1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
73 #include <asm/mmu_context.h>
74
__unhash_process(struct task_struct * p,bool group_dead)75 static void __unhash_process(struct task_struct *p, bool group_dead)
76 {
77 nr_threads--;
78 detach_pid(p, PIDTYPE_PID);
79 if (group_dead) {
80 detach_pid(p, PIDTYPE_TGID);
81 detach_pid(p, PIDTYPE_PGID);
82 detach_pid(p, PIDTYPE_SID);
83
84 list_del_rcu(&p->tasks);
85 list_del_init(&p->sibling);
86 __this_cpu_dec(process_counts);
87 }
88 list_del_rcu(&p->thread_group);
89 list_del_rcu(&p->thread_node);
90 }
91
92 /*
93 * This function expects the tasklist_lock write-locked.
94 */
__exit_signal(struct task_struct * tsk)95 static void __exit_signal(struct task_struct *tsk)
96 {
97 struct signal_struct *sig = tsk->signal;
98 bool group_dead = thread_group_leader(tsk);
99 struct sighand_struct *sighand;
100 struct tty_struct *tty;
101 u64 utime, stime;
102
103 sighand = rcu_dereference_check(tsk->sighand,
104 lockdep_tasklist_lock_is_held());
105 spin_lock(&sighand->siglock);
106
107 #ifdef CONFIG_POSIX_TIMERS
108 posix_cpu_timers_exit(tsk);
109 if (group_dead)
110 posix_cpu_timers_exit_group(tsk);
111 #endif
112
113 if (group_dead) {
114 tty = sig->tty;
115 sig->tty = NULL;
116 } else {
117 /*
118 * If there is any task waiting for the group exit
119 * then notify it:
120 */
121 if (sig->notify_count > 0 && !--sig->notify_count)
122 wake_up_process(sig->group_exec_task);
123
124 if (tsk == sig->curr_target)
125 sig->curr_target = next_thread(tsk);
126 }
127
128 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
129 sizeof(unsigned long long));
130
131 /*
132 * Accumulate here the counters for all threads as they die. We could
133 * skip the group leader because it is the last user of signal_struct,
134 * but we want to avoid the race with thread_group_cputime() which can
135 * see the empty ->thread_head list.
136 */
137 task_cputime(tsk, &utime, &stime);
138 write_seqlock(&sig->stats_lock);
139 sig->utime += utime;
140 sig->stime += stime;
141 sig->gtime += task_gtime(tsk);
142 sig->min_flt += tsk->min_flt;
143 sig->maj_flt += tsk->maj_flt;
144 sig->nvcsw += tsk->nvcsw;
145 sig->nivcsw += tsk->nivcsw;
146 sig->inblock += task_io_get_inblock(tsk);
147 sig->oublock += task_io_get_oublock(tsk);
148 task_io_accounting_add(&sig->ioac, &tsk->ioac);
149 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
150 sig->nr_threads--;
151 __unhash_process(tsk, group_dead);
152 write_sequnlock(&sig->stats_lock);
153
154 /*
155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
157 */
158 flush_sigqueue(&tsk->pending);
159 tsk->sighand = NULL;
160 spin_unlock(&sighand->siglock);
161
162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
164 if (group_dead) {
165 flush_sigqueue(&sig->shared_pending);
166 tty_kref_put(tty);
167 }
168 }
169
delayed_put_task_struct(struct rcu_head * rhp)170 static void delayed_put_task_struct(struct rcu_head *rhp)
171 {
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
173
174 kprobe_flush_task(tsk);
175 rethook_flush_task(tsk);
176 perf_event_delayed_put(tsk);
177 trace_sched_process_free(tsk);
178 put_task_struct(tsk);
179 }
180
put_task_struct_rcu_user(struct task_struct * task)181 void put_task_struct_rcu_user(struct task_struct *task)
182 {
183 if (refcount_dec_and_test(&task->rcu_users))
184 call_rcu(&task->rcu, delayed_put_task_struct);
185 }
186
release_thread(struct task_struct * dead_task)187 void __weak release_thread(struct task_struct *dead_task)
188 {
189 }
190
release_task(struct task_struct * p)191 void release_task(struct task_struct *p)
192 {
193 struct task_struct *leader;
194 struct pid *thread_pid;
195 int zap_leader;
196 repeat:
197 /* don't need to get the RCU readlock here - the process is dead and
198 * can't be modifying its own credentials. But shut RCU-lockdep up */
199 rcu_read_lock();
200 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
201 rcu_read_unlock();
202
203 cgroup_release(p);
204
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 thread_pid = get_pid(p->thread_pid);
208 __exit_signal(p);
209
210 /*
211 * If we are the last non-leader member of the thread
212 * group, and the leader is zombie, then notify the
213 * group leader's parent process. (if it wants notification.)
214 */
215 zap_leader = 0;
216 leader = p->group_leader;
217 if (leader != p && thread_group_empty(leader)
218 && leader->exit_state == EXIT_ZOMBIE) {
219 /*
220 * If we were the last child thread and the leader has
221 * exited already, and the leader's parent ignores SIGCHLD,
222 * then we are the one who should release the leader.
223 */
224 zap_leader = do_notify_parent(leader, leader->exit_signal);
225 if (zap_leader)
226 leader->exit_state = EXIT_DEAD;
227 }
228
229 write_unlock_irq(&tasklist_lock);
230 seccomp_filter_release(p);
231 proc_flush_pid(thread_pid);
232 put_pid(thread_pid);
233 release_thread(p);
234 put_task_struct_rcu_user(p);
235
236 p = leader;
237 if (unlikely(zap_leader))
238 goto repeat;
239 }
240
rcuwait_wake_up(struct rcuwait * w)241 int rcuwait_wake_up(struct rcuwait *w)
242 {
243 int ret = 0;
244 struct task_struct *task;
245
246 rcu_read_lock();
247
248 /*
249 * Order condition vs @task, such that everything prior to the load
250 * of @task is visible. This is the condition as to why the user called
251 * rcuwait_wake() in the first place. Pairs with set_current_state()
252 * barrier (A) in rcuwait_wait_event().
253 *
254 * WAIT WAKE
255 * [S] tsk = current [S] cond = true
256 * MB (A) MB (B)
257 * [L] cond [L] tsk
258 */
259 smp_mb(); /* (B) */
260
261 task = rcu_dereference(w->task);
262 if (task)
263 ret = wake_up_process(task);
264 rcu_read_unlock();
265
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
269
270 /*
271 * Determine if a process group is "orphaned", according to the POSIX
272 * definition in 2.2.2.52. Orphaned process groups are not to be affected
273 * by terminal-generated stop signals. Newly orphaned process groups are
274 * to receive a SIGHUP and a SIGCONT.
275 *
276 * "I ask you, have you ever known what it is to be an orphan?"
277 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)278 static int will_become_orphaned_pgrp(struct pid *pgrp,
279 struct task_struct *ignored_task)
280 {
281 struct task_struct *p;
282
283 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
284 if ((p == ignored_task) ||
285 (p->exit_state && thread_group_empty(p)) ||
286 is_global_init(p->real_parent))
287 continue;
288
289 if (task_pgrp(p->real_parent) != pgrp &&
290 task_session(p->real_parent) == task_session(p))
291 return 0;
292 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
293
294 return 1;
295 }
296
is_current_pgrp_orphaned(void)297 int is_current_pgrp_orphaned(void)
298 {
299 int retval;
300
301 read_lock(&tasklist_lock);
302 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
303 read_unlock(&tasklist_lock);
304
305 return retval;
306 }
307
has_stopped_jobs(struct pid * pgrp)308 static bool has_stopped_jobs(struct pid *pgrp)
309 {
310 struct task_struct *p;
311
312 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
313 if (p->signal->flags & SIGNAL_STOP_STOPPED)
314 return true;
315 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
316
317 return false;
318 }
319
320 /*
321 * Check to see if any process groups have become orphaned as
322 * a result of our exiting, and if they have any stopped jobs,
323 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
324 */
325 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)326 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
327 {
328 struct pid *pgrp = task_pgrp(tsk);
329 struct task_struct *ignored_task = tsk;
330
331 if (!parent)
332 /* exit: our father is in a different pgrp than
333 * we are and we were the only connection outside.
334 */
335 parent = tsk->real_parent;
336 else
337 /* reparent: our child is in a different pgrp than
338 * we are, and it was the only connection outside.
339 */
340 ignored_task = NULL;
341
342 if (task_pgrp(parent) != pgrp &&
343 task_session(parent) == task_session(tsk) &&
344 will_become_orphaned_pgrp(pgrp, ignored_task) &&
345 has_stopped_jobs(pgrp)) {
346 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
347 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
348 }
349 }
350
coredump_task_exit(struct task_struct * tsk)351 static void coredump_task_exit(struct task_struct *tsk)
352 {
353 struct core_state *core_state;
354
355 /*
356 * Serialize with any possible pending coredump.
357 * We must hold siglock around checking core_state
358 * and setting PF_POSTCOREDUMP. The core-inducing thread
359 * will increment ->nr_threads for each thread in the
360 * group without PF_POSTCOREDUMP set.
361 */
362 spin_lock_irq(&tsk->sighand->siglock);
363 tsk->flags |= PF_POSTCOREDUMP;
364 core_state = tsk->signal->core_state;
365 spin_unlock_irq(&tsk->sighand->siglock);
366 if (core_state) {
367 struct core_thread self;
368
369 self.task = current;
370 if (self.task->flags & PF_SIGNALED)
371 self.next = xchg(&core_state->dumper.next, &self);
372 else
373 self.task = NULL;
374 /*
375 * Implies mb(), the result of xchg() must be visible
376 * to core_state->dumper.
377 */
378 if (atomic_dec_and_test(&core_state->nr_threads))
379 complete(&core_state->startup);
380
381 for (;;) {
382 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
383 if (!self.task) /* see coredump_finish() */
384 break;
385 schedule();
386 }
387 __set_current_state(TASK_RUNNING);
388 }
389 }
390
391 #ifdef CONFIG_MEMCG
392 /*
393 * A task is exiting. If it owned this mm, find a new owner for the mm.
394 */
mm_update_next_owner(struct mm_struct * mm)395 void mm_update_next_owner(struct mm_struct *mm)
396 {
397 struct task_struct *c, *g, *p = current;
398
399 retry:
400 /*
401 * If the exiting or execing task is not the owner, it's
402 * someone else's problem.
403 */
404 if (mm->owner != p)
405 return;
406 /*
407 * The current owner is exiting/execing and there are no other
408 * candidates. Do not leave the mm pointing to a possibly
409 * freed task structure.
410 */
411 if (atomic_read(&mm->mm_users) <= 1) {
412 WRITE_ONCE(mm->owner, NULL);
413 return;
414 }
415
416 read_lock(&tasklist_lock);
417 /*
418 * Search in the children
419 */
420 list_for_each_entry(c, &p->children, sibling) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 }
424
425 /*
426 * Search in the siblings
427 */
428 list_for_each_entry(c, &p->real_parent->children, sibling) {
429 if (c->mm == mm)
430 goto assign_new_owner;
431 }
432
433 /*
434 * Search through everything else, we should not get here often.
435 */
436 for_each_process(g) {
437 if (g->flags & PF_KTHREAD)
438 continue;
439 for_each_thread(g, c) {
440 if (c->mm == mm)
441 goto assign_new_owner;
442 if (c->mm)
443 break;
444 }
445 }
446 read_unlock(&tasklist_lock);
447 /*
448 * We found no owner yet mm_users > 1: this implies that we are
449 * most likely racing with swapoff (try_to_unuse()) or /proc or
450 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
451 */
452 WRITE_ONCE(mm->owner, NULL);
453 return;
454
455 assign_new_owner:
456 BUG_ON(c == p);
457 get_task_struct(c);
458 /*
459 * The task_lock protects c->mm from changing.
460 * We always want mm->owner->mm == mm
461 */
462 task_lock(c);
463 /*
464 * Delay read_unlock() till we have the task_lock()
465 * to ensure that c does not slip away underneath us
466 */
467 read_unlock(&tasklist_lock);
468 if (c->mm != mm) {
469 task_unlock(c);
470 put_task_struct(c);
471 goto retry;
472 }
473 WRITE_ONCE(mm->owner, c);
474 lru_gen_migrate_mm(mm);
475 task_unlock(c);
476 put_task_struct(c);
477 }
478 #endif /* CONFIG_MEMCG */
479
480 /*
481 * Turn us into a lazy TLB process if we
482 * aren't already..
483 */
exit_mm(void)484 static void exit_mm(void)
485 {
486 struct mm_struct *mm = current->mm;
487
488 exit_mm_release(current, mm);
489 if (!mm)
490 return;
491 sync_mm_rss(mm);
492 mmap_read_lock(mm);
493 mmgrab(mm);
494 BUG_ON(mm != current->active_mm);
495 /* more a memory barrier than a real lock */
496 task_lock(current);
497 /*
498 * When a thread stops operating on an address space, the loop
499 * in membarrier_private_expedited() may not observe that
500 * tsk->mm, and the loop in membarrier_global_expedited() may
501 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
502 * rq->membarrier_state, so those would not issue an IPI.
503 * Membarrier requires a memory barrier after accessing
504 * user-space memory, before clearing tsk->mm or the
505 * rq->membarrier_state.
506 */
507 smp_mb__after_spinlock();
508 local_irq_disable();
509 current->mm = NULL;
510 membarrier_update_current_mm(NULL);
511 enter_lazy_tlb(mm, current);
512 local_irq_enable();
513 task_unlock(current);
514 mmap_read_unlock(mm);
515 mm_update_next_owner(mm);
516 mmput(mm);
517 if (test_thread_flag(TIF_MEMDIE))
518 exit_oom_victim();
519 }
520
find_alive_thread(struct task_struct * p)521 static struct task_struct *find_alive_thread(struct task_struct *p)
522 {
523 struct task_struct *t;
524
525 for_each_thread(p, t) {
526 if (!(t->flags & PF_EXITING))
527 return t;
528 }
529 return NULL;
530 }
531
find_child_reaper(struct task_struct * father,struct list_head * dead)532 static struct task_struct *find_child_reaper(struct task_struct *father,
533 struct list_head *dead)
534 __releases(&tasklist_lock)
535 __acquires(&tasklist_lock)
536 {
537 struct pid_namespace *pid_ns = task_active_pid_ns(father);
538 struct task_struct *reaper = pid_ns->child_reaper;
539 struct task_struct *p, *n;
540
541 if (likely(reaper != father))
542 return reaper;
543
544 reaper = find_alive_thread(father);
545 if (reaper) {
546 pid_ns->child_reaper = reaper;
547 return reaper;
548 }
549
550 write_unlock_irq(&tasklist_lock);
551
552 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
553 list_del_init(&p->ptrace_entry);
554 release_task(p);
555 }
556
557 zap_pid_ns_processes(pid_ns);
558 write_lock_irq(&tasklist_lock);
559
560 return father;
561 }
562
563 /*
564 * When we die, we re-parent all our children, and try to:
565 * 1. give them to another thread in our thread group, if such a member exists
566 * 2. give it to the first ancestor process which prctl'd itself as a
567 * child_subreaper for its children (like a service manager)
568 * 3. give it to the init process (PID 1) in our pid namespace
569 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)570 static struct task_struct *find_new_reaper(struct task_struct *father,
571 struct task_struct *child_reaper)
572 {
573 struct task_struct *thread, *reaper;
574
575 thread = find_alive_thread(father);
576 if (thread)
577 return thread;
578
579 if (father->signal->has_child_subreaper) {
580 unsigned int ns_level = task_pid(father)->level;
581 /*
582 * Find the first ->is_child_subreaper ancestor in our pid_ns.
583 * We can't check reaper != child_reaper to ensure we do not
584 * cross the namespaces, the exiting parent could be injected
585 * by setns() + fork().
586 * We check pid->level, this is slightly more efficient than
587 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
588 */
589 for (reaper = father->real_parent;
590 task_pid(reaper)->level == ns_level;
591 reaper = reaper->real_parent) {
592 if (reaper == &init_task)
593 break;
594 if (!reaper->signal->is_child_subreaper)
595 continue;
596 thread = find_alive_thread(reaper);
597 if (thread)
598 return thread;
599 }
600 }
601
602 return child_reaper;
603 }
604
605 /*
606 * Any that need to be release_task'd are put on the @dead list.
607 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)608 static void reparent_leader(struct task_struct *father, struct task_struct *p,
609 struct list_head *dead)
610 {
611 if (unlikely(p->exit_state == EXIT_DEAD))
612 return;
613
614 /* We don't want people slaying init. */
615 p->exit_signal = SIGCHLD;
616
617 /* If it has exited notify the new parent about this child's death. */
618 if (!p->ptrace &&
619 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
620 if (do_notify_parent(p, p->exit_signal)) {
621 p->exit_state = EXIT_DEAD;
622 list_add(&p->ptrace_entry, dead);
623 }
624 }
625
626 kill_orphaned_pgrp(p, father);
627 }
628
629 /*
630 * This does two things:
631 *
632 * A. Make init inherit all the child processes
633 * B. Check to see if any process groups have become orphaned
634 * as a result of our exiting, and if they have any stopped
635 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
636 */
forget_original_parent(struct task_struct * father,struct list_head * dead)637 static void forget_original_parent(struct task_struct *father,
638 struct list_head *dead)
639 {
640 struct task_struct *p, *t, *reaper;
641
642 if (unlikely(!list_empty(&father->ptraced)))
643 exit_ptrace(father, dead);
644
645 /* Can drop and reacquire tasklist_lock */
646 reaper = find_child_reaper(father, dead);
647 if (list_empty(&father->children))
648 return;
649
650 reaper = find_new_reaper(father, reaper);
651 list_for_each_entry(p, &father->children, sibling) {
652 for_each_thread(p, t) {
653 RCU_INIT_POINTER(t->real_parent, reaper);
654 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
655 if (likely(!t->ptrace))
656 t->parent = t->real_parent;
657 if (t->pdeath_signal)
658 group_send_sig_info(t->pdeath_signal,
659 SEND_SIG_NOINFO, t,
660 PIDTYPE_TGID);
661 }
662 /*
663 * If this is a threaded reparent there is no need to
664 * notify anyone anything has happened.
665 */
666 if (!same_thread_group(reaper, father))
667 reparent_leader(father, p, dead);
668 }
669 list_splice_tail_init(&father->children, &reaper->children);
670 }
671
672 /*
673 * Send signals to all our closest relatives so that they know
674 * to properly mourn us..
675 */
exit_notify(struct task_struct * tsk,int group_dead)676 static void exit_notify(struct task_struct *tsk, int group_dead)
677 {
678 bool autoreap;
679 struct task_struct *p, *n;
680 LIST_HEAD(dead);
681
682 write_lock_irq(&tasklist_lock);
683 forget_original_parent(tsk, &dead);
684
685 if (group_dead)
686 kill_orphaned_pgrp(tsk->group_leader, NULL);
687
688 tsk->exit_state = EXIT_ZOMBIE;
689 if (unlikely(tsk->ptrace)) {
690 int sig = thread_group_leader(tsk) &&
691 thread_group_empty(tsk) &&
692 !ptrace_reparented(tsk) ?
693 tsk->exit_signal : SIGCHLD;
694 autoreap = do_notify_parent(tsk, sig);
695 } else if (thread_group_leader(tsk)) {
696 autoreap = thread_group_empty(tsk) &&
697 do_notify_parent(tsk, tsk->exit_signal);
698 } else {
699 autoreap = true;
700 }
701
702 if (autoreap) {
703 tsk->exit_state = EXIT_DEAD;
704 list_add(&tsk->ptrace_entry, &dead);
705 }
706
707 /* mt-exec, de_thread() is waiting for group leader */
708 if (unlikely(tsk->signal->notify_count < 0))
709 wake_up_process(tsk->signal->group_exec_task);
710 write_unlock_irq(&tasklist_lock);
711
712 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
713 list_del_init(&p->ptrace_entry);
714 release_task(p);
715 }
716 }
717
718 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)719 static void check_stack_usage(void)
720 {
721 static DEFINE_SPINLOCK(low_water_lock);
722 static int lowest_to_date = THREAD_SIZE;
723 unsigned long free;
724
725 free = stack_not_used(current);
726
727 if (free >= lowest_to_date)
728 return;
729
730 spin_lock(&low_water_lock);
731 if (free < lowest_to_date) {
732 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
733 current->comm, task_pid_nr(current), free);
734 lowest_to_date = free;
735 }
736 spin_unlock(&low_water_lock);
737 }
738 #else
check_stack_usage(void)739 static inline void check_stack_usage(void) {}
740 #endif
741
synchronize_group_exit(struct task_struct * tsk,long code)742 static void synchronize_group_exit(struct task_struct *tsk, long code)
743 {
744 struct sighand_struct *sighand = tsk->sighand;
745 struct signal_struct *signal = tsk->signal;
746
747 spin_lock_irq(&sighand->siglock);
748 signal->quick_threads--;
749 if ((signal->quick_threads == 0) &&
750 !(signal->flags & SIGNAL_GROUP_EXIT)) {
751 signal->flags = SIGNAL_GROUP_EXIT;
752 signal->group_exit_code = code;
753 signal->group_stop_count = 0;
754 }
755 spin_unlock_irq(&sighand->siglock);
756 }
757
do_exit(long code)758 void __noreturn do_exit(long code)
759 {
760 struct task_struct *tsk = current;
761 int group_dead;
762
763 synchronize_group_exit(tsk, code);
764
765 WARN_ON(tsk->plug);
766
767 kcov_task_exit(tsk);
768 kmsan_task_exit(tsk);
769
770 coredump_task_exit(tsk);
771 ptrace_event(PTRACE_EVENT_EXIT, code);
772
773 validate_creds_for_do_exit(tsk);
774
775 io_uring_files_cancel();
776 exit_signals(tsk); /* sets PF_EXITING */
777
778 /* sync mm's RSS info before statistics gathering */
779 if (tsk->mm)
780 sync_mm_rss(tsk->mm);
781 acct_update_integrals(tsk);
782 group_dead = atomic_dec_and_test(&tsk->signal->live);
783 if (group_dead) {
784 /*
785 * If the last thread of global init has exited, panic
786 * immediately to get a useable coredump.
787 */
788 if (unlikely(is_global_init(tsk)))
789 panic("Attempted to kill init! exitcode=0x%08x\n",
790 tsk->signal->group_exit_code ?: (int)code);
791
792 #ifdef CONFIG_POSIX_TIMERS
793 hrtimer_cancel(&tsk->signal->real_timer);
794 exit_itimers(tsk);
795 #endif
796 if (tsk->mm)
797 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
798 }
799 acct_collect(code, group_dead);
800 if (group_dead)
801 tty_audit_exit();
802 audit_free(tsk);
803
804 tsk->exit_code = code;
805 taskstats_exit(tsk, group_dead);
806
807 exit_mm();
808
809 if (group_dead)
810 acct_process();
811 trace_sched_process_exit(tsk);
812
813 exit_sem(tsk);
814 exit_shm(tsk);
815 exit_files(tsk);
816 exit_fs(tsk);
817 if (group_dead)
818 disassociate_ctty(1);
819 exit_task_namespaces(tsk);
820 exit_task_work(tsk);
821 exit_thread(tsk);
822
823 /*
824 * Flush inherited counters to the parent - before the parent
825 * gets woken up by child-exit notifications.
826 *
827 * because of cgroup mode, must be called before cgroup_exit()
828 */
829 perf_event_exit_task(tsk);
830
831 sched_autogroup_exit_task(tsk);
832 cgroup_exit(tsk);
833
834 /*
835 * FIXME: do that only when needed, using sched_exit tracepoint
836 */
837 flush_ptrace_hw_breakpoint(tsk);
838
839 exit_tasks_rcu_start();
840 exit_notify(tsk, group_dead);
841 proc_exit_connector(tsk);
842 mpol_put_task_policy(tsk);
843 #ifdef CONFIG_FUTEX
844 if (unlikely(current->pi_state_cache))
845 kfree(current->pi_state_cache);
846 #endif
847 /*
848 * Make sure we are holding no locks:
849 */
850 debug_check_no_locks_held();
851
852 if (tsk->io_context)
853 exit_io_context(tsk);
854
855 if (tsk->splice_pipe)
856 free_pipe_info(tsk->splice_pipe);
857
858 if (tsk->task_frag.page)
859 put_page(tsk->task_frag.page);
860
861 validate_creds_for_do_exit(tsk);
862 exit_task_stack_account(tsk);
863
864 check_stack_usage();
865 preempt_disable();
866 if (tsk->nr_dirtied)
867 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
868 exit_rcu();
869 exit_tasks_rcu_finish();
870
871 lockdep_free_task(tsk);
872 do_task_dead();
873 }
874
make_task_dead(int signr)875 void __noreturn make_task_dead(int signr)
876 {
877 /*
878 * Take the task off the cpu after something catastrophic has
879 * happened.
880 *
881 * We can get here from a kernel oops, sometimes with preemption off.
882 * Start by checking for critical errors.
883 * Then fix up important state like USER_DS and preemption.
884 * Then do everything else.
885 */
886 struct task_struct *tsk = current;
887
888 if (unlikely(in_interrupt()))
889 panic("Aiee, killing interrupt handler!");
890 if (unlikely(!tsk->pid))
891 panic("Attempted to kill the idle task!");
892
893 if (unlikely(in_atomic())) {
894 pr_info("note: %s[%d] exited with preempt_count %d\n",
895 current->comm, task_pid_nr(current),
896 preempt_count());
897 preempt_count_set(PREEMPT_ENABLED);
898 }
899
900 /*
901 * We're taking recursive faults here in make_task_dead. Safest is to just
902 * leave this task alone and wait for reboot.
903 */
904 if (unlikely(tsk->flags & PF_EXITING)) {
905 pr_alert("Fixing recursive fault but reboot is needed!\n");
906 futex_exit_recursive(tsk);
907 tsk->exit_state = EXIT_DEAD;
908 refcount_inc(&tsk->rcu_users);
909 do_task_dead();
910 }
911
912 do_exit(signr);
913 }
914
SYSCALL_DEFINE1(exit,int,error_code)915 SYSCALL_DEFINE1(exit, int, error_code)
916 {
917 do_exit((error_code&0xff)<<8);
918 }
919
920 /*
921 * Take down every thread in the group. This is called by fatal signals
922 * as well as by sys_exit_group (below).
923 */
924 void __noreturn
do_group_exit(int exit_code)925 do_group_exit(int exit_code)
926 {
927 struct signal_struct *sig = current->signal;
928
929 if (sig->flags & SIGNAL_GROUP_EXIT)
930 exit_code = sig->group_exit_code;
931 else if (sig->group_exec_task)
932 exit_code = 0;
933 else {
934 struct sighand_struct *const sighand = current->sighand;
935
936 spin_lock_irq(&sighand->siglock);
937 if (sig->flags & SIGNAL_GROUP_EXIT)
938 /* Another thread got here before we took the lock. */
939 exit_code = sig->group_exit_code;
940 else if (sig->group_exec_task)
941 exit_code = 0;
942 else {
943 sig->group_exit_code = exit_code;
944 sig->flags = SIGNAL_GROUP_EXIT;
945 zap_other_threads(current);
946 }
947 spin_unlock_irq(&sighand->siglock);
948 }
949
950 do_exit(exit_code);
951 /* NOTREACHED */
952 }
953
954 /*
955 * this kills every thread in the thread group. Note that any externally
956 * wait4()-ing process will get the correct exit code - even if this
957 * thread is not the thread group leader.
958 */
SYSCALL_DEFINE1(exit_group,int,error_code)959 SYSCALL_DEFINE1(exit_group, int, error_code)
960 {
961 do_group_exit((error_code & 0xff) << 8);
962 /* NOTREACHED */
963 return 0;
964 }
965
966 struct waitid_info {
967 pid_t pid;
968 uid_t uid;
969 int status;
970 int cause;
971 };
972
973 struct wait_opts {
974 enum pid_type wo_type;
975 int wo_flags;
976 struct pid *wo_pid;
977
978 struct waitid_info *wo_info;
979 int wo_stat;
980 struct rusage *wo_rusage;
981
982 wait_queue_entry_t child_wait;
983 int notask_error;
984 };
985
eligible_pid(struct wait_opts * wo,struct task_struct * p)986 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
987 {
988 return wo->wo_type == PIDTYPE_MAX ||
989 task_pid_type(p, wo->wo_type) == wo->wo_pid;
990 }
991
992 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)993 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
994 {
995 if (!eligible_pid(wo, p))
996 return 0;
997
998 /*
999 * Wait for all children (clone and not) if __WALL is set or
1000 * if it is traced by us.
1001 */
1002 if (ptrace || (wo->wo_flags & __WALL))
1003 return 1;
1004
1005 /*
1006 * Otherwise, wait for clone children *only* if __WCLONE is set;
1007 * otherwise, wait for non-clone children *only*.
1008 *
1009 * Note: a "clone" child here is one that reports to its parent
1010 * using a signal other than SIGCHLD, or a non-leader thread which
1011 * we can only see if it is traced by us.
1012 */
1013 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1014 return 0;
1015
1016 return 1;
1017 }
1018
1019 /*
1020 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1021 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1022 * the lock and this task is uninteresting. If we return nonzero, we have
1023 * released the lock and the system call should return.
1024 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1025 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1026 {
1027 int state, status;
1028 pid_t pid = task_pid_vnr(p);
1029 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1030 struct waitid_info *infop;
1031
1032 if (!likely(wo->wo_flags & WEXITED))
1033 return 0;
1034
1035 if (unlikely(wo->wo_flags & WNOWAIT)) {
1036 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1037 ? p->signal->group_exit_code : p->exit_code;
1038 get_task_struct(p);
1039 read_unlock(&tasklist_lock);
1040 sched_annotate_sleep();
1041 if (wo->wo_rusage)
1042 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1043 put_task_struct(p);
1044 goto out_info;
1045 }
1046 /*
1047 * Move the task's state to DEAD/TRACE, only one thread can do this.
1048 */
1049 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1050 EXIT_TRACE : EXIT_DEAD;
1051 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1052 return 0;
1053 /*
1054 * We own this thread, nobody else can reap it.
1055 */
1056 read_unlock(&tasklist_lock);
1057 sched_annotate_sleep();
1058
1059 /*
1060 * Check thread_group_leader() to exclude the traced sub-threads.
1061 */
1062 if (state == EXIT_DEAD && thread_group_leader(p)) {
1063 struct signal_struct *sig = p->signal;
1064 struct signal_struct *psig = current->signal;
1065 unsigned long maxrss;
1066 u64 tgutime, tgstime;
1067
1068 /*
1069 * The resource counters for the group leader are in its
1070 * own task_struct. Those for dead threads in the group
1071 * are in its signal_struct, as are those for the child
1072 * processes it has previously reaped. All these
1073 * accumulate in the parent's signal_struct c* fields.
1074 *
1075 * We don't bother to take a lock here to protect these
1076 * p->signal fields because the whole thread group is dead
1077 * and nobody can change them.
1078 *
1079 * psig->stats_lock also protects us from our sub-threads
1080 * which can reap other children at the same time. Until
1081 * we change k_getrusage()-like users to rely on this lock
1082 * we have to take ->siglock as well.
1083 *
1084 * We use thread_group_cputime_adjusted() to get times for
1085 * the thread group, which consolidates times for all threads
1086 * in the group including the group leader.
1087 */
1088 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1089 spin_lock_irq(¤t->sighand->siglock);
1090 write_seqlock(&psig->stats_lock);
1091 psig->cutime += tgutime + sig->cutime;
1092 psig->cstime += tgstime + sig->cstime;
1093 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1094 psig->cmin_flt +=
1095 p->min_flt + sig->min_flt + sig->cmin_flt;
1096 psig->cmaj_flt +=
1097 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1098 psig->cnvcsw +=
1099 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1100 psig->cnivcsw +=
1101 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1102 psig->cinblock +=
1103 task_io_get_inblock(p) +
1104 sig->inblock + sig->cinblock;
1105 psig->coublock +=
1106 task_io_get_oublock(p) +
1107 sig->oublock + sig->coublock;
1108 maxrss = max(sig->maxrss, sig->cmaxrss);
1109 if (psig->cmaxrss < maxrss)
1110 psig->cmaxrss = maxrss;
1111 task_io_accounting_add(&psig->ioac, &p->ioac);
1112 task_io_accounting_add(&psig->ioac, &sig->ioac);
1113 write_sequnlock(&psig->stats_lock);
1114 spin_unlock_irq(¤t->sighand->siglock);
1115 }
1116
1117 if (wo->wo_rusage)
1118 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1119 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1120 ? p->signal->group_exit_code : p->exit_code;
1121 wo->wo_stat = status;
1122
1123 if (state == EXIT_TRACE) {
1124 write_lock_irq(&tasklist_lock);
1125 /* We dropped tasklist, ptracer could die and untrace */
1126 ptrace_unlink(p);
1127
1128 /* If parent wants a zombie, don't release it now */
1129 state = EXIT_ZOMBIE;
1130 if (do_notify_parent(p, p->exit_signal))
1131 state = EXIT_DEAD;
1132 p->exit_state = state;
1133 write_unlock_irq(&tasklist_lock);
1134 }
1135 if (state == EXIT_DEAD)
1136 release_task(p);
1137
1138 out_info:
1139 infop = wo->wo_info;
1140 if (infop) {
1141 if ((status & 0x7f) == 0) {
1142 infop->cause = CLD_EXITED;
1143 infop->status = status >> 8;
1144 } else {
1145 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1146 infop->status = status & 0x7f;
1147 }
1148 infop->pid = pid;
1149 infop->uid = uid;
1150 }
1151
1152 return pid;
1153 }
1154
task_stopped_code(struct task_struct * p,bool ptrace)1155 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1156 {
1157 if (ptrace) {
1158 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1159 return &p->exit_code;
1160 } else {
1161 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1162 return &p->signal->group_exit_code;
1163 }
1164 return NULL;
1165 }
1166
1167 /**
1168 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1169 * @wo: wait options
1170 * @ptrace: is the wait for ptrace
1171 * @p: task to wait for
1172 *
1173 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1174 *
1175 * CONTEXT:
1176 * read_lock(&tasklist_lock), which is released if return value is
1177 * non-zero. Also, grabs and releases @p->sighand->siglock.
1178 *
1179 * RETURNS:
1180 * 0 if wait condition didn't exist and search for other wait conditions
1181 * should continue. Non-zero return, -errno on failure and @p's pid on
1182 * success, implies that tasklist_lock is released and wait condition
1183 * search should terminate.
1184 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1185 static int wait_task_stopped(struct wait_opts *wo,
1186 int ptrace, struct task_struct *p)
1187 {
1188 struct waitid_info *infop;
1189 int exit_code, *p_code, why;
1190 uid_t uid = 0; /* unneeded, required by compiler */
1191 pid_t pid;
1192
1193 /*
1194 * Traditionally we see ptrace'd stopped tasks regardless of options.
1195 */
1196 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1197 return 0;
1198
1199 if (!task_stopped_code(p, ptrace))
1200 return 0;
1201
1202 exit_code = 0;
1203 spin_lock_irq(&p->sighand->siglock);
1204
1205 p_code = task_stopped_code(p, ptrace);
1206 if (unlikely(!p_code))
1207 goto unlock_sig;
1208
1209 exit_code = *p_code;
1210 if (!exit_code)
1211 goto unlock_sig;
1212
1213 if (!unlikely(wo->wo_flags & WNOWAIT))
1214 *p_code = 0;
1215
1216 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1217 unlock_sig:
1218 spin_unlock_irq(&p->sighand->siglock);
1219 if (!exit_code)
1220 return 0;
1221
1222 /*
1223 * Now we are pretty sure this task is interesting.
1224 * Make sure it doesn't get reaped out from under us while we
1225 * give up the lock and then examine it below. We don't want to
1226 * keep holding onto the tasklist_lock while we call getrusage and
1227 * possibly take page faults for user memory.
1228 */
1229 get_task_struct(p);
1230 pid = task_pid_vnr(p);
1231 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1232 read_unlock(&tasklist_lock);
1233 sched_annotate_sleep();
1234 if (wo->wo_rusage)
1235 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1236 put_task_struct(p);
1237
1238 if (likely(!(wo->wo_flags & WNOWAIT)))
1239 wo->wo_stat = (exit_code << 8) | 0x7f;
1240
1241 infop = wo->wo_info;
1242 if (infop) {
1243 infop->cause = why;
1244 infop->status = exit_code;
1245 infop->pid = pid;
1246 infop->uid = uid;
1247 }
1248 return pid;
1249 }
1250
1251 /*
1252 * Handle do_wait work for one task in a live, non-stopped state.
1253 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1254 * the lock and this task is uninteresting. If we return nonzero, we have
1255 * released the lock and the system call should return.
1256 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1257 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1258 {
1259 struct waitid_info *infop;
1260 pid_t pid;
1261 uid_t uid;
1262
1263 if (!unlikely(wo->wo_flags & WCONTINUED))
1264 return 0;
1265
1266 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1267 return 0;
1268
1269 spin_lock_irq(&p->sighand->siglock);
1270 /* Re-check with the lock held. */
1271 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1272 spin_unlock_irq(&p->sighand->siglock);
1273 return 0;
1274 }
1275 if (!unlikely(wo->wo_flags & WNOWAIT))
1276 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1277 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1278 spin_unlock_irq(&p->sighand->siglock);
1279
1280 pid = task_pid_vnr(p);
1281 get_task_struct(p);
1282 read_unlock(&tasklist_lock);
1283 sched_annotate_sleep();
1284 if (wo->wo_rusage)
1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286 put_task_struct(p);
1287
1288 infop = wo->wo_info;
1289 if (!infop) {
1290 wo->wo_stat = 0xffff;
1291 } else {
1292 infop->cause = CLD_CONTINUED;
1293 infop->pid = pid;
1294 infop->uid = uid;
1295 infop->status = SIGCONT;
1296 }
1297 return pid;
1298 }
1299
1300 /*
1301 * Consider @p for a wait by @parent.
1302 *
1303 * -ECHILD should be in ->notask_error before the first call.
1304 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1305 * Returns zero if the search for a child should continue;
1306 * then ->notask_error is 0 if @p is an eligible child,
1307 * or still -ECHILD.
1308 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1309 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1310 struct task_struct *p)
1311 {
1312 /*
1313 * We can race with wait_task_zombie() from another thread.
1314 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1315 * can't confuse the checks below.
1316 */
1317 int exit_state = READ_ONCE(p->exit_state);
1318 int ret;
1319
1320 if (unlikely(exit_state == EXIT_DEAD))
1321 return 0;
1322
1323 ret = eligible_child(wo, ptrace, p);
1324 if (!ret)
1325 return ret;
1326
1327 if (unlikely(exit_state == EXIT_TRACE)) {
1328 /*
1329 * ptrace == 0 means we are the natural parent. In this case
1330 * we should clear notask_error, debugger will notify us.
1331 */
1332 if (likely(!ptrace))
1333 wo->notask_error = 0;
1334 return 0;
1335 }
1336
1337 if (likely(!ptrace) && unlikely(p->ptrace)) {
1338 /*
1339 * If it is traced by its real parent's group, just pretend
1340 * the caller is ptrace_do_wait() and reap this child if it
1341 * is zombie.
1342 *
1343 * This also hides group stop state from real parent; otherwise
1344 * a single stop can be reported twice as group and ptrace stop.
1345 * If a ptracer wants to distinguish these two events for its
1346 * own children it should create a separate process which takes
1347 * the role of real parent.
1348 */
1349 if (!ptrace_reparented(p))
1350 ptrace = 1;
1351 }
1352
1353 /* slay zombie? */
1354 if (exit_state == EXIT_ZOMBIE) {
1355 /* we don't reap group leaders with subthreads */
1356 if (!delay_group_leader(p)) {
1357 /*
1358 * A zombie ptracee is only visible to its ptracer.
1359 * Notification and reaping will be cascaded to the
1360 * real parent when the ptracer detaches.
1361 */
1362 if (unlikely(ptrace) || likely(!p->ptrace))
1363 return wait_task_zombie(wo, p);
1364 }
1365
1366 /*
1367 * Allow access to stopped/continued state via zombie by
1368 * falling through. Clearing of notask_error is complex.
1369 *
1370 * When !@ptrace:
1371 *
1372 * If WEXITED is set, notask_error should naturally be
1373 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1374 * so, if there are live subthreads, there are events to
1375 * wait for. If all subthreads are dead, it's still safe
1376 * to clear - this function will be called again in finite
1377 * amount time once all the subthreads are released and
1378 * will then return without clearing.
1379 *
1380 * When @ptrace:
1381 *
1382 * Stopped state is per-task and thus can't change once the
1383 * target task dies. Only continued and exited can happen.
1384 * Clear notask_error if WCONTINUED | WEXITED.
1385 */
1386 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1387 wo->notask_error = 0;
1388 } else {
1389 /*
1390 * @p is alive and it's gonna stop, continue or exit, so
1391 * there always is something to wait for.
1392 */
1393 wo->notask_error = 0;
1394 }
1395
1396 /*
1397 * Wait for stopped. Depending on @ptrace, different stopped state
1398 * is used and the two don't interact with each other.
1399 */
1400 ret = wait_task_stopped(wo, ptrace, p);
1401 if (ret)
1402 return ret;
1403
1404 /*
1405 * Wait for continued. There's only one continued state and the
1406 * ptracer can consume it which can confuse the real parent. Don't
1407 * use WCONTINUED from ptracer. You don't need or want it.
1408 */
1409 return wait_task_continued(wo, p);
1410 }
1411
1412 /*
1413 * Do the work of do_wait() for one thread in the group, @tsk.
1414 *
1415 * -ECHILD should be in ->notask_error before the first call.
1416 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1417 * Returns zero if the search for a child should continue; then
1418 * ->notask_error is 0 if there were any eligible children,
1419 * or still -ECHILD.
1420 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1421 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423 struct task_struct *p;
1424
1425 list_for_each_entry(p, &tsk->children, sibling) {
1426 int ret = wait_consider_task(wo, 0, p);
1427
1428 if (ret)
1429 return ret;
1430 }
1431
1432 return 0;
1433 }
1434
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1435 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1436 {
1437 struct task_struct *p;
1438
1439 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1440 int ret = wait_consider_task(wo, 1, p);
1441
1442 if (ret)
1443 return ret;
1444 }
1445
1446 return 0;
1447 }
1448
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1449 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1450 int sync, void *key)
1451 {
1452 struct wait_opts *wo = container_of(wait, struct wait_opts,
1453 child_wait);
1454 struct task_struct *p = key;
1455
1456 if (!eligible_pid(wo, p))
1457 return 0;
1458
1459 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1460 return 0;
1461
1462 return default_wake_function(wait, mode, sync, key);
1463 }
1464
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1465 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1466 {
1467 __wake_up_sync_key(&parent->signal->wait_chldexit,
1468 TASK_INTERRUPTIBLE, p);
1469 }
1470
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1471 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1472 struct task_struct *target)
1473 {
1474 struct task_struct *parent =
1475 !ptrace ? target->real_parent : target->parent;
1476
1477 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1478 same_thread_group(current, parent));
1479 }
1480
1481 /*
1482 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1483 * and tracee lists to find the target task.
1484 */
do_wait_pid(struct wait_opts * wo)1485 static int do_wait_pid(struct wait_opts *wo)
1486 {
1487 bool ptrace;
1488 struct task_struct *target;
1489 int retval;
1490
1491 ptrace = false;
1492 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1493 if (target && is_effectively_child(wo, ptrace, target)) {
1494 retval = wait_consider_task(wo, ptrace, target);
1495 if (retval)
1496 return retval;
1497 }
1498
1499 ptrace = true;
1500 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1501 if (target && target->ptrace &&
1502 is_effectively_child(wo, ptrace, target)) {
1503 retval = wait_consider_task(wo, ptrace, target);
1504 if (retval)
1505 return retval;
1506 }
1507
1508 return 0;
1509 }
1510
do_wait(struct wait_opts * wo)1511 static long do_wait(struct wait_opts *wo)
1512 {
1513 int retval;
1514
1515 trace_sched_process_wait(wo->wo_pid);
1516
1517 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518 wo->child_wait.private = current;
1519 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1520 repeat:
1521 /*
1522 * If there is nothing that can match our criteria, just get out.
1523 * We will clear ->notask_error to zero if we see any child that
1524 * might later match our criteria, even if we are not able to reap
1525 * it yet.
1526 */
1527 wo->notask_error = -ECHILD;
1528 if ((wo->wo_type < PIDTYPE_MAX) &&
1529 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1530 goto notask;
1531
1532 set_current_state(TASK_INTERRUPTIBLE);
1533 read_lock(&tasklist_lock);
1534
1535 if (wo->wo_type == PIDTYPE_PID) {
1536 retval = do_wait_pid(wo);
1537 if (retval)
1538 goto end;
1539 } else {
1540 struct task_struct *tsk = current;
1541
1542 do {
1543 retval = do_wait_thread(wo, tsk);
1544 if (retval)
1545 goto end;
1546
1547 retval = ptrace_do_wait(wo, tsk);
1548 if (retval)
1549 goto end;
1550
1551 if (wo->wo_flags & __WNOTHREAD)
1552 break;
1553 } while_each_thread(current, tsk);
1554 }
1555 read_unlock(&tasklist_lock);
1556
1557 notask:
1558 retval = wo->notask_error;
1559 if (!retval && !(wo->wo_flags & WNOHANG)) {
1560 retval = -ERESTARTSYS;
1561 if (!signal_pending(current)) {
1562 schedule();
1563 goto repeat;
1564 }
1565 }
1566 end:
1567 __set_current_state(TASK_RUNNING);
1568 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1569 return retval;
1570 }
1571
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573 int options, struct rusage *ru)
1574 {
1575 struct wait_opts wo;
1576 struct pid *pid = NULL;
1577 enum pid_type type;
1578 long ret;
1579 unsigned int f_flags = 0;
1580
1581 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1582 __WNOTHREAD|__WCLONE|__WALL))
1583 return -EINVAL;
1584 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1585 return -EINVAL;
1586
1587 switch (which) {
1588 case P_ALL:
1589 type = PIDTYPE_MAX;
1590 break;
1591 case P_PID:
1592 type = PIDTYPE_PID;
1593 if (upid <= 0)
1594 return -EINVAL;
1595
1596 pid = find_get_pid(upid);
1597 break;
1598 case P_PGID:
1599 type = PIDTYPE_PGID;
1600 if (upid < 0)
1601 return -EINVAL;
1602
1603 if (upid)
1604 pid = find_get_pid(upid);
1605 else
1606 pid = get_task_pid(current, PIDTYPE_PGID);
1607 break;
1608 case P_PIDFD:
1609 type = PIDTYPE_PID;
1610 if (upid < 0)
1611 return -EINVAL;
1612
1613 pid = pidfd_get_pid(upid, &f_flags);
1614 if (IS_ERR(pid))
1615 return PTR_ERR(pid);
1616
1617 break;
1618 default:
1619 return -EINVAL;
1620 }
1621
1622 wo.wo_type = type;
1623 wo.wo_pid = pid;
1624 wo.wo_flags = options;
1625 wo.wo_info = infop;
1626 wo.wo_rusage = ru;
1627 if (f_flags & O_NONBLOCK)
1628 wo.wo_flags |= WNOHANG;
1629
1630 ret = do_wait(&wo);
1631 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1632 ret = -EAGAIN;
1633
1634 put_pid(pid);
1635 return ret;
1636 }
1637
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1639 infop, int, options, struct rusage __user *, ru)
1640 {
1641 struct rusage r;
1642 struct waitid_info info = {.status = 0};
1643 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1644 int signo = 0;
1645
1646 if (err > 0) {
1647 signo = SIGCHLD;
1648 err = 0;
1649 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1650 return -EFAULT;
1651 }
1652 if (!infop)
1653 return err;
1654
1655 if (!user_write_access_begin(infop, sizeof(*infop)))
1656 return -EFAULT;
1657
1658 unsafe_put_user(signo, &infop->si_signo, Efault);
1659 unsafe_put_user(0, &infop->si_errno, Efault);
1660 unsafe_put_user(info.cause, &infop->si_code, Efault);
1661 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1662 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1663 unsafe_put_user(info.status, &infop->si_status, Efault);
1664 user_write_access_end();
1665 return err;
1666 Efault:
1667 user_write_access_end();
1668 return -EFAULT;
1669 }
1670
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1672 struct rusage *ru)
1673 {
1674 struct wait_opts wo;
1675 struct pid *pid = NULL;
1676 enum pid_type type;
1677 long ret;
1678
1679 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1680 __WNOTHREAD|__WCLONE|__WALL))
1681 return -EINVAL;
1682
1683 /* -INT_MIN is not defined */
1684 if (upid == INT_MIN)
1685 return -ESRCH;
1686
1687 if (upid == -1)
1688 type = PIDTYPE_MAX;
1689 else if (upid < 0) {
1690 type = PIDTYPE_PGID;
1691 pid = find_get_pid(-upid);
1692 } else if (upid == 0) {
1693 type = PIDTYPE_PGID;
1694 pid = get_task_pid(current, PIDTYPE_PGID);
1695 } else /* upid > 0 */ {
1696 type = PIDTYPE_PID;
1697 pid = find_get_pid(upid);
1698 }
1699
1700 wo.wo_type = type;
1701 wo.wo_pid = pid;
1702 wo.wo_flags = options | WEXITED;
1703 wo.wo_info = NULL;
1704 wo.wo_stat = 0;
1705 wo.wo_rusage = ru;
1706 ret = do_wait(&wo);
1707 put_pid(pid);
1708 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1709 ret = -EFAULT;
1710
1711 return ret;
1712 }
1713
kernel_wait(pid_t pid,int * stat)1714 int kernel_wait(pid_t pid, int *stat)
1715 {
1716 struct wait_opts wo = {
1717 .wo_type = PIDTYPE_PID,
1718 .wo_pid = find_get_pid(pid),
1719 .wo_flags = WEXITED,
1720 };
1721 int ret;
1722
1723 ret = do_wait(&wo);
1724 if (ret > 0 && wo.wo_stat)
1725 *stat = wo.wo_stat;
1726 put_pid(wo.wo_pid);
1727 return ret;
1728 }
1729
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1731 int, options, struct rusage __user *, ru)
1732 {
1733 struct rusage r;
1734 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1735
1736 if (err > 0) {
1737 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1738 return -EFAULT;
1739 }
1740 return err;
1741 }
1742
1743 #ifdef __ARCH_WANT_SYS_WAITPID
1744
1745 /*
1746 * sys_waitpid() remains for compatibility. waitpid() should be
1747 * implemented by calling sys_wait4() from libc.a.
1748 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1749 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1750 {
1751 return kernel_wait4(pid, stat_addr, options, NULL);
1752 }
1753
1754 #endif
1755
1756 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1757 COMPAT_SYSCALL_DEFINE4(wait4,
1758 compat_pid_t, pid,
1759 compat_uint_t __user *, stat_addr,
1760 int, options,
1761 struct compat_rusage __user *, ru)
1762 {
1763 struct rusage r;
1764 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1765 if (err > 0) {
1766 if (ru && put_compat_rusage(&r, ru))
1767 return -EFAULT;
1768 }
1769 return err;
1770 }
1771
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1772 COMPAT_SYSCALL_DEFINE5(waitid,
1773 int, which, compat_pid_t, pid,
1774 struct compat_siginfo __user *, infop, int, options,
1775 struct compat_rusage __user *, uru)
1776 {
1777 struct rusage ru;
1778 struct waitid_info info = {.status = 0};
1779 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1780 int signo = 0;
1781 if (err > 0) {
1782 signo = SIGCHLD;
1783 err = 0;
1784 if (uru) {
1785 /* kernel_waitid() overwrites everything in ru */
1786 if (COMPAT_USE_64BIT_TIME)
1787 err = copy_to_user(uru, &ru, sizeof(ru));
1788 else
1789 err = put_compat_rusage(&ru, uru);
1790 if (err)
1791 return -EFAULT;
1792 }
1793 }
1794
1795 if (!infop)
1796 return err;
1797
1798 if (!user_write_access_begin(infop, sizeof(*infop)))
1799 return -EFAULT;
1800
1801 unsafe_put_user(signo, &infop->si_signo, Efault);
1802 unsafe_put_user(0, &infop->si_errno, Efault);
1803 unsafe_put_user(info.cause, &infop->si_code, Efault);
1804 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1805 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1806 unsafe_put_user(info.status, &infop->si_status, Efault);
1807 user_write_access_end();
1808 return err;
1809 Efault:
1810 user_write_access_end();
1811 return -EFAULT;
1812 }
1813 #endif
1814
1815 /**
1816 * thread_group_exited - check that a thread group has exited
1817 * @pid: tgid of thread group to be checked.
1818 *
1819 * Test if the thread group represented by tgid has exited (all
1820 * threads are zombies, dead or completely gone).
1821 *
1822 * Return: true if the thread group has exited. false otherwise.
1823 */
thread_group_exited(struct pid * pid)1824 bool thread_group_exited(struct pid *pid)
1825 {
1826 struct task_struct *task;
1827 bool exited;
1828
1829 rcu_read_lock();
1830 task = pid_task(pid, PIDTYPE_PID);
1831 exited = !task ||
1832 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1833 rcu_read_unlock();
1834
1835 return exited;
1836 }
1837 EXPORT_SYMBOL(thread_group_exited);
1838
abort(void)1839 __weak void abort(void)
1840 {
1841 BUG();
1842
1843 /* if that doesn't kill us, halt */
1844 panic("Oops failed to kill thread");
1845 }
1846 EXPORT_SYMBOL(abort);
1847