA_LEN
1274 */
1275
1276 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1277 memcpy_fromio(skb_put(skb, len),
1278 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1279 len);
1280
1281 /* Reset buffer descriptor */
1282 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1283
1284 /* Update stats */
1285 dev->stats.rx_packets++;
1286 dev->stats.rx_bytes += len;
1287
1288 /* Push upstream */
1289 dbg(DBG_RX, "Pushing frame up the stack\n");
1290 if (port->mode == FST_RAW)
1291 skb->protocol = farsync_type_trans(skb, dev);
1292 else
1293 skb->protocol = hdlc_type_trans(skb, dev);
1294 rx_status = netif_rx(skb);
1295 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1296 if (rx_status == NET_RX_DROP)
1297 dev->stats.rx_dropped++;
1298 } else {
1299 card->dma_skb_rx = skb;
1300 card->dma_port_rx = port;
1301 card->dma_len_rx = len;
1302 card->dma_rxpos = rxp;
1303 fst_rx_dma(card, card->rx_dma_handle_card,
1304 BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1305 }
1306 if (rxp != port->rxpos) {
1307 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1308 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1309 }
1310 rxp = (rxp+1) % NUM_RX_BUFFER;
1311 port->rxpos = rxp;
1312 }
1313
1314 /*
1315 * The bottom halfs to the ISR
1316 *
1317 */
1318
1319 static void
do_bottom_half_tx(struct fst_card_info * card)1320 do_bottom_half_tx(struct fst_card_info *card)
1321 {
1322 struct fst_port_info *port;
1323 int pi;
1324 int txq_length;
1325 struct sk_buff *skb;
1326 unsigned long flags;
1327 struct net_device *dev;
1328
1329 /*
1330 * Find a free buffer for the transmit
1331 * Step through each port on this card
1332 */
1333
1334 dbg(DBG_TX, "do_bottom_half_tx\n");
1335 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1336 if (!port->run)
1337 continue;
1338
1339 dev = port_to_dev(port);
1340 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1341 DMA_OWN) &&
1342 !(card->dmatx_in_progress)) {
1343 /*
1344 * There doesn't seem to be a txdone event per-se
1345 * We seem to have to deduce it, by checking the DMA_OWN
1346 * bit on the next buffer we think we can use
1347 */
1348 spin_lock_irqsave(&card->card_lock, flags);
1349 if ((txq_length = port->txqe - port->txqs) < 0) {
1350 /*
1351 * This is the case where one has wrapped and the
1352 * maths gives us a negative number
1353 */
1354 txq_length = txq_length + FST_TXQ_DEPTH;
1355 }
1356 spin_unlock_irqrestore(&card->card_lock, flags);
1357 if (txq_length > 0) {
1358 /*
1359 * There is something to send
1360 */
1361 spin_lock_irqsave(&card->card_lock, flags);
1362 skb = port->txq[port->txqs];
1363 port->txqs++;
1364 if (port->txqs == FST_TXQ_DEPTH) {
1365 port->txqs = 0;
1366 }
1367 spin_unlock_irqrestore(&card->card_lock, flags);
1368 /*
1369 * copy the data and set the required indicators on the
1370 * card.
1371 */
1372 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1373 cnv_bcnt(skb->len));
1374 if ((skb->len < FST_MIN_DMA_LEN) ||
1375 (card->family == FST_FAMILY_TXP)) {
1376 /* Enqueue the packet with normal io */
1377 memcpy_toio(card->mem +
1378 BUF_OFFSET(txBuffer[pi]
1379 [port->
1380 txpos][0]),
1381 skb->data, skb->len);
1382 FST_WRB(card,
1383 txDescrRing[pi][port->txpos].
1384 bits,
1385 DMA_OWN | TX_STP | TX_ENP);
1386 dev->stats.tx_packets++;
1387 dev->stats.tx_bytes += skb->len;
1388 netif_trans_update(dev);
1389 } else {
1390 /* Or do it through dma */
1391 memcpy(card->tx_dma_handle_host,
1392 skb->data, skb->len);
1393 card->dma_port_tx = port;
1394 card->dma_len_tx = skb->len;
1395 card->dma_txpos = port->txpos;
1396 fst_tx_dma(card,
1397 card->tx_dma_handle_card,
1398 BUF_OFFSET(txBuffer[pi]
1399 [port->txpos][0]),
1400 skb->len);
1401 }
1402 if (++port->txpos >= NUM_TX_BUFFER)
1403 port->txpos = 0;
1404 /*
1405 * If we have flow control on, can we now release it?
1406 */
1407 if (port->start) {
1408 if (txq_length < fst_txq_low) {
1409 netif_wake_queue(port_to_dev
1410 (port));
1411 port->start = 0;
1412 }
1413 }
1414 dev_kfree_skb(skb);
1415 } else {
1416 /*
1417 * Nothing to send so break out of the while loop
1418 */
1419 break;
1420 }
1421 }
1422 }
1423 }
1424
1425 static void
do_bottom_half_rx(struct fst_card_info * card)1426 do_bottom_half_rx(struct fst_card_info *card)
1427 {
1428 struct fst_port_info *port;
1429 int pi;
1430 int rx_count = 0;
1431
1432 /* Check for rx completions on all ports on this card */
1433 dbg(DBG_RX, "do_bottom_half_rx\n");
1434 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1435 if (!port->run)
1436 continue;
1437
1438 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1439 & DMA_OWN) && !(card->dmarx_in_progress)) {
1440 if (rx_count > fst_max_reads) {
1441 /*
1442 * Don't spend forever in receive processing
1443 * Schedule another event
1444 */
1445 fst_q_work_item(&fst_work_intq, card->card_no);
1446 tasklet_schedule(&fst_int_task);
1447 break; /* Leave the loop */
1448 }
1449 fst_intr_rx(card, port);
1450 rx_count++;
1451 }
1452 }
1453 }
1454
1455 /*
1456 * The interrupt service routine
1457 * Dev_id is our fst_card_info pointer
1458 */
1459 static irqreturn_t
fst_intr(int dummy,void * dev_id)1460 fst_intr(int dummy, void *dev_id)
1461 {
1462 struct fst_card_info *card = dev_id;
1463 struct fst_port_info *port;
1464 int rdidx; /* Event buffer indices */
1465 int wridx;
1466 int event; /* Actual event for processing */
1467 unsigned int dma_intcsr = 0;
1468 unsigned int do_card_interrupt;
1469 unsigned int int_retry_count;
1470
1471 /*
1472 * Check to see if the interrupt was for this card
1473 * return if not
1474 * Note that the call to clear the interrupt is important
1475 */
1476 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1477 if (card->state != FST_RUNNING) {
1478 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1479 card->card_no, card->state);
1480
1481 /*
1482 * It is possible to really be running, i.e. we have re-loaded
1483 * a running card
1484 * Clear and reprime the interrupt source
1485 */
1486 fst_clear_intr(card);
1487 return IRQ_HANDLED;
1488 }
1489
1490 /* Clear and reprime the interrupt source */
1491 fst_clear_intr(card);
1492
1493 /*
1494 * Is the interrupt for this card (handshake == 1)
1495 */
1496 do_card_interrupt = 0;
1497 if (FST_RDB(card, interruptHandshake) == 1) {
1498 do_card_interrupt += FST_CARD_INT;
1499 /* Set the software acknowledge */
1500 FST_WRB(card, interruptHandshake, 0xEE);
1501 }
1502 if (card->family == FST_FAMILY_TXU) {
1503 /*
1504 * Is it a DMA Interrupt
1505 */
1506 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1507 if (dma_intcsr & 0x00200000) {
1508 /*
1509 * DMA Channel 0 (Rx transfer complete)
1510 */
1511 dbg(DBG_RX, "DMA Rx xfer complete\n");
1512 outb(0x8, card->pci_conf + DMACSR0);
1513 fst_rx_dma_complete(card, card->dma_port_rx,
1514 card->dma_len_rx, card->dma_skb_rx,
1515 card->dma_rxpos);
1516 card->dmarx_in_progress = 0;
1517 do_card_interrupt += FST_RX_DMA_INT;
1518 }
1519 if (dma_intcsr & 0x00400000) {
1520 /*
1521 * DMA Channel 1 (Tx transfer complete)
1522 */
1523 dbg(DBG_TX, "DMA Tx xfer complete\n");
1524 outb(0x8, card->pci_conf + DMACSR1);
1525 fst_tx_dma_complete(card, card->dma_port_tx,
1526 card->dma_len_tx, card->dma_txpos);
1527 card->dmatx_in_progress = 0;
1528 do_card_interrupt += FST_TX_DMA_INT;
1529 }
1530 }
1531
1532 /*
1533 * Have we been missing Interrupts
1534 */
1535 int_retry_count = FST_RDL(card, interruptRetryCount);
1536 if (int_retry_count) {
1537 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1538 card->card_no, int_retry_count);
1539 FST_WRL(card, interruptRetryCount, 0);
1540 }
1541
1542 if (!do_card_interrupt) {
1543 return IRQ_HANDLED;
1544 }
1545
1546 /* Scehdule the bottom half of the ISR */
1547 fst_q_work_item(&fst_work_intq, card->card_no);
1548 tasklet_schedule(&fst_int_task);
1549
1550 /* Drain the event queue */
1551 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1552 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1553 while (rdidx != wridx) {
1554 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1555 port = &card->ports[event & 0x03];
1556
1557 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1558
1559 switch (event) {
1560 case TE1_ALMA:
1561 dbg(DBG_INTR, "TE1 Alarm intr\n");
1562 if (port->run)
1563 fst_intr_te1_alarm(card, port);
1564 break;
1565
1566 case CTLA_CHG:
1567 case CTLB_CHG:
1568 case CTLC_CHG:
1569 case CTLD_CHG:
1570 if (port->run)
1571 fst_intr_ctlchg(card, port);
1572 break;
1573
1574 case ABTA_SENT:
1575 case ABTB_SENT:
1576 case ABTC_SENT:
1577 case ABTD_SENT:
1578 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1579 break;
1580
1581 case TXA_UNDF:
1582 case TXB_UNDF:
1583 case TXC_UNDF:
1584 case TXD_UNDF:
1585 /* Difficult to see how we'd get this given that we
1586 * always load up the entire packet for DMA.
1587 */
1588 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1589 port_to_dev(port)->stats.tx_errors++;
1590 port_to_dev(port)->stats.tx_fifo_errors++;
1591 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1592 card->card_no, port->index);
1593 break;
1594
1595 case INIT_CPLT:
1596 dbg(DBG_INIT, "Card init OK intr\n");
1597 break;
1598
1599 case INIT_FAIL:
1600 dbg(DBG_INIT, "Card init FAILED intr\n");
1601 card->state = FST_IFAILED;
1602 break;
1603
1604 default:
1605 pr_err("intr: unknown card event %d. ignored\n", event);
1606 break;
1607 }
1608
1609 /* Bump and wrap the index */
1610 if (++rdidx >= MAX_CIRBUFF)
1611 rdidx = 0;
1612 }
1613 FST_WRB(card, interruptEvent.rdindex, rdidx);
1614 return IRQ_HANDLED;
1615 }
1616
1617 /* Check that the shared memory configuration is one that we can handle
1618 * and that some basic parameters are correct
1619 */
1620 static void
check_started_ok(struct fst_card_info * card)1621 check_started_ok(struct fst_card_info *card)
1622 {
1623 int i;
1624
1625 /* Check structure version and end marker */
1626 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1627 pr_err("Bad shared memory version %d expected %d\n",
1628 FST_RDW(card, smcVersion), SMC_VERSION);
1629 card->state = FST_BADVERSION;
1630 return;
1631 }
1632 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1633 pr_err("Missing shared memory signature\n");
1634 card->state = FST_BADVERSION;
1635 return;
1636 }
1637 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1638 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1639 card->state = FST_RUNNING;
1640 } else if (i == 0xFF) {
1641 pr_err("Firmware initialisation failed. Card halted\n");
1642 card->state = FST_HALTED;
1643 return;
1644 } else if (i != 0x00) {
1645 pr_err("Unknown firmware status 0x%x\n", i);
1646 card->state = FST_HALTED;
1647 return;
1648 }
1649
1650 /* Finally check the number of ports reported by firmware against the
1651 * number we assumed at card detection. Should never happen with
1652 * existing firmware etc so we just report it for the moment.
1653 */
1654 if (FST_RDL(card, numberOfPorts) != card->nports) {
1655 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1656 card->card_no,
1657 FST_RDL(card, numberOfPorts), card->nports);
1658 }
1659 }
1660
1661 static int
set_conf_from_info(struct fst_card_info * card,struct fst_port_info * port,struct fstioc_info * info)1662 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1663 struct fstioc_info *info)
1664 {
1665 int err;
1666 unsigned char my_framing;
1667
1668 /* Set things according to the user set valid flags
1669 * Several of the old options have been invalidated/replaced by the
1670 * generic hdlc package.
1671 */
1672 err = 0;
1673 if (info->valid & FSTVAL_PROTO) {
1674 if (info->proto == FST_RAW)
1675 port->mode = FST_RAW;
1676 else
1677 port->mode = FST_GEN_HDLC;
1678 }
1679
1680 if (info->valid & FSTVAL_CABLE)
1681 err = -EINVAL;
1682
1683 if (info->valid & FSTVAL_SPEED)
1684 err = -EINVAL;
1685
1686 if (info->valid & FSTVAL_PHASE)
1687 FST_WRB(card, portConfig[port->index].invertClock,
1688 info->invertClock);
1689 if (info->valid & FSTVAL_MODE)
1690 FST_WRW(card, cardMode, info->cardMode);
1691 if (info->valid & FSTVAL_TE1) {
1692 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1693 FST_WRB(card, suConfig.clocking, info->clockSource);
1694 my_framing = FRAMING_E1;
1695 if (info->framing == E1)
1696 my_framing = FRAMING_E1;
1697 if (info->framing == T1)
1698 my_framing = FRAMING_T1;
1699 if (info->framing == J1)
1700 my_framing = FRAMING_J1;
1701 FST_WRB(card, suConfig.framing, my_framing);
1702 FST_WRB(card, suConfig.structure, info->structure);
1703 FST_WRB(card, suConfig.interface, info->interface);
1704 FST_WRB(card, suConfig.coding, info->coding);
1705 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1706 FST_WRB(card, suConfig.equalizer, info->equalizer);
1707 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1708 FST_WRB(card, suConfig.loopMode, info->loopMode);
1709 FST_WRB(card, suConfig.range, info->range);
1710 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1711 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1712 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1713 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1714 if (info->idleCode)
1715 FST_WRB(card, suConfig.enableIdleCode, 1);
1716 else
1717 FST_WRB(card, suConfig.enableIdleCode, 0);
1718 FST_WRB(card, suConfig.idleCode, info->idleCode);
1719 #if FST_DEBUG
1720 if (info->valid & FSTVAL_TE1) {
1721 printk("Setting TE1 data\n");
1722 printk("Line Speed = %d\n", info->lineSpeed);
1723 printk("Start slot = %d\n", info->startingSlot);
1724 printk("Clock source = %d\n", info->clockSource);
1725 printk("Framing = %d\n", my_framing);
1726 printk("Structure = %d\n", info->structure);
1727 printk("interface = %d\n", info->interface);
1728 printk("Coding = %d\n", info->coding);
1729 printk("Line build out = %d\n", info->lineBuildOut);
1730 printk("Equaliser = %d\n", info->equalizer);
1731 printk("Transparent mode = %d\n",
1732 info->transparentMode);
1733 printk("Loop mode = %d\n", info->loopMode);
1734 printk("Range = %d\n", info->range);
1735 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1736 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1737 printk("LOS Threshold = %d\n", info->losThreshold);
1738 printk("Idle Code = %d\n", info->idleCode);
1739 }
1740 #endif
1741 }
1742 #if FST_DEBUG
1743 if (info->valid & FSTVAL_DEBUG) {
1744 fst_debug_mask = info->debug;
1745 }
1746 #endif
1747
1748 return err;
1749 }
1750
1751 static void
gather_conf_info(struct fst_card_info * card,struct fst_port_info * port,struct fstioc_info * info)1752 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1753 struct fstioc_info *info)
1754 {
1755 int i;
1756
1757 memset(info, 0, sizeof (struct fstioc_info));
1758
1759 i = port->index;
1760 info->kernelVersion = LINUX_VERSION_CODE;
1761 info->nports = card->nports;
1762 info->type = card->type;
1763 info->state = card->state;
1764 info->proto = FST_GEN_HDLC;
1765 info->index = i;
1766 #if FST_DEBUG
1767 info->debug = fst_debug_mask;
1768 #endif
1769
1770 /* Only mark information as valid if card is running.
1771 * Copy the data anyway in case it is useful for diagnostics
1772 */
1773 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1774 #if FST_DEBUG
1775 | FSTVAL_DEBUG
1776 #endif
1777 ;
1778
1779 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1780 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1781 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1782 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1783 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1784 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1785 info->clockStatus = FST_RDW(card, clockStatus[i]);
1786 info->cableStatus = FST_RDW(card, cableStatus);
1787 info->cardMode = FST_RDW(card, cardMode);
1788 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1789
1790 /*
1791 * The T2U can report cable presence for both A or B
1792 * in bits 0 and 1 of cableStatus. See which port we are and
1793 * do the mapping.
1794 */
1795 if (card->family == FST_FAMILY_TXU) {
1796 if (port->index == 0) {
1797 /*
1798 * Port A
1799 */
1800 info->cableStatus = info->cableStatus & 1;
1801 } else {
1802 /*
1803 * Port B
1804 */
1805 info->cableStatus = info->cableStatus >> 1;
1806 info->cableStatus = info->cableStatus & 1;
1807 }
1808 }
1809 /*
1810 * Some additional bits if we are TE1
1811 */
1812 if (card->type == FST_TYPE_TE1) {
1813 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1814 info->clockSource = FST_RDB(card, suConfig.clocking);
1815 info->framing = FST_RDB(card, suConfig.framing);
1816 info->structure = FST_RDB(card, suConfig.structure);
1817 info->interface = FST_RDB(card, suConfig.interface);
1818 info->coding = FST_RDB(card, suConfig.coding);
1819 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1820 info->equalizer = FST_RDB(card, suConfig.equalizer);
1821 info->loopMode = FST_RDB(card, suConfig.loopMode);
1822 info->range = FST_RDB(card, suConfig.range);
1823 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1824 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1825 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1826 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1827 if (FST_RDB(card, suConfig.enableIdleCode))
1828 info->idleCode = FST_RDB(card, suConfig.idleCode);
1829 else
1830 info->idleCode = 0;
1831 info->receiveBufferDelay =
1832 FST_RDL(card, suStatus.receiveBufferDelay);
1833 info->framingErrorCount =
1834 FST_RDL(card, suStatus.framingErrorCount);
1835 info->codeViolationCount =
1836 FST_RDL(card, suStatus.codeViolationCount);
1837 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1838 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1839 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1840 info->receiveRemoteAlarm =
1841 FST_RDB(card, suStatus.receiveRemoteAlarm);
1842 info->alarmIndicationSignal =
1843 FST_RDB(card, suStatus.alarmIndicationSignal);
1844 }
1845 }
1846
1847 static int
fst_set_iface(struct fst_card_info * card,struct fst_port_info * port,struct ifreq * ifr)1848 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1849 struct ifreq *ifr)
1850 {
1851 sync_serial_settings sync;
1852 int i;
1853
1854 if (ifr->ifr_settings.size != sizeof (sync)) {
1855 return -ENOMEM;
1856 }
1857
1858 if (copy_from_user
1859 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1860 return -EFAULT;
1861 }
1862
1863 if (sync.loopback)
1864 return -EINVAL;
1865
1866 i = port->index;
1867
1868 switch (ifr->ifr_settings.type) {
1869 case IF_IFACE_V35:
1870 FST_WRW(card, portConfig[i].lineInterface, V35);
1871 port->hwif = V35;
1872 break;
1873
1874 case IF_IFACE_V24:
1875 FST_WRW(card, portConfig[i].lineInterface, V24);
1876 port->hwif = V24;
1877 break;
1878
1879 case IF_IFACE_X21:
1880 FST_WRW(card, portConfig[i].lineInterface, X21);
1881 port->hwif = X21;
1882 break;
1883
1884 case IF_IFACE_X21D:
1885 FST_WRW(card, portConfig[i].lineInterface, X21D);
1886 port->hwif = X21D;
1887 break;
1888
1889 case IF_IFACE_T1:
1890 FST_WRW(card, portConfig[i].lineInterface, T1);
1891 port->hwif = T1;
1892 break;
1893
1894 case IF_IFACE_E1:
1895 FST_WRW(card, portConfig[i].lineInterface, E1);
1896 port->hwif = E1;
1897 break;
1898
1899 case IF_IFACE_SYNC_SERIAL:
1900 break;
1901
1902 default:
1903 return -EINVAL;
1904 }
1905
1906 switch (sync.clock_type) {
1907 case CLOCK_EXT:
1908 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1909 break;
1910
1911 case CLOCK_INT:
1912 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1913 break;
1914
1915 default:
1916 return -EINVAL;
1917 }
1918 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1919 return 0;
1920 }
1921
1922 static int
fst_get_iface(struct fst_card_info * card,struct fst_port_info * port,struct ifreq * ifr)1923 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1924 struct ifreq *ifr)
1925 {
1926 sync_serial_settings sync;
1927 int i;
1928
1929 /* First check what line type is set, we'll default to reporting X.21
1930 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1931 * changed
1932 */
1933 switch (port->hwif) {
1934 case E1:
1935 ifr->ifr_settings.type = IF_IFACE_E1;
1936 break;
1937 case T1:
1938 ifr->ifr_settings.type = IF_IFACE_T1;
1939 break;
1940 case V35:
1941 ifr->ifr_settings.type = IF_IFACE_V35;
1942 break;
1943 case V24:
1944 ifr->ifr_settings.type = IF_IFACE_V24;
1945 break;
1946 case X21D:
1947 ifr->ifr_settings.type = IF_IFACE_X21D;
1948 break;
1949 case X21:
1950 default:
1951 ifr->ifr_settings.type = IF_IFACE_X21;
1952 break;
1953 }
1954 if (ifr->ifr_settings.size == 0) {
1955 return 0; /* only type requested */
1956 }
1957 if (ifr->ifr_settings.size < sizeof (sync)) {
1958 return -ENOMEM;
1959 }
1960
1961 i = port->index;
1962 memset(&sync, 0, sizeof(sync));
1963 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1964 /* Lucky card and linux use same encoding here */
1965 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1966 INTCLK ? CLOCK_INT : CLOCK_EXT;
1967 sync.loopback = 0;
1968
1969 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1970 return -EFAULT;
1971 }
1972
1973 ifr->ifr_settings.size = sizeof (sync);
1974 return 0;
1975 }
1976
1977 static int
fst_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1978 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1979 {
1980 struct fst_card_info *card;
1981 struct fst_port_info *port;
1982 struct fstioc_write wrthdr;
1983 struct fstioc_info info;
1984 unsigned long flags;
1985 void *buf;
1986
1987 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
1988
1989 port = dev_to_port(dev);
1990 card = port->card;
1991
1992 if (!capable(CAP_NET_ADMIN))
1993 return -EPERM;
1994
1995 switch (cmd) {
1996 case FSTCPURESET:
1997 fst_cpureset(card);
1998 card->state = FST_RESET;
1999 return 0;
2000
2001 case FSTCPURELEASE:
2002 fst_cpurelease(card);
2003 card->state = FST_STARTING;
2004 return 0;
2005
2006 case FSTWRITE: /* Code write (download) */
2007
2008 /* First copy in the header with the length and offset of data
2009 * to write
2010 */
2011 if (ifr->ifr_data == NULL) {
2012 return -EINVAL;
2013 }
2014 if (copy_from_user(&wrthdr, ifr->ifr_data,
2015 sizeof (struct fstioc_write))) {
2016 return -EFAULT;
2017 }
2018
2019 /* Sanity check the parameters. We don't support partial writes
2020 * when going over the top
2021 */
2022 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2023 wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2024 return -ENXIO;
2025 }
2026
2027 /* Now copy the data to the card. */
2028
2029 buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2030 wrthdr.size);
2031 if (IS_ERR(buf))
2032 return PTR_ERR(buf);
2033
2034 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2035 kfree(buf);
2036
2037 /* Writes to the memory of a card in the reset state constitute
2038 * a download
2039 */
2040 if (card->state == FST_RESET) {
2041 card->state = FST_DOWNLOAD;
2042 }
2043 return 0;
2044
2045 case FSTGETCONF:
2046
2047 /* If card has just been started check the shared memory config
2048 * version and marker
2049 */
2050 if (card->state == FST_STARTING) {
2051 check_started_ok(card);
2052
2053 /* If everything checked out enable card interrupts */
2054 if (card->state == FST_RUNNING) {
2055 spin_lock_irqsave(&card->card_lock, flags);
2056 fst_enable_intr(card);
2057 FST_WRB(card, interruptHandshake, 0xEE);
2058 spin_unlock_irqrestore(&card->card_lock, flags);
2059 }
2060 }
2061
2062 if (ifr->ifr_data == NULL) {
2063 return -EINVAL;
2064 }
2065
2066 gather_conf_info(card, port, &info);
2067
2068 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2069 return -EFAULT;
2070 }
2071 return 0;
2072
2073 case FSTSETCONF:
2074
2075 /*
2076 * Most of the settings have been moved to the generic ioctls
2077 * this just covers debug and board ident now
2078 */
2079
2080 if (card->state != FST_RUNNING) {
2081 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2082 card->card_no, card->state);
2083 return -EIO;
2084 }
2085 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2086 return -EFAULT;
2087 }
2088
2089 return set_conf_from_info(card, port, &info);
2090
2091 case SIOCWANDEV:
2092 switch (ifr->ifr_settings.type) {
2093 case IF_GET_IFACE:
2094 return fst_get_iface(card, port, ifr);
2095
2096 case IF_IFACE_SYNC_SERIAL:
2097 case IF_IFACE_V35:
2098 case IF_IFACE_V24:
2099 case IF_IFACE_X21:
2100 case IF_IFACE_X21D:
2101 case IF_IFACE_T1:
2102 case IF_IFACE_E1:
2103 return fst_set_iface(card, port, ifr);
2104
2105 case IF_PROTO_RAW:
2106 port->mode = FST_RAW;
2107 return 0;
2108
2109 case IF_GET_PROTO:
2110 if (port->mode == FST_RAW) {
2111 ifr->ifr_settings.type = IF_PROTO_RAW;
2112 return 0;
2113 }
2114 return hdlc_ioctl(dev, ifr, cmd);
2115
2116 default:
2117 port->mode = FST_GEN_HDLC;
2118 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2119 ifr->ifr_settings.type);
2120 return hdlc_ioctl(dev, ifr, cmd);
2121 }
2122
2123 default:
2124 /* Not one of ours. Pass through to HDLC package */
2125 return hdlc_ioctl(dev, ifr, cmd);
2126 }
2127 }
2128
2129 static void
fst_openport(struct fst_port_info * port)2130 fst_openport(struct fst_port_info *port)
2131 {
2132 int signals;
2133
2134 /* Only init things if card is actually running. This allows open to
2135 * succeed for downloads etc.
2136 */
2137 if (port->card->state == FST_RUNNING) {
2138 if (port->run) {
2139 dbg(DBG_OPEN, "open: found port already running\n");
2140
2141 fst_issue_cmd(port, STOPPORT);
2142 port->run = 0;
2143 }
2144
2145 fst_rx_config(port);
2146 fst_tx_config(port);
2147 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2148
2149 fst_issue_cmd(port, STARTPORT);
2150 port->run = 1;
2151
2152 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2153 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2154 ? IPSTS_INDICATE : IPSTS_DCD))
2155 netif_carrier_on(port_to_dev(port));
2156 else
2157 netif_carrier_off(port_to_dev(port));
2158
2159 port->txqe = 0;
2160 port->txqs = 0;
2161 }
2162
2163 }
2164
2165 static void
fst_closeport(struct fst_port_info * port)2166 fst_closeport(struct fst_port_info *port)
2167 {
2168 if (port->card->state == FST_RUNNING) {
2169 if (port->run) {
2170 port->run = 0;
2171 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2172
2173 fst_issue_cmd(port, STOPPORT);
2174 } else {
2175 dbg(DBG_OPEN, "close: port not running\n");
2176 }
2177 }
2178 }
2179
2180 static int
fst_open(struct net_device * dev)2181 fst_open(struct net_device *dev)
2182 {
2183 int err;
2184 struct fst_port_info *port;
2185
2186 port = dev_to_port(dev);
2187 if (!try_module_get(THIS_MODULE))
2188 return -EBUSY;
2189
2190 if (port->mode != FST_RAW) {
2191 err = hdlc_open(dev);
2192 if (err) {
2193 module_put(THIS_MODULE);
2194 return err;
2195 }
2196 }
2197
2198 fst_openport(port);
2199 netif_wake_queue(dev);
2200 return 0;
2201 }
2202
2203 static int
fst_close(struct net_device * dev)2204 fst_close(struct net_device *dev)
2205 {
2206 struct fst_port_info *port;
2207 struct fst_card_info *card;
2208 unsigned char tx_dma_done;
2209 unsigned char rx_dma_done;
2210
2211 port = dev_to_port(dev);
2212 card = port->card;
2213
2214 tx_dma_done = inb(card->pci_conf + DMACSR1);
2215 rx_dma_done = inb(card->pci_conf + DMACSR0);
2216 dbg(DBG_OPEN,
2217 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2218 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2219 rx_dma_done);
2220
2221 netif_stop_queue(dev);
2222 fst_closeport(dev_to_port(dev));
2223 if (port->mode != FST_RAW) {
2224 hdlc_close(dev);
2225 }
2226 module_put(THIS_MODULE);
2227 return 0;
2228 }
2229
2230 static int
fst_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2231 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2232 {
2233 /*
2234 * Setting currently fixed in FarSync card so we check and forget
2235 */
2236 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2237 return -EINVAL;
2238 return 0;
2239 }
2240
2241 static void
fst_tx_timeout(struct net_device * dev,unsigned int txqueue)2242 fst_tx_timeout(struct net_device *dev, unsigned int txqueue)
2243 {
2244 struct fst_port_info *port;
2245 struct fst_card_info *card;
2246
2247 port = dev_to_port(dev);
2248 card = port->card;
2249 dev->stats.tx_errors++;
2250 dev->stats.tx_aborted_errors++;
2251 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2252 card->card_no, port->index);
2253 fst_issue_cmd(port, ABORTTX);
2254
2255 netif_trans_update(dev);
2256 netif_wake_queue(dev);
2257 port->start = 0;
2258 }
2259
2260 static netdev_tx_t
fst_start_xmit(struct sk_buff * skb,struct net_device * dev)2261 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2262 {
2263 struct fst_card_info *card;
2264 struct fst_port_info *port;
2265 unsigned long flags;
2266 int txq_length;
2267
2268 port = dev_to_port(dev);
2269 card = port->card;
2270 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2271
2272 /* Drop packet with error if we don't have carrier */
2273 if (!netif_carrier_ok(dev)) {
2274 dev_kfree_skb(skb);
2275 dev->stats.tx_errors++;
2276 dev->stats.tx_carrier_errors++;
2277 dbg(DBG_ASS,
2278 "Tried to transmit but no carrier on card %d port %d\n",
2279 card->card_no, port->index);
2280 return NETDEV_TX_OK;
2281 }
2282
2283 /* Drop it if it's too big! MTU failure ? */
2284 if (skb->len > LEN_TX_BUFFER) {
2285 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2286 LEN_TX_BUFFER);
2287 dev_kfree_skb(skb);
2288 dev->stats.tx_errors++;
2289 return NETDEV_TX_OK;
2290 }
2291
2292 /*
2293 * We are always going to queue the packet
2294 * so that the bottom half is the only place we tx from
2295 * Check there is room in the port txq
2296 */
2297 spin_lock_irqsave(&card->card_lock, flags);
2298 if ((txq_length = port->txqe - port->txqs) < 0) {
2299 /*
2300 * This is the case where the next free has wrapped but the
2301 * last used hasn't
2302 */
2303 txq_length = txq_length + FST_TXQ_DEPTH;
2304 }
2305 spin_unlock_irqrestore(&card->card_lock, flags);
2306 if (txq_length > fst_txq_high) {
2307 /*
2308 * We have got enough buffers in the pipeline. Ask the network
2309 * layer to stop sending frames down
2310 */
2311 netif_stop_queue(dev);
2312 port->start = 1; /* I'm using this to signal stop sent up */
2313 }
2314
2315 if (txq_length == FST_TXQ_DEPTH - 1) {
2316 /*
2317 * This shouldn't have happened but such is life
2318 */
2319 dev_kfree_skb(skb);
2320 dev->stats.tx_errors++;
2321 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2322 card->card_no, port->index);
2323 return NETDEV_TX_OK;
2324 }
2325
2326 /*
2327 * queue the buffer
2328 */
2329 spin_lock_irqsave(&card->card_lock, flags);
2330 port->txq[port->txqe] = skb;
2331 port->txqe++;
2332 if (port->txqe == FST_TXQ_DEPTH)
2333 port->txqe = 0;
2334 spin_unlock_irqrestore(&card->card_lock, flags);
2335
2336 /* Scehdule the bottom half which now does transmit processing */
2337 fst_q_work_item(&fst_work_txq, card->card_no);
2338 tasklet_schedule(&fst_tx_task);
2339
2340 return NETDEV_TX_OK;
2341 }
2342
2343 /*
2344 * Card setup having checked hardware resources.
2345 * Should be pretty bizarre if we get an error here (kernel memory
2346 * exhaustion is one possibility). If we do see a problem we report it
2347 * via a printk and leave the corresponding interface and all that follow
2348 * disabled.
2349 */
2350 static char *type_strings[] = {
2351 "no hardware", /* Should never be seen */
2352 "FarSync T2P",
2353 "FarSync T4P",
2354 "FarSync T1U",
2355 "FarSync T2U",
2356 "FarSync T4U",
2357 "FarSync TE1"
2358 };
2359
2360 static int
fst_init_card(struct fst_card_info * card)2361 fst_init_card(struct fst_card_info *card)
2362 {
2363 int i;
2364 int err;
2365
2366 /* We're working on a number of ports based on the card ID. If the
2367 * firmware detects something different later (should never happen)
2368 * we'll have to revise it in some way then.
2369 */
2370 for (i = 0; i < card->nports; i++) {
2371 err = register_hdlc_device(card->ports[i].dev);
2372 if (err < 0) {
2373 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2374 i, -err);
2375 while (i--)
2376 unregister_hdlc_device(card->ports[i].dev);
2377 return err;
2378 }
2379 }
2380
2381 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2382 port_to_dev(&card->ports[0])->name,
2383 port_to_dev(&card->ports[card->nports - 1])->name,
2384 type_strings[card->type], card->irq, card->nports);
2385 return 0;
2386 }
2387
2388 static const struct net_device_ops fst_ops = {
2389 .ndo_open = fst_open,
2390 .ndo_stop = fst_close,
2391 .ndo_start_xmit = hdlc_start_xmit,
2392 .ndo_do_ioctl = fst_ioctl,
2393 .ndo_tx_timeout = fst_tx_timeout,
2394 };
2395
2396 /*
2397 * Initialise card when detected.
2398 * Returns 0 to indicate success, or errno otherwise.
2399 */
2400 static int
fst_add_one(struct pci_dev * pdev,const struct pci_device_id * ent)2401 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2402 {
2403 static int no_of_cards_added = 0;
2404 struct fst_card_info *card;
2405 int err = 0;
2406 int i;
2407
2408 printk_once(KERN_INFO
2409 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2410 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2411 #if FST_DEBUG
2412 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2413 #endif
2414 /*
2415 * We are going to be clever and allow certain cards not to be
2416 * configured. An exclude list can be provided in /etc/modules.conf
2417 */
2418 if (fst_excluded_cards != 0) {
2419 /*
2420 * There are cards to exclude
2421 *
2422 */
2423 for (i = 0; i < fst_excluded_cards; i++) {
2424 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2425 pr_info("FarSync PCI device %d not assigned\n",
2426 (pdev->devfn) >> 3);
2427 return -EBUSY;
2428 }
2429 }
2430 }
2431
2432 /* Allocate driver private data */
2433 card = kzalloc(sizeof(struct fst_card_info), GFP_KERNEL);
2434 if (card == NULL)
2435 return -ENOMEM;
2436
2437 /* Try to enable the device */
2438 if ((err = pci_enable_device(pdev)) != 0) {
2439 pr_err("Failed to enable card. Err %d\n", -err);
2440 goto enable_fail;
2441 }
2442
2443 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2444 pr_err("Failed to allocate regions. Err %d\n", -err);
2445 goto regions_fail;
2446 }
2447
2448 /* Get virtual addresses of memory regions */
2449 card->pci_conf = pci_resource_start(pdev, 1);
2450 card->phys_mem = pci_resource_start(pdev, 2);
2451 card->phys_ctlmem = pci_resource_start(pdev, 3);
2452 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2453 pr_err("Physical memory remap failed\n");
2454 err = -ENODEV;
2455 goto ioremap_physmem_fail;
2456 }
2457 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2458 pr_err("Control memory remap failed\n");
2459 err = -ENODEV;
2460 goto ioremap_ctlmem_fail;
2461 }
2462 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2463
2464 /* Register the interrupt handler */
2465 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2466 pr_err("Unable to register interrupt %d\n", card->irq);
2467 err = -ENODEV;
2468 goto irq_fail;
2469 }
2470
2471 /* Record info we need */
2472 card->irq = pdev->irq;
2473 card->type = ent->driver_data;
2474 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2475 (ent->driver_data == FST_TYPE_T4P))
2476 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2477 if ((ent->driver_data == FST_TYPE_T1U) ||
2478 (ent->driver_data == FST_TYPE_TE1))
2479 card->nports = 1;
2480 else
2481 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2482 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2483
2484 card->state = FST_UNINIT;
2485 spin_lock_init ( &card->card_lock );
2486
2487 for ( i = 0 ; i < card->nports ; i++ ) {
2488 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2489 hdlc_device *hdlc;
2490 if (!dev) {
2491 while (i--)
2492 free_netdev(card->ports[i].dev);
2493 pr_err("FarSync: out of memory\n");
2494 err = -ENOMEM;
2495 goto hdlcdev_fail;
2496 }
2497 card->ports[i].dev = dev;
2498 card->ports[i].card = card;
2499 card->ports[i].index = i;
2500 card->ports[i].run = 0;
2501
2502 hdlc = dev_to_hdlc(dev);
2503
2504 /* Fill in the net device info */
2505 /* Since this is a PCI setup this is purely
2506 * informational. Give them the buffer addresses
2507 * and basic card I/O.
2508 */
2509 dev->mem_start = card->phys_mem
2510 + BUF_OFFSET ( txBuffer[i][0][0]);
2511 dev->mem_end = card->phys_mem
2512 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER - 1][LEN_RX_BUFFER - 1]);
2513 dev->base_addr = card->pci_conf;
2514 dev->irq = card->irq;
2515
2516 dev->netdev_ops = &fst_ops;
2517 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2518 dev->watchdog_timeo = FST_TX_TIMEOUT;
2519 hdlc->attach = fst_attach;
2520 hdlc->xmit = fst_start_xmit;
2521 }
2522
2523 card->device = pdev;
2524
2525 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2526 card->nports, card->irq);
2527 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2528 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2529
2530 /* Reset the card's processor */
2531 fst_cpureset(card);
2532 card->state = FST_RESET;
2533
2534 /* Initialise DMA (if required) */
2535 fst_init_dma(card);
2536
2537 /* Record driver data for later use */
2538 pci_set_drvdata(pdev, card);
2539
2540 /* Remainder of card setup */
2541 if (no_of_cards_added >= FST_MAX_CARDS) {
2542 pr_err("FarSync: too many cards\n");
2543 err = -ENOMEM;
2544 goto card_array_fail;
2545 }
2546 fst_card_array[no_of_cards_added] = card;
2547 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2548 err = fst_init_card(card);
2549 if (err)
2550 goto init_card_fail;
2551 if (card->family == FST_FAMILY_TXU) {
2552 /*
2553 * Allocate a dma buffer for transmit and receives
2554 */
2555 card->rx_dma_handle_host =
2556 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2557 &card->rx_dma_handle_card, GFP_KERNEL);
2558 if (card->rx_dma_handle_host == NULL) {
2559 pr_err("Could not allocate rx dma buffer\n");
2560 err = -ENOMEM;
2561 goto rx_dma_fail;
2562 }
2563 card->tx_dma_handle_host =
2564 dma_alloc_coherent(&card->device->dev, FST_MAX_MTU,
2565 &card->tx_dma_handle_card, GFP_KERNEL);
2566 if (card->tx_dma_handle_host == NULL) {
2567 pr_err("Could not allocate tx dma buffer\n");
2568 err = -ENOMEM;
2569 goto tx_dma_fail;
2570 }
2571 }
2572 return 0; /* Success */
2573
2574 tx_dma_fail:
2575 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2576 card->rx_dma_handle_host, card->rx_dma_handle_card);
2577 rx_dma_fail:
2578 fst_disable_intr(card);
2579 for (i = 0 ; i < card->nports ; i++)
2580 unregister_hdlc_device(card->ports[i].dev);
2581 init_card_fail:
2582 fst_card_array[card->card_no] = NULL;
2583 card_array_fail:
2584 for (i = 0 ; i < card->nports ; i++)
2585 free_netdev(card->ports[i].dev);
2586 hdlcdev_fail:
2587 free_irq(card->irq, card);
2588 irq_fail:
2589 iounmap(card->ctlmem);
2590 ioremap_ctlmem_fail:
2591 iounmap(card->mem);
2592 ioremap_physmem_fail:
2593 pci_release_regions(pdev);
2594 regions_fail:
2595 pci_disable_device(pdev);
2596 enable_fail:
2597 kfree(card);
2598 return err;
2599 }
2600
2601 /*
2602 * Cleanup and close down a card
2603 */
2604 static void
fst_remove_one(struct pci_dev * pdev)2605 fst_remove_one(struct pci_dev *pdev)
2606 {
2607 struct fst_card_info *card;
2608 int i;
2609
2610 card = pci_get_drvdata(pdev);
2611
2612 for (i = 0; i < card->nports; i++) {
2613 struct net_device *dev = port_to_dev(&card->ports[i]);
2614 unregister_hdlc_device(dev);
2615 }
2616
2617 fst_disable_intr(card);
2618 free_irq(card->irq, card);
2619
2620 iounmap(card->ctlmem);
2621 iounmap(card->mem);
2622 pci_release_regions(pdev);
2623 if (card->family == FST_FAMILY_TXU) {
2624 /*
2625 * Free dma buffers
2626 */
2627 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2628 card->rx_dma_handle_host,
2629 card->rx_dma_handle_card);
2630 dma_free_coherent(&card->device->dev, FST_MAX_MTU,
2631 card->tx_dma_handle_host,
2632 card->tx_dma_handle_card);
2633 }
2634 fst_card_array[card->card_no] = NULL;
2635 }
2636
2637 static struct pci_driver fst_driver = {
2638 .name = FST_NAME,
2639 .id_table = fst_pci_dev_id,
2640 .probe = fst_add_one,
2641 .remove = fst_remove_one,
2642 };
2643
2644 static int __init
fst_init(void)2645 fst_init(void)
2646 {
2647 int i;
2648
2649 for (i = 0; i < FST_MAX_CARDS; i++)
2650 fst_card_array[i] = NULL;
2651 spin_lock_init(&fst_work_q_lock);
2652 return pci_register_driver(&fst_driver);
2653 }
2654
2655 static void __exit
fst_cleanup_module(void)2656 fst_cleanup_module(void)
2657 {
2658 pr_info("FarSync WAN driver unloading\n");
2659 pci_unregister_driver(&fst_driver);
2660 }
2661
2662 module_init(fst_init);
2663 module_exit(fst_cleanup_module);
2664