1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3 *
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6 *
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
9 *
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
13 *
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
17 *
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
20 *
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
24 *
25 * Paul Mundt
26 * - PCI hotplug
27 *
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
31 *
32 * Based off of Geert's atyfb.c and vfb.c.
33 *
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
39 *
40 * Please cc: your patches to brad@neruo.com.
41 */
42
43 /*
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
46 */
47
48
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/uaccess.h>
59 #include <linux/fb.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/ioport.h>
63 #include <linux/console.h>
64 #include <linux/backlight.h>
65 #include <asm/io.h>
66
67 #ifdef CONFIG_PPC_PMAC
68 #include <asm/machdep.h>
69 #include <asm/pmac_feature.h>
70 #include <asm/prom.h>
71 #include "../macmodes.h"
72 #endif
73
74 #ifdef CONFIG_PMAC_BACKLIGHT
75 #include <asm/backlight.h>
76 #endif
77
78 #ifdef CONFIG_BOOTX_TEXT
79 #include <asm/btext.h>
80 #endif /* CONFIG_BOOTX_TEXT */
81
82 #include <video/aty128.h>
83
84 /* Debug flag */
85 #undef DEBUG
86
87 #ifdef DEBUG
88 #define DBG(fmt, args...) \
89 printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
90 #else
91 #define DBG(fmt, args...)
92 #endif
93
94 #ifndef CONFIG_PPC_PMAC
95 /* default mode */
96 static const struct fb_var_screeninfo default_var = {
97 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
98 640, 480, 640, 480, 0, 0, 8, 0,
99 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
100 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
101 0, FB_VMODE_NONINTERLACED
102 };
103
104 #else /* CONFIG_PPC_PMAC */
105 /* default to 1024x768 at 75Hz on PPC - this will work
106 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
107 static const struct fb_var_screeninfo default_var = {
108 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
109 1024, 768, 1024, 768, 0, 0, 8, 0,
110 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
111 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
112 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
113 FB_VMODE_NONINTERLACED
114 };
115 #endif /* CONFIG_PPC_PMAC */
116
117 /* default modedb mode */
118 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
119 static const struct fb_videomode defaultmode = {
120 .refresh = 60,
121 .xres = 640,
122 .yres = 480,
123 .pixclock = 39722,
124 .left_margin = 48,
125 .right_margin = 16,
126 .upper_margin = 33,
127 .lower_margin = 10,
128 .hsync_len = 96,
129 .vsync_len = 2,
130 .sync = 0,
131 .vmode = FB_VMODE_NONINTERLACED
132 };
133
134 /* Chip generations */
135 enum {
136 rage_128,
137 rage_128_pci,
138 rage_128_pro,
139 rage_128_pro_pci,
140 rage_M3,
141 rage_M3_pci,
142 rage_M4,
143 rage_128_ultra,
144 };
145
146 /* Must match above enum */
147 static char * const r128_family[] = {
148 "AGP",
149 "PCI",
150 "PRO AGP",
151 "PRO PCI",
152 "M3 AGP",
153 "M3 PCI",
154 "M4 AGP",
155 "Ultra AGP",
156 };
157
158 /*
159 * PCI driver prototypes
160 */
161 static int aty128_probe(struct pci_dev *pdev,
162 const struct pci_device_id *ent);
163 static void aty128_remove(struct pci_dev *pdev);
164 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
165 static int aty128_pci_resume(struct pci_dev *pdev);
166 static int aty128_do_resume(struct pci_dev *pdev);
167
168 /* supported Rage128 chipsets */
169 static const struct pci_device_id aty128_pci_tbl[] = {
170 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
171 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
172 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
173 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
174 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
175 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
176 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
178 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
179 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
180 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
181 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
182 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
183 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
184 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
185 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
186 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
187 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
188 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
189 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
190 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
191 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
192 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
193 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
194 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
195 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
196 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
197 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
198 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
200 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
202 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
204 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
206 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
208 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
210 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
211 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
212 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
213 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
214 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
215 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
216 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
217 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
218 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
219 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
220 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
222 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
224 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
225 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
226 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
227 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
228 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
229 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
230 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
231 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
232 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
233 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
234 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
235 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
236 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
238 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
240 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
242 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
244 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
245 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
246 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
247 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
248 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
249 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
250 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
251 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
252 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
253 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
254 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
255 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
256 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
257 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
258 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
259 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
260 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
261 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
262 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
263 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
264 { 0, }
265 };
266
267 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
268
269 static struct pci_driver aty128fb_driver = {
270 .name = "aty128fb",
271 .id_table = aty128_pci_tbl,
272 .probe = aty128_probe,
273 .remove = aty128_remove,
274 .suspend = aty128_pci_suspend,
275 .resume = aty128_pci_resume,
276 };
277
278 /* packed BIOS settings */
279 #ifndef CONFIG_PPC
280 typedef struct {
281 u8 clock_chip_type;
282 u8 struct_size;
283 u8 accelerator_entry;
284 u8 VGA_entry;
285 u16 VGA_table_offset;
286 u16 POST_table_offset;
287 u16 XCLK;
288 u16 MCLK;
289 u8 num_PLL_blocks;
290 u8 size_PLL_blocks;
291 u16 PCLK_ref_freq;
292 u16 PCLK_ref_divider;
293 u32 PCLK_min_freq;
294 u32 PCLK_max_freq;
295 u16 MCLK_ref_freq;
296 u16 MCLK_ref_divider;
297 u32 MCLK_min_freq;
298 u32 MCLK_max_freq;
299 u16 XCLK_ref_freq;
300 u16 XCLK_ref_divider;
301 u32 XCLK_min_freq;
302 u32 XCLK_max_freq;
303 } __attribute__ ((packed)) PLL_BLOCK;
304 #endif /* !CONFIG_PPC */
305
306 /* onboard memory information */
307 struct aty128_meminfo {
308 u8 ML;
309 u8 MB;
310 u8 Trcd;
311 u8 Trp;
312 u8 Twr;
313 u8 CL;
314 u8 Tr2w;
315 u8 LoopLatency;
316 u8 DspOn;
317 u8 Rloop;
318 const char *name;
319 };
320
321 /* various memory configurations */
322 static const struct aty128_meminfo sdr_128 = {
323 .ML = 4,
324 .MB = 4,
325 .Trcd = 3,
326 .Trp = 3,
327 .Twr = 1,
328 .CL = 3,
329 .Tr2w = 1,
330 .LoopLatency = 16,
331 .DspOn = 30,
332 .Rloop = 16,
333 .name = "128-bit SDR SGRAM (1:1)",
334 };
335
336 static const struct aty128_meminfo sdr_64 = {
337 .ML = 4,
338 .MB = 8,
339 .Trcd = 3,
340 .Trp = 3,
341 .Twr = 1,
342 .CL = 3,
343 .Tr2w = 1,
344 .LoopLatency = 17,
345 .DspOn = 46,
346 .Rloop = 17,
347 .name = "64-bit SDR SGRAM (1:1)",
348 };
349
350 static const struct aty128_meminfo sdr_sgram = {
351 .ML = 4,
352 .MB = 4,
353 .Trcd = 1,
354 .Trp = 2,
355 .Twr = 1,
356 .CL = 2,
357 .Tr2w = 1,
358 .LoopLatency = 16,
359 .DspOn = 24,
360 .Rloop = 16,
361 .name = "64-bit SDR SGRAM (2:1)",
362 };
363
364 static const struct aty128_meminfo ddr_sgram = {
365 .ML = 4,
366 .MB = 4,
367 .Trcd = 3,
368 .Trp = 3,
369 .Twr = 2,
370 .CL = 3,
371 .Tr2w = 1,
372 .LoopLatency = 16,
373 .DspOn = 31,
374 .Rloop = 16,
375 .name = "64-bit DDR SGRAM",
376 };
377
378 static const struct fb_fix_screeninfo aty128fb_fix = {
379 .id = "ATY Rage128",
380 .type = FB_TYPE_PACKED_PIXELS,
381 .visual = FB_VISUAL_PSEUDOCOLOR,
382 .xpanstep = 8,
383 .ypanstep = 1,
384 .mmio_len = 0x2000,
385 .accel = FB_ACCEL_ATI_RAGE128,
386 };
387
388 static char *mode_option = NULL;
389
390 #ifdef CONFIG_PPC_PMAC
391 static int default_vmode = VMODE_1024_768_60;
392 static int default_cmode = CMODE_8;
393 #endif
394
395 static int default_crt_on = 0;
396 static int default_lcd_on = 1;
397 static bool mtrr = true;
398
399 #ifdef CONFIG_FB_ATY128_BACKLIGHT
400 #ifdef CONFIG_PMAC_BACKLIGHT
401 static int backlight = 1;
402 #else
403 static int backlight = 0;
404 #endif
405 #endif
406
407 /* PLL constants */
408 struct aty128_constants {
409 u32 ref_clk;
410 u32 ppll_min;
411 u32 ppll_max;
412 u32 ref_divider;
413 u32 xclk;
414 u32 fifo_width;
415 u32 fifo_depth;
416 };
417
418 struct aty128_crtc {
419 u32 gen_cntl;
420 u32 h_total, h_sync_strt_wid;
421 u32 v_total, v_sync_strt_wid;
422 u32 pitch;
423 u32 offset, offset_cntl;
424 u32 xoffset, yoffset;
425 u32 vxres, vyres;
426 u32 depth, bpp;
427 };
428
429 struct aty128_pll {
430 u32 post_divider;
431 u32 feedback_divider;
432 u32 vclk;
433 };
434
435 struct aty128_ddafifo {
436 u32 dda_config;
437 u32 dda_on_off;
438 };
439
440 /* register values for a specific mode */
441 struct aty128fb_par {
442 struct aty128_crtc crtc;
443 struct aty128_pll pll;
444 struct aty128_ddafifo fifo_reg;
445 u32 accel_flags;
446 struct aty128_constants constants; /* PLL and others */
447 void __iomem *regbase; /* remapped mmio */
448 u32 vram_size; /* onboard video ram */
449 int chip_gen;
450 const struct aty128_meminfo *mem; /* onboard mem info */
451 int wc_cookie;
452 int blitter_may_be_busy;
453 int fifo_slots; /* free slots in FIFO (64 max) */
454
455 int crt_on, lcd_on;
456 struct pci_dev *pdev;
457 struct fb_info *next;
458 int asleep;
459 int lock_blank;
460
461 u8 red[32]; /* see aty128fb_setcolreg */
462 u8 green[64];
463 u8 blue[32];
464 u32 pseudo_palette[16]; /* used for TRUECOLOR */
465 };
466
467
468 #define round_div(n, d) ((n+(d/2))/d)
469
470 static int aty128fb_check_var(struct fb_var_screeninfo *var,
471 struct fb_info *info);
472 static int aty128fb_set_par(struct fb_info *info);
473 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
474 u_int transp, struct fb_info *info);
475 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
476 struct fb_info *fb);
477 static int aty128fb_blank(int blank, struct fb_info *fb);
478 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
479 static int aty128fb_sync(struct fb_info *info);
480
481 /*
482 * Internal routines
483 */
484
485 static int aty128_encode_var(struct fb_var_screeninfo *var,
486 const struct aty128fb_par *par);
487 static int aty128_decode_var(struct fb_var_screeninfo *var,
488 struct aty128fb_par *par);
489 #if 0
490 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios);
491 static void __iomem *aty128_map_ROM(struct pci_dev *pdev,
492 const struct aty128fb_par *par);
493 #endif
494 static void aty128_timings(struct aty128fb_par *par);
495 static void aty128_init_engine(struct aty128fb_par *par);
496 static void aty128_reset_engine(const struct aty128fb_par *par);
497 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
498 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
499 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
500 static void wait_for_idle(struct aty128fb_par *par);
501 static u32 depth_to_dst(u32 depth);
502
503 #ifdef CONFIG_FB_ATY128_BACKLIGHT
504 static void aty128_bl_set_power(struct fb_info *info, int power);
505 #endif
506
507 #define BIOS_IN8(v) (readb(bios + (v)))
508 #define BIOS_IN16(v) (readb(bios + (v)) | \
509 (readb(bios + (v) + 1) << 8))
510 #define BIOS_IN32(v) (readb(bios + (v)) | \
511 (readb(bios + (v) + 1) << 8) | \
512 (readb(bios + (v) + 2) << 16) | \
513 (readb(bios + (v) + 3) << 24))
514
515
516 static struct fb_ops aty128fb_ops = {
517 .owner = THIS_MODULE,
518 .fb_check_var = aty128fb_check_var,
519 .fb_set_par = aty128fb_set_par,
520 .fb_setcolreg = aty128fb_setcolreg,
521 .fb_pan_display = aty128fb_pan_display,
522 .fb_blank = aty128fb_blank,
523 .fb_ioctl = aty128fb_ioctl,
524 .fb_sync = aty128fb_sync,
525 .fb_fillrect = cfb_fillrect,
526 .fb_copyarea = cfb_copyarea,
527 .fb_imageblit = cfb_imageblit,
528 };
529
530 /*
531 * Functions to read from/write to the mmio registers
532 * - endian conversions may possibly be avoided by
533 * using the other register aperture. TODO.
534 */
_aty_ld_le32(volatile unsigned int regindex,const struct aty128fb_par * par)535 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
536 const struct aty128fb_par *par)
537 {
538 return readl (par->regbase + regindex);
539 }
540
_aty_st_le32(volatile unsigned int regindex,u32 val,const struct aty128fb_par * par)541 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
542 const struct aty128fb_par *par)
543 {
544 writel (val, par->regbase + regindex);
545 }
546
_aty_ld_8(unsigned int regindex,const struct aty128fb_par * par)547 static inline u8 _aty_ld_8(unsigned int regindex,
548 const struct aty128fb_par *par)
549 {
550 return readb (par->regbase + regindex);
551 }
552
_aty_st_8(unsigned int regindex,u8 val,const struct aty128fb_par * par)553 static inline void _aty_st_8(unsigned int regindex, u8 val,
554 const struct aty128fb_par *par)
555 {
556 writeb (val, par->regbase + regindex);
557 }
558
559 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
560 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
561 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
562 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
563
564 /*
565 * Functions to read from/write to the pll registers
566 */
567
568 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
569 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
570
571
_aty_ld_pll(unsigned int pll_index,const struct aty128fb_par * par)572 static u32 _aty_ld_pll(unsigned int pll_index,
573 const struct aty128fb_par *par)
574 {
575 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
576 return aty_ld_le32(CLOCK_CNTL_DATA);
577 }
578
579
_aty_st_pll(unsigned int pll_index,u32 val,const struct aty128fb_par * par)580 static void _aty_st_pll(unsigned int pll_index, u32 val,
581 const struct aty128fb_par *par)
582 {
583 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
584 aty_st_le32(CLOCK_CNTL_DATA, val);
585 }
586
587
588 /* return true when the PLL has completed an atomic update */
aty_pll_readupdate(const struct aty128fb_par * par)589 static int aty_pll_readupdate(const struct aty128fb_par *par)
590 {
591 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
592 }
593
594
aty_pll_wait_readupdate(const struct aty128fb_par * par)595 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
596 {
597 unsigned long timeout = jiffies + HZ/100; // should be more than enough
598 int reset = 1;
599
600 while (time_before(jiffies, timeout))
601 if (aty_pll_readupdate(par)) {
602 reset = 0;
603 break;
604 }
605
606 if (reset) /* reset engine?? */
607 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
608 }
609
610
611 /* tell PLL to update */
aty_pll_writeupdate(const struct aty128fb_par * par)612 static void aty_pll_writeupdate(const struct aty128fb_par *par)
613 {
614 aty_pll_wait_readupdate(par);
615
616 aty_st_pll(PPLL_REF_DIV,
617 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
618 }
619
620
621 /* write to the scratch register to test r/w functionality */
register_test(const struct aty128fb_par * par)622 static int register_test(const struct aty128fb_par *par)
623 {
624 u32 val;
625 int flag = 0;
626
627 val = aty_ld_le32(BIOS_0_SCRATCH);
628
629 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
630 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
631 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
632
633 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
634 flag = 1;
635 }
636
637 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
638 return flag;
639 }
640
641
642 /*
643 * Accelerator engine functions
644 */
do_wait_for_fifo(u16 entries,struct aty128fb_par * par)645 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
646 {
647 int i;
648
649 for (;;) {
650 for (i = 0; i < 2000000; i++) {
651 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
652 if (par->fifo_slots >= entries)
653 return;
654 }
655 aty128_reset_engine(par);
656 }
657 }
658
659
wait_for_idle(struct aty128fb_par * par)660 static void wait_for_idle(struct aty128fb_par *par)
661 {
662 int i;
663
664 do_wait_for_fifo(64, par);
665
666 for (;;) {
667 for (i = 0; i < 2000000; i++) {
668 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
669 aty128_flush_pixel_cache(par);
670 par->blitter_may_be_busy = 0;
671 return;
672 }
673 }
674 aty128_reset_engine(par);
675 }
676 }
677
678
wait_for_fifo(u16 entries,struct aty128fb_par * par)679 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
680 {
681 if (par->fifo_slots < entries)
682 do_wait_for_fifo(64, par);
683 par->fifo_slots -= entries;
684 }
685
686
aty128_flush_pixel_cache(const struct aty128fb_par * par)687 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
688 {
689 int i;
690 u32 tmp;
691
692 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
693 tmp &= ~(0x00ff);
694 tmp |= 0x00ff;
695 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
696
697 for (i = 0; i < 2000000; i++)
698 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
699 break;
700 }
701
702
aty128_reset_engine(const struct aty128fb_par * par)703 static void aty128_reset_engine(const struct aty128fb_par *par)
704 {
705 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
706
707 aty128_flush_pixel_cache(par);
708
709 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
710 mclk_cntl = aty_ld_pll(MCLK_CNTL);
711
712 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
713
714 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
715 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
716 aty_ld_le32(GEN_RESET_CNTL);
717 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
718 aty_ld_le32(GEN_RESET_CNTL);
719
720 aty_st_pll(MCLK_CNTL, mclk_cntl);
721 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
722 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
723
724 /* use old pio mode */
725 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
726
727 DBG("engine reset");
728 }
729
730
aty128_init_engine(struct aty128fb_par * par)731 static void aty128_init_engine(struct aty128fb_par *par)
732 {
733 u32 pitch_value;
734
735 wait_for_idle(par);
736
737 /* 3D scaler not spoken here */
738 wait_for_fifo(1, par);
739 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
740
741 aty128_reset_engine(par);
742
743 pitch_value = par->crtc.pitch;
744 if (par->crtc.bpp == 24) {
745 pitch_value = pitch_value * 3;
746 }
747
748 wait_for_fifo(4, par);
749 /* setup engine offset registers */
750 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
751
752 /* setup engine pitch registers */
753 aty_st_le32(DEFAULT_PITCH, pitch_value);
754
755 /* set the default scissor register to max dimensions */
756 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
757
758 /* set the drawing controls registers */
759 aty_st_le32(DP_GUI_MASTER_CNTL,
760 GMC_SRC_PITCH_OFFSET_DEFAULT |
761 GMC_DST_PITCH_OFFSET_DEFAULT |
762 GMC_SRC_CLIP_DEFAULT |
763 GMC_DST_CLIP_DEFAULT |
764 GMC_BRUSH_SOLIDCOLOR |
765 (depth_to_dst(par->crtc.depth) << 8) |
766 GMC_SRC_DSTCOLOR |
767 GMC_BYTE_ORDER_MSB_TO_LSB |
768 GMC_DP_CONVERSION_TEMP_6500 |
769 ROP3_PATCOPY |
770 GMC_DP_SRC_RECT |
771 GMC_3D_FCN_EN_CLR |
772 GMC_DST_CLR_CMP_FCN_CLEAR |
773 GMC_AUX_CLIP_CLEAR |
774 GMC_WRITE_MASK_SET);
775
776 wait_for_fifo(8, par);
777 /* clear the line drawing registers */
778 aty_st_le32(DST_BRES_ERR, 0);
779 aty_st_le32(DST_BRES_INC, 0);
780 aty_st_le32(DST_BRES_DEC, 0);
781
782 /* set brush color registers */
783 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
784 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
785
786 /* set source color registers */
787 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
788 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
789
790 /* default write mask */
791 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
792
793 /* Wait for all the writes to be completed before returning */
794 wait_for_idle(par);
795 }
796
797
798 /* convert depth values to their register representation */
depth_to_dst(u32 depth)799 static u32 depth_to_dst(u32 depth)
800 {
801 if (depth <= 8)
802 return DST_8BPP;
803 else if (depth <= 15)
804 return DST_15BPP;
805 else if (depth == 16)
806 return DST_16BPP;
807 else if (depth <= 24)
808 return DST_24BPP;
809 else if (depth <= 32)
810 return DST_32BPP;
811
812 return -EINVAL;
813 }
814
815 /*
816 * PLL informations retreival
817 */
818
819
820 #ifndef __sparc__
aty128_map_ROM(const struct aty128fb_par * par,struct pci_dev * dev)821 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
822 struct pci_dev *dev)
823 {
824 u16 dptr;
825 u8 rom_type;
826 void __iomem *bios;
827 size_t rom_size;
828
829 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
830 unsigned int temp;
831 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
832 temp &= 0x00ffffffu;
833 temp |= 0x04 << 24;
834 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
835 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
836
837 bios = pci_map_rom(dev, &rom_size);
838
839 if (!bios) {
840 printk(KERN_ERR "aty128fb: ROM failed to map\n");
841 return NULL;
842 }
843
844 /* Very simple test to make sure it appeared */
845 if (BIOS_IN16(0) != 0xaa55) {
846 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
847 " be 0xaa55\n", BIOS_IN16(0));
848 goto failed;
849 }
850
851 /* Look for the PCI data to check the ROM type */
852 dptr = BIOS_IN16(0x18);
853
854 /* Check the PCI data signature. If it's wrong, we still assume a normal
855 * x86 ROM for now, until I've verified this works everywhere.
856 * The goal here is more to phase out Open Firmware images.
857 *
858 * Currently, we only look at the first PCI data, we could iteratre and
859 * deal with them all, and we should use fb_bios_start relative to start
860 * of image and not relative start of ROM, but so far, I never found a
861 * dual-image ATI card.
862 *
863 * typedef struct {
864 * u32 signature; + 0x00
865 * u16 vendor; + 0x04
866 * u16 device; + 0x06
867 * u16 reserved_1; + 0x08
868 * u16 dlen; + 0x0a
869 * u8 drevision; + 0x0c
870 * u8 class_hi; + 0x0d
871 * u16 class_lo; + 0x0e
872 * u16 ilen; + 0x10
873 * u16 irevision; + 0x12
874 * u8 type; + 0x14
875 * u8 indicator; + 0x15
876 * u16 reserved_2; + 0x16
877 * } pci_data_t;
878 */
879 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
880 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
881 BIOS_IN32(dptr));
882 goto anyway;
883 }
884 rom_type = BIOS_IN8(dptr + 0x14);
885 switch(rom_type) {
886 case 0:
887 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
888 break;
889 case 1:
890 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
891 goto failed;
892 case 2:
893 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
894 goto failed;
895 default:
896 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
897 rom_type);
898 goto failed;
899 }
900 anyway:
901 return bios;
902
903 failed:
904 pci_unmap_rom(dev, bios);
905 return NULL;
906 }
907
aty128_get_pllinfo(struct aty128fb_par * par,unsigned char __iomem * bios)908 static void aty128_get_pllinfo(struct aty128fb_par *par,
909 unsigned char __iomem *bios)
910 {
911 unsigned int bios_hdr;
912 unsigned int bios_pll;
913
914 bios_hdr = BIOS_IN16(0x48);
915 bios_pll = BIOS_IN16(bios_hdr + 0x30);
916
917 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
918 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
919 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
920 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
921 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
922
923 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
924 par->constants.ppll_max, par->constants.ppll_min,
925 par->constants.xclk, par->constants.ref_divider,
926 par->constants.ref_clk);
927
928 }
929
930 #ifdef CONFIG_X86
aty128_find_mem_vbios(struct aty128fb_par * par)931 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
932 {
933 /* I simplified this code as we used to miss the signatures in
934 * a lot of case. It's now closer to XFree, we just don't check
935 * for signatures at all... Something better will have to be done
936 * if we end up having conflicts
937 */
938 u32 segstart;
939 unsigned char __iomem *rom_base = NULL;
940
941 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
942 rom_base = ioremap(segstart, 0x10000);
943 if (rom_base == NULL)
944 return NULL;
945 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
946 break;
947 iounmap(rom_base);
948 rom_base = NULL;
949 }
950 return rom_base;
951 }
952 #endif
953 #endif /* ndef(__sparc__) */
954
955 /* fill in known card constants if pll_block is not available */
aty128_timings(struct aty128fb_par * par)956 static void aty128_timings(struct aty128fb_par *par)
957 {
958 #ifdef CONFIG_PPC
959 /* instead of a table lookup, assume OF has properly
960 * setup the PLL registers and use their values
961 * to set the XCLK values and reference divider values */
962
963 u32 x_mpll_ref_fb_div;
964 u32 xclk_cntl;
965 u32 Nx, M;
966 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
967 #endif
968
969 if (!par->constants.ref_clk)
970 par->constants.ref_clk = 2950;
971
972 #ifdef CONFIG_PPC
973 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
974 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
975 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
976 M = x_mpll_ref_fb_div & 0x0000ff;
977
978 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
979 (M * PostDivSet[xclk_cntl]));
980
981 par->constants.ref_divider =
982 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
983 #endif
984
985 if (!par->constants.ref_divider) {
986 par->constants.ref_divider = 0x3b;
987
988 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
989 aty_pll_writeupdate(par);
990 }
991 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
992 aty_pll_writeupdate(par);
993
994 /* from documentation */
995 if (!par->constants.ppll_min)
996 par->constants.ppll_min = 12500;
997 if (!par->constants.ppll_max)
998 par->constants.ppll_max = 25000; /* 23000 on some cards? */
999 if (!par->constants.xclk)
1000 par->constants.xclk = 0x1d4d; /* same as mclk */
1001
1002 par->constants.fifo_width = 128;
1003 par->constants.fifo_depth = 32;
1004
1005 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1006 case 0:
1007 par->mem = &sdr_128;
1008 break;
1009 case 1:
1010 par->mem = &sdr_sgram;
1011 break;
1012 case 2:
1013 par->mem = &ddr_sgram;
1014 break;
1015 default:
1016 par->mem = &sdr_sgram;
1017 }
1018 }
1019
1020
1021
1022 /*
1023 * CRTC programming
1024 */
1025
1026 /* Program the CRTC registers */
aty128_set_crtc(const struct aty128_crtc * crtc,const struct aty128fb_par * par)1027 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1028 const struct aty128fb_par *par)
1029 {
1030 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1031 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1032 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1033 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1034 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1035 aty_st_le32(CRTC_PITCH, crtc->pitch);
1036 aty_st_le32(CRTC_OFFSET, crtc->offset);
1037 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1038 /* Disable ATOMIC updating. Is this the right place? */
1039 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1040 }
1041
1042
aty128_var_to_crtc(const struct fb_var_screeninfo * var,struct aty128_crtc * crtc,const struct aty128fb_par * par)1043 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1044 struct aty128_crtc *crtc,
1045 const struct aty128fb_par *par)
1046 {
1047 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1048 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1049 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1050 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1051 u32 depth, bytpp;
1052 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1053
1054 /* input */
1055 xres = var->xres;
1056 yres = var->yres;
1057 vxres = var->xres_virtual;
1058 vyres = var->yres_virtual;
1059 xoffset = var->xoffset;
1060 yoffset = var->yoffset;
1061 bpp = var->bits_per_pixel;
1062 left = var->left_margin;
1063 right = var->right_margin;
1064 upper = var->upper_margin;
1065 lower = var->lower_margin;
1066 hslen = var->hsync_len;
1067 vslen = var->vsync_len;
1068 sync = var->sync;
1069 vmode = var->vmode;
1070
1071 if (bpp != 16)
1072 depth = bpp;
1073 else
1074 depth = (var->green.length == 6) ? 16 : 15;
1075
1076 /* check for mode eligibility
1077 * accept only non interlaced modes */
1078 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1079 return -EINVAL;
1080
1081 /* convert (and round up) and validate */
1082 xres = (xres + 7) & ~7;
1083 xoffset = (xoffset + 7) & ~7;
1084
1085 if (vxres < xres + xoffset)
1086 vxres = xres + xoffset;
1087
1088 if (vyres < yres + yoffset)
1089 vyres = yres + yoffset;
1090
1091 /* convert depth into ATI register depth */
1092 dst = depth_to_dst(depth);
1093
1094 if (dst == -EINVAL) {
1095 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1096 return -EINVAL;
1097 }
1098
1099 /* convert register depth to bytes per pixel */
1100 bytpp = mode_bytpp[dst];
1101
1102 /* make sure there is enough video ram for the mode */
1103 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1104 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1105 return -EINVAL;
1106 }
1107
1108 h_disp = (xres >> 3) - 1;
1109 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1110
1111 v_disp = yres - 1;
1112 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1113
1114 /* check to make sure h_total and v_total are in range */
1115 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1116 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1117 return -EINVAL;
1118 }
1119
1120 h_sync_wid = (hslen + 7) >> 3;
1121 if (h_sync_wid == 0)
1122 h_sync_wid = 1;
1123 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1124 h_sync_wid = 0x3f;
1125
1126 h_sync_strt = (h_disp << 3) + right;
1127
1128 v_sync_wid = vslen;
1129 if (v_sync_wid == 0)
1130 v_sync_wid = 1;
1131 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1132 v_sync_wid = 0x1f;
1133
1134 v_sync_strt = v_disp + lower;
1135
1136 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1137 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1138
1139 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1140
1141 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1142
1143 crtc->h_total = h_total | (h_disp << 16);
1144 crtc->v_total = v_total | (v_disp << 16);
1145
1146 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1147 (h_sync_pol << 23);
1148 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1149 (v_sync_pol << 23);
1150
1151 crtc->pitch = vxres >> 3;
1152
1153 crtc->offset = 0;
1154
1155 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1156 crtc->offset_cntl = 0x00010000;
1157 else
1158 crtc->offset_cntl = 0;
1159
1160 crtc->vxres = vxres;
1161 crtc->vyres = vyres;
1162 crtc->xoffset = xoffset;
1163 crtc->yoffset = yoffset;
1164 crtc->depth = depth;
1165 crtc->bpp = bpp;
1166
1167 return 0;
1168 }
1169
1170
aty128_pix_width_to_var(int pix_width,struct fb_var_screeninfo * var)1171 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1172 {
1173
1174 /* fill in pixel info */
1175 var->red.msb_right = 0;
1176 var->green.msb_right = 0;
1177 var->blue.offset = 0;
1178 var->blue.msb_right = 0;
1179 var->transp.offset = 0;
1180 var->transp.length = 0;
1181 var->transp.msb_right = 0;
1182 switch (pix_width) {
1183 case CRTC_PIX_WIDTH_8BPP:
1184 var->bits_per_pixel = 8;
1185 var->red.offset = 0;
1186 var->red.length = 8;
1187 var->green.offset = 0;
1188 var->green.length = 8;
1189 var->blue.length = 8;
1190 break;
1191 case CRTC_PIX_WIDTH_15BPP:
1192 var->bits_per_pixel = 16;
1193 var->red.offset = 10;
1194 var->red.length = 5;
1195 var->green.offset = 5;
1196 var->green.length = 5;
1197 var->blue.length = 5;
1198 break;
1199 case CRTC_PIX_WIDTH_16BPP:
1200 var->bits_per_pixel = 16;
1201 var->red.offset = 11;
1202 var->red.length = 5;
1203 var->green.offset = 5;
1204 var->green.length = 6;
1205 var->blue.length = 5;
1206 break;
1207 case CRTC_PIX_WIDTH_24BPP:
1208 var->bits_per_pixel = 24;
1209 var->red.offset = 16;
1210 var->red.length = 8;
1211 var->green.offset = 8;
1212 var->green.length = 8;
1213 var->blue.length = 8;
1214 break;
1215 case CRTC_PIX_WIDTH_32BPP:
1216 var->bits_per_pixel = 32;
1217 var->red.offset = 16;
1218 var->red.length = 8;
1219 var->green.offset = 8;
1220 var->green.length = 8;
1221 var->blue.length = 8;
1222 var->transp.offset = 24;
1223 var->transp.length = 8;
1224 break;
1225 default:
1226 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1227 return -EINVAL;
1228 }
1229
1230 return 0;
1231 }
1232
1233
aty128_crtc_to_var(const struct aty128_crtc * crtc,struct fb_var_screeninfo * var)1234 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1235 struct fb_var_screeninfo *var)
1236 {
1237 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1238 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1239 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1240 u32 pix_width;
1241
1242 /* fun with masking */
1243 h_total = crtc->h_total & 0x1ff;
1244 h_disp = (crtc->h_total >> 16) & 0xff;
1245 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1246 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1247 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1248 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1249 v_total = crtc->v_total & 0x7ff;
1250 v_disp = (crtc->v_total >> 16) & 0x7ff;
1251 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1252 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1253 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1254 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1255 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1256
1257 /* do conversions */
1258 xres = (h_disp + 1) << 3;
1259 yres = v_disp + 1;
1260 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1261 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1262 hslen = h_sync_wid << 3;
1263 upper = v_total - v_sync_strt - v_sync_wid;
1264 lower = v_sync_strt - v_disp;
1265 vslen = v_sync_wid;
1266 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1267 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1268 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1269
1270 aty128_pix_width_to_var(pix_width, var);
1271
1272 var->xres = xres;
1273 var->yres = yres;
1274 var->xres_virtual = crtc->vxres;
1275 var->yres_virtual = crtc->vyres;
1276 var->xoffset = crtc->xoffset;
1277 var->yoffset = crtc->yoffset;
1278 var->left_margin = left;
1279 var->right_margin = right;
1280 var->upper_margin = upper;
1281 var->lower_margin = lower;
1282 var->hsync_len = hslen;
1283 var->vsync_len = vslen;
1284 var->sync = sync;
1285 var->vmode = FB_VMODE_NONINTERLACED;
1286
1287 return 0;
1288 }
1289
aty128_set_crt_enable(struct aty128fb_par * par,int on)1290 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1291 {
1292 if (on) {
1293 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1294 CRT_CRTC_ON);
1295 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1296 DAC_PALETTE2_SNOOP_EN));
1297 } else
1298 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1299 ~CRT_CRTC_ON);
1300 }
1301
aty128_set_lcd_enable(struct aty128fb_par * par,int on)1302 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1303 {
1304 u32 reg;
1305 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1306 struct fb_info *info = pci_get_drvdata(par->pdev);
1307 #endif
1308
1309 if (on) {
1310 reg = aty_ld_le32(LVDS_GEN_CNTL);
1311 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1312 reg &= ~LVDS_DISPLAY_DIS;
1313 aty_st_le32(LVDS_GEN_CNTL, reg);
1314 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1315 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1316 #endif
1317 } else {
1318 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1319 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1320 #endif
1321 reg = aty_ld_le32(LVDS_GEN_CNTL);
1322 reg |= LVDS_DISPLAY_DIS;
1323 aty_st_le32(LVDS_GEN_CNTL, reg);
1324 mdelay(100);
1325 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1326 aty_st_le32(LVDS_GEN_CNTL, reg);
1327 }
1328 }
1329
aty128_set_pll(struct aty128_pll * pll,const struct aty128fb_par * par)1330 static void aty128_set_pll(struct aty128_pll *pll,
1331 const struct aty128fb_par *par)
1332 {
1333 u32 div3;
1334
1335 unsigned char post_conv[] = /* register values for post dividers */
1336 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1337
1338 /* select PPLL_DIV_3 */
1339 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1340
1341 /* reset PLL */
1342 aty_st_pll(PPLL_CNTL,
1343 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1344
1345 /* write the reference divider */
1346 aty_pll_wait_readupdate(par);
1347 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1348 aty_pll_writeupdate(par);
1349
1350 div3 = aty_ld_pll(PPLL_DIV_3);
1351 div3 &= ~PPLL_FB3_DIV_MASK;
1352 div3 |= pll->feedback_divider;
1353 div3 &= ~PPLL_POST3_DIV_MASK;
1354 div3 |= post_conv[pll->post_divider] << 16;
1355
1356 /* write feedback and post dividers */
1357 aty_pll_wait_readupdate(par);
1358 aty_st_pll(PPLL_DIV_3, div3);
1359 aty_pll_writeupdate(par);
1360
1361 aty_pll_wait_readupdate(par);
1362 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1363 aty_pll_writeupdate(par);
1364
1365 /* clear the reset, just in case */
1366 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1367 }
1368
1369
aty128_var_to_pll(u32 period_in_ps,struct aty128_pll * pll,const struct aty128fb_par * par)1370 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1371 const struct aty128fb_par *par)
1372 {
1373 const struct aty128_constants c = par->constants;
1374 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1375 u32 output_freq;
1376 u32 vclk; /* in .01 MHz */
1377 int i = 0;
1378 u32 n, d;
1379
1380 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1381
1382 /* adjust pixel clock if necessary */
1383 if (vclk > c.ppll_max)
1384 vclk = c.ppll_max;
1385 if (vclk * 12 < c.ppll_min)
1386 vclk = c.ppll_min/12;
1387
1388 /* now, find an acceptable divider */
1389 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1390 output_freq = post_dividers[i] * vclk;
1391 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1392 pll->post_divider = post_dividers[i];
1393 break;
1394 }
1395 }
1396
1397 if (i == ARRAY_SIZE(post_dividers))
1398 return -EINVAL;
1399
1400 /* calculate feedback divider */
1401 n = c.ref_divider * output_freq;
1402 d = c.ref_clk;
1403
1404 pll->feedback_divider = round_div(n, d);
1405 pll->vclk = vclk;
1406
1407 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1408 "vclk_per: %d\n", pll->post_divider,
1409 pll->feedback_divider, vclk, output_freq,
1410 c.ref_divider, period_in_ps);
1411
1412 return 0;
1413 }
1414
1415
aty128_pll_to_var(const struct aty128_pll * pll,struct fb_var_screeninfo * var)1416 static int aty128_pll_to_var(const struct aty128_pll *pll,
1417 struct fb_var_screeninfo *var)
1418 {
1419 var->pixclock = 100000000 / pll->vclk;
1420
1421 return 0;
1422 }
1423
1424
aty128_set_fifo(const struct aty128_ddafifo * dsp,const struct aty128fb_par * par)1425 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1426 const struct aty128fb_par *par)
1427 {
1428 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1429 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1430 }
1431
1432
aty128_ddafifo(struct aty128_ddafifo * dsp,const struct aty128_pll * pll,u32 depth,const struct aty128fb_par * par)1433 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1434 const struct aty128_pll *pll,
1435 u32 depth,
1436 const struct aty128fb_par *par)
1437 {
1438 const struct aty128_meminfo *m = par->mem;
1439 u32 xclk = par->constants.xclk;
1440 u32 fifo_width = par->constants.fifo_width;
1441 u32 fifo_depth = par->constants.fifo_depth;
1442 s32 x, b, p, ron, roff;
1443 u32 n, d, bpp;
1444
1445 /* round up to multiple of 8 */
1446 bpp = (depth+7) & ~7;
1447
1448 n = xclk * fifo_width;
1449 d = pll->vclk * bpp;
1450 x = round_div(n, d);
1451
1452 ron = 4 * m->MB +
1453 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1454 2 * m->Trp +
1455 m->Twr +
1456 m->CL +
1457 m->Tr2w +
1458 x;
1459
1460 DBG("x %x\n", x);
1461
1462 b = 0;
1463 while (x) {
1464 x >>= 1;
1465 b++;
1466 }
1467 p = b + 1;
1468
1469 ron <<= (11 - p);
1470
1471 n <<= (11 - p);
1472 x = round_div(n, d);
1473 roff = x * (fifo_depth - 4);
1474
1475 if ((ron + m->Rloop) >= roff) {
1476 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1477 return -EINVAL;
1478 }
1479
1480 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1481 p, m->Rloop, x, ron, roff);
1482
1483 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1484 dsp->dda_on_off = ron << 16 | roff;
1485
1486 return 0;
1487 }
1488
1489
1490 /*
1491 * This actually sets the video mode.
1492 */
aty128fb_set_par(struct fb_info * info)1493 static int aty128fb_set_par(struct fb_info *info)
1494 {
1495 struct aty128fb_par *par = info->par;
1496 u32 config;
1497 int err;
1498
1499 if ((err = aty128_decode_var(&info->var, par)) != 0)
1500 return err;
1501
1502 if (par->blitter_may_be_busy)
1503 wait_for_idle(par);
1504
1505 /* clear all registers that may interfere with mode setting */
1506 aty_st_le32(OVR_CLR, 0);
1507 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1508 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1509 aty_st_le32(OV0_SCALE_CNTL, 0);
1510 aty_st_le32(MPP_TB_CONFIG, 0);
1511 aty_st_le32(MPP_GP_CONFIG, 0);
1512 aty_st_le32(SUBPIC_CNTL, 0);
1513 aty_st_le32(VIPH_CONTROL, 0);
1514 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1515 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1516 aty_st_le32(CAP0_TRIG_CNTL, 0);
1517 aty_st_le32(CAP1_TRIG_CNTL, 0);
1518
1519 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1520
1521 aty128_set_crtc(&par->crtc, par);
1522 aty128_set_pll(&par->pll, par);
1523 aty128_set_fifo(&par->fifo_reg, par);
1524
1525 config = aty_ld_le32(CNFG_CNTL) & ~3;
1526
1527 #if defined(__BIG_ENDIAN)
1528 if (par->crtc.bpp == 32)
1529 config |= 2; /* make aperture do 32 bit swapping */
1530 else if (par->crtc.bpp == 16)
1531 config |= 1; /* make aperture do 16 bit swapping */
1532 #endif
1533
1534 aty_st_le32(CNFG_CNTL, config);
1535 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1536
1537 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1538 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1539 : FB_VISUAL_DIRECTCOLOR;
1540
1541 if (par->chip_gen == rage_M3) {
1542 aty128_set_crt_enable(par, par->crt_on);
1543 aty128_set_lcd_enable(par, par->lcd_on);
1544 }
1545 if (par->accel_flags & FB_ACCELF_TEXT)
1546 aty128_init_engine(par);
1547
1548 #ifdef CONFIG_BOOTX_TEXT
1549 btext_update_display(info->fix.smem_start,
1550 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1551 ((par->crtc.v_total>>16) & 0x7ff)+1,
1552 par->crtc.bpp,
1553 par->crtc.vxres*par->crtc.bpp/8);
1554 #endif /* CONFIG_BOOTX_TEXT */
1555
1556 return 0;
1557 }
1558
1559 /*
1560 * encode/decode the User Defined Part of the Display
1561 */
1562
aty128_decode_var(struct fb_var_screeninfo * var,struct aty128fb_par * par)1563 static int aty128_decode_var(struct fb_var_screeninfo *var,
1564 struct aty128fb_par *par)
1565 {
1566 int err;
1567 struct aty128_crtc crtc;
1568 struct aty128_pll pll;
1569 struct aty128_ddafifo fifo_reg;
1570
1571 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1572 return err;
1573
1574 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1575 return err;
1576
1577 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1578 return err;
1579
1580 par->crtc = crtc;
1581 par->pll = pll;
1582 par->fifo_reg = fifo_reg;
1583 par->accel_flags = var->accel_flags;
1584
1585 return 0;
1586 }
1587
1588
aty128_encode_var(struct fb_var_screeninfo * var,const struct aty128fb_par * par)1589 static int aty128_encode_var(struct fb_var_screeninfo *var,
1590 const struct aty128fb_par *par)
1591 {
1592 int err;
1593
1594 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1595 return err;
1596
1597 if ((err = aty128_pll_to_var(&par->pll, var)))
1598 return err;
1599
1600 var->nonstd = 0;
1601 var->activate = 0;
1602
1603 var->height = -1;
1604 var->width = -1;
1605 var->accel_flags = par->accel_flags;
1606
1607 return 0;
1608 }
1609
1610
aty128fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)1611 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1612 struct fb_info *info)
1613 {
1614 struct aty128fb_par par;
1615 int err;
1616
1617 par = *(struct aty128fb_par *)info->par;
1618 if ((err = aty128_decode_var(var, &par)) != 0)
1619 return err;
1620 aty128_encode_var(var, &par);
1621 return 0;
1622 }
1623
1624
1625 /*
1626 * Pan or Wrap the Display
1627 */
aty128fb_pan_display(struct fb_var_screeninfo * var,struct fb_info * fb)1628 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1629 struct fb_info *fb)
1630 {
1631 struct aty128fb_par *par = fb->par;
1632 u32 xoffset, yoffset;
1633 u32 offset;
1634 u32 xres, yres;
1635
1636 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1637 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1638
1639 xoffset = (var->xoffset +7) & ~7;
1640 yoffset = var->yoffset;
1641
1642 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1643 return -EINVAL;
1644
1645 par->crtc.xoffset = xoffset;
1646 par->crtc.yoffset = yoffset;
1647
1648 offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1649 & ~7;
1650
1651 if (par->crtc.bpp == 24)
1652 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1653
1654 aty_st_le32(CRTC_OFFSET, offset);
1655
1656 return 0;
1657 }
1658
1659
1660 /*
1661 * Helper function to store a single palette register
1662 */
aty128_st_pal(u_int regno,u_int red,u_int green,u_int blue,struct aty128fb_par * par)1663 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1664 struct aty128fb_par *par)
1665 {
1666 if (par->chip_gen == rage_M3) {
1667 #if 0
1668 /* Note: For now, on M3, we set palette on both heads, which may
1669 * be useless. Can someone with a M3 check this ?
1670 *
1671 * This code would still be useful if using the second CRTC to
1672 * do mirroring
1673 */
1674
1675 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) |
1676 DAC_PALETTE_ACCESS_CNTL);
1677 aty_st_8(PALETTE_INDEX, regno);
1678 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1679 #endif
1680 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1681 ~DAC_PALETTE_ACCESS_CNTL);
1682 }
1683
1684 aty_st_8(PALETTE_INDEX, regno);
1685 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1686 }
1687
aty128fb_sync(struct fb_info * info)1688 static int aty128fb_sync(struct fb_info *info)
1689 {
1690 struct aty128fb_par *par = info->par;
1691
1692 if (par->blitter_may_be_busy)
1693 wait_for_idle(par);
1694 return 0;
1695 }
1696
1697 #ifndef MODULE
aty128fb_setup(char * options)1698 static int aty128fb_setup(char *options)
1699 {
1700 char *this_opt;
1701
1702 if (!options || !*options)
1703 return 0;
1704
1705 while ((this_opt = strsep(&options, ",")) != NULL) {
1706 if (!strncmp(this_opt, "lcd:", 4)) {
1707 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1708 continue;
1709 } else if (!strncmp(this_opt, "crt:", 4)) {
1710 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1711 continue;
1712 } else if (!strncmp(this_opt, "backlight:", 10)) {
1713 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1714 backlight = simple_strtoul(this_opt+10, NULL, 0);
1715 #endif
1716 continue;
1717 }
1718 if(!strncmp(this_opt, "nomtrr", 6)) {
1719 mtrr = false;
1720 continue;
1721 }
1722 #ifdef CONFIG_PPC_PMAC
1723 /* vmode and cmode deprecated */
1724 if (!strncmp(this_opt, "vmode:", 6)) {
1725 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1726 if (vmode > 0 && vmode <= VMODE_MAX)
1727 default_vmode = vmode;
1728 continue;
1729 } else if (!strncmp(this_opt, "cmode:", 6)) {
1730 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1731 switch (cmode) {
1732 case 0:
1733 case 8:
1734 default_cmode = CMODE_8;
1735 break;
1736 case 15:
1737 case 16:
1738 default_cmode = CMODE_16;
1739 break;
1740 case 24:
1741 case 32:
1742 default_cmode = CMODE_32;
1743 break;
1744 }
1745 continue;
1746 }
1747 #endif /* CONFIG_PPC_PMAC */
1748 mode_option = this_opt;
1749 }
1750 return 0;
1751 }
1752 #endif /* MODULE */
1753
1754 /* Backlight */
1755 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1756 #define MAX_LEVEL 0xFF
1757
aty128_bl_get_level_brightness(struct aty128fb_par * par,int level)1758 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1759 int level)
1760 {
1761 struct fb_info *info = pci_get_drvdata(par->pdev);
1762 int atylevel;
1763
1764 /* Get and convert the value */
1765 /* No locking of bl_curve since we read a single value */
1766 atylevel = MAX_LEVEL -
1767 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1768
1769 if (atylevel < 0)
1770 atylevel = 0;
1771 else if (atylevel > MAX_LEVEL)
1772 atylevel = MAX_LEVEL;
1773
1774 return atylevel;
1775 }
1776
1777 /* We turn off the LCD completely instead of just dimming the backlight.
1778 * This provides greater power saving and the display is useless without
1779 * backlight anyway
1780 */
1781 #define BACKLIGHT_LVDS_OFF
1782 /* That one prevents proper CRT output with LCD off */
1783 #undef BACKLIGHT_DAC_OFF
1784
aty128_bl_update_status(struct backlight_device * bd)1785 static int aty128_bl_update_status(struct backlight_device *bd)
1786 {
1787 struct aty128fb_par *par = bl_get_data(bd);
1788 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1789 int level;
1790
1791 if (bd->props.power != FB_BLANK_UNBLANK ||
1792 bd->props.fb_blank != FB_BLANK_UNBLANK ||
1793 !par->lcd_on)
1794 level = 0;
1795 else
1796 level = bd->props.brightness;
1797
1798 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1799 if (level > 0) {
1800 reg |= LVDS_DIGION;
1801 if (!(reg & LVDS_ON)) {
1802 reg &= ~LVDS_BLON;
1803 aty_st_le32(LVDS_GEN_CNTL, reg);
1804 aty_ld_le32(LVDS_GEN_CNTL);
1805 mdelay(10);
1806 reg |= LVDS_BLON;
1807 aty_st_le32(LVDS_GEN_CNTL, reg);
1808 }
1809 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1810 reg |= (aty128_bl_get_level_brightness(par, level) <<
1811 LVDS_BL_MOD_LEVEL_SHIFT);
1812 #ifdef BACKLIGHT_LVDS_OFF
1813 reg |= LVDS_ON | LVDS_EN;
1814 reg &= ~LVDS_DISPLAY_DIS;
1815 #endif
1816 aty_st_le32(LVDS_GEN_CNTL, reg);
1817 #ifdef BACKLIGHT_DAC_OFF
1818 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1819 #endif
1820 } else {
1821 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1822 reg |= (aty128_bl_get_level_brightness(par, 0) <<
1823 LVDS_BL_MOD_LEVEL_SHIFT);
1824 #ifdef BACKLIGHT_LVDS_OFF
1825 reg |= LVDS_DISPLAY_DIS;
1826 aty_st_le32(LVDS_GEN_CNTL, reg);
1827 aty_ld_le32(LVDS_GEN_CNTL);
1828 udelay(10);
1829 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1830 #endif
1831 aty_st_le32(LVDS_GEN_CNTL, reg);
1832 #ifdef BACKLIGHT_DAC_OFF
1833 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1834 #endif
1835 }
1836
1837 return 0;
1838 }
1839
1840 static const struct backlight_ops aty128_bl_data = {
1841 .update_status = aty128_bl_update_status,
1842 };
1843
aty128_bl_set_power(struct fb_info * info,int power)1844 static void aty128_bl_set_power(struct fb_info *info, int power)
1845 {
1846 if (info->bl_dev) {
1847 info->bl_dev->props.power = power;
1848 backlight_update_status(info->bl_dev);
1849 }
1850 }
1851
aty128_bl_init(struct aty128fb_par * par)1852 static void aty128_bl_init(struct aty128fb_par *par)
1853 {
1854 struct backlight_properties props;
1855 struct fb_info *info = pci_get_drvdata(par->pdev);
1856 struct backlight_device *bd;
1857 char name[12];
1858
1859 /* Could be extended to Rage128Pro LVDS output too */
1860 if (par->chip_gen != rage_M3)
1861 return;
1862
1863 #ifdef CONFIG_PMAC_BACKLIGHT
1864 if (!pmac_has_backlight_type("ati"))
1865 return;
1866 #endif
1867
1868 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1869
1870 memset(&props, 0, sizeof(struct backlight_properties));
1871 props.type = BACKLIGHT_RAW;
1872 props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1873 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1874 &props);
1875 if (IS_ERR(bd)) {
1876 info->bl_dev = NULL;
1877 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1878 goto error;
1879 }
1880
1881 info->bl_dev = bd;
1882 fb_bl_default_curve(info, 0,
1883 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1884 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1885
1886 bd->props.brightness = bd->props.max_brightness;
1887 bd->props.power = FB_BLANK_UNBLANK;
1888 backlight_update_status(bd);
1889
1890 printk("aty128: Backlight initialized (%s)\n", name);
1891
1892 return;
1893
1894 error:
1895 return;
1896 }
1897
aty128_bl_exit(struct backlight_device * bd)1898 static void aty128_bl_exit(struct backlight_device *bd)
1899 {
1900 backlight_device_unregister(bd);
1901 printk("aty128: Backlight unloaded\n");
1902 }
1903 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1904
1905 /*
1906 * Initialisation
1907 */
1908
1909 #ifdef CONFIG_PPC_PMAC__disabled
aty128_early_resume(void * data)1910 static void aty128_early_resume(void *data)
1911 {
1912 struct aty128fb_par *par = data;
1913
1914 if (!console_trylock())
1915 return;
1916 pci_restore_state(par->pdev);
1917 aty128_do_resume(par->pdev);
1918 console_unlock();
1919 }
1920 #endif /* CONFIG_PPC_PMAC */
1921
aty128_init(struct pci_dev * pdev,const struct pci_device_id * ent)1922 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1923 {
1924 struct fb_info *info = pci_get_drvdata(pdev);
1925 struct aty128fb_par *par = info->par;
1926 struct fb_var_screeninfo var;
1927 char video_card[50];
1928 u8 chip_rev;
1929 u32 dac;
1930
1931 /* Get the chip revision */
1932 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1933
1934 strcpy(video_card, "Rage128 XX ");
1935 video_card[8] = ent->device >> 8;
1936 video_card[9] = ent->device & 0xFF;
1937
1938 /* range check to make sure */
1939 if (ent->driver_data < ARRAY_SIZE(r128_family))
1940 strlcat(video_card, r128_family[ent->driver_data],
1941 sizeof(video_card));
1942
1943 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1944
1945 if (par->vram_size % (1024 * 1024) == 0)
1946 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1947 else
1948 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1949
1950 par->chip_gen = ent->driver_data;
1951
1952 /* fill in info */
1953 info->fbops = &aty128fb_ops;
1954 info->flags = FBINFO_FLAG_DEFAULT;
1955
1956 par->lcd_on = default_lcd_on;
1957 par->crt_on = default_crt_on;
1958
1959 var = default_var;
1960 #ifdef CONFIG_PPC_PMAC
1961 if (machine_is(powermac)) {
1962 /* Indicate sleep capability */
1963 if (par->chip_gen == rage_M3) {
1964 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1965 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1966 * among others we now rely on the PCI core restoring the config space
1967 * for us, which isn't the case with that hack, and that code path causes
1968 * various things to be called with interrupts off while they shouldn't.
1969 * I'm leaving the code in as it can be useful for debugging purposes
1970 */
1971 pmac_set_early_video_resume(aty128_early_resume, par);
1972 #endif
1973 }
1974
1975 /* Find default mode */
1976 if (mode_option) {
1977 if (!mac_find_mode(&var, info, mode_option, 8))
1978 var = default_var;
1979 } else {
1980 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1981 default_vmode = VMODE_1024_768_60;
1982
1983 /* iMacs need that resolution
1984 * PowerMac2,1 first r128 iMacs
1985 * PowerMac2,2 summer 2000 iMacs
1986 * PowerMac4,1 january 2001 iMacs "flower power"
1987 */
1988 if (of_machine_is_compatible("PowerMac2,1") ||
1989 of_machine_is_compatible("PowerMac2,2") ||
1990 of_machine_is_compatible("PowerMac4,1"))
1991 default_vmode = VMODE_1024_768_75;
1992
1993 /* iBook SE */
1994 if (of_machine_is_compatible("PowerBook2,2"))
1995 default_vmode = VMODE_800_600_60;
1996
1997 /* PowerBook Firewire (Pismo), iBook Dual USB */
1998 if (of_machine_is_compatible("PowerBook3,1") ||
1999 of_machine_is_compatible("PowerBook4,1"))
2000 default_vmode = VMODE_1024_768_60;
2001
2002 /* PowerBook Titanium */
2003 if (of_machine_is_compatible("PowerBook3,2"))
2004 default_vmode = VMODE_1152_768_60;
2005
2006 if (default_cmode > 16)
2007 default_cmode = CMODE_32;
2008 else if (default_cmode > 8)
2009 default_cmode = CMODE_16;
2010 else
2011 default_cmode = CMODE_8;
2012
2013 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
2014 var = default_var;
2015 }
2016 } else
2017 #endif /* CONFIG_PPC_PMAC */
2018 {
2019 if (mode_option)
2020 if (fb_find_mode(&var, info, mode_option, NULL,
2021 0, &defaultmode, 8) == 0)
2022 var = default_var;
2023 }
2024
2025 var.accel_flags &= ~FB_ACCELF_TEXT;
2026 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2027
2028 if (aty128fb_check_var(&var, info)) {
2029 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2030 return 0;
2031 }
2032
2033 /* setup the DAC the way we like it */
2034 dac = aty_ld_le32(DAC_CNTL);
2035 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2036 dac |= DAC_MASK;
2037 if (par->chip_gen == rage_M3)
2038 dac |= DAC_PALETTE2_SNOOP_EN;
2039 aty_st_le32(DAC_CNTL, dac);
2040
2041 /* turn off bus mastering, just in case */
2042 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2043
2044 info->var = var;
2045 fb_alloc_cmap(&info->cmap, 256, 0);
2046
2047 var.activate = FB_ACTIVATE_NOW;
2048
2049 aty128_init_engine(par);
2050
2051 par->pdev = pdev;
2052 par->asleep = 0;
2053 par->lock_blank = 0;
2054
2055 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2056 if (backlight)
2057 aty128_bl_init(par);
2058 #endif
2059
2060 if (register_framebuffer(info) < 0)
2061 return 0;
2062
2063 fb_info(info, "%s frame buffer device on %s\n",
2064 info->fix.id, video_card);
2065
2066 return 1; /* success! */
2067 }
2068
2069 #ifdef CONFIG_PCI
2070 /* register a card ++ajoshi */
aty128_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2071 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2072 {
2073 unsigned long fb_addr, reg_addr;
2074 struct aty128fb_par *par;
2075 struct fb_info *info;
2076 int err;
2077 #ifndef __sparc__
2078 void __iomem *bios = NULL;
2079 #endif
2080
2081 /* Enable device in PCI config */
2082 if ((err = pci_enable_device(pdev))) {
2083 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2084 err);
2085 return -ENODEV;
2086 }
2087
2088 fb_addr = pci_resource_start(pdev, 0);
2089 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2090 "aty128fb FB")) {
2091 printk(KERN_ERR "aty128fb: cannot reserve frame "
2092 "buffer memory\n");
2093 return -ENODEV;
2094 }
2095
2096 reg_addr = pci_resource_start(pdev, 2);
2097 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2098 "aty128fb MMIO")) {
2099 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2100 goto err_free_fb;
2101 }
2102
2103 /* We have the resources. Now virtualize them */
2104 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2105 if (info == NULL) {
2106 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2107 goto err_free_mmio;
2108 }
2109 par = info->par;
2110
2111 info->pseudo_palette = par->pseudo_palette;
2112
2113 /* Virtualize mmio region */
2114 info->fix.mmio_start = reg_addr;
2115 par->regbase = pci_ioremap_bar(pdev, 2);
2116 if (!par->regbase)
2117 goto err_free_info;
2118
2119 /* Grab memory size from the card */
2120 // How does this relate to the resource length from the PCI hardware?
2121 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2122
2123 /* Virtualize the framebuffer */
2124 info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2125 if (!info->screen_base)
2126 goto err_unmap_out;
2127
2128 /* Set up info->fix */
2129 info->fix = aty128fb_fix;
2130 info->fix.smem_start = fb_addr;
2131 info->fix.smem_len = par->vram_size;
2132 info->fix.mmio_start = reg_addr;
2133
2134 /* If we can't test scratch registers, something is seriously wrong */
2135 if (!register_test(par)) {
2136 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2137 goto err_out;
2138 }
2139
2140 #ifndef __sparc__
2141 bios = aty128_map_ROM(par, pdev);
2142 #ifdef CONFIG_X86
2143 if (bios == NULL)
2144 bios = aty128_find_mem_vbios(par);
2145 #endif
2146 if (bios == NULL)
2147 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2148 else {
2149 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2150 aty128_get_pllinfo(par, bios);
2151 pci_unmap_rom(pdev, bios);
2152 }
2153 #endif /* __sparc__ */
2154
2155 aty128_timings(par);
2156 pci_set_drvdata(pdev, info);
2157
2158 if (!aty128_init(pdev, ent))
2159 goto err_out;
2160
2161 if (mtrr)
2162 par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2163 par->vram_size);
2164 return 0;
2165
2166 err_out:
2167 iounmap(info->screen_base);
2168 err_unmap_out:
2169 iounmap(par->regbase);
2170 err_free_info:
2171 framebuffer_release(info);
2172 err_free_mmio:
2173 release_mem_region(pci_resource_start(pdev, 2),
2174 pci_resource_len(pdev, 2));
2175 err_free_fb:
2176 release_mem_region(pci_resource_start(pdev, 0),
2177 pci_resource_len(pdev, 0));
2178 return -ENODEV;
2179 }
2180
aty128_remove(struct pci_dev * pdev)2181 static void aty128_remove(struct pci_dev *pdev)
2182 {
2183 struct fb_info *info = pci_get_drvdata(pdev);
2184 struct aty128fb_par *par;
2185
2186 if (!info)
2187 return;
2188
2189 par = info->par;
2190
2191 unregister_framebuffer(info);
2192
2193 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2194 aty128_bl_exit(info->bl_dev);
2195 #endif
2196
2197 arch_phys_wc_del(par->wc_cookie);
2198 iounmap(par->regbase);
2199 iounmap(info->screen_base);
2200
2201 release_mem_region(pci_resource_start(pdev, 0),
2202 pci_resource_len(pdev, 0));
2203 release_mem_region(pci_resource_start(pdev, 2),
2204 pci_resource_len(pdev, 2));
2205 framebuffer_release(info);
2206 }
2207 #endif /* CONFIG_PCI */
2208
2209
2210
2211 /*
2212 * Blank the display.
2213 */
aty128fb_blank(int blank,struct fb_info * fb)2214 static int aty128fb_blank(int blank, struct fb_info *fb)
2215 {
2216 struct aty128fb_par *par = fb->par;
2217 u8 state;
2218
2219 if (par->lock_blank || par->asleep)
2220 return 0;
2221
2222 switch (blank) {
2223 case FB_BLANK_NORMAL:
2224 state = 4;
2225 break;
2226 case FB_BLANK_VSYNC_SUSPEND:
2227 state = 6;
2228 break;
2229 case FB_BLANK_HSYNC_SUSPEND:
2230 state = 5;
2231 break;
2232 case FB_BLANK_POWERDOWN:
2233 state = 7;
2234 break;
2235 case FB_BLANK_UNBLANK:
2236 default:
2237 state = 0;
2238 break;
2239 }
2240 aty_st_8(CRTC_EXT_CNTL+1, state);
2241
2242 if (par->chip_gen == rage_M3) {
2243 aty128_set_crt_enable(par, par->crt_on && !blank);
2244 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2245 }
2246
2247 return 0;
2248 }
2249
2250 /*
2251 * Set a single color register. The values supplied are already
2252 * rounded down to the hardware's capabilities (according to the
2253 * entries in the var structure). Return != 0 for invalid regno.
2254 */
aty128fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)2255 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2256 u_int transp, struct fb_info *info)
2257 {
2258 struct aty128fb_par *par = info->par;
2259
2260 if (regno > 255
2261 || (par->crtc.depth == 16 && regno > 63)
2262 || (par->crtc.depth == 15 && regno > 31))
2263 return 1;
2264
2265 red >>= 8;
2266 green >>= 8;
2267 blue >>= 8;
2268
2269 if (regno < 16) {
2270 int i;
2271 u32 *pal = info->pseudo_palette;
2272
2273 switch (par->crtc.depth) {
2274 case 15:
2275 pal[regno] = (regno << 10) | (regno << 5) | regno;
2276 break;
2277 case 16:
2278 pal[regno] = (regno << 11) | (regno << 6) | regno;
2279 break;
2280 case 24:
2281 pal[regno] = (regno << 16) | (regno << 8) | regno;
2282 break;
2283 case 32:
2284 i = (regno << 8) | regno;
2285 pal[regno] = (i << 16) | i;
2286 break;
2287 }
2288 }
2289
2290 if (par->crtc.depth == 16 && regno > 0) {
2291 /*
2292 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2293 * have 32 slots for R and B values but 64 slots for G values.
2294 * Thus the R and B values go in one slot but the G value
2295 * goes in a different slot, and we have to avoid disturbing
2296 * the other fields in the slots we touch.
2297 */
2298 par->green[regno] = green;
2299 if (regno < 32) {
2300 par->red[regno] = red;
2301 par->blue[regno] = blue;
2302 aty128_st_pal(regno * 8, red, par->green[regno*2],
2303 blue, par);
2304 }
2305 red = par->red[regno/2];
2306 blue = par->blue[regno/2];
2307 regno <<= 2;
2308 } else if (par->crtc.bpp == 16)
2309 regno <<= 3;
2310 aty128_st_pal(regno, red, green, blue, par);
2311
2312 return 0;
2313 }
2314
2315 #define ATY_MIRROR_LCD_ON 0x00000001
2316 #define ATY_MIRROR_CRT_ON 0x00000002
2317
2318 /* out param: u32* backlight value: 0 to 15 */
2319 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2320 /* in param: u32* backlight value: 0 to 15 */
2321 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2322
aty128fb_ioctl(struct fb_info * info,u_int cmd,u_long arg)2323 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2324 {
2325 struct aty128fb_par *par = info->par;
2326 u32 value;
2327 int rc;
2328
2329 switch (cmd) {
2330 case FBIO_ATY128_SET_MIRROR:
2331 if (par->chip_gen != rage_M3)
2332 return -EINVAL;
2333 rc = get_user(value, (__u32 __user *)arg);
2334 if (rc)
2335 return rc;
2336 par->lcd_on = (value & 0x01) != 0;
2337 par->crt_on = (value & 0x02) != 0;
2338 if (!par->crt_on && !par->lcd_on)
2339 par->lcd_on = 1;
2340 aty128_set_crt_enable(par, par->crt_on);
2341 aty128_set_lcd_enable(par, par->lcd_on);
2342 return 0;
2343 case FBIO_ATY128_GET_MIRROR:
2344 if (par->chip_gen != rage_M3)
2345 return -EINVAL;
2346 value = (par->crt_on << 1) | par->lcd_on;
2347 return put_user(value, (__u32 __user *)arg);
2348 }
2349 return -EINVAL;
2350 }
2351
2352 #if 0
2353 /*
2354 * Accelerated functions
2355 */
2356
2357 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2358 u_int width, u_int height,
2359 struct fb_info_aty128 *par)
2360 {
2361 u32 save_dp_datatype, save_dp_cntl, dstval;
2362
2363 if (!width || !height)
2364 return;
2365
2366 dstval = depth_to_dst(par->current_par.crtc.depth);
2367 if (dstval == DST_24BPP) {
2368 srcx *= 3;
2369 dstx *= 3;
2370 width *= 3;
2371 } else if (dstval == -EINVAL) {
2372 printk("aty128fb: invalid depth or RGBA\n");
2373 return;
2374 }
2375
2376 wait_for_fifo(2, par);
2377 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2378 save_dp_cntl = aty_ld_le32(DP_CNTL);
2379
2380 wait_for_fifo(6, par);
2381 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2382 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2383 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2384 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2385
2386 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2387 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2388
2389 par->blitter_may_be_busy = 1;
2390
2391 wait_for_fifo(2, par);
2392 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2393 aty_st_le32(DP_CNTL, save_dp_cntl);
2394 }
2395
2396
2397 /*
2398 * Text mode accelerated functions
2399 */
2400
2401 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy,
2402 int dx, int height, int width)
2403 {
2404 sx *= fontwidth(p);
2405 sy *= fontheight(p);
2406 dx *= fontwidth(p);
2407 dy *= fontheight(p);
2408 width *= fontwidth(p);
2409 height *= fontheight(p);
2410
2411 aty128_rectcopy(sx, sy, dx, dy, width, height,
2412 (struct fb_info_aty128 *)p->fb_info);
2413 }
2414 #endif /* 0 */
2415
aty128_set_suspend(struct aty128fb_par * par,int suspend)2416 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2417 {
2418 u32 pmgt;
2419 struct pci_dev *pdev = par->pdev;
2420
2421 if (!par->pdev->pm_cap)
2422 return;
2423
2424 /* Set the chip into the appropriate suspend mode (we use D2,
2425 * D3 would require a complete re-initialisation of the chip,
2426 * including PCI config registers, clocks, AGP configuration, ...)
2427 *
2428 * For resume, the core will have already brought us back to D0
2429 */
2430 if (suspend) {
2431 /* Make sure CRTC2 is reset. Remove that the day we decide to
2432 * actually use CRTC2 and replace it with real code for disabling
2433 * the CRTC2 output during sleep
2434 */
2435 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2436 ~(CRTC2_EN));
2437
2438 /* Set the power management mode to be PCI based */
2439 /* Use this magic value for now */
2440 pmgt = 0x0c005407;
2441 aty_st_pll(POWER_MANAGEMENT, pmgt);
2442 (void)aty_ld_pll(POWER_MANAGEMENT);
2443 aty_st_le32(BUS_CNTL1, 0x00000010);
2444 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2445 msleep(100);
2446
2447 /* Switch PCI power management to D2 */
2448 pci_set_power_state(pdev, PCI_D2);
2449 }
2450 }
2451
aty128_pci_suspend(struct pci_dev * pdev,pm_message_t state)2452 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2453 {
2454 struct fb_info *info = pci_get_drvdata(pdev);
2455 struct aty128fb_par *par = info->par;
2456
2457 /* Because we may change PCI D state ourselves, we need to
2458 * first save the config space content so the core can
2459 * restore it properly on resume.
2460 */
2461 pci_save_state(pdev);
2462
2463 /* We don't do anything but D2, for now we return 0, but
2464 * we may want to change that. How do we know if the BIOS
2465 * can properly take care of D3 ? Also, with swsusp, we
2466 * know we'll be rebooted, ...
2467 */
2468 #ifndef CONFIG_PPC_PMAC
2469 /* HACK ALERT ! Once I find a proper way to say to each driver
2470 * individually what will happen with it's PCI slot, I'll change
2471 * that. On laptops, the AGP slot is just unclocked, so D2 is
2472 * expected, while on desktops, the card is powered off
2473 */
2474 return 0;
2475 #endif /* CONFIG_PPC_PMAC */
2476
2477 if (state.event == pdev->dev.power.power_state.event)
2478 return 0;
2479
2480 printk(KERN_DEBUG "aty128fb: suspending...\n");
2481
2482 console_lock();
2483
2484 fb_set_suspend(info, 1);
2485
2486 /* Make sure engine is reset */
2487 wait_for_idle(par);
2488 aty128_reset_engine(par);
2489 wait_for_idle(par);
2490
2491 /* Blank display and LCD */
2492 aty128fb_blank(FB_BLANK_POWERDOWN, info);
2493
2494 /* Sleep */
2495 par->asleep = 1;
2496 par->lock_blank = 1;
2497
2498 #ifdef CONFIG_PPC_PMAC
2499 /* On powermac, we have hooks to properly suspend/resume AGP now,
2500 * use them here. We'll ultimately need some generic support here,
2501 * but the generic code isn't quite ready for that yet
2502 */
2503 pmac_suspend_agp_for_card(pdev);
2504 #endif /* CONFIG_PPC_PMAC */
2505
2506 /* We need a way to make sure the fbdev layer will _not_ touch the
2507 * framebuffer before we put the chip to suspend state. On 2.4, I
2508 * used dummy fb ops, 2.5 need proper support for this at the
2509 * fbdev level
2510 */
2511 if (state.event != PM_EVENT_ON)
2512 aty128_set_suspend(par, 1);
2513
2514 console_unlock();
2515
2516 pdev->dev.power.power_state = state;
2517
2518 return 0;
2519 }
2520
aty128_do_resume(struct pci_dev * pdev)2521 static int aty128_do_resume(struct pci_dev *pdev)
2522 {
2523 struct fb_info *info = pci_get_drvdata(pdev);
2524 struct aty128fb_par *par = info->par;
2525
2526 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2527 return 0;
2528
2529 /* PCI state will have been restored by the core, so
2530 * we should be in D0 now with our config space fully
2531 * restored
2532 */
2533
2534 /* Wakeup chip */
2535 aty128_set_suspend(par, 0);
2536 par->asleep = 0;
2537
2538 /* Restore display & engine */
2539 aty128_reset_engine(par);
2540 wait_for_idle(par);
2541 aty128fb_set_par(info);
2542 fb_pan_display(info, &info->var);
2543 fb_set_cmap(&info->cmap, info);
2544
2545 /* Refresh */
2546 fb_set_suspend(info, 0);
2547
2548 /* Unblank */
2549 par->lock_blank = 0;
2550 aty128fb_blank(0, info);
2551
2552 #ifdef CONFIG_PPC_PMAC
2553 /* On powermac, we have hooks to properly suspend/resume AGP now,
2554 * use them here. We'll ultimately need some generic support here,
2555 * but the generic code isn't quite ready for that yet
2556 */
2557 pmac_resume_agp_for_card(pdev);
2558 #endif /* CONFIG_PPC_PMAC */
2559
2560 pdev->dev.power.power_state = PMSG_ON;
2561
2562 printk(KERN_DEBUG "aty128fb: resumed !\n");
2563
2564 return 0;
2565 }
2566
aty128_pci_resume(struct pci_dev * pdev)2567 static int aty128_pci_resume(struct pci_dev *pdev)
2568 {
2569 int rc;
2570
2571 console_lock();
2572 rc = aty128_do_resume(pdev);
2573 console_unlock();
2574
2575 return rc;
2576 }
2577
2578
aty128fb_init(void)2579 static int aty128fb_init(void)
2580 {
2581 #ifndef MODULE
2582 char *option = NULL;
2583
2584 if (fb_get_options("aty128fb", &option))
2585 return -ENODEV;
2586 aty128fb_setup(option);
2587 #endif
2588
2589 return pci_register_driver(&aty128fb_driver);
2590 }
2591
aty128fb_exit(void)2592 static void __exit aty128fb_exit(void)
2593 {
2594 pci_unregister_driver(&aty128fb_driver);
2595 }
2596
2597 module_init(aty128fb_init);
2598
2599 module_exit(aty128fb_exit);
2600
2601 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2602 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2603 MODULE_LICENSE("GPL");
2604 module_param(mode_option, charp, 0);
2605 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2606 module_param_named(nomtrr, mtrr, invbool, 0);
2607 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2608