1 /*
2 * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3 *
4 * This file is derived from the powermac console "imstt" driver:
5 * Copyright (C) 1997 Sigurdur Asgeirsson
6 * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7 * Modified by Danilo Beuche 1998
8 * Some register values added by Damien Doligez, INRIA Rocquencourt
9 * Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10 *
11 * This file was written by Ryan Nielsen (ran@krazynet.com)
12 * Most of the frame buffer device stuff was copied from atyfb.c
13 *
14 * This file is subject to the terms and conditions of the GNU General Public
15 * License. See the file COPYING in the main directory of this archive for
16 * more details.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32
33 #if defined(CONFIG_PPC)
34 #include <linux/nvram.h>
35 #include <asm/prom.h>
36 #include "macmodes.h"
37 #endif
38
39 #ifndef __powerpc__
40 #define eieio() /* Enforce In-order Execution of I/O */
41 #endif
42
43 /* TwinTurbo (Cosmo) registers */
44 enum {
45 S1SA = 0, /* 0x00 */
46 S2SA = 1, /* 0x04 */
47 SP = 2, /* 0x08 */
48 DSA = 3, /* 0x0C */
49 CNT = 4, /* 0x10 */
50 DP_OCTL = 5, /* 0x14 */
51 CLR = 6, /* 0x18 */
52 BI = 8, /* 0x20 */
53 MBC = 9, /* 0x24 */
54 BLTCTL = 10, /* 0x28 */
55
56 /* Scan Timing Generator Registers */
57 HES = 12, /* 0x30 */
58 HEB = 13, /* 0x34 */
59 HSB = 14, /* 0x38 */
60 HT = 15, /* 0x3C */
61 VES = 16, /* 0x40 */
62 VEB = 17, /* 0x44 */
63 VSB = 18, /* 0x48 */
64 VT = 19, /* 0x4C */
65 HCIV = 20, /* 0x50 */
66 VCIV = 21, /* 0x54 */
67 TCDR = 22, /* 0x58 */
68 VIL = 23, /* 0x5C */
69 STGCTL = 24, /* 0x60 */
70
71 /* Screen Refresh Generator Registers */
72 SSR = 25, /* 0x64 */
73 HRIR = 26, /* 0x68 */
74 SPR = 27, /* 0x6C */
75 CMR = 28, /* 0x70 */
76 SRGCTL = 29, /* 0x74 */
77
78 /* RAM Refresh Generator Registers */
79 RRCIV = 30, /* 0x78 */
80 RRSC = 31, /* 0x7C */
81 RRCR = 34, /* 0x88 */
82
83 /* System Registers */
84 GIOE = 32, /* 0x80 */
85 GIO = 33, /* 0x84 */
86 SCR = 35, /* 0x8C */
87 SSTATUS = 36, /* 0x90 */
88 PRC = 37, /* 0x94 */
89
90 #if 0
91 /* PCI Registers */
92 DVID = 0x00000000L,
93 SC = 0x00000004L,
94 CCR = 0x00000008L,
95 OG = 0x0000000CL,
96 BARM = 0x00000010L,
97 BARER = 0x00000030L,
98 #endif
99 };
100
101 /* IBM 624 RAMDAC Direct Registers */
102 enum {
103 PADDRW = 0x00,
104 PDATA = 0x04,
105 PPMASK = 0x08,
106 PADDRR = 0x0c,
107 PIDXLO = 0x10,
108 PIDXHI = 0x14,
109 PIDXDATA= 0x18,
110 PIDXCTL = 0x1c
111 };
112
113 /* IBM 624 RAMDAC Indirect Registers */
114 enum {
115 CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
116 SYNCCTL = 0x03, /* (0x00) Sync Control */
117 HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
118 PWRMNGMT = 0x05, /* (0x00) Power Management */
119 DACOP = 0x06, /* (0x02) DAC Operation */
120 PALETCTL = 0x07, /* (0x00) Palette Control */
121 SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
122 PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
123 BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
124 BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
125 BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
126 BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
127 PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
128 PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
129 SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
130 SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
131 SYSCLKP = 0x17, /* () System Clock P */
132 SYSCLKC = 0x18, /* () System Clock C */
133 /*
134 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
135 * c is charge pump bias which depends on the VCO frequency
136 */
137 PIXM0 = 0x20, /* () Pixel M 0 */
138 PIXN0 = 0x21, /* () Pixel N 0 */
139 PIXP0 = 0x22, /* () Pixel P 0 */
140 PIXC0 = 0x23, /* () Pixel C 0 */
141 CURSCTL = 0x30, /* (0x00) Cursor Control */
142 CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
143 CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
144 CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
145 CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
146 CURSHOTX = 0x35, /* () Cursor Hot Spot X */
147 CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
148 CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
149 CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
150 CURS1R = 0x40, /* () Cursor 1 Red */
151 CURS1G = 0x41, /* () Cursor 1 Green */
152 CURS1B = 0x42, /* () Cursor 1 Blue */
153 CURS2R = 0x43, /* () Cursor 2 Red */
154 CURS2G = 0x44, /* () Cursor 2 Green */
155 CURS2B = 0x45, /* () Cursor 2 Blue */
156 CURS3R = 0x46, /* () Cursor 3 Red */
157 CURS3G = 0x47, /* () Cursor 3 Green */
158 CURS3B = 0x48, /* () Cursor 3 Blue */
159 BORDR = 0x60, /* () Border Color Red */
160 BORDG = 0x61, /* () Border Color Green */
161 BORDB = 0x62, /* () Border Color Blue */
162 MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
163 MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
164 MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
165 KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
166 };
167
168 /* TI TVP 3030 RAMDAC Direct Registers */
169 enum {
170 TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
171 TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
172 TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
173 TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
174 TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
175 TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
176 /* 6 reserved */
177 TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
178 /* 8 reserved */
179 TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
180 TVPIDATA = 0x28, /* 10 Index Data */
181 TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
182 TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
183 TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
184 TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
185 TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
186 };
187
188 /* TI TVP 3030 RAMDAC Indirect Registers */
189 enum {
190 TVPIRREV = 0x01, /* Silicon Revision [RO] */
191 TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
192 TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
193 TVPIRLAC = 0x0f, /* Latch Control (0x06) */
194 TVPIRTCC = 0x18, /* True Color Control (0x80) */
195 TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
196 TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
197 TVPIRPPG = 0x1c, /* Palette Page (0x00) */
198 TVPIRGEC = 0x1d, /* General Control (0x00) */
199 TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
200 TVPIRPLA = 0x2c, /* PLL Address */
201 TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
202 TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
203 TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
204 TVPIRCKL = 0x30, /* Color-Key Overlay Low */
205 TVPIRCKH = 0x31, /* Color-Key Overlay High */
206 TVPIRCRL = 0x32, /* Color-Key Red Low */
207 TVPIRCRH = 0x33, /* Color-Key Red High */
208 TVPIRCGL = 0x34, /* Color-Key Green Low */
209 TVPIRCGH = 0x35, /* Color-Key Green High */
210 TVPIRCBL = 0x36, /* Color-Key Blue Low */
211 TVPIRCBH = 0x37, /* Color-Key Blue High */
212 TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
213 TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
214 TVPIRSEN = 0x3a, /* Sense Test (0x00) */
215 TVPIRTMD = 0x3b, /* Test Mode Data */
216 TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
217 TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
218 TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
219 TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
220 TVPIRRES = 0xff /* Software Reset [WO] */
221 };
222
223 struct initvalues {
224 __u8 addr, value;
225 };
226
227 static struct initvalues ibm_initregs[] = {
228 { CLKCTL, 0x21 },
229 { SYNCCTL, 0x00 },
230 { HSYNCPOS, 0x00 },
231 { PWRMNGMT, 0x00 },
232 { DACOP, 0x02 },
233 { PALETCTL, 0x00 },
234 { SYSCLKCTL, 0x01 },
235
236 /*
237 * Note that colors in X are correct only if all video data is
238 * passed through the palette in the DAC. That is, "indirect
239 * color" must be configured. This is the case for the IBM DAC
240 * used in the 2MB and 4MB cards, at least.
241 */
242 { BPP8, 0x00 },
243 { BPP16, 0x01 },
244 { BPP24, 0x00 },
245 { BPP32, 0x00 },
246
247 { PIXCTL1, 0x05 },
248 { PIXCTL2, 0x00 },
249 { SYSCLKN, 0x08 },
250 { SYSCLKM, 0x4f },
251 { SYSCLKP, 0x00 },
252 { SYSCLKC, 0x00 },
253 { CURSCTL, 0x00 },
254 { CURSACCTL, 0x01 },
255 { CURSACATTR, 0xa8 },
256 { CURS1R, 0xff },
257 { CURS1G, 0xff },
258 { CURS1B, 0xff },
259 { CURS2R, 0xff },
260 { CURS2G, 0xff },
261 { CURS2B, 0xff },
262 { CURS3R, 0xff },
263 { CURS3G, 0xff },
264 { CURS3B, 0xff },
265 { BORDR, 0xff },
266 { BORDG, 0xff },
267 { BORDB, 0xff },
268 { MISCTL1, 0x01 },
269 { MISCTL2, 0x45 },
270 { MISCTL3, 0x00 },
271 { KEYCTL, 0x00 }
272 };
273
274 static struct initvalues tvp_initregs[] = {
275 { TVPIRICC, 0x00 },
276 { TVPIRBRC, 0xe4 },
277 { TVPIRLAC, 0x06 },
278 { TVPIRTCC, 0x80 },
279 { TVPIRMXC, 0x4d },
280 { TVPIRCLS, 0x05 },
281 { TVPIRPPG, 0x00 },
282 { TVPIRGEC, 0x00 },
283 { TVPIRMIC, 0x08 },
284 { TVPIRCKL, 0xff },
285 { TVPIRCKH, 0xff },
286 { TVPIRCRL, 0xff },
287 { TVPIRCRH, 0xff },
288 { TVPIRCGL, 0xff },
289 { TVPIRCGH, 0xff },
290 { TVPIRCBL, 0xff },
291 { TVPIRCBH, 0xff },
292 { TVPIRCKC, 0x00 },
293 { TVPIRPLA, 0x00 },
294 { TVPIRPPD, 0xc0 },
295 { TVPIRPPD, 0xd5 },
296 { TVPIRPPD, 0xea },
297 { TVPIRPLA, 0x00 },
298 { TVPIRMPD, 0xb9 },
299 { TVPIRMPD, 0x3a },
300 { TVPIRMPD, 0xb1 },
301 { TVPIRPLA, 0x00 },
302 { TVPIRLPD, 0xc1 },
303 { TVPIRLPD, 0x3d },
304 { TVPIRLPD, 0xf3 },
305 };
306
307 struct imstt_regvals {
308 __u32 pitch;
309 __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
310 __u8 pclk_m, pclk_n, pclk_p;
311 /* Values of the tvp which change depending on colormode x resolution */
312 __u8 mlc[3]; /* Memory Loop Config 0x39 */
313 __u8 lckl_p[3]; /* P value of LCKL PLL */
314 };
315
316 struct imstt_par {
317 struct imstt_regvals init;
318 __u32 __iomem *dc_regs;
319 unsigned long cmap_regs_phys;
320 __u8 *cmap_regs;
321 __u32 ramdac;
322 __u32 palette[16];
323 };
324
325 enum {
326 IBM = 0,
327 TVP = 1
328 };
329
330 #define USE_NV_MODES 1
331 #define INIT_BPP 8
332 #define INIT_XRES 640
333 #define INIT_YRES 480
334
335 static int inverse = 0;
336 static char fontname[40] __initdata = { 0 };
337 #if defined(CONFIG_PPC)
338 static signed char init_vmode = -1, init_cmode = -1;
339 #endif
340
341 static struct imstt_regvals tvp_reg_init_2 = {
342 512,
343 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
344 0xec, 0x2a, 0xf3,
345 { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
346 };
347
348 static struct imstt_regvals tvp_reg_init_6 = {
349 640,
350 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
351 0xef, 0x2e, 0xb2,
352 { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
353 };
354
355 static struct imstt_regvals tvp_reg_init_12 = {
356 800,
357 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
358 0xf6, 0x2e, 0xf2,
359 { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
360 };
361
362 static struct imstt_regvals tvp_reg_init_13 = {
363 832,
364 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
365 0xfe, 0x3e, 0xf1,
366 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
367 };
368
369 static struct imstt_regvals tvp_reg_init_17 = {
370 1024,
371 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
372 0xfc, 0x3a, 0xf1,
373 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
374 };
375
376 static struct imstt_regvals tvp_reg_init_18 = {
377 1152,
378 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
379 0xfd, 0x3a, 0xf1,
380 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
381 };
382
383 static struct imstt_regvals tvp_reg_init_19 = {
384 1280,
385 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
386 0xf7, 0x36, 0xf0,
387 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
388 };
389
390 static struct imstt_regvals tvp_reg_init_20 = {
391 1280,
392 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
393 0xf0, 0x2d, 0xf0,
394 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
395 };
396
397 /*
398 * PCI driver prototypes
399 */
400 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
401 static void imsttfb_remove(struct pci_dev *pdev);
402
403 /*
404 * Register access
405 */
read_reg_le32(volatile u32 __iomem * base,int regindex)406 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
407 {
408 #ifdef __powerpc__
409 return in_le32(base + regindex);
410 #else
411 return readl(base + regindex);
412 #endif
413 }
414
write_reg_le32(volatile u32 __iomem * base,int regindex,u32 val)415 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
416 {
417 #ifdef __powerpc__
418 out_le32(base + regindex, val);
419 #else
420 writel(val, base + regindex);
421 #endif
422 }
423
424 static __u32
getclkMHz(struct imstt_par * par)425 getclkMHz(struct imstt_par *par)
426 {
427 __u32 clk_m, clk_n, clk_p;
428
429 clk_m = par->init.pclk_m;
430 clk_n = par->init.pclk_n;
431 clk_p = par->init.pclk_p;
432
433 return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
434 }
435
436 static void
setclkMHz(struct imstt_par * par,__u32 MHz)437 setclkMHz(struct imstt_par *par, __u32 MHz)
438 {
439 __u32 clk_m, clk_n, x, stage, spilled;
440
441 clk_m = clk_n = 0;
442 stage = spilled = 0;
443 for (;;) {
444 switch (stage) {
445 case 0:
446 clk_m++;
447 break;
448 case 1:
449 clk_n++;
450 break;
451 }
452 x = 20 * (clk_m + 1) / (clk_n + 1);
453 if (x == MHz)
454 break;
455 if (x > MHz) {
456 spilled = 1;
457 stage = 1;
458 } else if (spilled && x < MHz) {
459 stage = 0;
460 }
461 }
462
463 par->init.pclk_m = clk_m;
464 par->init.pclk_n = clk_n;
465 par->init.pclk_p = 0;
466 }
467
468 static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par * par,int xres,int yres)469 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
470 {
471 struct imstt_regvals *init = &par->init;
472 __u32 MHz, hes, heb, veb, htp, vtp;
473
474 switch (xres) {
475 case 640:
476 hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
477 MHz = 30 /* .25 */ ;
478 break;
479 case 832:
480 hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
481 MHz = 57 /* .27_ */ ;
482 break;
483 case 1024:
484 hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
485 MHz = 80;
486 break;
487 case 1152:
488 hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
489 MHz = 101 /* .6_ */ ;
490 break;
491 case 1280:
492 hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
493 MHz = yres == 960 ? 126 : 135;
494 break;
495 case 1600:
496 hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
497 MHz = 200;
498 break;
499 default:
500 return NULL;
501 }
502
503 setclkMHz(par, MHz);
504
505 init->hes = hes;
506 init->heb = heb;
507 init->hsb = init->heb + (xres >> 3);
508 init->ht = init->hsb + htp;
509 init->ves = 0x0003;
510 init->veb = veb;
511 init->vsb = init->veb + yres;
512 init->vt = init->vsb + vtp;
513 init->vil = init->vsb;
514
515 init->pitch = xres;
516 return init;
517 }
518
519 static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par * par,int xres,int yres)520 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
521 {
522 struct imstt_regvals *init;
523
524 switch (xres) {
525 case 512:
526 init = &tvp_reg_init_2;
527 break;
528 case 640:
529 init = &tvp_reg_init_6;
530 break;
531 case 800:
532 init = &tvp_reg_init_12;
533 break;
534 case 832:
535 init = &tvp_reg_init_13;
536 break;
537 case 1024:
538 init = &tvp_reg_init_17;
539 break;
540 case 1152:
541 init = &tvp_reg_init_18;
542 break;
543 case 1280:
544 init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
545 break;
546 default:
547 return NULL;
548 }
549 par->init = *init;
550 return init;
551 }
552
553 static struct imstt_regvals *
compute_imstt_regvals(struct imstt_par * par,u_int xres,u_int yres)554 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
555 {
556 if (par->ramdac == IBM)
557 return compute_imstt_regvals_ibm(par, xres, yres);
558 else
559 return compute_imstt_regvals_tvp(par, xres, yres);
560 }
561
562 static void
set_imstt_regvals_ibm(struct imstt_par * par,u_int bpp)563 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
564 {
565 struct imstt_regvals *init = &par->init;
566 __u8 pformat = (bpp >> 3) + 2;
567
568 par->cmap_regs[PIDXHI] = 0; eieio();
569 par->cmap_regs[PIDXLO] = PIXM0; eieio();
570 par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
571 par->cmap_regs[PIDXLO] = PIXN0; eieio();
572 par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
573 par->cmap_regs[PIDXLO] = PIXP0; eieio();
574 par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
575 par->cmap_regs[PIDXLO] = PIXC0; eieio();
576 par->cmap_regs[PIDXDATA] = 0x02; eieio();
577
578 par->cmap_regs[PIDXLO] = PIXFMT; eieio();
579 par->cmap_regs[PIDXDATA] = pformat; eieio();
580 }
581
582 static void
set_imstt_regvals_tvp(struct imstt_par * par,u_int bpp)583 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
584 {
585 struct imstt_regvals *init = &par->init;
586 __u8 tcc, mxc, lckl_n, mic;
587 __u8 mlc, lckl_p;
588
589 switch (bpp) {
590 default:
591 case 8:
592 tcc = 0x80;
593 mxc = 0x4d;
594 lckl_n = 0xc1;
595 mlc = init->mlc[0];
596 lckl_p = init->lckl_p[0];
597 break;
598 case 16:
599 tcc = 0x44;
600 mxc = 0x55;
601 lckl_n = 0xe1;
602 mlc = init->mlc[1];
603 lckl_p = init->lckl_p[1];
604 break;
605 case 24:
606 tcc = 0x5e;
607 mxc = 0x5d;
608 lckl_n = 0xf1;
609 mlc = init->mlc[2];
610 lckl_p = init->lckl_p[2];
611 break;
612 case 32:
613 tcc = 0x46;
614 mxc = 0x5d;
615 lckl_n = 0xf1;
616 mlc = init->mlc[2];
617 lckl_p = init->lckl_p[2];
618 break;
619 }
620 mic = 0x08;
621
622 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
623 par->cmap_regs[TVPIDATA] = 0x00; eieio();
624 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
625 par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
626 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
627 par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
628 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
629 par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
630
631 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
632 par->cmap_regs[TVPIDATA] = tcc; eieio();
633 par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
634 par->cmap_regs[TVPIDATA] = mxc; eieio();
635 par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
636 par->cmap_regs[TVPIDATA] = mic; eieio();
637
638 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
639 par->cmap_regs[TVPIDATA] = 0x00; eieio();
640 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
641 par->cmap_regs[TVPIDATA] = lckl_n; eieio();
642
643 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
644 par->cmap_regs[TVPIDATA] = 0x15; eieio();
645 par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
646 par->cmap_regs[TVPIDATA] = mlc; eieio();
647
648 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
649 par->cmap_regs[TVPIDATA] = 0x2a; eieio();
650 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
651 par->cmap_regs[TVPIDATA] = lckl_p; eieio();
652 }
653
654 static void
set_imstt_regvals(struct fb_info * info,u_int bpp)655 set_imstt_regvals (struct fb_info *info, u_int bpp)
656 {
657 struct imstt_par *par = info->par;
658 struct imstt_regvals *init = &par->init;
659 __u32 ctl, pitch, byteswap, scr;
660
661 if (par->ramdac == IBM)
662 set_imstt_regvals_ibm(par, bpp);
663 else
664 set_imstt_regvals_tvp(par, bpp);
665
666 /*
667 * From what I (jsk) can gather poking around with MacsBug,
668 * bits 8 and 9 in the SCR register control endianness
669 * correction (byte swapping). These bits must be set according
670 * to the color depth as follows:
671 * Color depth Bit 9 Bit 8
672 * ========== ===== =====
673 * 8bpp 0 0
674 * 16bpp 0 1
675 * 32bpp 1 1
676 */
677 switch (bpp) {
678 default:
679 case 8:
680 ctl = 0x17b1;
681 pitch = init->pitch >> 2;
682 byteswap = 0x000;
683 break;
684 case 16:
685 ctl = 0x17b3;
686 pitch = init->pitch >> 1;
687 byteswap = 0x100;
688 break;
689 case 24:
690 ctl = 0x17b9;
691 pitch = init->pitch - (init->pitch >> 2);
692 byteswap = 0x200;
693 break;
694 case 32:
695 ctl = 0x17b5;
696 pitch = init->pitch;
697 byteswap = 0x300;
698 break;
699 }
700 if (par->ramdac == TVP)
701 ctl -= 0x30;
702
703 write_reg_le32(par->dc_regs, HES, init->hes);
704 write_reg_le32(par->dc_regs, HEB, init->heb);
705 write_reg_le32(par->dc_regs, HSB, init->hsb);
706 write_reg_le32(par->dc_regs, HT, init->ht);
707 write_reg_le32(par->dc_regs, VES, init->ves);
708 write_reg_le32(par->dc_regs, VEB, init->veb);
709 write_reg_le32(par->dc_regs, VSB, init->vsb);
710 write_reg_le32(par->dc_regs, VT, init->vt);
711 write_reg_le32(par->dc_regs, VIL, init->vil);
712 write_reg_le32(par->dc_regs, HCIV, 1);
713 write_reg_le32(par->dc_regs, VCIV, 1);
714 write_reg_le32(par->dc_regs, TCDR, 4);
715 write_reg_le32(par->dc_regs, RRCIV, 1);
716 write_reg_le32(par->dc_regs, RRSC, 0x980);
717 write_reg_le32(par->dc_regs, RRCR, 0x11);
718
719 if (par->ramdac == IBM) {
720 write_reg_le32(par->dc_regs, HRIR, 0x0100);
721 write_reg_le32(par->dc_regs, CMR, 0x00ff);
722 write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
723 } else {
724 write_reg_le32(par->dc_regs, HRIR, 0x0200);
725 write_reg_le32(par->dc_regs, CMR, 0x01ff);
726 write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
727 }
728
729 switch (info->fix.smem_len) {
730 case 0x200000:
731 scr = 0x059d | byteswap;
732 break;
733 /* case 0x400000:
734 case 0x800000: */
735 default:
736 pitch >>= 1;
737 scr = 0x150dd | byteswap;
738 break;
739 }
740
741 write_reg_le32(par->dc_regs, SCR, scr);
742 write_reg_le32(par->dc_regs, SPR, pitch);
743 write_reg_le32(par->dc_regs, STGCTL, ctl);
744 }
745
746 static inline void
set_offset(struct fb_var_screeninfo * var,struct fb_info * info)747 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
748 {
749 struct imstt_par *par = info->par;
750 __u32 off = var->yoffset * (info->fix.line_length >> 3)
751 + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
752 write_reg_le32(par->dc_regs, SSR, off);
753 }
754
755 static inline void
set_555(struct imstt_par * par)756 set_555 (struct imstt_par *par)
757 {
758 if (par->ramdac == IBM) {
759 par->cmap_regs[PIDXHI] = 0; eieio();
760 par->cmap_regs[PIDXLO] = BPP16; eieio();
761 par->cmap_regs[PIDXDATA] = 0x01; eieio();
762 } else {
763 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
764 par->cmap_regs[TVPIDATA] = 0x44; eieio();
765 }
766 }
767
768 static inline void
set_565(struct imstt_par * par)769 set_565 (struct imstt_par *par)
770 {
771 if (par->ramdac == IBM) {
772 par->cmap_regs[PIDXHI] = 0; eieio();
773 par->cmap_regs[PIDXLO] = BPP16; eieio();
774 par->cmap_regs[PIDXDATA] = 0x03; eieio();
775 } else {
776 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
777 par->cmap_regs[TVPIDATA] = 0x45; eieio();
778 }
779 }
780
781 static int
imsttfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)782 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
783 {
784 if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
785 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
786 || var->xres_virtual < var->xres || var->yres_virtual < var->yres
787 || var->nonstd
788 || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
789 return -EINVAL;
790
791 if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
792 || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
793 return -EINVAL;
794
795 switch (var->bits_per_pixel) {
796 case 8:
797 var->red.offset = 0;
798 var->red.length = 8;
799 var->green.offset = 0;
800 var->green.length = 8;
801 var->blue.offset = 0;
802 var->blue.length = 8;
803 var->transp.offset = 0;
804 var->transp.length = 0;
805 break;
806 case 16: /* RGB 555 or 565 */
807 if (var->green.length != 6)
808 var->red.offset = 10;
809 var->red.length = 5;
810 var->green.offset = 5;
811 if (var->green.length != 6)
812 var->green.length = 5;
813 var->blue.offset = 0;
814 var->blue.length = 5;
815 var->transp.offset = 0;
816 var->transp.length = 0;
817 break;
818 case 24: /* RGB 888 */
819 var->red.offset = 16;
820 var->red.length = 8;
821 var->green.offset = 8;
822 var->green.length = 8;
823 var->blue.offset = 0;
824 var->blue.length = 8;
825 var->transp.offset = 0;
826 var->transp.length = 0;
827 break;
828 case 32: /* RGBA 8888 */
829 var->red.offset = 16;
830 var->red.length = 8;
831 var->green.offset = 8;
832 var->green.length = 8;
833 var->blue.offset = 0;
834 var->blue.length = 8;
835 var->transp.offset = 24;
836 var->transp.length = 8;
837 break;
838 }
839
840 if (var->yres == var->yres_virtual) {
841 __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
842 var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
843 if (var->yres_virtual < var->yres)
844 var->yres_virtual = var->yres;
845 }
846
847 var->red.msb_right = 0;
848 var->green.msb_right = 0;
849 var->blue.msb_right = 0;
850 var->transp.msb_right = 0;
851 var->height = -1;
852 var->width = -1;
853 var->vmode = FB_VMODE_NONINTERLACED;
854 var->left_margin = var->right_margin = 16;
855 var->upper_margin = var->lower_margin = 16;
856 var->hsync_len = var->vsync_len = 8;
857 return 0;
858 }
859
860 static int
imsttfb_set_par(struct fb_info * info)861 imsttfb_set_par(struct fb_info *info)
862 {
863 struct imstt_par *par = info->par;
864
865 if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
866 return -EINVAL;
867
868 if (info->var.green.length == 6)
869 set_565(par);
870 else
871 set_555(par);
872 set_imstt_regvals(info, info->var.bits_per_pixel);
873 info->var.pixclock = 1000000 / getclkMHz(par);
874 return 0;
875 }
876
877 static int
imsttfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)878 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
879 u_int transp, struct fb_info *info)
880 {
881 struct imstt_par *par = info->par;
882 u_int bpp = info->var.bits_per_pixel;
883
884 if (regno > 255)
885 return 1;
886
887 red >>= 8;
888 green >>= 8;
889 blue >>= 8;
890
891 /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
892 if (0 && bpp == 16) /* screws up X */
893 par->cmap_regs[PADDRW] = regno << 3;
894 else
895 par->cmap_regs[PADDRW] = regno;
896 eieio();
897
898 par->cmap_regs[PDATA] = red; eieio();
899 par->cmap_regs[PDATA] = green; eieio();
900 par->cmap_regs[PDATA] = blue; eieio();
901
902 if (regno < 16)
903 switch (bpp) {
904 case 16:
905 par->palette[regno] =
906 (regno << (info->var.green.length ==
907 5 ? 10 : 11)) | (regno << 5) | regno;
908 break;
909 case 24:
910 par->palette[regno] =
911 (regno << 16) | (regno << 8) | regno;
912 break;
913 case 32: {
914 int i = (regno << 8) | regno;
915 par->palette[regno] = (i << 16) |i;
916 break;
917 }
918 }
919 return 0;
920 }
921
922 static int
imsttfb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)923 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
924 {
925 if (var->xoffset + info->var.xres > info->var.xres_virtual
926 || var->yoffset + info->var.yres > info->var.yres_virtual)
927 return -EINVAL;
928
929 info->var.xoffset = var->xoffset;
930 info->var.yoffset = var->yoffset;
931 set_offset(var, info);
932 return 0;
933 }
934
935 static int
imsttfb_blank(int blank,struct fb_info * info)936 imsttfb_blank(int blank, struct fb_info *info)
937 {
938 struct imstt_par *par = info->par;
939 __u32 ctrl;
940
941 ctrl = read_reg_le32(par->dc_regs, STGCTL);
942 if (blank > 0) {
943 switch (blank) {
944 case FB_BLANK_NORMAL:
945 case FB_BLANK_POWERDOWN:
946 ctrl &= ~0x00000380;
947 if (par->ramdac == IBM) {
948 par->cmap_regs[PIDXHI] = 0; eieio();
949 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
950 par->cmap_regs[PIDXDATA] = 0x55; eieio();
951 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
952 par->cmap_regs[PIDXDATA] = 0x11; eieio();
953 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
954 par->cmap_regs[PIDXDATA] = 0x0f; eieio();
955 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
956 par->cmap_regs[PIDXDATA] = 0x1f; eieio();
957 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
958 par->cmap_regs[PIDXDATA] = 0xc0;
959 }
960 break;
961 case FB_BLANK_VSYNC_SUSPEND:
962 ctrl &= ~0x00000020;
963 break;
964 case FB_BLANK_HSYNC_SUSPEND:
965 ctrl &= ~0x00000010;
966 break;
967 }
968 } else {
969 if (par->ramdac == IBM) {
970 ctrl |= 0x000017b0;
971 par->cmap_regs[PIDXHI] = 0; eieio();
972 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
973 par->cmap_regs[PIDXDATA] = 0x01; eieio();
974 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
975 par->cmap_regs[PIDXDATA] = 0x00; eieio();
976 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
977 par->cmap_regs[PIDXDATA] = 0x00; eieio();
978 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
979 par->cmap_regs[PIDXDATA] = 0x01; eieio();
980 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
981 par->cmap_regs[PIDXDATA] = 0x45; eieio();
982 } else
983 ctrl |= 0x00001780;
984 }
985 write_reg_le32(par->dc_regs, STGCTL, ctrl);
986 return 0;
987 }
988
989 static void
imsttfb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)990 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
991 {
992 struct imstt_par *par = info->par;
993 __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
994
995 bgc = rect->color;
996 bgc |= (bgc << 8);
997 bgc |= (bgc << 16);
998
999 Bpp = info->var.bits_per_pixel >> 3,
1000 line_pitch = info->fix.line_length;
1001
1002 dy = rect->dy * line_pitch;
1003 dx = rect->dx * Bpp;
1004 height = rect->height;
1005 height--;
1006 width = rect->width * Bpp;
1007 width--;
1008
1009 if (rect->rop == ROP_COPY) {
1010 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1011 write_reg_le32(par->dc_regs, DSA, dy + dx);
1012 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1013 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1014 write_reg_le32(par->dc_regs, BI, 0xffffffff);
1015 write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1016 write_reg_le32(par->dc_regs, CLR, bgc);
1017 write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1018 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1019 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1020 } else {
1021 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1022 write_reg_le32(par->dc_regs, DSA, dy + dx);
1023 write_reg_le32(par->dc_regs, S1SA, dy + dx);
1024 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1025 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1026 write_reg_le32(par->dc_regs, SP, line_pitch);
1027 write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1028 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1029 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1030 }
1031 }
1032
1033 static void
imsttfb_copyarea(struct fb_info * info,const struct fb_copyarea * area)1034 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1035 {
1036 struct imstt_par *par = info->par;
1037 __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1038 __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1039
1040 Bpp = info->var.bits_per_pixel >> 3,
1041
1042 sx = area->sx * Bpp;
1043 sy = area->sy;
1044 dx = area->dx * Bpp;
1045 dy = area->dy;
1046 height = area->height;
1047 height--;
1048 width = area->width * Bpp;
1049 width--;
1050
1051 line_pitch = info->fix.line_length;
1052 bltctl = 0x05;
1053 sp = line_pitch << 16;
1054 cnt = height << 16;
1055
1056 if (sy < dy) {
1057 sy += height;
1058 dy += height;
1059 sp |= -(line_pitch) & 0xffff;
1060 dp_octl = -(line_pitch) & 0xffff;
1061 } else {
1062 sp |= line_pitch;
1063 dp_octl = line_pitch;
1064 }
1065 if (sx < dx) {
1066 sx += width;
1067 dx += width;
1068 bltctl |= 0x80;
1069 cnt |= -(width) & 0xffff;
1070 } else {
1071 cnt |= width;
1072 }
1073 fb_offset_old = sy * line_pitch + sx;
1074 fb_offset_new = dy * line_pitch + dx;
1075
1076 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1077 write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1078 write_reg_le32(par->dc_regs, SP, sp);
1079 write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1080 write_reg_le32(par->dc_regs, CNT, cnt);
1081 write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1082 write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1083 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1084 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1085 }
1086
1087 #if 0
1088 static int
1089 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1090 {
1091 u_int x, y;
1092
1093 if (width > 32 || height > 32)
1094 return -EINVAL;
1095
1096 if (par->ramdac == IBM) {
1097 par->cmap_regs[PIDXHI] = 1; eieio();
1098 for (x = 0; x < 0x100; x++) {
1099 par->cmap_regs[PIDXLO] = x; eieio();
1100 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1101 }
1102 par->cmap_regs[PIDXHI] = 1; eieio();
1103 for (y = 0; y < height; y++)
1104 for (x = 0; x < width >> 2; x++) {
1105 par->cmap_regs[PIDXLO] = x + y * 8; eieio();
1106 par->cmap_regs[PIDXDATA] = 0xff; eieio();
1107 }
1108 par->cmap_regs[PIDXHI] = 0; eieio();
1109 par->cmap_regs[PIDXLO] = CURS1R; eieio();
1110 par->cmap_regs[PIDXDATA] = fgc; eieio();
1111 par->cmap_regs[PIDXLO] = CURS1G; eieio();
1112 par->cmap_regs[PIDXDATA] = fgc; eieio();
1113 par->cmap_regs[PIDXLO] = CURS1B; eieio();
1114 par->cmap_regs[PIDXDATA] = fgc; eieio();
1115 par->cmap_regs[PIDXLO] = CURS2R; eieio();
1116 par->cmap_regs[PIDXDATA] = fgc; eieio();
1117 par->cmap_regs[PIDXLO] = CURS2G; eieio();
1118 par->cmap_regs[PIDXDATA] = fgc; eieio();
1119 par->cmap_regs[PIDXLO] = CURS2B; eieio();
1120 par->cmap_regs[PIDXDATA] = fgc; eieio();
1121 par->cmap_regs[PIDXLO] = CURS3R; eieio();
1122 par->cmap_regs[PIDXDATA] = fgc; eieio();
1123 par->cmap_regs[PIDXLO] = CURS3G; eieio();
1124 par->cmap_regs[PIDXDATA] = fgc; eieio();
1125 par->cmap_regs[PIDXLO] = CURS3B; eieio();
1126 par->cmap_regs[PIDXDATA] = fgc; eieio();
1127 } else {
1128 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1129 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1130 par->cmap_regs[TVPADDRW] = 0; eieio();
1131 for (x = 0; x < 0x200; x++) {
1132 par->cmap_regs[TVPCRDAT] = 0x00; eieio();
1133 }
1134 for (x = 0; x < 0x200; x++) {
1135 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1136 }
1137 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1138 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1139 for (y = 0; y < height; y++)
1140 for (x = 0; x < width >> 3; x++) {
1141 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1142 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1143 }
1144 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1145 par->cmap_regs[TVPIDATA] |= 0x08; eieio();
1146 for (y = 0; y < height; y++)
1147 for (x = 0; x < width >> 3; x++) {
1148 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1149 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1150 }
1151 par->cmap_regs[TVPCADRW] = 0x00; eieio();
1152 for (x = 0; x < 12; x++) {
1153 par->cmap_regs[TVPCDATA] = fgc;
1154 eieio();
1155 }
1156 }
1157 return 1;
1158 }
1159
1160 static void
1161 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1162 {
1163 if (par->ramdac == IBM) {
1164 par->cmap_regs[PIDXHI] = 0; eieio();
1165 if (!on) {
1166 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1167 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1168 } else {
1169 par->cmap_regs[PIDXLO] = CURSXHI; eieio();
1170 par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
1171 par->cmap_regs[PIDXLO] = CURSXLO; eieio();
1172 par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1173 par->cmap_regs[PIDXLO] = CURSYHI; eieio();
1174 par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
1175 par->cmap_regs[PIDXLO] = CURSYLO; eieio();
1176 par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1177 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1178 par->cmap_regs[PIDXDATA] = 0x02; eieio();
1179 }
1180 } else {
1181 if (!on) {
1182 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1183 par->cmap_regs[TVPIDATA] = 0x00; eieio();
1184 } else {
1185 __u16 x = d->dx + 0x40, y = d->dy + 0x40;
1186
1187 par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
1188 par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
1189 par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
1190 par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
1191 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1192 par->cmap_regs[TVPIDATA] = 0x02; eieio();
1193 }
1194 }
1195 }
1196
1197 static int
1198 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1199 {
1200 struct imstt_par *par = info->par;
1201 u32 flags = cursor->set, fg, bg, xx, yy;
1202
1203 if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1204 return 1;
1205
1206 imstt_set_cursor(info, cursor, 0);
1207
1208 if (flags & FB_CUR_SETPOS) {
1209 xx = cursor->image.dx - info->var.xoffset;
1210 yy = cursor->image.dy - info->var.yoffset;
1211 }
1212
1213 if (flags & FB_CUR_SETSIZE) {
1214 }
1215
1216 if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1217 int fg_idx = cursor->image.fg_color;
1218 int width = (cursor->image.width+7)/8;
1219 u8 *dat = (u8 *) cursor->image.data;
1220 u8 *dst = (u8 *) cursor->dest;
1221 u8 *msk = (u8 *) cursor->mask;
1222
1223 switch (cursor->rop) {
1224 case ROP_XOR:
1225 for (i = 0; i < cursor->image.height; i++) {
1226 for (j = 0; j < width; j++) {
1227 d_idx = i * MAX_CURS/8 + j;
1228 data[d_idx] = byte_rev[dat[s_idx] ^
1229 dst[s_idx]];
1230 mask[d_idx] = byte_rev[msk[s_idx]];
1231 s_idx++;
1232 }
1233 }
1234 break;
1235 case ROP_COPY:
1236 default:
1237 for (i = 0; i < cursor->image.height; i++) {
1238 for (j = 0; j < width; j++) {
1239 d_idx = i * MAX_CURS/8 + j;
1240 data[d_idx] = byte_rev[dat[s_idx]];
1241 mask[d_idx] = byte_rev[msk[s_idx]];
1242 s_idx++;
1243 }
1244 }
1245 break;
1246 }
1247
1248 fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1249 ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1250 ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1251
1252 imsttfb_load_cursor_image(par, xx, yy, fgc);
1253 }
1254 if (cursor->enable)
1255 imstt_set_cursor(info, cursor, 1);
1256 return 0;
1257 }
1258 #endif
1259
1260 #define FBIMSTT_SETREG 0x545401
1261 #define FBIMSTT_GETREG 0x545402
1262 #define FBIMSTT_SETCMAPREG 0x545403
1263 #define FBIMSTT_GETCMAPREG 0x545404
1264 #define FBIMSTT_SETIDXREG 0x545405
1265 #define FBIMSTT_GETIDXREG 0x545406
1266
1267 static int
imsttfb_ioctl(struct fb_info * info,u_int cmd,u_long arg)1268 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1269 {
1270 struct imstt_par *par = info->par;
1271 void __user *argp = (void __user *)arg;
1272 __u32 reg[2];
1273 __u8 idx[2];
1274
1275 switch (cmd) {
1276 case FBIMSTT_SETREG:
1277 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1278 return -EFAULT;
1279 write_reg_le32(par->dc_regs, reg[0], reg[1]);
1280 return 0;
1281 case FBIMSTT_GETREG:
1282 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1283 return -EFAULT;
1284 reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1285 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1286 return -EFAULT;
1287 return 0;
1288 case FBIMSTT_SETCMAPREG:
1289 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1290 return -EFAULT;
1291 write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1292 return 0;
1293 case FBIMSTT_GETCMAPREG:
1294 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1295 return -EFAULT;
1296 reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1297 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1298 return -EFAULT;
1299 return 0;
1300 case FBIMSTT_SETIDXREG:
1301 if (copy_from_user(idx, argp, 2))
1302 return -EFAULT;
1303 par->cmap_regs[PIDXHI] = 0; eieio();
1304 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1305 par->cmap_regs[PIDXDATA] = idx[1]; eieio();
1306 return 0;
1307 case FBIMSTT_GETIDXREG:
1308 if (copy_from_user(idx, argp, 1))
1309 return -EFAULT;
1310 par->cmap_regs[PIDXHI] = 0; eieio();
1311 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1312 idx[1] = par->cmap_regs[PIDXDATA];
1313 if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1314 return -EFAULT;
1315 return 0;
1316 default:
1317 return -ENOIOCTLCMD;
1318 }
1319 }
1320
1321 static const struct pci_device_id imsttfb_pci_tbl[] = {
1322 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1323 PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1324 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1325 PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1326 { 0, }
1327 };
1328
1329 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1330
1331 static struct pci_driver imsttfb_pci_driver = {
1332 .name = "imsttfb",
1333 .id_table = imsttfb_pci_tbl,
1334 .probe = imsttfb_probe,
1335 .remove = imsttfb_remove,
1336 };
1337
1338 static struct fb_ops imsttfb_ops = {
1339 .owner = THIS_MODULE,
1340 .fb_check_var = imsttfb_check_var,
1341 .fb_set_par = imsttfb_set_par,
1342 .fb_setcolreg = imsttfb_setcolreg,
1343 .fb_pan_display = imsttfb_pan_display,
1344 .fb_blank = imsttfb_blank,
1345 .fb_fillrect = imsttfb_fillrect,
1346 .fb_copyarea = imsttfb_copyarea,
1347 .fb_imageblit = cfb_imageblit,
1348 .fb_ioctl = imsttfb_ioctl,
1349 };
1350
init_imstt(struct fb_info * info)1351 static void init_imstt(struct fb_info *info)
1352 {
1353 struct imstt_par *par = info->par;
1354 __u32 i, tmp, *ip, *end;
1355
1356 tmp = read_reg_le32(par->dc_regs, PRC);
1357 if (par->ramdac == IBM)
1358 info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1359 else
1360 info->fix.smem_len = 0x800000;
1361
1362 ip = (__u32 *)info->screen_base;
1363 end = (__u32 *)(info->screen_base + info->fix.smem_len);
1364 while (ip < end)
1365 *ip++ = 0;
1366
1367 /* initialize the card */
1368 tmp = read_reg_le32(par->dc_regs, STGCTL);
1369 write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1370 write_reg_le32(par->dc_regs, SSR, 0);
1371
1372 /* set default values for DAC registers */
1373 if (par->ramdac == IBM) {
1374 par->cmap_regs[PPMASK] = 0xff;
1375 eieio();
1376 par->cmap_regs[PIDXHI] = 0;
1377 eieio();
1378 for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1379 par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1380 eieio();
1381 par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1382 eieio();
1383 }
1384 } else {
1385 for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1386 par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1387 eieio();
1388 par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1389 eieio();
1390 }
1391 }
1392
1393 #if USE_NV_MODES && defined(CONFIG_PPC32)
1394 {
1395 int vmode = init_vmode, cmode = init_cmode;
1396
1397 if (vmode == -1) {
1398 vmode = nvram_read_byte(NV_VMODE);
1399 if (vmode <= 0 || vmode > VMODE_MAX)
1400 vmode = VMODE_640_480_67;
1401 }
1402 if (cmode == -1) {
1403 cmode = nvram_read_byte(NV_CMODE);
1404 if (cmode < CMODE_8 || cmode > CMODE_32)
1405 cmode = CMODE_8;
1406 }
1407 if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1408 info->var.xres = info->var.xres_virtual = INIT_XRES;
1409 info->var.yres = info->var.yres_virtual = INIT_YRES;
1410 info->var.bits_per_pixel = INIT_BPP;
1411 }
1412 }
1413 #else
1414 info->var.xres = info->var.xres_virtual = INIT_XRES;
1415 info->var.yres = info->var.yres_virtual = INIT_YRES;
1416 info->var.bits_per_pixel = INIT_BPP;
1417 #endif
1418
1419 if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1420 || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1421 printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1422 framebuffer_release(info);
1423 return;
1424 }
1425
1426 sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1427 info->fix.mmio_len = 0x1000;
1428 info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1429 info->fix.type = FB_TYPE_PACKED_PIXELS;
1430 info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1431 : FB_VISUAL_DIRECTCOLOR;
1432 info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1433 info->fix.xpanstep = 8;
1434 info->fix.ypanstep = 1;
1435 info->fix.ywrapstep = 0;
1436
1437 info->var.accel_flags = FB_ACCELF_TEXT;
1438
1439 // if (par->ramdac == IBM)
1440 // imstt_cursor_init(info);
1441 if (info->var.green.length == 6)
1442 set_565(par);
1443 else
1444 set_555(par);
1445 set_imstt_regvals(info, info->var.bits_per_pixel);
1446
1447 info->var.pixclock = 1000000 / getclkMHz(par);
1448
1449 info->fbops = &imsttfb_ops;
1450 info->flags = FBINFO_DEFAULT |
1451 FBINFO_HWACCEL_COPYAREA |
1452 FBINFO_HWACCEL_FILLRECT |
1453 FBINFO_HWACCEL_YPAN;
1454
1455 fb_alloc_cmap(&info->cmap, 0, 0);
1456
1457 if (register_framebuffer(info) < 0) {
1458 framebuffer_release(info);
1459 return;
1460 }
1461
1462 tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1463 fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1464 info->fix.id, info->fix.smem_len >> 20, tmp);
1465 }
1466
imsttfb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1467 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1468 {
1469 unsigned long addr, size;
1470 struct imstt_par *par;
1471 struct fb_info *info;
1472 struct device_node *dp;
1473
1474 dp = pci_device_to_OF_node(pdev);
1475 if(dp)
1476 printk(KERN_INFO "%s: OF name %s\n",__func__, dp->name);
1477 else if (IS_ENABLED(CONFIG_OF))
1478 printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1479
1480 info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1481
1482 if (!info) {
1483 printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1484 return -ENOMEM;
1485 }
1486
1487 par = info->par;
1488
1489 addr = pci_resource_start (pdev, 0);
1490 size = pci_resource_len (pdev, 0);
1491
1492 if (!request_mem_region(addr, size, "imsttfb")) {
1493 printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1494 framebuffer_release(info);
1495 return -ENODEV;
1496 }
1497
1498 switch (pdev->device) {
1499 case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1500 par->ramdac = IBM;
1501 if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
1502 (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
1503 par->ramdac = TVP;
1504 break;
1505 case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
1506 par->ramdac = TVP;
1507 break;
1508 default:
1509 printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1510 "contact maintainer.\n", pdev->device);
1511 release_mem_region(addr, size);
1512 framebuffer_release(info);
1513 return -ENODEV;
1514 }
1515
1516 info->fix.smem_start = addr;
1517 info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1518 0x400000 : 0x800000);
1519 info->fix.mmio_start = addr + 0x800000;
1520 par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1521 par->cmap_regs_phys = addr + 0x840000;
1522 par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1523 info->pseudo_palette = par->palette;
1524 init_imstt(info);
1525
1526 pci_set_drvdata(pdev, info);
1527 return 0;
1528 }
1529
imsttfb_remove(struct pci_dev * pdev)1530 static void imsttfb_remove(struct pci_dev *pdev)
1531 {
1532 struct fb_info *info = pci_get_drvdata(pdev);
1533 struct imstt_par *par = info->par;
1534 int size = pci_resource_len(pdev, 0);
1535
1536 unregister_framebuffer(info);
1537 iounmap(par->cmap_regs);
1538 iounmap(par->dc_regs);
1539 iounmap(info->screen_base);
1540 release_mem_region(info->fix.smem_start, size);
1541 framebuffer_release(info);
1542 }
1543
1544 #ifndef MODULE
1545 static int __init
imsttfb_setup(char * options)1546 imsttfb_setup(char *options)
1547 {
1548 char *this_opt;
1549
1550 if (!options || !*options)
1551 return 0;
1552
1553 while ((this_opt = strsep(&options, ",")) != NULL) {
1554 if (!strncmp(this_opt, "font:", 5)) {
1555 char *p;
1556 int i;
1557
1558 p = this_opt + 5;
1559 for (i = 0; i < sizeof(fontname) - 1; i++)
1560 if (!*p || *p == ' ' || *p == ',')
1561 break;
1562 memcpy(fontname, this_opt + 5, i);
1563 fontname[i] = 0;
1564 } else if (!strncmp(this_opt, "inverse", 7)) {
1565 inverse = 1;
1566 fb_invert_cmaps();
1567 }
1568 #if defined(CONFIG_PPC)
1569 else if (!strncmp(this_opt, "vmode:", 6)) {
1570 int vmode = simple_strtoul(this_opt+6, NULL, 0);
1571 if (vmode > 0 && vmode <= VMODE_MAX)
1572 init_vmode = vmode;
1573 } else if (!strncmp(this_opt, "cmode:", 6)) {
1574 int cmode = simple_strtoul(this_opt+6, NULL, 0);
1575 switch (cmode) {
1576 case CMODE_8:
1577 case 8:
1578 init_cmode = CMODE_8;
1579 break;
1580 case CMODE_16:
1581 case 15:
1582 case 16:
1583 init_cmode = CMODE_16;
1584 break;
1585 case CMODE_32:
1586 case 24:
1587 case 32:
1588 init_cmode = CMODE_32;
1589 break;
1590 }
1591 }
1592 #endif
1593 }
1594 return 0;
1595 }
1596
1597 #endif /* MODULE */
1598
imsttfb_init(void)1599 static int __init imsttfb_init(void)
1600 {
1601 #ifndef MODULE
1602 char *option = NULL;
1603
1604 if (fb_get_options("imsttfb", &option))
1605 return -ENODEV;
1606
1607 imsttfb_setup(option);
1608 #endif
1609 return pci_register_driver(&imsttfb_pci_driver);
1610 }
1611
imsttfb_exit(void)1612 static void __exit imsttfb_exit(void)
1613 {
1614 pci_unregister_driver(&imsttfb_pci_driver);
1615 }
1616
1617 MODULE_LICENSE("GPL");
1618
1619 module_init(imsttfb_init);
1620 module_exit(imsttfb_exit);
1621
1622