1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4 *
5 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7 *
8 * Ani Joshi / Jeff Garzik
9 * - Code cleanup
10 *
11 * Michel Danzer <michdaen@iiic.ethz.ch>
12 * - 15/16 bit cleanup
13 * - fix panning
14 *
15 * Benjamin Herrenschmidt
16 * - pmac-specific PM stuff
17 * - various fixes & cleanups
18 *
19 * Andreas Hundt <andi@convergence.de>
20 * - FB_ACTIVATE fixes
21 *
22 * Paul Mackerras <paulus@samba.org>
23 * - Convert to new framebuffer API,
24 * fix colormap setting at 16 bits/pixel (565)
25 *
26 * Paul Mundt
27 * - PCI hotplug
28 *
29 * Jon Smirl <jonsmirl@yahoo.com>
30 * - PCI ID update
31 * - replace ROM BIOS search
32 *
33 * Based off of Geert's atyfb.c and vfb.c.
34 *
35 * TODO:
36 * - monitor sensing (DDC)
37 * - virtual display
38 * - other platform support (only ppc/x86 supported)
39 * - hardware cursor support
40 *
41 * Please cc: your patches to brad@neruo.com.
42 */
43
44 /*
45 * A special note of gratitude to ATI's devrel for providing documentation,
46 * example code and hardware. Thanks Nitya. -atong and brad
47 */
48
49
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include "../macmodes.h"
73 #endif
74
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82
83 #include <video/aty128.h>
84
85 /* Debug flag */
86 #undef DEBUG
87
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 640, 480, 640, 480, 0, 0, 8, 0,
100 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 0, FB_VMODE_NONINTERLACED
103 };
104
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 1024, 768, 1024, 768, 0, 0, 8, 0,
111 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 .refresh = 60,
122 .xres = 640,
123 .yres = 480,
124 .pixclock = 39722,
125 .left_margin = 48,
126 .right_margin = 16,
127 .upper_margin = 33,
128 .lower_margin = 10,
129 .hsync_len = 96,
130 .vsync_len = 2,
131 .sync = 0,
132 .vmode = FB_VMODE_NONINTERLACED
133 };
134
135 /* Chip generations */
136 enum {
137 rage_128,
138 rage_128_pci,
139 rage_128_pro,
140 rage_128_pro_pci,
141 rage_M3,
142 rage_M3_pci,
143 rage_M4,
144 rage_128_ultra,
145 };
146
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 "AGP",
150 "PCI",
151 "PRO AGP",
152 "PRO PCI",
153 "M3 AGP",
154 "M3 PCI",
155 "M4 AGP",
156 "Ultra AGP",
157 };
158
159 /*
160 * PCI driver prototypes
161 */
162 static int aty128_probe(struct pci_dev *pdev,
163 const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
166 static int aty128_pci_resume(struct pci_dev *pdev);
167 static int aty128_do_resume(struct pci_dev *pdev);
168
169 /* supported Rage128 chipsets */
170 static const struct pci_device_id aty128_pci_tbl[] = {
171 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
172 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
173 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
174 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 { 0, }
266 };
267
268 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
269
270 static struct pci_driver aty128fb_driver = {
271 .name = "aty128fb",
272 .id_table = aty128_pci_tbl,
273 .probe = aty128_probe,
274 .remove = aty128_remove,
275 .suspend = aty128_pci_suspend,
276 .resume = aty128_pci_resume,
277 };
278
279 /* packed BIOS settings */
280 #ifndef CONFIG_PPC
281 typedef struct {
282 u8 clock_chip_type;
283 u8 struct_size;
284 u8 accelerator_entry;
285 u8 VGA_entry;
286 u16 VGA_table_offset;
287 u16 POST_table_offset;
288 u16 XCLK;
289 u16 MCLK;
290 u8 num_PLL_blocks;
291 u8 size_PLL_blocks;
292 u16 PCLK_ref_freq;
293 u16 PCLK_ref_divider;
294 u32 PCLK_min_freq;
295 u32 PCLK_max_freq;
296 u16 MCLK_ref_freq;
297 u16 MCLK_ref_divider;
298 u32 MCLK_min_freq;
299 u32 MCLK_max_freq;
300 u16 XCLK_ref_freq;
301 u16 XCLK_ref_divider;
302 u32 XCLK_min_freq;
303 u32 XCLK_max_freq;
304 } __attribute__ ((packed)) PLL_BLOCK;
305 #endif /* !CONFIG_PPC */
306
307 /* onboard memory information */
308 struct aty128_meminfo {
309 u8 ML;
310 u8 MB;
311 u8 Trcd;
312 u8 Trp;
313 u8 Twr;
314 u8 CL;
315 u8 Tr2w;
316 u8 LoopLatency;
317 u8 DspOn;
318 u8 Rloop;
319 const char *name;
320 };
321
322 /* various memory configurations */
323 static const struct aty128_meminfo sdr_128 = {
324 .ML = 4,
325 .MB = 4,
326 .Trcd = 3,
327 .Trp = 3,
328 .Twr = 1,
329 .CL = 3,
330 .Tr2w = 1,
331 .LoopLatency = 16,
332 .DspOn = 30,
333 .Rloop = 16,
334 .name = "128-bit SDR SGRAM (1:1)",
335 };
336
337 static const struct aty128_meminfo sdr_64 = {
338 .ML = 4,
339 .MB = 8,
340 .Trcd = 3,
341 .Trp = 3,
342 .Twr = 1,
343 .CL = 3,
344 .Tr2w = 1,
345 .LoopLatency = 17,
346 .DspOn = 46,
347 .Rloop = 17,
348 .name = "64-bit SDR SGRAM (1:1)",
349 };
350
351 static const struct aty128_meminfo sdr_sgram = {
352 .ML = 4,
353 .MB = 4,
354 .Trcd = 1,
355 .Trp = 2,
356 .Twr = 1,
357 .CL = 2,
358 .Tr2w = 1,
359 .LoopLatency = 16,
360 .DspOn = 24,
361 .Rloop = 16,
362 .name = "64-bit SDR SGRAM (2:1)",
363 };
364
365 static const struct aty128_meminfo ddr_sgram = {
366 .ML = 4,
367 .MB = 4,
368 .Trcd = 3,
369 .Trp = 3,
370 .Twr = 2,
371 .CL = 3,
372 .Tr2w = 1,
373 .LoopLatency = 16,
374 .DspOn = 31,
375 .Rloop = 16,
376 .name = "64-bit DDR SGRAM",
377 };
378
379 static const struct fb_fix_screeninfo aty128fb_fix = {
380 .id = "ATY Rage128",
381 .type = FB_TYPE_PACKED_PIXELS,
382 .visual = FB_VISUAL_PSEUDOCOLOR,
383 .xpanstep = 8,
384 .ypanstep = 1,
385 .mmio_len = 0x2000,
386 .accel = FB_ACCEL_ATI_RAGE128,
387 };
388
389 static char *mode_option = NULL;
390
391 #ifdef CONFIG_PPC_PMAC
392 static int default_vmode = VMODE_1024_768_60;
393 static int default_cmode = CMODE_8;
394 #endif
395
396 static int default_crt_on = 0;
397 static int default_lcd_on = 1;
398 static bool mtrr = true;
399
400 #ifdef CONFIG_FB_ATY128_BACKLIGHT
401 #ifdef CONFIG_PMAC_BACKLIGHT
402 static int backlight = 1;
403 #else
404 static int backlight = 0;
405 #endif
406 #endif
407
408 /* PLL constants */
409 struct aty128_constants {
410 u32 ref_clk;
411 u32 ppll_min;
412 u32 ppll_max;
413 u32 ref_divider;
414 u32 xclk;
415 u32 fifo_width;
416 u32 fifo_depth;
417 };
418
419 struct aty128_crtc {
420 u32 gen_cntl;
421 u32 h_total, h_sync_strt_wid;
422 u32 v_total, v_sync_strt_wid;
423 u32 pitch;
424 u32 offset, offset_cntl;
425 u32 xoffset, yoffset;
426 u32 vxres, vyres;
427 u32 depth, bpp;
428 };
429
430 struct aty128_pll {
431 u32 post_divider;
432 u32 feedback_divider;
433 u32 vclk;
434 };
435
436 struct aty128_ddafifo {
437 u32 dda_config;
438 u32 dda_on_off;
439 };
440
441 /* register values for a specific mode */
442 struct aty128fb_par {
443 struct aty128_crtc crtc;
444 struct aty128_pll pll;
445 struct aty128_ddafifo fifo_reg;
446 u32 accel_flags;
447 struct aty128_constants constants; /* PLL and others */
448 void __iomem *regbase; /* remapped mmio */
449 u32 vram_size; /* onboard video ram */
450 int chip_gen;
451 const struct aty128_meminfo *mem; /* onboard mem info */
452 int wc_cookie;
453 int blitter_may_be_busy;
454 int fifo_slots; /* free slots in FIFO (64 max) */
455
456 int crt_on, lcd_on;
457 struct pci_dev *pdev;
458 struct fb_info *next;
459 int asleep;
460 int lock_blank;
461
462 u8 red[32]; /* see aty128fb_setcolreg */
463 u8 green[64];
464 u8 blue[32];
465 u32 pseudo_palette[16]; /* used for TRUECOLOR */
466 };
467
468
469 #define round_div(n, d) ((n+(d/2))/d)
470
471 static int aty128fb_check_var(struct fb_var_screeninfo *var,
472 struct fb_info *info);
473 static int aty128fb_set_par(struct fb_info *info);
474 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
475 u_int transp, struct fb_info *info);
476 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
477 struct fb_info *fb);
478 static int aty128fb_blank(int blank, struct fb_info *fb);
479 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
480 static int aty128fb_sync(struct fb_info *info);
481
482 /*
483 * Internal routines
484 */
485
486 static int aty128_encode_var(struct fb_var_screeninfo *var,
487 const struct aty128fb_par *par);
488 static int aty128_decode_var(struct fb_var_screeninfo *var,
489 struct aty128fb_par *par);
490 static void aty128_timings(struct aty128fb_par *par);
491 static void aty128_init_engine(struct aty128fb_par *par);
492 static void aty128_reset_engine(const struct aty128fb_par *par);
493 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
494 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
495 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
496 static void wait_for_idle(struct aty128fb_par *par);
497 static u32 depth_to_dst(u32 depth);
498
499 #ifdef CONFIG_FB_ATY128_BACKLIGHT
500 static void aty128_bl_set_power(struct fb_info *info, int power);
501 #endif
502
503 #define BIOS_IN8(v) (readb(bios + (v)))
504 #define BIOS_IN16(v) (readb(bios + (v)) | \
505 (readb(bios + (v) + 1) << 8))
506 #define BIOS_IN32(v) (readb(bios + (v)) | \
507 (readb(bios + (v) + 1) << 8) | \
508 (readb(bios + (v) + 2) << 16) | \
509 (readb(bios + (v) + 3) << 24))
510
511
512 static struct fb_ops aty128fb_ops = {
513 .owner = THIS_MODULE,
514 .fb_check_var = aty128fb_check_var,
515 .fb_set_par = aty128fb_set_par,
516 .fb_setcolreg = aty128fb_setcolreg,
517 .fb_pan_display = aty128fb_pan_display,
518 .fb_blank = aty128fb_blank,
519 .fb_ioctl = aty128fb_ioctl,
520 .fb_sync = aty128fb_sync,
521 .fb_fillrect = cfb_fillrect,
522 .fb_copyarea = cfb_copyarea,
523 .fb_imageblit = cfb_imageblit,
524 };
525
526 /*
527 * Functions to read from/write to the mmio registers
528 * - endian conversions may possibly be avoided by
529 * using the other register aperture. TODO.
530 */
_aty_ld_le32(volatile unsigned int regindex,const struct aty128fb_par * par)531 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
532 const struct aty128fb_par *par)
533 {
534 return readl (par->regbase + regindex);
535 }
536
_aty_st_le32(volatile unsigned int regindex,u32 val,const struct aty128fb_par * par)537 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
538 const struct aty128fb_par *par)
539 {
540 writel (val, par->regbase + regindex);
541 }
542
_aty_ld_8(unsigned int regindex,const struct aty128fb_par * par)543 static inline u8 _aty_ld_8(unsigned int regindex,
544 const struct aty128fb_par *par)
545 {
546 return readb (par->regbase + regindex);
547 }
548
_aty_st_8(unsigned int regindex,u8 val,const struct aty128fb_par * par)549 static inline void _aty_st_8(unsigned int regindex, u8 val,
550 const struct aty128fb_par *par)
551 {
552 writeb (val, par->regbase + regindex);
553 }
554
555 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
556 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
557 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
558 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
559
560 /*
561 * Functions to read from/write to the pll registers
562 */
563
564 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
565 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
566
567
_aty_ld_pll(unsigned int pll_index,const struct aty128fb_par * par)568 static u32 _aty_ld_pll(unsigned int pll_index,
569 const struct aty128fb_par *par)
570 {
571 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
572 return aty_ld_le32(CLOCK_CNTL_DATA);
573 }
574
575
_aty_st_pll(unsigned int pll_index,u32 val,const struct aty128fb_par * par)576 static void _aty_st_pll(unsigned int pll_index, u32 val,
577 const struct aty128fb_par *par)
578 {
579 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
580 aty_st_le32(CLOCK_CNTL_DATA, val);
581 }
582
583
584 /* return true when the PLL has completed an atomic update */
aty_pll_readupdate(const struct aty128fb_par * par)585 static int aty_pll_readupdate(const struct aty128fb_par *par)
586 {
587 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
588 }
589
590
aty_pll_wait_readupdate(const struct aty128fb_par * par)591 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
592 {
593 unsigned long timeout = jiffies + HZ/100; // should be more than enough
594 int reset = 1;
595
596 while (time_before(jiffies, timeout))
597 if (aty_pll_readupdate(par)) {
598 reset = 0;
599 break;
600 }
601
602 if (reset) /* reset engine?? */
603 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
604 }
605
606
607 /* tell PLL to update */
aty_pll_writeupdate(const struct aty128fb_par * par)608 static void aty_pll_writeupdate(const struct aty128fb_par *par)
609 {
610 aty_pll_wait_readupdate(par);
611
612 aty_st_pll(PPLL_REF_DIV,
613 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
614 }
615
616
617 /* write to the scratch register to test r/w functionality */
register_test(const struct aty128fb_par * par)618 static int register_test(const struct aty128fb_par *par)
619 {
620 u32 val;
621 int flag = 0;
622
623 val = aty_ld_le32(BIOS_0_SCRATCH);
624
625 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
626 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
627 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
628
629 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
630 flag = 1;
631 }
632
633 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
634 return flag;
635 }
636
637
638 /*
639 * Accelerator engine functions
640 */
do_wait_for_fifo(u16 entries,struct aty128fb_par * par)641 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
642 {
643 int i;
644
645 for (;;) {
646 for (i = 0; i < 2000000; i++) {
647 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
648 if (par->fifo_slots >= entries)
649 return;
650 }
651 aty128_reset_engine(par);
652 }
653 }
654
655
wait_for_idle(struct aty128fb_par * par)656 static void wait_for_idle(struct aty128fb_par *par)
657 {
658 int i;
659
660 do_wait_for_fifo(64, par);
661
662 for (;;) {
663 for (i = 0; i < 2000000; i++) {
664 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
665 aty128_flush_pixel_cache(par);
666 par->blitter_may_be_busy = 0;
667 return;
668 }
669 }
670 aty128_reset_engine(par);
671 }
672 }
673
674
wait_for_fifo(u16 entries,struct aty128fb_par * par)675 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
676 {
677 if (par->fifo_slots < entries)
678 do_wait_for_fifo(64, par);
679 par->fifo_slots -= entries;
680 }
681
682
aty128_flush_pixel_cache(const struct aty128fb_par * par)683 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
684 {
685 int i;
686 u32 tmp;
687
688 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
689 tmp &= ~(0x00ff);
690 tmp |= 0x00ff;
691 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
692
693 for (i = 0; i < 2000000; i++)
694 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
695 break;
696 }
697
698
aty128_reset_engine(const struct aty128fb_par * par)699 static void aty128_reset_engine(const struct aty128fb_par *par)
700 {
701 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
702
703 aty128_flush_pixel_cache(par);
704
705 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
706 mclk_cntl = aty_ld_pll(MCLK_CNTL);
707
708 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
709
710 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
711 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
712 aty_ld_le32(GEN_RESET_CNTL);
713 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
714 aty_ld_le32(GEN_RESET_CNTL);
715
716 aty_st_pll(MCLK_CNTL, mclk_cntl);
717 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
718 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
719
720 /* use old pio mode */
721 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
722
723 DBG("engine reset");
724 }
725
726
aty128_init_engine(struct aty128fb_par * par)727 static void aty128_init_engine(struct aty128fb_par *par)
728 {
729 u32 pitch_value;
730
731 wait_for_idle(par);
732
733 /* 3D scaler not spoken here */
734 wait_for_fifo(1, par);
735 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
736
737 aty128_reset_engine(par);
738
739 pitch_value = par->crtc.pitch;
740 if (par->crtc.bpp == 24) {
741 pitch_value = pitch_value * 3;
742 }
743
744 wait_for_fifo(4, par);
745 /* setup engine offset registers */
746 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
747
748 /* setup engine pitch registers */
749 aty_st_le32(DEFAULT_PITCH, pitch_value);
750
751 /* set the default scissor register to max dimensions */
752 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
753
754 /* set the drawing controls registers */
755 aty_st_le32(DP_GUI_MASTER_CNTL,
756 GMC_SRC_PITCH_OFFSET_DEFAULT |
757 GMC_DST_PITCH_OFFSET_DEFAULT |
758 GMC_SRC_CLIP_DEFAULT |
759 GMC_DST_CLIP_DEFAULT |
760 GMC_BRUSH_SOLIDCOLOR |
761 (depth_to_dst(par->crtc.depth) << 8) |
762 GMC_SRC_DSTCOLOR |
763 GMC_BYTE_ORDER_MSB_TO_LSB |
764 GMC_DP_CONVERSION_TEMP_6500 |
765 ROP3_PATCOPY |
766 GMC_DP_SRC_RECT |
767 GMC_3D_FCN_EN_CLR |
768 GMC_DST_CLR_CMP_FCN_CLEAR |
769 GMC_AUX_CLIP_CLEAR |
770 GMC_WRITE_MASK_SET);
771
772 wait_for_fifo(8, par);
773 /* clear the line drawing registers */
774 aty_st_le32(DST_BRES_ERR, 0);
775 aty_st_le32(DST_BRES_INC, 0);
776 aty_st_le32(DST_BRES_DEC, 0);
777
778 /* set brush color registers */
779 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
780 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
781
782 /* set source color registers */
783 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
784 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
785
786 /* default write mask */
787 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
788
789 /* Wait for all the writes to be completed before returning */
790 wait_for_idle(par);
791 }
792
793
794 /* convert depth values to their register representation */
depth_to_dst(u32 depth)795 static u32 depth_to_dst(u32 depth)
796 {
797 if (depth <= 8)
798 return DST_8BPP;
799 else if (depth <= 15)
800 return DST_15BPP;
801 else if (depth == 16)
802 return DST_16BPP;
803 else if (depth <= 24)
804 return DST_24BPP;
805 else if (depth <= 32)
806 return DST_32BPP;
807
808 return -EINVAL;
809 }
810
811 /*
812 * PLL informations retreival
813 */
814
815
816 #ifndef __sparc__
aty128_map_ROM(const struct aty128fb_par * par,struct pci_dev * dev)817 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
818 struct pci_dev *dev)
819 {
820 u16 dptr;
821 u8 rom_type;
822 void __iomem *bios;
823 size_t rom_size;
824
825 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
826 unsigned int temp;
827 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
828 temp &= 0x00ffffffu;
829 temp |= 0x04 << 24;
830 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
831 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
832
833 bios = pci_map_rom(dev, &rom_size);
834
835 if (!bios) {
836 printk(KERN_ERR "aty128fb: ROM failed to map\n");
837 return NULL;
838 }
839
840 /* Very simple test to make sure it appeared */
841 if (BIOS_IN16(0) != 0xaa55) {
842 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
843 " be 0xaa55\n", BIOS_IN16(0));
844 goto failed;
845 }
846
847 /* Look for the PCI data to check the ROM type */
848 dptr = BIOS_IN16(0x18);
849
850 /* Check the PCI data signature. If it's wrong, we still assume a normal
851 * x86 ROM for now, until I've verified this works everywhere.
852 * The goal here is more to phase out Open Firmware images.
853 *
854 * Currently, we only look at the first PCI data, we could iteratre and
855 * deal with them all, and we should use fb_bios_start relative to start
856 * of image and not relative start of ROM, but so far, I never found a
857 * dual-image ATI card.
858 *
859 * typedef struct {
860 * u32 signature; + 0x00
861 * u16 vendor; + 0x04
862 * u16 device; + 0x06
863 * u16 reserved_1; + 0x08
864 * u16 dlen; + 0x0a
865 * u8 drevision; + 0x0c
866 * u8 class_hi; + 0x0d
867 * u16 class_lo; + 0x0e
868 * u16 ilen; + 0x10
869 * u16 irevision; + 0x12
870 * u8 type; + 0x14
871 * u8 indicator; + 0x15
872 * u16 reserved_2; + 0x16
873 * } pci_data_t;
874 */
875 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
876 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
877 BIOS_IN32(dptr));
878 goto anyway;
879 }
880 rom_type = BIOS_IN8(dptr + 0x14);
881 switch(rom_type) {
882 case 0:
883 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
884 break;
885 case 1:
886 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
887 goto failed;
888 case 2:
889 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
890 goto failed;
891 default:
892 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
893 rom_type);
894 goto failed;
895 }
896 anyway:
897 return bios;
898
899 failed:
900 pci_unmap_rom(dev, bios);
901 return NULL;
902 }
903
aty128_get_pllinfo(struct aty128fb_par * par,unsigned char __iomem * bios)904 static void aty128_get_pllinfo(struct aty128fb_par *par,
905 unsigned char __iomem *bios)
906 {
907 unsigned int bios_hdr;
908 unsigned int bios_pll;
909
910 bios_hdr = BIOS_IN16(0x48);
911 bios_pll = BIOS_IN16(bios_hdr + 0x30);
912
913 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
914 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
915 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
916 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
917 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
918
919 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
920 par->constants.ppll_max, par->constants.ppll_min,
921 par->constants.xclk, par->constants.ref_divider,
922 par->constants.ref_clk);
923
924 }
925
926 #ifdef CONFIG_X86
aty128_find_mem_vbios(struct aty128fb_par * par)927 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
928 {
929 /* I simplified this code as we used to miss the signatures in
930 * a lot of case. It's now closer to XFree, we just don't check
931 * for signatures at all... Something better will have to be done
932 * if we end up having conflicts
933 */
934 u32 segstart;
935 unsigned char __iomem *rom_base = NULL;
936
937 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
938 rom_base = ioremap(segstart, 0x10000);
939 if (rom_base == NULL)
940 return NULL;
941 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
942 break;
943 iounmap(rom_base);
944 rom_base = NULL;
945 }
946 return rom_base;
947 }
948 #endif
949 #endif /* ndef(__sparc__) */
950
951 /* fill in known card constants if pll_block is not available */
aty128_timings(struct aty128fb_par * par)952 static void aty128_timings(struct aty128fb_par *par)
953 {
954 #ifdef CONFIG_PPC
955 /* instead of a table lookup, assume OF has properly
956 * setup the PLL registers and use their values
957 * to set the XCLK values and reference divider values */
958
959 u32 x_mpll_ref_fb_div;
960 u32 xclk_cntl;
961 u32 Nx, M;
962 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
963 #endif
964
965 if (!par->constants.ref_clk)
966 par->constants.ref_clk = 2950;
967
968 #ifdef CONFIG_PPC
969 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
970 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
971 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
972 M = x_mpll_ref_fb_div & 0x0000ff;
973
974 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
975 (M * PostDivSet[xclk_cntl]));
976
977 par->constants.ref_divider =
978 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
979 #endif
980
981 if (!par->constants.ref_divider) {
982 par->constants.ref_divider = 0x3b;
983
984 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
985 aty_pll_writeupdate(par);
986 }
987 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
988 aty_pll_writeupdate(par);
989
990 /* from documentation */
991 if (!par->constants.ppll_min)
992 par->constants.ppll_min = 12500;
993 if (!par->constants.ppll_max)
994 par->constants.ppll_max = 25000; /* 23000 on some cards? */
995 if (!par->constants.xclk)
996 par->constants.xclk = 0x1d4d; /* same as mclk */
997
998 par->constants.fifo_width = 128;
999 par->constants.fifo_depth = 32;
1000
1001 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1002 case 0:
1003 par->mem = &sdr_128;
1004 break;
1005 case 1:
1006 par->mem = &sdr_sgram;
1007 break;
1008 case 2:
1009 par->mem = &ddr_sgram;
1010 break;
1011 default:
1012 par->mem = &sdr_sgram;
1013 }
1014 }
1015
1016
1017
1018 /*
1019 * CRTC programming
1020 */
1021
1022 /* Program the CRTC registers */
aty128_set_crtc(const struct aty128_crtc * crtc,const struct aty128fb_par * par)1023 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1024 const struct aty128fb_par *par)
1025 {
1026 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1027 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1028 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1029 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1030 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1031 aty_st_le32(CRTC_PITCH, crtc->pitch);
1032 aty_st_le32(CRTC_OFFSET, crtc->offset);
1033 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1034 /* Disable ATOMIC updating. Is this the right place? */
1035 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1036 }
1037
1038
aty128_var_to_crtc(const struct fb_var_screeninfo * var,struct aty128_crtc * crtc,const struct aty128fb_par * par)1039 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1040 struct aty128_crtc *crtc,
1041 const struct aty128fb_par *par)
1042 {
1043 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1044 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1045 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1046 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1047 u32 depth, bytpp;
1048 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1049
1050 /* input */
1051 xres = var->xres;
1052 yres = var->yres;
1053 vxres = var->xres_virtual;
1054 vyres = var->yres_virtual;
1055 xoffset = var->xoffset;
1056 yoffset = var->yoffset;
1057 bpp = var->bits_per_pixel;
1058 left = var->left_margin;
1059 right = var->right_margin;
1060 upper = var->upper_margin;
1061 lower = var->lower_margin;
1062 hslen = var->hsync_len;
1063 vslen = var->vsync_len;
1064 sync = var->sync;
1065 vmode = var->vmode;
1066
1067 if (bpp != 16)
1068 depth = bpp;
1069 else
1070 depth = (var->green.length == 6) ? 16 : 15;
1071
1072 /* check for mode eligibility
1073 * accept only non interlaced modes */
1074 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1075 return -EINVAL;
1076
1077 /* convert (and round up) and validate */
1078 xres = (xres + 7) & ~7;
1079 xoffset = (xoffset + 7) & ~7;
1080
1081 if (vxres < xres + xoffset)
1082 vxres = xres + xoffset;
1083
1084 if (vyres < yres + yoffset)
1085 vyres = yres + yoffset;
1086
1087 /* convert depth into ATI register depth */
1088 dst = depth_to_dst(depth);
1089
1090 if (dst == -EINVAL) {
1091 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1092 return -EINVAL;
1093 }
1094
1095 /* convert register depth to bytes per pixel */
1096 bytpp = mode_bytpp[dst];
1097
1098 /* make sure there is enough video ram for the mode */
1099 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1100 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1101 return -EINVAL;
1102 }
1103
1104 h_disp = (xres >> 3) - 1;
1105 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1106
1107 v_disp = yres - 1;
1108 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1109
1110 /* check to make sure h_total and v_total are in range */
1111 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1112 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1113 return -EINVAL;
1114 }
1115
1116 h_sync_wid = (hslen + 7) >> 3;
1117 if (h_sync_wid == 0)
1118 h_sync_wid = 1;
1119 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1120 h_sync_wid = 0x3f;
1121
1122 h_sync_strt = (h_disp << 3) + right;
1123
1124 v_sync_wid = vslen;
1125 if (v_sync_wid == 0)
1126 v_sync_wid = 1;
1127 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1128 v_sync_wid = 0x1f;
1129
1130 v_sync_strt = v_disp + lower;
1131
1132 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1133 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1134
1135 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1136
1137 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1138
1139 crtc->h_total = h_total | (h_disp << 16);
1140 crtc->v_total = v_total | (v_disp << 16);
1141
1142 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1143 (h_sync_pol << 23);
1144 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1145 (v_sync_pol << 23);
1146
1147 crtc->pitch = vxres >> 3;
1148
1149 crtc->offset = 0;
1150
1151 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1152 crtc->offset_cntl = 0x00010000;
1153 else
1154 crtc->offset_cntl = 0;
1155
1156 crtc->vxres = vxres;
1157 crtc->vyres = vyres;
1158 crtc->xoffset = xoffset;
1159 crtc->yoffset = yoffset;
1160 crtc->depth = depth;
1161 crtc->bpp = bpp;
1162
1163 return 0;
1164 }
1165
1166
aty128_pix_width_to_var(int pix_width,struct fb_var_screeninfo * var)1167 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1168 {
1169
1170 /* fill in pixel info */
1171 var->red.msb_right = 0;
1172 var->green.msb_right = 0;
1173 var->blue.offset = 0;
1174 var->blue.msb_right = 0;
1175 var->transp.offset = 0;
1176 var->transp.length = 0;
1177 var->transp.msb_right = 0;
1178 switch (pix_width) {
1179 case CRTC_PIX_WIDTH_8BPP:
1180 var->bits_per_pixel = 8;
1181 var->red.offset = 0;
1182 var->red.length = 8;
1183 var->green.offset = 0;
1184 var->green.length = 8;
1185 var->blue.length = 8;
1186 break;
1187 case CRTC_PIX_WIDTH_15BPP:
1188 var->bits_per_pixel = 16;
1189 var->red.offset = 10;
1190 var->red.length = 5;
1191 var->green.offset = 5;
1192 var->green.length = 5;
1193 var->blue.length = 5;
1194 break;
1195 case CRTC_PIX_WIDTH_16BPP:
1196 var->bits_per_pixel = 16;
1197 var->red.offset = 11;
1198 var->red.length = 5;
1199 var->green.offset = 5;
1200 var->green.length = 6;
1201 var->blue.length = 5;
1202 break;
1203 case CRTC_PIX_WIDTH_24BPP:
1204 var->bits_per_pixel = 24;
1205 var->red.offset = 16;
1206 var->red.length = 8;
1207 var->green.offset = 8;
1208 var->green.length = 8;
1209 var->blue.length = 8;
1210 break;
1211 case CRTC_PIX_WIDTH_32BPP:
1212 var->bits_per_pixel = 32;
1213 var->red.offset = 16;
1214 var->red.length = 8;
1215 var->green.offset = 8;
1216 var->green.length = 8;
1217 var->blue.length = 8;
1218 var->transp.offset = 24;
1219 var->transp.length = 8;
1220 break;
1221 default:
1222 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1223 return -EINVAL;
1224 }
1225
1226 return 0;
1227 }
1228
1229
aty128_crtc_to_var(const struct aty128_crtc * crtc,struct fb_var_screeninfo * var)1230 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1231 struct fb_var_screeninfo *var)
1232 {
1233 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1234 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1235 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1236 u32 pix_width;
1237
1238 /* fun with masking */
1239 h_total = crtc->h_total & 0x1ff;
1240 h_disp = (crtc->h_total >> 16) & 0xff;
1241 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1242 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1243 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1244 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1245 v_total = crtc->v_total & 0x7ff;
1246 v_disp = (crtc->v_total >> 16) & 0x7ff;
1247 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1248 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1249 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1250 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1251 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1252
1253 /* do conversions */
1254 xres = (h_disp + 1) << 3;
1255 yres = v_disp + 1;
1256 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1257 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1258 hslen = h_sync_wid << 3;
1259 upper = v_total - v_sync_strt - v_sync_wid;
1260 lower = v_sync_strt - v_disp;
1261 vslen = v_sync_wid;
1262 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1263 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1264 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1265
1266 aty128_pix_width_to_var(pix_width, var);
1267
1268 var->xres = xres;
1269 var->yres = yres;
1270 var->xres_virtual = crtc->vxres;
1271 var->yres_virtual = crtc->vyres;
1272 var->xoffset = crtc->xoffset;
1273 var->yoffset = crtc->yoffset;
1274 var->left_margin = left;
1275 var->right_margin = right;
1276 var->upper_margin = upper;
1277 var->lower_margin = lower;
1278 var->hsync_len = hslen;
1279 var->vsync_len = vslen;
1280 var->sync = sync;
1281 var->vmode = FB_VMODE_NONINTERLACED;
1282
1283 return 0;
1284 }
1285
aty128_set_crt_enable(struct aty128fb_par * par,int on)1286 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1287 {
1288 if (on) {
1289 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1290 CRT_CRTC_ON);
1291 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1292 DAC_PALETTE2_SNOOP_EN));
1293 } else
1294 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1295 ~CRT_CRTC_ON);
1296 }
1297
aty128_set_lcd_enable(struct aty128fb_par * par,int on)1298 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1299 {
1300 u32 reg;
1301 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1302 struct fb_info *info = pci_get_drvdata(par->pdev);
1303 #endif
1304
1305 if (on) {
1306 reg = aty_ld_le32(LVDS_GEN_CNTL);
1307 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1308 reg &= ~LVDS_DISPLAY_DIS;
1309 aty_st_le32(LVDS_GEN_CNTL, reg);
1310 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1311 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1312 #endif
1313 } else {
1314 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1315 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1316 #endif
1317 reg = aty_ld_le32(LVDS_GEN_CNTL);
1318 reg |= LVDS_DISPLAY_DIS;
1319 aty_st_le32(LVDS_GEN_CNTL, reg);
1320 mdelay(100);
1321 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1322 aty_st_le32(LVDS_GEN_CNTL, reg);
1323 }
1324 }
1325
aty128_set_pll(struct aty128_pll * pll,const struct aty128fb_par * par)1326 static void aty128_set_pll(struct aty128_pll *pll,
1327 const struct aty128fb_par *par)
1328 {
1329 u32 div3;
1330
1331 unsigned char post_conv[] = /* register values for post dividers */
1332 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1333
1334 /* select PPLL_DIV_3 */
1335 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1336
1337 /* reset PLL */
1338 aty_st_pll(PPLL_CNTL,
1339 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1340
1341 /* write the reference divider */
1342 aty_pll_wait_readupdate(par);
1343 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1344 aty_pll_writeupdate(par);
1345
1346 div3 = aty_ld_pll(PPLL_DIV_3);
1347 div3 &= ~PPLL_FB3_DIV_MASK;
1348 div3 |= pll->feedback_divider;
1349 div3 &= ~PPLL_POST3_DIV_MASK;
1350 div3 |= post_conv[pll->post_divider] << 16;
1351
1352 /* write feedback and post dividers */
1353 aty_pll_wait_readupdate(par);
1354 aty_st_pll(PPLL_DIV_3, div3);
1355 aty_pll_writeupdate(par);
1356
1357 aty_pll_wait_readupdate(par);
1358 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1359 aty_pll_writeupdate(par);
1360
1361 /* clear the reset, just in case */
1362 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1363 }
1364
1365
aty128_var_to_pll(u32 period_in_ps,struct aty128_pll * pll,const struct aty128fb_par * par)1366 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1367 const struct aty128fb_par *par)
1368 {
1369 const struct aty128_constants c = par->constants;
1370 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1371 u32 output_freq;
1372 u32 vclk; /* in .01 MHz */
1373 int i = 0;
1374 u32 n, d;
1375
1376 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1377
1378 /* adjust pixel clock if necessary */
1379 if (vclk > c.ppll_max)
1380 vclk = c.ppll_max;
1381 if (vclk * 12 < c.ppll_min)
1382 vclk = c.ppll_min/12;
1383
1384 /* now, find an acceptable divider */
1385 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1386 output_freq = post_dividers[i] * vclk;
1387 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1388 pll->post_divider = post_dividers[i];
1389 break;
1390 }
1391 }
1392
1393 if (i == ARRAY_SIZE(post_dividers))
1394 return -EINVAL;
1395
1396 /* calculate feedback divider */
1397 n = c.ref_divider * output_freq;
1398 d = c.ref_clk;
1399
1400 pll->feedback_divider = round_div(n, d);
1401 pll->vclk = vclk;
1402
1403 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1404 "vclk_per: %d\n", pll->post_divider,
1405 pll->feedback_divider, vclk, output_freq,
1406 c.ref_divider, period_in_ps);
1407
1408 return 0;
1409 }
1410
1411
aty128_pll_to_var(const struct aty128_pll * pll,struct fb_var_screeninfo * var)1412 static int aty128_pll_to_var(const struct aty128_pll *pll,
1413 struct fb_var_screeninfo *var)
1414 {
1415 var->pixclock = 100000000 / pll->vclk;
1416
1417 return 0;
1418 }
1419
1420
aty128_set_fifo(const struct aty128_ddafifo * dsp,const struct aty128fb_par * par)1421 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1422 const struct aty128fb_par *par)
1423 {
1424 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1425 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1426 }
1427
1428
aty128_ddafifo(struct aty128_ddafifo * dsp,const struct aty128_pll * pll,u32 depth,const struct aty128fb_par * par)1429 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1430 const struct aty128_pll *pll,
1431 u32 depth,
1432 const struct aty128fb_par *par)
1433 {
1434 const struct aty128_meminfo *m = par->mem;
1435 u32 xclk = par->constants.xclk;
1436 u32 fifo_width = par->constants.fifo_width;
1437 u32 fifo_depth = par->constants.fifo_depth;
1438 s32 x, b, p, ron, roff;
1439 u32 n, d, bpp;
1440
1441 /* round up to multiple of 8 */
1442 bpp = (depth+7) & ~7;
1443
1444 n = xclk * fifo_width;
1445 d = pll->vclk * bpp;
1446 x = round_div(n, d);
1447
1448 ron = 4 * m->MB +
1449 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1450 2 * m->Trp +
1451 m->Twr +
1452 m->CL +
1453 m->Tr2w +
1454 x;
1455
1456 DBG("x %x\n", x);
1457
1458 b = 0;
1459 while (x) {
1460 x >>= 1;
1461 b++;
1462 }
1463 p = b + 1;
1464
1465 ron <<= (11 - p);
1466
1467 n <<= (11 - p);
1468 x = round_div(n, d);
1469 roff = x * (fifo_depth - 4);
1470
1471 if ((ron + m->Rloop) >= roff) {
1472 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1473 return -EINVAL;
1474 }
1475
1476 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1477 p, m->Rloop, x, ron, roff);
1478
1479 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1480 dsp->dda_on_off = ron << 16 | roff;
1481
1482 return 0;
1483 }
1484
1485
1486 /*
1487 * This actually sets the video mode.
1488 */
aty128fb_set_par(struct fb_info * info)1489 static int aty128fb_set_par(struct fb_info *info)
1490 {
1491 struct aty128fb_par *par = info->par;
1492 u32 config;
1493 int err;
1494
1495 if ((err = aty128_decode_var(&info->var, par)) != 0)
1496 return err;
1497
1498 if (par->blitter_may_be_busy)
1499 wait_for_idle(par);
1500
1501 /* clear all registers that may interfere with mode setting */
1502 aty_st_le32(OVR_CLR, 0);
1503 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1504 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1505 aty_st_le32(OV0_SCALE_CNTL, 0);
1506 aty_st_le32(MPP_TB_CONFIG, 0);
1507 aty_st_le32(MPP_GP_CONFIG, 0);
1508 aty_st_le32(SUBPIC_CNTL, 0);
1509 aty_st_le32(VIPH_CONTROL, 0);
1510 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1511 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1512 aty_st_le32(CAP0_TRIG_CNTL, 0);
1513 aty_st_le32(CAP1_TRIG_CNTL, 0);
1514
1515 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1516
1517 aty128_set_crtc(&par->crtc, par);
1518 aty128_set_pll(&par->pll, par);
1519 aty128_set_fifo(&par->fifo_reg, par);
1520
1521 config = aty_ld_le32(CNFG_CNTL) & ~3;
1522
1523 #if defined(__BIG_ENDIAN)
1524 if (par->crtc.bpp == 32)
1525 config |= 2; /* make aperture do 32 bit swapping */
1526 else if (par->crtc.bpp == 16)
1527 config |= 1; /* make aperture do 16 bit swapping */
1528 #endif
1529
1530 aty_st_le32(CNFG_CNTL, config);
1531 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1532
1533 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1534 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1535 : FB_VISUAL_DIRECTCOLOR;
1536
1537 if (par->chip_gen == rage_M3) {
1538 aty128_set_crt_enable(par, par->crt_on);
1539 aty128_set_lcd_enable(par, par->lcd_on);
1540 }
1541 if (par->accel_flags & FB_ACCELF_TEXT)
1542 aty128_init_engine(par);
1543
1544 #ifdef CONFIG_BOOTX_TEXT
1545 btext_update_display(info->fix.smem_start,
1546 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1547 ((par->crtc.v_total>>16) & 0x7ff)+1,
1548 par->crtc.bpp,
1549 par->crtc.vxres*par->crtc.bpp/8);
1550 #endif /* CONFIG_BOOTX_TEXT */
1551
1552 return 0;
1553 }
1554
1555 /*
1556 * encode/decode the User Defined Part of the Display
1557 */
1558
aty128_decode_var(struct fb_var_screeninfo * var,struct aty128fb_par * par)1559 static int aty128_decode_var(struct fb_var_screeninfo *var,
1560 struct aty128fb_par *par)
1561 {
1562 int err;
1563 struct aty128_crtc crtc;
1564 struct aty128_pll pll;
1565 struct aty128_ddafifo fifo_reg;
1566
1567 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1568 return err;
1569
1570 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1571 return err;
1572
1573 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1574 return err;
1575
1576 par->crtc = crtc;
1577 par->pll = pll;
1578 par->fifo_reg = fifo_reg;
1579 par->accel_flags = var->accel_flags;
1580
1581 return 0;
1582 }
1583
1584
aty128_encode_var(struct fb_var_screeninfo * var,const struct aty128fb_par * par)1585 static int aty128_encode_var(struct fb_var_screeninfo *var,
1586 const struct aty128fb_par *par)
1587 {
1588 int err;
1589
1590 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1591 return err;
1592
1593 if ((err = aty128_pll_to_var(&par->pll, var)))
1594 return err;
1595
1596 var->nonstd = 0;
1597 var->activate = 0;
1598
1599 var->height = -1;
1600 var->width = -1;
1601 var->accel_flags = par->accel_flags;
1602
1603 return 0;
1604 }
1605
1606
aty128fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)1607 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1608 struct fb_info *info)
1609 {
1610 struct aty128fb_par par;
1611 int err;
1612
1613 par = *(struct aty128fb_par *)info->par;
1614 if ((err = aty128_decode_var(var, &par)) != 0)
1615 return err;
1616 aty128_encode_var(var, &par);
1617 return 0;
1618 }
1619
1620
1621 /*
1622 * Pan or Wrap the Display
1623 */
aty128fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * fb)1624 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1625 struct fb_info *fb)
1626 {
1627 struct aty128fb_par *par = fb->par;
1628 u32 xoffset, yoffset;
1629 u32 offset;
1630 u32 xres, yres;
1631
1632 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1633 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1634
1635 xoffset = (var->xoffset +7) & ~7;
1636 yoffset = var->yoffset;
1637
1638 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1639 return -EINVAL;
1640
1641 par->crtc.xoffset = xoffset;
1642 par->crtc.yoffset = yoffset;
1643
1644 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1645 & ~7;
1646
1647 if (par->crtc.bpp == 24)
1648 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1649
1650 aty_st_le32(CRTC_OFFSET, offset);
1651
1652 return 0;
1653 }
1654
1655
1656 /*
1657 * Helper function to store a single palette register
1658 */
aty128_st_pal(u_int regno,u_int red,u_int green,u_int blue,struct aty128fb_par * par)1659 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1660 struct aty128fb_par *par)
1661 {
1662 if (par->chip_gen == rage_M3) {
1663 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1664 ~DAC_PALETTE_ACCESS_CNTL);
1665 }
1666
1667 aty_st_8(PALETTE_INDEX, regno);
1668 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1669 }
1670
aty128fb_sync(struct fb_info * info)1671 static int aty128fb_sync(struct fb_info *info)
1672 {
1673 struct aty128fb_par *par = info->par;
1674
1675 if (par->blitter_may_be_busy)
1676 wait_for_idle(par);
1677 return 0;
1678 }
1679
1680 #ifndef MODULE
aty128fb_setup(char * options)1681 static int aty128fb_setup(char *options)
1682 {
1683 char *this_opt;
1684
1685 if (!options || !*options)
1686 return 0;
1687
1688 while ((this_opt = strsep(&options, ",")) != NULL) {
1689 if (!strncmp(this_opt, "lcd:", 4)) {
1690 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1691 continue;
1692 } else if (!strncmp(this_opt, "crt:", 4)) {
1693 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1694 continue;
1695 } else if (!strncmp(this_opt, "backlight:", 10)) {
1696 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1697 backlight = simple_strtoul(this_opt+10, NULL, 0);
1698 #endif
1699 continue;
1700 }
1701 if(!strncmp(this_opt, "nomtrr", 6)) {
1702 mtrr = false;
1703 continue;
1704 }
1705 #ifdef CONFIG_PPC_PMAC
1706 /* vmode and cmode deprecated */
1707 if (!strncmp(this_opt, "vmode:", 6)) {
1708 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1709 if (vmode > 0 && vmode <= VMODE_MAX)
1710 default_vmode = vmode;
1711 continue;
1712 } else if (!strncmp(this_opt, "cmode:", 6)) {
1713 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1714 switch (cmode) {
1715 case 0:
1716 case 8:
1717 default_cmode = CMODE_8;
1718 break;
1719 case 15:
1720 case 16:
1721 default_cmode = CMODE_16;
1722 break;
1723 case 24:
1724 case 32:
1725 default_cmode = CMODE_32;
1726 break;
1727 }
1728 continue;
1729 }
1730 #endif /* CONFIG_PPC_PMAC */
1731 mode_option = this_opt;
1732 }
1733 return 0;
1734 }
1735 #endif /* MODULE */
1736
1737 /* Backlight */
1738 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1739 #define MAX_LEVEL 0xFF
1740
aty128_bl_get_level_brightness(struct aty128fb_par * par,int level)1741 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1742 int level)
1743 {
1744 struct fb_info *info = pci_get_drvdata(par->pdev);
1745 int atylevel;
1746
1747 /* Get and convert the value */
1748 /* No locking of bl_curve since we read a single value */
1749 atylevel = MAX_LEVEL -
1750 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1751
1752 if (atylevel < 0)
1753 atylevel = 0;
1754 else if (atylevel > MAX_LEVEL)
1755 atylevel = MAX_LEVEL;
1756
1757 return atylevel;
1758 }
1759
1760 /* We turn off the LCD completely instead of just dimming the backlight.
1761 * This provides greater power saving and the display is useless without
1762 * backlight anyway
1763 */
1764 #define BACKLIGHT_LVDS_OFF
1765 /* That one prevents proper CRT output with LCD off */
1766 #undef BACKLIGHT_DAC_OFF
1767
aty128_bl_update_status(struct backlight_device * bd)1768 static int aty128_bl_update_status(struct backlight_device *bd)
1769 {
1770 struct aty128fb_par *par = bl_get_data(bd);
1771 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1772 int level;
1773
1774 if (bd->props.power != FB_BLANK_UNBLANK ||
1775 bd->props.fb_blank != FB_BLANK_UNBLANK ||
1776 !par->lcd_on)
1777 level = 0;
1778 else
1779 level = bd->props.brightness;
1780
1781 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1782 if (level > 0) {
1783 reg |= LVDS_DIGION;
1784 if (!(reg & LVDS_ON)) {
1785 reg &= ~LVDS_BLON;
1786 aty_st_le32(LVDS_GEN_CNTL, reg);
1787 aty_ld_le32(LVDS_GEN_CNTL);
1788 mdelay(10);
1789 reg |= LVDS_BLON;
1790 aty_st_le32(LVDS_GEN_CNTL, reg);
1791 }
1792 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1793 reg |= (aty128_bl_get_level_brightness(par, level) <<
1794 LVDS_BL_MOD_LEVEL_SHIFT);
1795 #ifdef BACKLIGHT_LVDS_OFF
1796 reg |= LVDS_ON | LVDS_EN;
1797 reg &= ~LVDS_DISPLAY_DIS;
1798 #endif
1799 aty_st_le32(LVDS_GEN_CNTL, reg);
1800 #ifdef BACKLIGHT_DAC_OFF
1801 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1802 #endif
1803 } else {
1804 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1805 reg |= (aty128_bl_get_level_brightness(par, 0) <<
1806 LVDS_BL_MOD_LEVEL_SHIFT);
1807 #ifdef BACKLIGHT_LVDS_OFF
1808 reg |= LVDS_DISPLAY_DIS;
1809 aty_st_le32(LVDS_GEN_CNTL, reg);
1810 aty_ld_le32(LVDS_GEN_CNTL);
1811 udelay(10);
1812 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1813 #endif
1814 aty_st_le32(LVDS_GEN_CNTL, reg);
1815 #ifdef BACKLIGHT_DAC_OFF
1816 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1817 #endif
1818 }
1819
1820 return 0;
1821 }
1822
1823 static const struct backlight_ops aty128_bl_data = {
1824 .update_status = aty128_bl_update_status,
1825 };
1826
aty128_bl_set_power(struct fb_info * info,int power)1827 static void aty128_bl_set_power(struct fb_info *info, int power)
1828 {
1829 if (info->bl_dev) {
1830 info->bl_dev->props.power = power;
1831 backlight_update_status(info->bl_dev);
1832 }
1833 }
1834
aty128_bl_init(struct aty128fb_par * par)1835 static void aty128_bl_init(struct aty128fb_par *par)
1836 {
1837 struct backlight_properties props;
1838 struct fb_info *info = pci_get_drvdata(par->pdev);
1839 struct backlight_device *bd;
1840 char name[12];
1841
1842 /* Could be extended to Rage128Pro LVDS output too */
1843 if (par->chip_gen != rage_M3)
1844 return;
1845
1846 #ifdef CONFIG_PMAC_BACKLIGHT
1847 if (!pmac_has_backlight_type("ati"))
1848 return;
1849 #endif
1850
1851 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1852
1853 memset(&props, 0, sizeof(struct backlight_properties));
1854 props.type = BACKLIGHT_RAW;
1855 props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1856 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1857 &props);
1858 if (IS_ERR(bd)) {
1859 info->bl_dev = NULL;
1860 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1861 goto error;
1862 }
1863
1864 info->bl_dev = bd;
1865 fb_bl_default_curve(info, 0,
1866 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1867 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1868
1869 bd->props.brightness = bd->props.max_brightness;
1870 bd->props.power = FB_BLANK_UNBLANK;
1871 backlight_update_status(bd);
1872
1873 printk("aty128: Backlight initialized (%s)\n", name);
1874
1875 return;
1876
1877 error:
1878 return;
1879 }
1880
aty128_bl_exit(struct backlight_device * bd)1881 static void aty128_bl_exit(struct backlight_device *bd)
1882 {
1883 backlight_device_unregister(bd);
1884 printk("aty128: Backlight unloaded\n");
1885 }
1886 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1887
1888 /*
1889 * Initialisation
1890 */
1891
1892 #ifdef CONFIG_PPC_PMAC__disabled
aty128_early_resume(void * data)1893 static void aty128_early_resume(void *data)
1894 {
1895 struct aty128fb_par *par = data;
1896
1897 if (!console_trylock())
1898 return;
1899 pci_restore_state(par->pdev);
1900 aty128_do_resume(par->pdev);
1901 console_unlock();
1902 }
1903 #endif /* CONFIG_PPC_PMAC */
1904
aty128_init(struct pci_dev * pdev,const struct pci_device_id * ent)1905 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1906 {
1907 struct fb_info *info = pci_get_drvdata(pdev);
1908 struct aty128fb_par *par = info->par;
1909 struct fb_var_screeninfo var;
1910 char video_card[50];
1911 u8 chip_rev;
1912 u32 dac;
1913
1914 /* Get the chip revision */
1915 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1916
1917 strcpy(video_card, "Rage128 XX ");
1918 video_card[8] = ent->device >> 8;
1919 video_card[9] = ent->device & 0xFF;
1920
1921 /* range check to make sure */
1922 if (ent->driver_data < ARRAY_SIZE(r128_family))
1923 strlcat(video_card, r128_family[ent->driver_data],
1924 sizeof(video_card));
1925
1926 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1927
1928 if (par->vram_size % (1024 * 1024) == 0)
1929 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1930 else
1931 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1932
1933 par->chip_gen = ent->driver_data;
1934
1935 /* fill in info */
1936 info->fbops = &aty128fb_ops;
1937 info->flags = FBINFO_FLAG_DEFAULT;
1938
1939 par->lcd_on = default_lcd_on;
1940 par->crt_on = default_crt_on;
1941
1942 var = default_var;
1943 #ifdef CONFIG_PPC_PMAC
1944 if (machine_is(powermac)) {
1945 /* Indicate sleep capability */
1946 if (par->chip_gen == rage_M3) {
1947 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1948 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1949 * among others we now rely on the PCI core restoring the config space
1950 * for us, which isn't the case with that hack, and that code path causes
1951 * various things to be called with interrupts off while they shouldn't.
1952 * I'm leaving the code in as it can be useful for debugging purposes
1953 */
1954 pmac_set_early_video_resume(aty128_early_resume, par);
1955 #endif
1956 }
1957
1958 /* Find default mode */
1959 if (mode_option) {
1960 if (!mac_find_mode(&var, info, mode_option, 8))
1961 var = default_var;
1962 } else {
1963 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1964 default_vmode = VMODE_1024_768_60;
1965
1966 /* iMacs need that resolution
1967 * PowerMac2,1 first r128 iMacs
1968 * PowerMac2,2 summer 2000 iMacs
1969 * PowerMac4,1 january 2001 iMacs "flower power"
1970 */
1971 if (of_machine_is_compatible("PowerMac2,1") ||
1972 of_machine_is_compatible("PowerMac2,2") ||
1973 of_machine_is_compatible("PowerMac4,1"))
1974 default_vmode = VMODE_1024_768_75;
1975
1976 /* iBook SE */
1977 if (of_machine_is_compatible("PowerBook2,2"))
1978 default_vmode = VMODE_800_600_60;
1979
1980 /* PowerBook Firewire (Pismo), iBook Dual USB */
1981 if (of_machine_is_compatible("PowerBook3,1") ||
1982 of_machine_is_compatible("PowerBook4,1"))
1983 default_vmode = VMODE_1024_768_60;
1984
1985 /* PowerBook Titanium */
1986 if (of_machine_is_compatible("PowerBook3,2"))
1987 default_vmode = VMODE_1152_768_60;
1988
1989 if (default_cmode > 16)
1990 default_cmode = CMODE_32;
1991 else if (default_cmode > 8)
1992 default_cmode = CMODE_16;
1993 else
1994 default_cmode = CMODE_8;
1995
1996 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1997 var = default_var;
1998 }
1999 } else
2000 #endif /* CONFIG_PPC_PMAC */
2001 {
2002 if (mode_option)
2003 if (fb_find_mode(&var, info, mode_option, NULL,
2004 0, &defaultmode, 8) == 0)
2005 var = default_var;
2006 }
2007
2008 var.accel_flags &= ~FB_ACCELF_TEXT;
2009 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2010
2011 if (aty128fb_check_var(&var, info)) {
2012 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2013 return 0;
2014 }
2015
2016 /* setup the DAC the way we like it */
2017 dac = aty_ld_le32(DAC_CNTL);
2018 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2019 dac |= DAC_MASK;
2020 if (par->chip_gen == rage_M3)
2021 dac |= DAC_PALETTE2_SNOOP_EN;
2022 aty_st_le32(DAC_CNTL, dac);
2023
2024 /* turn off bus mastering, just in case */
2025 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2026
2027 info->var = var;
2028 fb_alloc_cmap(&info->cmap, 256, 0);
2029
2030 var.activate = FB_ACTIVATE_NOW;
2031
2032 aty128_init_engine(par);
2033
2034 par->pdev = pdev;
2035 par->asleep = 0;
2036 par->lock_blank = 0;
2037
2038 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2039 if (backlight)
2040 aty128_bl_init(par);
2041 #endif
2042
2043 if (register_framebuffer(info) < 0)
2044 return 0;
2045
2046 fb_info(info, "%s frame buffer device on %s\n",
2047 info->fix.id, video_card);
2048
2049 return 1; /* success! */
2050 }
2051
2052 #ifdef CONFIG_PCI
2053 /* register a card ++ajoshi */
aty128_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2054 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2055 {
2056 unsigned long fb_addr, reg_addr;
2057 struct aty128fb_par *par;
2058 struct fb_info *info;
2059 int err;
2060 #ifndef __sparc__
2061 void __iomem *bios = NULL;
2062 #endif
2063
2064 /* Enable device in PCI config */
2065 if ((err = pci_enable_device(pdev))) {
2066 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2067 err);
2068 return -ENODEV;
2069 }
2070
2071 fb_addr = pci_resource_start(pdev, 0);
2072 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2073 "aty128fb FB")) {
2074 printk(KERN_ERR "aty128fb: cannot reserve frame "
2075 "buffer memory\n");
2076 return -ENODEV;
2077 }
2078
2079 reg_addr = pci_resource_start(pdev, 2);
2080 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2081 "aty128fb MMIO")) {
2082 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2083 goto err_free_fb;
2084 }
2085
2086 /* We have the resources. Now virtualize them */
2087 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2088 if (!info)
2089 goto err_free_mmio;
2090
2091 par = info->par;
2092
2093 info->pseudo_palette = par->pseudo_palette;
2094
2095 /* Virtualize mmio region */
2096 info->fix.mmio_start = reg_addr;
2097 par->regbase = pci_ioremap_bar(pdev, 2);
2098 if (!par->regbase)
2099 goto err_free_info;
2100
2101 /* Grab memory size from the card */
2102 // How does this relate to the resource length from the PCI hardware?
2103 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2104
2105 /* Virtualize the framebuffer */
2106 info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2107 if (!info->screen_base)
2108 goto err_unmap_out;
2109
2110 /* Set up info->fix */
2111 info->fix = aty128fb_fix;
2112 info->fix.smem_start = fb_addr;
2113 info->fix.smem_len = par->vram_size;
2114 info->fix.mmio_start = reg_addr;
2115
2116 /* If we can't test scratch registers, something is seriously wrong */
2117 if (!register_test(par)) {
2118 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2119 goto err_out;
2120 }
2121
2122 #ifndef __sparc__
2123 bios = aty128_map_ROM(par, pdev);
2124 #ifdef CONFIG_X86
2125 if (bios == NULL)
2126 bios = aty128_find_mem_vbios(par);
2127 #endif
2128 if (bios == NULL)
2129 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2130 else {
2131 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2132 aty128_get_pllinfo(par, bios);
2133 pci_unmap_rom(pdev, bios);
2134 }
2135 #endif /* __sparc__ */
2136
2137 aty128_timings(par);
2138 pci_set_drvdata(pdev, info);
2139
2140 if (!aty128_init(pdev, ent))
2141 goto err_out;
2142
2143 if (mtrr)
2144 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2145 par->vram_size);
2146 return 0;
2147
2148 err_out:
2149 iounmap(info->screen_base);
2150 err_unmap_out:
2151 iounmap(par->regbase);
2152 err_free_info:
2153 framebuffer_release(info);
2154 err_free_mmio:
2155 release_mem_region(pci_resource_start(pdev, 2),
2156 pci_resource_len(pdev, 2));
2157 err_free_fb:
2158 release_mem_region(pci_resource_start(pdev, 0),
2159 pci_resource_len(pdev, 0));
2160 return -ENODEV;
2161 }
2162
aty128_remove(struct pci_dev * pdev)2163 static void aty128_remove(struct pci_dev *pdev)
2164 {
2165 struct fb_info *info = pci_get_drvdata(pdev);
2166 struct aty128fb_par *par;
2167
2168 if (!info)
2169 return;
2170
2171 par = info->par;
2172
2173 unregister_framebuffer(info);
2174
2175 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2176 aty128_bl_exit(info->bl_dev);
2177 #endif
2178
2179 arch_phys_wc_del(par->wc_cookie);
2180 iounmap(par->regbase);
2181 iounmap(info->screen_base);
2182
2183 release_mem_region(pci_resource_start(pdev, 0),
2184 pci_resource_len(pdev, 0));
2185 release_mem_region(pci_resource_start(pdev, 2),
2186 pci_resource_len(pdev, 2));
2187 framebuffer_release(info);
2188 }
2189 #endif /* CONFIG_PCI */
2190
2191
2192
2193 /*
2194 * Blank the display.
2195 */
aty128fb_blank(int blank,struct fb_info * fb)2196 static int aty128fb_blank(int blank, struct fb_info *fb)
2197 {
2198 struct aty128fb_par *par = fb->par;
2199 u8 state;
2200
2201 if (par->lock_blank || par->asleep)
2202 return 0;
2203
2204 switch (blank) {
2205 case FB_BLANK_NORMAL:
2206 state = 4;
2207 break;
2208 case FB_BLANK_VSYNC_SUSPEND:
2209 state = 6;
2210 break;
2211 case FB_BLANK_HSYNC_SUSPEND:
2212 state = 5;
2213 break;
2214 case FB_BLANK_POWERDOWN:
2215 state = 7;
2216 break;
2217 case FB_BLANK_UNBLANK:
2218 default:
2219 state = 0;
2220 break;
2221 }
2222 aty_st_8(CRTC_EXT_CNTL+1, state);
2223
2224 if (par->chip_gen == rage_M3) {
2225 aty128_set_crt_enable(par, par->crt_on && !blank);
2226 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2227 }
2228
2229 return 0;
2230 }
2231
2232 /*
2233 * Set a single color register. The values supplied are already
2234 * rounded down to the hardware's capabilities (according to the
2235 * entries in the var structure). Return != 0 for invalid regno.
2236 */
aty128fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)2237 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2238 u_int transp, struct fb_info *info)
2239 {
2240 struct aty128fb_par *par = info->par;
2241
2242 if (regno > 255
2243 || (par->crtc.depth == 16 && regno > 63)
2244 || (par->crtc.depth == 15 && regno > 31))
2245 return 1;
2246
2247 red >>= 8;
2248 green >>= 8;
2249 blue >>= 8;
2250
2251 if (regno < 16) {
2252 int i;
2253 u32 *pal = info->pseudo_palette;
2254
2255 switch (par->crtc.depth) {
2256 case 15:
2257 pal[regno] = (regno << 10) | (regno << 5) | regno;
2258 break;
2259 case 16:
2260 pal[regno] = (regno << 11) | (regno << 6) | regno;
2261 break;
2262 case 24:
2263 pal[regno] = (regno << 16) | (regno << 8) | regno;
2264 break;
2265 case 32:
2266 i = (regno << 8) | regno;
2267 pal[regno] = (i << 16) | i;
2268 break;
2269 }
2270 }
2271
2272 if (par->crtc.depth == 16 && regno > 0) {
2273 /*
2274 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2275 * have 32 slots for R and B values but 64 slots for G values.
2276 * Thus the R and B values go in one slot but the G value
2277 * goes in a different slot, and we have to avoid disturbing
2278 * the other fields in the slots we touch.
2279 */
2280 par->green[regno] = green;
2281 if (regno < 32) {
2282 par->red[regno] = red;
2283 par->blue[regno] = blue;
2284 aty128_st_pal(regno * 8, red, par->green[regno*2],
2285 blue, par);
2286 }
2287 red = par->red[regno/2];
2288 blue = par->blue[regno/2];
2289 regno <<= 2;
2290 } else if (par->crtc.bpp == 16)
2291 regno <<= 3;
2292 aty128_st_pal(regno, red, green, blue, par);
2293
2294 return 0;
2295 }
2296
2297 #define ATY_MIRROR_LCD_ON 0x00000001
2298 #define ATY_MIRROR_CRT_ON 0x00000002
2299
2300 /* out param: u32* backlight value: 0 to 15 */
2301 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2302 /* in param: u32* backlight value: 0 to 15 */
2303 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2304
aty128fb_ioctl(struct fb_info * info,u_int cmd,u_long arg)2305 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2306 {
2307 struct aty128fb_par *par = info->par;
2308 u32 value;
2309 int rc;
2310
2311 switch (cmd) {
2312 case FBIO_ATY128_SET_MIRROR:
2313 if (par->chip_gen != rage_M3)
2314 return -EINVAL;
2315 rc = get_user(value, (__u32 __user *)arg);
2316 if (rc)
2317 return rc;
2318 par->lcd_on = (value & 0x01) != 0;
2319 par->crt_on = (value & 0x02) != 0;
2320 if (!par->crt_on && !par->lcd_on)
2321 par->lcd_on = 1;
2322 aty128_set_crt_enable(par, par->crt_on);
2323 aty128_set_lcd_enable(par, par->lcd_on);
2324 return 0;
2325 case FBIO_ATY128_GET_MIRROR:
2326 if (par->chip_gen != rage_M3)
2327 return -EINVAL;
2328 value = (par->crt_on << 1) | par->lcd_on;
2329 return put_user(value, (__u32 __user *)arg);
2330 }
2331 return -EINVAL;
2332 }
2333
aty128_set_suspend(struct aty128fb_par * par,int suspend)2334 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2335 {
2336 u32 pmgt;
2337 struct pci_dev *pdev = par->pdev;
2338
2339 if (!par->pdev->pm_cap)
2340 return;
2341
2342 /* Set the chip into the appropriate suspend mode (we use D2,
2343 * D3 would require a complete re-initialisation of the chip,
2344 * including PCI config registers, clocks, AGP configuration, ...)
2345 *
2346 * For resume, the core will have already brought us back to D0
2347 */
2348 if (suspend) {
2349 /* Make sure CRTC2 is reset. Remove that the day we decide to
2350 * actually use CRTC2 and replace it with real code for disabling
2351 * the CRTC2 output during sleep
2352 */
2353 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2354 ~(CRTC2_EN));
2355
2356 /* Set the power management mode to be PCI based */
2357 /* Use this magic value for now */
2358 pmgt = 0x0c005407;
2359 aty_st_pll(POWER_MANAGEMENT, pmgt);
2360 (void)aty_ld_pll(POWER_MANAGEMENT);
2361 aty_st_le32(BUS_CNTL1, 0x00000010);
2362 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2363 msleep(100);
2364
2365 /* Switch PCI power management to D2 */
2366 pci_set_power_state(pdev, PCI_D2);
2367 }
2368 }
2369
aty128_pci_suspend(struct pci_dev * pdev,pm_message_t state)2370 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2371 {
2372 struct fb_info *info = pci_get_drvdata(pdev);
2373 struct aty128fb_par *par = info->par;
2374
2375 /* Because we may change PCI D state ourselves, we need to
2376 * first save the config space content so the core can
2377 * restore it properly on resume.
2378 */
2379 pci_save_state(pdev);
2380
2381 /* We don't do anything but D2, for now we return 0, but
2382 * we may want to change that. How do we know if the BIOS
2383 * can properly take care of D3 ? Also, with swsusp, we
2384 * know we'll be rebooted, ...
2385 */
2386 #ifndef CONFIG_PPC_PMAC
2387 /* HACK ALERT ! Once I find a proper way to say to each driver
2388 * individually what will happen with it's PCI slot, I'll change
2389 * that. On laptops, the AGP slot is just unclocked, so D2 is
2390 * expected, while on desktops, the card is powered off
2391 */
2392 return 0;
2393 #endif /* CONFIG_PPC_PMAC */
2394
2395 if (state.event == pdev->dev.power.power_state.event)
2396 return 0;
2397
2398 printk(KERN_DEBUG "aty128fb: suspending...\n");
2399
2400 console_lock();
2401
2402 fb_set_suspend(info, 1);
2403
2404 /* Make sure engine is reset */
2405 wait_for_idle(par);
2406 aty128_reset_engine(par);
2407 wait_for_idle(par);
2408
2409 /* Blank display and LCD */
2410 aty128fb_blank(FB_BLANK_POWERDOWN, info);
2411
2412 /* Sleep */
2413 par->asleep = 1;
2414 par->lock_blank = 1;
2415
2416 #ifdef CONFIG_PPC_PMAC
2417 /* On powermac, we have hooks to properly suspend/resume AGP now,
2418 * use them here. We'll ultimately need some generic support here,
2419 * but the generic code isn't quite ready for that yet
2420 */
2421 pmac_suspend_agp_for_card(pdev);
2422 #endif /* CONFIG_PPC_PMAC */
2423
2424 /* We need a way to make sure the fbdev layer will _not_ touch the
2425 * framebuffer before we put the chip to suspend state. On 2.4, I
2426 * used dummy fb ops, 2.5 need proper support for this at the
2427 * fbdev level
2428 */
2429 if (state.event != PM_EVENT_ON)
2430 aty128_set_suspend(par, 1);
2431
2432 console_unlock();
2433
2434 pdev->dev.power.power_state = state;
2435
2436 return 0;
2437 }
2438
aty128_do_resume(struct pci_dev * pdev)2439 static int aty128_do_resume(struct pci_dev *pdev)
2440 {
2441 struct fb_info *info = pci_get_drvdata(pdev);
2442 struct aty128fb_par *par = info->par;
2443
2444 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2445 return 0;
2446
2447 /* PCI state will have been restored by the core, so
2448 * we should be in D0 now with our config space fully
2449 * restored
2450 */
2451
2452 /* Wakeup chip */
2453 aty128_set_suspend(par, 0);
2454 par->asleep = 0;
2455
2456 /* Restore display & engine */
2457 aty128_reset_engine(par);
2458 wait_for_idle(par);
2459 aty128fb_set_par(info);
2460 fb_pan_display(info, &info->var);
2461 fb_set_cmap(&info->cmap, info);
2462
2463 /* Refresh */
2464 fb_set_suspend(info, 0);
2465
2466 /* Unblank */
2467 par->lock_blank = 0;
2468 aty128fb_blank(0, info);
2469
2470 #ifdef CONFIG_PPC_PMAC
2471 /* On powermac, we have hooks to properly suspend/resume AGP now,
2472 * use them here. We'll ultimately need some generic support here,
2473 * but the generic code isn't quite ready for that yet
2474 */
2475 pmac_resume_agp_for_card(pdev);
2476 #endif /* CONFIG_PPC_PMAC */
2477
2478 pdev->dev.power.power_state = PMSG_ON;
2479
2480 printk(KERN_DEBUG "aty128fb: resumed !\n");
2481
2482 return 0;
2483 }
2484
aty128_pci_resume(struct pci_dev * pdev)2485 static int aty128_pci_resume(struct pci_dev *pdev)
2486 {
2487 int rc;
2488
2489 console_lock();
2490 rc = aty128_do_resume(pdev);
2491 console_unlock();
2492
2493 return rc;
2494 }
2495
2496
aty128fb_init(void)2497 static int aty128fb_init(void)
2498 {
2499 #ifndef MODULE
2500 char *option = NULL;
2501
2502 if (fb_get_options("aty128fb", &option))
2503 return -ENODEV;
2504 aty128fb_setup(option);
2505 #endif
2506
2507 return pci_register_driver(&aty128fb_driver);
2508 }
2509
aty128fb_exit(void)2510 static void __exit aty128fb_exit(void)
2511 {
2512 pci_unregister_driver(&aty128fb_driver);
2513 }
2514
2515 module_init(aty128fb_init);
2516
2517 module_exit(aty128fb_exit);
2518
2519 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2520 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2521 MODULE_LICENSE("GPL");
2522 module_param(mode_option, charp, 0);
2523 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2524 module_param_named(nomtrr, mtrr, invbool, 0);
2525 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2526