1 /*
2  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
3  *
4  *  8 ~ 10 channel, 10/12-bit ADC
5  *
6  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/io.h>
31 #include <linux/clk.h>
32 #include <linux/completion.h>
33 #include <linux/of.h>
34 #include <linux/of_irq.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/of_platform.h>
37 #include <linux/err.h>
38 #include <linux/input.h>
39 
40 #include <linux/iio/iio.h>
41 #include <linux/iio/machine.h>
42 #include <linux/iio/driver.h>
43 #include <linux/mfd/syscon.h>
44 #include <linux/regmap.h>
45 
46 #include <linux/platform_data/touchscreen-s3c2410.h>
47 
48 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
49 #define ADC_V1_CON(x)		((x) + 0x00)
50 #define ADC_V1_TSC(x)		((x) + 0x04)
51 #define ADC_V1_DLY(x)		((x) + 0x08)
52 #define ADC_V1_DATX(x)		((x) + 0x0C)
53 #define ADC_V1_DATY(x)		((x) + 0x10)
54 #define ADC_V1_UPDN(x)		((x) + 0x14)
55 #define ADC_V1_INTCLR(x)	((x) + 0x18)
56 #define ADC_V1_MUX(x)		((x) + 0x1c)
57 #define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
58 
59 /* S3C2410 ADC registers definitions */
60 #define ADC_S3C2410_MUX(x)	((x) + 0x18)
61 
62 /* Future ADC_V2 registers definitions */
63 #define ADC_V2_CON1(x)		((x) + 0x00)
64 #define ADC_V2_CON2(x)		((x) + 0x04)
65 #define ADC_V2_STAT(x)		((x) + 0x08)
66 #define ADC_V2_INT_EN(x)	((x) + 0x10)
67 #define ADC_V2_INT_ST(x)	((x) + 0x14)
68 #define ADC_V2_VER(x)		((x) + 0x20)
69 
70 /* Bit definitions for ADC_V1 */
71 #define ADC_V1_CON_RES		(1u << 16)
72 #define ADC_V1_CON_PRSCEN	(1u << 14)
73 #define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
74 #define ADC_V1_CON_STANDBY	(1u << 2)
75 
76 /* Bit definitions for S3C2410 ADC */
77 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
78 #define ADC_S3C2410_DATX_MASK	0x3FF
79 #define ADC_S3C2416_CON_RES_SEL	(1u << 3)
80 
81 /* touch screen always uses channel 0 */
82 #define ADC_S3C2410_MUX_TS	0
83 
84 /* ADCTSC Register Bits */
85 #define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
86 #define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
87 #define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
88 #define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
89 #define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
90 #define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
91 #define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
92 #define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
93 
94 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
95 			 ADC_S3C2410_TSC_YP_SEN | \
96 			 ADC_S3C2410_TSC_XP_SEN | \
97 			 ADC_S3C2410_TSC_XY_PST(3))
98 
99 #define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
100 			 ADC_S3C2410_TSC_YP_SEN | \
101 			 ADC_S3C2410_TSC_XP_SEN | \
102 			 ADC_S3C2410_TSC_AUTO_PST | \
103 			 ADC_S3C2410_TSC_XY_PST(0))
104 
105 /* Bit definitions for ADC_V2 */
106 #define ADC_V2_CON1_SOFT_RESET	(1u << 2)
107 
108 #define ADC_V2_CON2_OSEL	(1u << 10)
109 #define ADC_V2_CON2_ESEL	(1u << 9)
110 #define ADC_V2_CON2_HIGHF	(1u << 8)
111 #define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
112 #define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
113 #define ADC_V2_CON2_ACH_MASK	0xF
114 
115 #define MAX_ADC_V2_CHANNELS		10
116 #define MAX_ADC_V1_CHANNELS		8
117 #define MAX_EXYNOS3250_ADC_CHANNELS	2
118 
119 /* Bit definitions common for ADC_V1 and ADC_V2 */
120 #define ADC_CON_EN_START	(1u << 0)
121 #define ADC_CON_EN_START_MASK	(0x3 << 0)
122 #define ADC_DATX_PRESSED	(1u << 15)
123 #define ADC_DATX_MASK		0xFFF
124 #define ADC_DATY_MASK		0xFFF
125 
126 #define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
127 
128 #define EXYNOS_ADCV1_PHY_OFFSET	0x0718
129 #define EXYNOS_ADCV2_PHY_OFFSET	0x0720
130 
131 struct exynos_adc {
132 	struct exynos_adc_data	*data;
133 	struct device		*dev;
134 	struct input_dev	*input;
135 	void __iomem		*regs;
136 	struct regmap		*pmu_map;
137 	struct clk		*clk;
138 	struct clk		*sclk;
139 	unsigned int		irq;
140 	unsigned int		tsirq;
141 	unsigned int		delay;
142 	struct regulator	*vdd;
143 
144 	struct completion	completion;
145 
146 	u32			value;
147 	unsigned int            version;
148 
149 	bool			read_ts;
150 	u32			ts_x;
151 	u32			ts_y;
152 };
153 
154 struct exynos_adc_data {
155 	int num_channels;
156 	bool needs_sclk;
157 	bool needs_adc_phy;
158 	int phy_offset;
159 	u32 mask;
160 
161 	void (*init_hw)(struct exynos_adc *info);
162 	void (*exit_hw)(struct exynos_adc *info);
163 	void (*clear_irq)(struct exynos_adc *info);
164 	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
165 };
166 
exynos_adc_unprepare_clk(struct exynos_adc * info)167 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
168 {
169 	if (info->data->needs_sclk)
170 		clk_unprepare(info->sclk);
171 	clk_unprepare(info->clk);
172 }
173 
exynos_adc_prepare_clk(struct exynos_adc * info)174 static int exynos_adc_prepare_clk(struct exynos_adc *info)
175 {
176 	int ret;
177 
178 	ret = clk_prepare(info->clk);
179 	if (ret) {
180 		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
181 		return ret;
182 	}
183 
184 	if (info->data->needs_sclk) {
185 		ret = clk_prepare(info->sclk);
186 		if (ret) {
187 			clk_unprepare(info->clk);
188 			dev_err(info->dev,
189 				"failed preparing sclk_adc clock: %d\n", ret);
190 			return ret;
191 		}
192 	}
193 
194 	return 0;
195 }
196 
exynos_adc_disable_clk(struct exynos_adc * info)197 static void exynos_adc_disable_clk(struct exynos_adc *info)
198 {
199 	if (info->data->needs_sclk)
200 		clk_disable(info->sclk);
201 	clk_disable(info->clk);
202 }
203 
exynos_adc_enable_clk(struct exynos_adc * info)204 static int exynos_adc_enable_clk(struct exynos_adc *info)
205 {
206 	int ret;
207 
208 	ret = clk_enable(info->clk);
209 	if (ret) {
210 		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
211 		return ret;
212 	}
213 
214 	if (info->data->needs_sclk) {
215 		ret = clk_enable(info->sclk);
216 		if (ret) {
217 			clk_disable(info->clk);
218 			dev_err(info->dev,
219 				"failed enabling sclk_adc clock: %d\n", ret);
220 			return ret;
221 		}
222 	}
223 
224 	return 0;
225 }
226 
exynos_adc_v1_init_hw(struct exynos_adc * info)227 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
228 {
229 	u32 con1;
230 
231 	if (info->data->needs_adc_phy)
232 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
233 
234 	/* set default prescaler values and Enable prescaler */
235 	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
236 
237 	/* Enable 12-bit ADC resolution */
238 	con1 |= ADC_V1_CON_RES;
239 	writel(con1, ADC_V1_CON(info->regs));
240 
241 	/* set touchscreen delay */
242 	writel(info->delay, ADC_V1_DLY(info->regs));
243 }
244 
exynos_adc_v1_exit_hw(struct exynos_adc * info)245 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
246 {
247 	u32 con;
248 
249 	if (info->data->needs_adc_phy)
250 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
251 
252 	con = readl(ADC_V1_CON(info->regs));
253 	con |= ADC_V1_CON_STANDBY;
254 	writel(con, ADC_V1_CON(info->regs));
255 }
256 
exynos_adc_v1_clear_irq(struct exynos_adc * info)257 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
258 {
259 	writel(1, ADC_V1_INTCLR(info->regs));
260 }
261 
exynos_adc_v1_start_conv(struct exynos_adc * info,unsigned long addr)262 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
263 				     unsigned long addr)
264 {
265 	u32 con1;
266 
267 	writel(addr, ADC_V1_MUX(info->regs));
268 
269 	con1 = readl(ADC_V1_CON(info->regs));
270 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
271 }
272 
273 static const struct exynos_adc_data exynos_adc_v1_data = {
274 	.num_channels	= MAX_ADC_V1_CHANNELS,
275 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
276 	.needs_adc_phy	= true,
277 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
278 
279 	.init_hw	= exynos_adc_v1_init_hw,
280 	.exit_hw	= exynos_adc_v1_exit_hw,
281 	.clear_irq	= exynos_adc_v1_clear_irq,
282 	.start_conv	= exynos_adc_v1_start_conv,
283 };
284 
exynos_adc_s3c2416_start_conv(struct exynos_adc * info,unsigned long addr)285 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
286 					  unsigned long addr)
287 {
288 	u32 con1;
289 
290 	/* Enable 12 bit ADC resolution */
291 	con1 = readl(ADC_V1_CON(info->regs));
292 	con1 |= ADC_S3C2416_CON_RES_SEL;
293 	writel(con1, ADC_V1_CON(info->regs));
294 
295 	/* Select channel for S3C2416 */
296 	writel(addr, ADC_S3C2410_MUX(info->regs));
297 
298 	con1 = readl(ADC_V1_CON(info->regs));
299 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
300 }
301 
302 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
303 	.num_channels	= MAX_ADC_V1_CHANNELS,
304 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
305 
306 	.init_hw	= exynos_adc_v1_init_hw,
307 	.exit_hw	= exynos_adc_v1_exit_hw,
308 	.start_conv	= exynos_adc_s3c2416_start_conv,
309 };
310 
exynos_adc_s3c2443_start_conv(struct exynos_adc * info,unsigned long addr)311 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
312 					  unsigned long addr)
313 {
314 	u32 con1;
315 
316 	/* Select channel for S3C2433 */
317 	writel(addr, ADC_S3C2410_MUX(info->regs));
318 
319 	con1 = readl(ADC_V1_CON(info->regs));
320 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
321 }
322 
323 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
324 	.num_channels	= MAX_ADC_V1_CHANNELS,
325 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
326 
327 	.init_hw	= exynos_adc_v1_init_hw,
328 	.exit_hw	= exynos_adc_v1_exit_hw,
329 	.start_conv	= exynos_adc_s3c2443_start_conv,
330 };
331 
exynos_adc_s3c64xx_start_conv(struct exynos_adc * info,unsigned long addr)332 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
333 					  unsigned long addr)
334 {
335 	u32 con1;
336 
337 	con1 = readl(ADC_V1_CON(info->regs));
338 	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
339 	con1 |= ADC_S3C2410_CON_SELMUX(addr);
340 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
341 }
342 
343 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
344 	.num_channels	= MAX_ADC_V1_CHANNELS,
345 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
346 
347 	.init_hw	= exynos_adc_v1_init_hw,
348 	.exit_hw	= exynos_adc_v1_exit_hw,
349 	.start_conv	= exynos_adc_s3c64xx_start_conv,
350 };
351 
352 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
353 	.num_channels	= MAX_ADC_V1_CHANNELS,
354 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
355 
356 	.init_hw	= exynos_adc_v1_init_hw,
357 	.exit_hw	= exynos_adc_v1_exit_hw,
358 	.clear_irq	= exynos_adc_v1_clear_irq,
359 	.start_conv	= exynos_adc_s3c64xx_start_conv,
360 };
361 
exynos_adc_v2_init_hw(struct exynos_adc * info)362 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
363 {
364 	u32 con1, con2;
365 
366 	if (info->data->needs_adc_phy)
367 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
368 
369 	con1 = ADC_V2_CON1_SOFT_RESET;
370 	writel(con1, ADC_V2_CON1(info->regs));
371 
372 	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
373 		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
374 	writel(con2, ADC_V2_CON2(info->regs));
375 
376 	/* Enable interrupts */
377 	writel(1, ADC_V2_INT_EN(info->regs));
378 }
379 
exynos_adc_v2_exit_hw(struct exynos_adc * info)380 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
381 {
382 	u32 con;
383 
384 	if (info->data->needs_adc_phy)
385 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
386 
387 	con = readl(ADC_V2_CON1(info->regs));
388 	con &= ~ADC_CON_EN_START;
389 	writel(con, ADC_V2_CON1(info->regs));
390 }
391 
exynos_adc_v2_clear_irq(struct exynos_adc * info)392 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
393 {
394 	writel(1, ADC_V2_INT_ST(info->regs));
395 }
396 
exynos_adc_v2_start_conv(struct exynos_adc * info,unsigned long addr)397 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
398 				     unsigned long addr)
399 {
400 	u32 con1, con2;
401 
402 	con2 = readl(ADC_V2_CON2(info->regs));
403 	con2 &= ~ADC_V2_CON2_ACH_MASK;
404 	con2 |= ADC_V2_CON2_ACH_SEL(addr);
405 	writel(con2, ADC_V2_CON2(info->regs));
406 
407 	con1 = readl(ADC_V2_CON1(info->regs));
408 	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
409 }
410 
411 static const struct exynos_adc_data exynos_adc_v2_data = {
412 	.num_channels	= MAX_ADC_V2_CHANNELS,
413 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
414 	.needs_adc_phy	= true,
415 	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
416 
417 	.init_hw	= exynos_adc_v2_init_hw,
418 	.exit_hw	= exynos_adc_v2_exit_hw,
419 	.clear_irq	= exynos_adc_v2_clear_irq,
420 	.start_conv	= exynos_adc_v2_start_conv,
421 };
422 
423 static const struct exynos_adc_data exynos3250_adc_data = {
424 	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
425 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
426 	.needs_sclk	= true,
427 	.needs_adc_phy	= true,
428 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
429 
430 	.init_hw	= exynos_adc_v2_init_hw,
431 	.exit_hw	= exynos_adc_v2_exit_hw,
432 	.clear_irq	= exynos_adc_v2_clear_irq,
433 	.start_conv	= exynos_adc_v2_start_conv,
434 };
435 
exynos_adc_exynos7_init_hw(struct exynos_adc * info)436 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
437 {
438 	u32 con1, con2;
439 
440 	if (info->data->needs_adc_phy)
441 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
442 
443 	con1 = ADC_V2_CON1_SOFT_RESET;
444 	writel(con1, ADC_V2_CON1(info->regs));
445 
446 	con2 = readl(ADC_V2_CON2(info->regs));
447 	con2 &= ~ADC_V2_CON2_C_TIME(7);
448 	con2 |= ADC_V2_CON2_C_TIME(0);
449 	writel(con2, ADC_V2_CON2(info->regs));
450 
451 	/* Enable interrupts */
452 	writel(1, ADC_V2_INT_EN(info->regs));
453 }
454 
455 static const struct exynos_adc_data exynos7_adc_data = {
456 	.num_channels	= MAX_ADC_V1_CHANNELS,
457 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
458 
459 	.init_hw	= exynos_adc_exynos7_init_hw,
460 	.exit_hw	= exynos_adc_v2_exit_hw,
461 	.clear_irq	= exynos_adc_v2_clear_irq,
462 	.start_conv	= exynos_adc_v2_start_conv,
463 };
464 
465 static const struct of_device_id exynos_adc_match[] = {
466 	{
467 		.compatible = "samsung,s3c2410-adc",
468 		.data = &exynos_adc_s3c24xx_data,
469 	}, {
470 		.compatible = "samsung,s3c2416-adc",
471 		.data = &exynos_adc_s3c2416_data,
472 	}, {
473 		.compatible = "samsung,s3c2440-adc",
474 		.data = &exynos_adc_s3c24xx_data,
475 	}, {
476 		.compatible = "samsung,s3c2443-adc",
477 		.data = &exynos_adc_s3c2443_data,
478 	}, {
479 		.compatible = "samsung,s3c6410-adc",
480 		.data = &exynos_adc_s3c64xx_data,
481 	}, {
482 		.compatible = "samsung,exynos-adc-v1",
483 		.data = &exynos_adc_v1_data,
484 	}, {
485 		.compatible = "samsung,exynos-adc-v2",
486 		.data = &exynos_adc_v2_data,
487 	}, {
488 		.compatible = "samsung,exynos3250-adc",
489 		.data = &exynos3250_adc_data,
490 	}, {
491 		.compatible = "samsung,exynos7-adc",
492 		.data = &exynos7_adc_data,
493 	},
494 	{},
495 };
496 MODULE_DEVICE_TABLE(of, exynos_adc_match);
497 
exynos_adc_get_data(struct platform_device * pdev)498 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
499 {
500 	const struct of_device_id *match;
501 
502 	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
503 	return (struct exynos_adc_data *)match->data;
504 }
505 
exynos_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)506 static int exynos_read_raw(struct iio_dev *indio_dev,
507 				struct iio_chan_spec const *chan,
508 				int *val,
509 				int *val2,
510 				long mask)
511 {
512 	struct exynos_adc *info = iio_priv(indio_dev);
513 	unsigned long timeout;
514 	int ret;
515 
516 	if (mask != IIO_CHAN_INFO_RAW)
517 		return -EINVAL;
518 
519 	mutex_lock(&indio_dev->mlock);
520 	reinit_completion(&info->completion);
521 
522 	/* Select the channel to be used and Trigger conversion */
523 	if (info->data->start_conv)
524 		info->data->start_conv(info, chan->address);
525 
526 	timeout = wait_for_completion_timeout(&info->completion,
527 					      EXYNOS_ADC_TIMEOUT);
528 	if (timeout == 0) {
529 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
530 		if (info->data->init_hw)
531 			info->data->init_hw(info);
532 		ret = -ETIMEDOUT;
533 	} else {
534 		*val = info->value;
535 		*val2 = 0;
536 		ret = IIO_VAL_INT;
537 	}
538 
539 	mutex_unlock(&indio_dev->mlock);
540 
541 	return ret;
542 }
543 
exynos_read_s3c64xx_ts(struct iio_dev * indio_dev,int * x,int * y)544 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
545 {
546 	struct exynos_adc *info = iio_priv(indio_dev);
547 	unsigned long timeout;
548 	int ret;
549 
550 	mutex_lock(&indio_dev->mlock);
551 	info->read_ts = true;
552 
553 	reinit_completion(&info->completion);
554 
555 	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
556 	       ADC_V1_TSC(info->regs));
557 
558 	/* Select the ts channel to be used and Trigger conversion */
559 	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
560 
561 	timeout = wait_for_completion_timeout(&info->completion,
562 					      EXYNOS_ADC_TIMEOUT);
563 	if (timeout == 0) {
564 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
565 		if (info->data->init_hw)
566 			info->data->init_hw(info);
567 		ret = -ETIMEDOUT;
568 	} else {
569 		*x = info->ts_x;
570 		*y = info->ts_y;
571 		ret = 0;
572 	}
573 
574 	info->read_ts = false;
575 	mutex_unlock(&indio_dev->mlock);
576 
577 	return ret;
578 }
579 
exynos_adc_isr(int irq,void * dev_id)580 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
581 {
582 	struct exynos_adc *info = dev_id;
583 	u32 mask = info->data->mask;
584 
585 	/* Read value */
586 	if (info->read_ts) {
587 		info->ts_x = readl(ADC_V1_DATX(info->regs));
588 		info->ts_y = readl(ADC_V1_DATY(info->regs));
589 		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
590 	} else {
591 		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
592 	}
593 
594 	/* clear irq */
595 	if (info->data->clear_irq)
596 		info->data->clear_irq(info);
597 
598 	complete(&info->completion);
599 
600 	return IRQ_HANDLED;
601 }
602 
603 /*
604  * Here we (ab)use a threaded interrupt handler to stay running
605  * for as long as the touchscreen remains pressed, we report
606  * a new event with the latest data and then sleep until the
607  * next timer tick. This mirrors the behavior of the old
608  * driver, with much less code.
609  */
exynos_ts_isr(int irq,void * dev_id)610 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
611 {
612 	struct exynos_adc *info = dev_id;
613 	struct iio_dev *dev = dev_get_drvdata(info->dev);
614 	u32 x, y;
615 	bool pressed;
616 	int ret;
617 
618 	while (info->input->users) {
619 		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
620 		if (ret == -ETIMEDOUT)
621 			break;
622 
623 		pressed = x & y & ADC_DATX_PRESSED;
624 		if (!pressed) {
625 			input_report_key(info->input, BTN_TOUCH, 0);
626 			input_sync(info->input);
627 			break;
628 		}
629 
630 		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
631 		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
632 		input_report_key(info->input, BTN_TOUCH, 1);
633 		input_sync(info->input);
634 
635 		usleep_range(1000, 1100);
636 	};
637 
638 	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
639 
640 	return IRQ_HANDLED;
641 }
642 
exynos_adc_reg_access(struct iio_dev * indio_dev,unsigned reg,unsigned writeval,unsigned * readval)643 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
644 			      unsigned reg, unsigned writeval,
645 			      unsigned *readval)
646 {
647 	struct exynos_adc *info = iio_priv(indio_dev);
648 
649 	if (readval == NULL)
650 		return -EINVAL;
651 
652 	*readval = readl(info->regs + reg);
653 
654 	return 0;
655 }
656 
657 static const struct iio_info exynos_adc_iio_info = {
658 	.read_raw = &exynos_read_raw,
659 	.debugfs_reg_access = &exynos_adc_reg_access,
660 };
661 
662 #define ADC_CHANNEL(_index, _id) {			\
663 	.type = IIO_VOLTAGE,				\
664 	.indexed = 1,					\
665 	.channel = _index,				\
666 	.address = _index,				\
667 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
668 	.datasheet_name = _id,				\
669 }
670 
671 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
672 	ADC_CHANNEL(0, "adc0"),
673 	ADC_CHANNEL(1, "adc1"),
674 	ADC_CHANNEL(2, "adc2"),
675 	ADC_CHANNEL(3, "adc3"),
676 	ADC_CHANNEL(4, "adc4"),
677 	ADC_CHANNEL(5, "adc5"),
678 	ADC_CHANNEL(6, "adc6"),
679 	ADC_CHANNEL(7, "adc7"),
680 	ADC_CHANNEL(8, "adc8"),
681 	ADC_CHANNEL(9, "adc9"),
682 };
683 
exynos_adc_remove_devices(struct device * dev,void * c)684 static int exynos_adc_remove_devices(struct device *dev, void *c)
685 {
686 	struct platform_device *pdev = to_platform_device(dev);
687 
688 	platform_device_unregister(pdev);
689 
690 	return 0;
691 }
692 
exynos_adc_ts_open(struct input_dev * dev)693 static int exynos_adc_ts_open(struct input_dev *dev)
694 {
695 	struct exynos_adc *info = input_get_drvdata(dev);
696 
697 	enable_irq(info->tsirq);
698 
699 	return 0;
700 }
701 
exynos_adc_ts_close(struct input_dev * dev)702 static void exynos_adc_ts_close(struct input_dev *dev)
703 {
704 	struct exynos_adc *info = input_get_drvdata(dev);
705 
706 	disable_irq(info->tsirq);
707 }
708 
exynos_adc_ts_init(struct exynos_adc * info)709 static int exynos_adc_ts_init(struct exynos_adc *info)
710 {
711 	int ret;
712 
713 	if (info->tsirq <= 0)
714 		return -ENODEV;
715 
716 	info->input = input_allocate_device();
717 	if (!info->input)
718 		return -ENOMEM;
719 
720 	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
721 	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
722 
723 	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
724 	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
725 
726 	info->input->name = "S3C24xx TouchScreen";
727 	info->input->id.bustype = BUS_HOST;
728 	info->input->open = exynos_adc_ts_open;
729 	info->input->close = exynos_adc_ts_close;
730 
731 	input_set_drvdata(info->input, info);
732 
733 	ret = input_register_device(info->input);
734 	if (ret) {
735 		input_free_device(info->input);
736 		return ret;
737 	}
738 
739 	disable_irq(info->tsirq);
740 	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
741 				   IRQF_ONESHOT, "touchscreen", info);
742 	if (ret)
743 		input_unregister_device(info->input);
744 
745 	return ret;
746 }
747 
exynos_adc_probe(struct platform_device * pdev)748 static int exynos_adc_probe(struct platform_device *pdev)
749 {
750 	struct exynos_adc *info = NULL;
751 	struct device_node *np = pdev->dev.of_node;
752 	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
753 	struct iio_dev *indio_dev = NULL;
754 	struct resource	*mem;
755 	bool has_ts = false;
756 	int ret = -ENODEV;
757 	int irq;
758 
759 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
760 	if (!indio_dev) {
761 		dev_err(&pdev->dev, "failed allocating iio device\n");
762 		return -ENOMEM;
763 	}
764 
765 	info = iio_priv(indio_dev);
766 
767 	info->data = exynos_adc_get_data(pdev);
768 	if (!info->data) {
769 		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
770 		return -EINVAL;
771 	}
772 
773 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
774 	info->regs = devm_ioremap_resource(&pdev->dev, mem);
775 	if (IS_ERR(info->regs))
776 		return PTR_ERR(info->regs);
777 
778 
779 	if (info->data->needs_adc_phy) {
780 		info->pmu_map = syscon_regmap_lookup_by_phandle(
781 					pdev->dev.of_node,
782 					"samsung,syscon-phandle");
783 		if (IS_ERR(info->pmu_map)) {
784 			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
785 			return PTR_ERR(info->pmu_map);
786 		}
787 	}
788 
789 	irq = platform_get_irq(pdev, 0);
790 	if (irq < 0) {
791 		dev_err(&pdev->dev, "no irq resource?\n");
792 		return irq;
793 	}
794 	info->irq = irq;
795 
796 	irq = platform_get_irq(pdev, 1);
797 	if (irq == -EPROBE_DEFER)
798 		return irq;
799 
800 	info->tsirq = irq;
801 
802 	info->dev = &pdev->dev;
803 
804 	init_completion(&info->completion);
805 
806 	info->clk = devm_clk_get(&pdev->dev, "adc");
807 	if (IS_ERR(info->clk)) {
808 		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
809 							PTR_ERR(info->clk));
810 		return PTR_ERR(info->clk);
811 	}
812 
813 	if (info->data->needs_sclk) {
814 		info->sclk = devm_clk_get(&pdev->dev, "sclk");
815 		if (IS_ERR(info->sclk)) {
816 			dev_err(&pdev->dev,
817 				"failed getting sclk clock, err = %ld\n",
818 				PTR_ERR(info->sclk));
819 			return PTR_ERR(info->sclk);
820 		}
821 	}
822 
823 	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
824 	if (IS_ERR(info->vdd)) {
825 		dev_err(&pdev->dev, "failed getting regulator, err = %ld\n",
826 							PTR_ERR(info->vdd));
827 		return PTR_ERR(info->vdd);
828 	}
829 
830 	ret = regulator_enable(info->vdd);
831 	if (ret)
832 		return ret;
833 
834 	ret = exynos_adc_prepare_clk(info);
835 	if (ret)
836 		goto err_disable_reg;
837 
838 	ret = exynos_adc_enable_clk(info);
839 	if (ret)
840 		goto err_unprepare_clk;
841 
842 	platform_set_drvdata(pdev, indio_dev);
843 
844 	indio_dev->name = dev_name(&pdev->dev);
845 	indio_dev->dev.parent = &pdev->dev;
846 	indio_dev->dev.of_node = pdev->dev.of_node;
847 	indio_dev->info = &exynos_adc_iio_info;
848 	indio_dev->modes = INDIO_DIRECT_MODE;
849 	indio_dev->channels = exynos_adc_iio_channels;
850 	indio_dev->num_channels = info->data->num_channels;
851 
852 	ret = request_irq(info->irq, exynos_adc_isr,
853 					0, dev_name(&pdev->dev), info);
854 	if (ret < 0) {
855 		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
856 							info->irq);
857 		goto err_disable_clk;
858 	}
859 
860 	ret = iio_device_register(indio_dev);
861 	if (ret)
862 		goto err_irq;
863 
864 	if (info->data->init_hw)
865 		info->data->init_hw(info);
866 
867 	/* leave out any TS related code if unreachable */
868 	if (IS_REACHABLE(CONFIG_INPUT)) {
869 		has_ts = of_property_read_bool(pdev->dev.of_node,
870 					       "has-touchscreen") || pdata;
871 	}
872 
873 	if (pdata)
874 		info->delay = pdata->delay;
875 	else
876 		info->delay = 10000;
877 
878 	if (has_ts)
879 		ret = exynos_adc_ts_init(info);
880 	if (ret)
881 		goto err_iio;
882 
883 	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
884 	if (ret < 0) {
885 		dev_err(&pdev->dev, "failed adding child nodes\n");
886 		goto err_of_populate;
887 	}
888 
889 	return 0;
890 
891 err_of_populate:
892 	device_for_each_child(&indio_dev->dev, NULL,
893 				exynos_adc_remove_devices);
894 	if (has_ts) {
895 		input_unregister_device(info->input);
896 		free_irq(info->tsirq, info);
897 	}
898 err_iio:
899 	iio_device_unregister(indio_dev);
900 err_irq:
901 	free_irq(info->irq, info);
902 err_disable_clk:
903 	if (info->data->exit_hw)
904 		info->data->exit_hw(info);
905 	exynos_adc_disable_clk(info);
906 err_unprepare_clk:
907 	exynos_adc_unprepare_clk(info);
908 err_disable_reg:
909 	regulator_disable(info->vdd);
910 	return ret;
911 }
912 
exynos_adc_remove(struct platform_device * pdev)913 static int exynos_adc_remove(struct platform_device *pdev)
914 {
915 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
916 	struct exynos_adc *info = iio_priv(indio_dev);
917 
918 	if (IS_REACHABLE(CONFIG_INPUT)) {
919 		free_irq(info->tsirq, info);
920 		input_unregister_device(info->input);
921 	}
922 	device_for_each_child(&indio_dev->dev, NULL,
923 				exynos_adc_remove_devices);
924 	iio_device_unregister(indio_dev);
925 	free_irq(info->irq, info);
926 	if (info->data->exit_hw)
927 		info->data->exit_hw(info);
928 	exynos_adc_disable_clk(info);
929 	exynos_adc_unprepare_clk(info);
930 	regulator_disable(info->vdd);
931 
932 	return 0;
933 }
934 
935 #ifdef CONFIG_PM_SLEEP
exynos_adc_suspend(struct device * dev)936 static int exynos_adc_suspend(struct device *dev)
937 {
938 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
939 	struct exynos_adc *info = iio_priv(indio_dev);
940 
941 	if (info->data->exit_hw)
942 		info->data->exit_hw(info);
943 	exynos_adc_disable_clk(info);
944 	regulator_disable(info->vdd);
945 
946 	return 0;
947 }
948 
exynos_adc_resume(struct device * dev)949 static int exynos_adc_resume(struct device *dev)
950 {
951 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
952 	struct exynos_adc *info = iio_priv(indio_dev);
953 	int ret;
954 
955 	ret = regulator_enable(info->vdd);
956 	if (ret)
957 		return ret;
958 
959 	ret = exynos_adc_enable_clk(info);
960 	if (ret)
961 		return ret;
962 
963 	if (info->data->init_hw)
964 		info->data->init_hw(info);
965 
966 	return 0;
967 }
968 #endif
969 
970 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
971 			exynos_adc_suspend,
972 			exynos_adc_resume);
973 
974 static struct platform_driver exynos_adc_driver = {
975 	.probe		= exynos_adc_probe,
976 	.remove		= exynos_adc_remove,
977 	.driver		= {
978 		.name	= "exynos-adc",
979 		.of_match_table = exynos_adc_match,
980 		.pm	= &exynos_adc_pm_ops,
981 	},
982 };
983 
984 module_platform_driver(exynos_adc_driver);
985 
986 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
987 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
988 MODULE_LICENSE("GPL v2");
989