1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple PWM based backlight control, board code has to setup
4 * 1) pin configuration so PWM waveforms can output
5 * 2) platform_data being correctly configured
6 */
7
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/fb.h>
15 #include <linux/backlight.h>
16 #include <linux/err.h>
17 #include <linux/pwm.h>
18 #include <linux/pwm_backlight.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21
22 struct pwm_bl_data {
23 struct pwm_device *pwm;
24 struct device *dev;
25 unsigned int lth_brightness;
26 unsigned int *levels;
27 bool enabled;
28 struct regulator *power_supply;
29 struct gpio_desc *enable_gpio;
30 unsigned int scale;
31 unsigned int post_pwm_on_delay;
32 unsigned int pwm_off_delay;
33 int (*notify)(struct device *,
34 int brightness);
35 void (*notify_after)(struct device *,
36 int brightness);
37 int (*check_fb)(struct device *, struct fb_info *);
38 void (*exit)(struct device *);
39 };
40
pwm_backlight_power_on(struct pwm_bl_data * pb)41 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
42 {
43 int err;
44
45 if (pb->enabled)
46 return;
47
48 if (pb->power_supply) {
49 err = regulator_enable(pb->power_supply);
50 if (err < 0)
51 dev_err(pb->dev, "failed to enable power supply\n");
52 }
53
54 if (pb->post_pwm_on_delay)
55 msleep(pb->post_pwm_on_delay);
56
57 gpiod_set_value_cansleep(pb->enable_gpio, 1);
58
59 pb->enabled = true;
60 }
61
pwm_backlight_power_off(struct pwm_bl_data * pb)62 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
63 {
64 if (!pb->enabled)
65 return;
66
67 gpiod_set_value_cansleep(pb->enable_gpio, 0);
68
69 if (pb->pwm_off_delay)
70 msleep(pb->pwm_off_delay);
71
72 if (pb->power_supply)
73 regulator_disable(pb->power_supply);
74 pb->enabled = false;
75 }
76
compute_duty_cycle(struct pwm_bl_data * pb,int brightness,struct pwm_state * state)77 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state)
78 {
79 unsigned int lth = pb->lth_brightness;
80 u64 duty_cycle;
81
82 if (pb->levels)
83 duty_cycle = pb->levels[brightness];
84 else
85 duty_cycle = brightness;
86
87 duty_cycle *= state->period - lth;
88 do_div(duty_cycle, pb->scale);
89
90 return duty_cycle + lth;
91 }
92
pwm_backlight_update_status(struct backlight_device * bl)93 static int pwm_backlight_update_status(struct backlight_device *bl)
94 {
95 struct pwm_bl_data *pb = bl_get_data(bl);
96 int brightness = backlight_get_brightness(bl);
97 struct pwm_state state;
98
99 if (pb->notify)
100 brightness = pb->notify(pb->dev, brightness);
101
102 if (brightness > 0) {
103 pwm_get_state(pb->pwm, &state);
104 state.duty_cycle = compute_duty_cycle(pb, brightness, &state);
105 state.enabled = true;
106 pwm_apply_state(pb->pwm, &state);
107
108 pwm_backlight_power_on(pb);
109 } else {
110 pwm_backlight_power_off(pb);
111
112 pwm_get_state(pb->pwm, &state);
113 state.duty_cycle = 0;
114 /*
115 * We cannot assume a disabled PWM to drive its output to the
116 * inactive state. If we have an enable GPIO and/or a regulator
117 * we assume that this isn't relevant and we can disable the PWM
118 * to save power. If however there is neither an enable GPIO nor
119 * a regulator keep the PWM on be sure to get a constant
120 * inactive output.
121 */
122 state.enabled = !pb->power_supply && !pb->enable_gpio;
123 pwm_apply_state(pb->pwm, &state);
124 }
125
126 if (pb->notify_after)
127 pb->notify_after(pb->dev, brightness);
128
129 return 0;
130 }
131
pwm_backlight_check_fb(struct backlight_device * bl,struct fb_info * info)132 static int pwm_backlight_check_fb(struct backlight_device *bl,
133 struct fb_info *info)
134 {
135 struct pwm_bl_data *pb = bl_get_data(bl);
136
137 return !pb->check_fb || pb->check_fb(pb->dev, info);
138 }
139
140 static const struct backlight_ops pwm_backlight_ops = {
141 .update_status = pwm_backlight_update_status,
142 .check_fb = pwm_backlight_check_fb,
143 };
144
145 #ifdef CONFIG_OF
146 #define PWM_LUMINANCE_SHIFT 16
147 #define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
148
149 /*
150 * CIE lightness to PWM conversion.
151 *
152 * The CIE 1931 lightness formula is what actually describes how we perceive
153 * light:
154 * Y = (L* / 903.3) if L* ≤ 8
155 * Y = ((L* + 16) / 116)^3 if L* > 8
156 *
157 * Where Y is the luminance, the amount of light coming out of the screen, and
158 * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
159 * perceives the screen to be, and is a number between 0 and 100.
160 *
161 * The following function does the fixed point maths needed to implement the
162 * above formula.
163 */
cie1931(unsigned int lightness)164 static u64 cie1931(unsigned int lightness)
165 {
166 u64 retval;
167
168 /*
169 * @lightness is given as a number between 0 and 1, expressed
170 * as a fixed-point number in scale
171 * PWM_LUMINANCE_SCALE. Convert to a percentage, still
172 * expressed as a fixed-point number, so the above formulas
173 * can be applied.
174 */
175 lightness *= 100;
176 if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
177 retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
178 } else {
179 retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
180 retval *= retval * retval;
181 retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
182 retval >>= 2*PWM_LUMINANCE_SHIFT;
183 }
184
185 return retval;
186 }
187
188 /*
189 * Create a default correction table for PWM values to create linear brightness
190 * for LED based backlights using the CIE1931 algorithm.
191 */
192 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)193 int pwm_backlight_brightness_default(struct device *dev,
194 struct platform_pwm_backlight_data *data,
195 unsigned int period)
196 {
197 unsigned int i;
198 u64 retval;
199
200 /*
201 * Once we have 4096 levels there's little point going much higher...
202 * neither interactive sliders nor animation benefits from having
203 * more values in the table.
204 */
205 data->max_brightness =
206 min((int)DIV_ROUND_UP(period, fls(period)), 4096);
207
208 data->levels = devm_kcalloc(dev, data->max_brightness,
209 sizeof(*data->levels), GFP_KERNEL);
210 if (!data->levels)
211 return -ENOMEM;
212
213 /* Fill the table using the cie1931 algorithm */
214 for (i = 0; i < data->max_brightness; i++) {
215 retval = cie1931((i * PWM_LUMINANCE_SCALE) /
216 data->max_brightness) * period;
217 retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
218 if (retval > UINT_MAX)
219 return -EINVAL;
220 data->levels[i] = (unsigned int)retval;
221 }
222
223 data->dft_brightness = data->max_brightness / 2;
224 data->max_brightness--;
225
226 return 0;
227 }
228
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)229 static int pwm_backlight_parse_dt(struct device *dev,
230 struct platform_pwm_backlight_data *data)
231 {
232 struct device_node *node = dev->of_node;
233 unsigned int num_levels;
234 unsigned int num_steps = 0;
235 struct property *prop;
236 unsigned int *table;
237 int length;
238 u32 value;
239 int ret;
240
241 if (!node)
242 return -ENODEV;
243
244 memset(data, 0, sizeof(*data));
245
246 /*
247 * These values are optional and set as 0 by default, the out values
248 * are modified only if a valid u32 value can be decoded.
249 */
250 of_property_read_u32(node, "post-pwm-on-delay-ms",
251 &data->post_pwm_on_delay);
252 of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
253
254 /*
255 * Determine the number of brightness levels, if this property is not
256 * set a default table of brightness levels will be used.
257 */
258 prop = of_find_property(node, "brightness-levels", &length);
259 if (!prop)
260 return 0;
261
262 num_levels = length / sizeof(u32);
263
264 /* read brightness levels from DT property */
265 if (num_levels > 0) {
266 data->levels = devm_kcalloc(dev, num_levels,
267 sizeof(*data->levels), GFP_KERNEL);
268 if (!data->levels)
269 return -ENOMEM;
270
271 ret = of_property_read_u32_array(node, "brightness-levels",
272 data->levels,
273 num_levels);
274 if (ret < 0)
275 return ret;
276
277 ret = of_property_read_u32(node, "default-brightness-level",
278 &value);
279 if (ret < 0)
280 return ret;
281
282 data->dft_brightness = value;
283
284 /*
285 * This property is optional, if is set enables linear
286 * interpolation between each of the values of brightness levels
287 * and creates a new pre-computed table.
288 */
289 of_property_read_u32(node, "num-interpolated-steps",
290 &num_steps);
291
292 /*
293 * Make sure that there is at least two entries in the
294 * brightness-levels table, otherwise we can't interpolate
295 * between two points.
296 */
297 if (num_steps) {
298 unsigned int num_input_levels = num_levels;
299 unsigned int i;
300 u32 x1, x2, x, dx;
301 u32 y1, y2;
302 s64 dy;
303
304 if (num_input_levels < 2) {
305 dev_err(dev, "can't interpolate\n");
306 return -EINVAL;
307 }
308
309 /*
310 * Recalculate the number of brightness levels, now
311 * taking in consideration the number of interpolated
312 * steps between two levels.
313 */
314 num_levels = (num_input_levels - 1) * num_steps + 1;
315 dev_dbg(dev, "new number of brightness levels: %d\n",
316 num_levels);
317
318 /*
319 * Create a new table of brightness levels with all the
320 * interpolated steps.
321 */
322 table = devm_kcalloc(dev, num_levels, sizeof(*table),
323 GFP_KERNEL);
324 if (!table)
325 return -ENOMEM;
326 /*
327 * Fill the interpolated table[x] = y
328 * by draw lines between each (x1, y1) to (x2, y2).
329 */
330 dx = num_steps;
331 for (i = 0; i < num_input_levels - 1; i++) {
332 x1 = i * dx;
333 x2 = x1 + dx;
334 y1 = data->levels[i];
335 y2 = data->levels[i + 1];
336 dy = (s64)y2 - y1;
337
338 for (x = x1; x < x2; x++) {
339 table[x] = y1 +
340 div_s64(dy * (x - x1), dx);
341 }
342 }
343 /* Fill in the last point, since no line starts here. */
344 table[x2] = y2;
345
346 /*
347 * As we use interpolation lets remove current
348 * brightness levels table and replace for the
349 * new interpolated table.
350 */
351 devm_kfree(dev, data->levels);
352 data->levels = table;
353 }
354
355 data->max_brightness = num_levels - 1;
356 }
357
358 return 0;
359 }
360
361 static const struct of_device_id pwm_backlight_of_match[] = {
362 { .compatible = "pwm-backlight" },
363 { }
364 };
365
366 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
367 #else
pwm_backlight_parse_dt(struct device * dev,struct platform_pwm_backlight_data * data)368 static int pwm_backlight_parse_dt(struct device *dev,
369 struct platform_pwm_backlight_data *data)
370 {
371 return -ENODEV;
372 }
373
374 static
pwm_backlight_brightness_default(struct device * dev,struct platform_pwm_backlight_data * data,unsigned int period)375 int pwm_backlight_brightness_default(struct device *dev,
376 struct platform_pwm_backlight_data *data,
377 unsigned int period)
378 {
379 return -ENODEV;
380 }
381 #endif
382
pwm_backlight_is_linear(struct platform_pwm_backlight_data * data)383 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
384 {
385 unsigned int nlevels = data->max_brightness + 1;
386 unsigned int min_val = data->levels[0];
387 unsigned int max_val = data->levels[nlevels - 1];
388 /*
389 * Multiplying by 128 means that even in pathological cases such
390 * as (max_val - min_val) == nlevels the error at max_val is less
391 * than 1%.
392 */
393 unsigned int slope = (128 * (max_val - min_val)) / nlevels;
394 unsigned int margin = (max_val - min_val) / 20; /* 5% */
395 int i;
396
397 for (i = 1; i < nlevels; i++) {
398 unsigned int linear_value = min_val + ((i * slope) / 128);
399 unsigned int delta = abs(linear_value - data->levels[i]);
400
401 if (delta > margin)
402 return false;
403 }
404
405 return true;
406 }
407
pwm_backlight_initial_power_state(const struct pwm_bl_data * pb)408 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
409 {
410 struct device_node *node = pb->dev->of_node;
411 bool active = true;
412
413 /*
414 * If the enable GPIO is present, observable (either as input
415 * or output) and off then the backlight is not currently active.
416 * */
417 if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
418 active = false;
419
420 if (pb->power_supply && !regulator_is_enabled(pb->power_supply))
421 active = false;
422
423 if (!pwm_is_enabled(pb->pwm))
424 active = false;
425
426 /*
427 * Synchronize the enable_gpio with the observed state of the
428 * hardware.
429 */
430 gpiod_direction_output(pb->enable_gpio, active);
431
432 /*
433 * Do not change pb->enabled here! pb->enabled essentially
434 * tells us if we own one of the regulator's use counts and
435 * right now we do not.
436 */
437
438 /* Not booted with device tree or no phandle link to the node */
439 if (!node || !node->phandle)
440 return FB_BLANK_UNBLANK;
441
442 /*
443 * If the driver is probed from the device tree and there is a
444 * phandle link pointing to the backlight node, it is safe to
445 * assume that another driver will enable the backlight at the
446 * appropriate time. Therefore, if it is disabled, keep it so.
447 */
448 return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN;
449 }
450
pwm_backlight_probe(struct platform_device * pdev)451 static int pwm_backlight_probe(struct platform_device *pdev)
452 {
453 struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
454 struct platform_pwm_backlight_data defdata;
455 struct backlight_properties props;
456 struct backlight_device *bl;
457 struct pwm_bl_data *pb;
458 struct pwm_state state;
459 unsigned int i;
460 int ret;
461
462 if (!data) {
463 ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
464 if (ret < 0) {
465 dev_err(&pdev->dev, "failed to find platform data\n");
466 return ret;
467 }
468
469 data = &defdata;
470 }
471
472 if (data->init) {
473 ret = data->init(&pdev->dev);
474 if (ret < 0)
475 return ret;
476 }
477
478 pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
479 if (!pb) {
480 ret = -ENOMEM;
481 goto err_alloc;
482 }
483
484 pb->notify = data->notify;
485 pb->notify_after = data->notify_after;
486 pb->check_fb = data->check_fb;
487 pb->exit = data->exit;
488 pb->dev = &pdev->dev;
489 pb->enabled = false;
490 pb->post_pwm_on_delay = data->post_pwm_on_delay;
491 pb->pwm_off_delay = data->pwm_off_delay;
492
493 pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
494 GPIOD_ASIS);
495 if (IS_ERR(pb->enable_gpio)) {
496 ret = PTR_ERR(pb->enable_gpio);
497 goto err_alloc;
498 }
499
500 pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power");
501 if (IS_ERR(pb->power_supply)) {
502 ret = PTR_ERR(pb->power_supply);
503 if (ret == -ENODEV)
504 pb->power_supply = NULL;
505 else
506 goto err_alloc;
507 }
508
509 pb->pwm = devm_pwm_get(&pdev->dev, NULL);
510 if (IS_ERR(pb->pwm)) {
511 ret = PTR_ERR(pb->pwm);
512 if (ret != -EPROBE_DEFER)
513 dev_err(&pdev->dev, "unable to request PWM\n");
514 goto err_alloc;
515 }
516
517 dev_dbg(&pdev->dev, "got pwm for backlight\n");
518
519 /* Sync up PWM state. */
520 pwm_init_state(pb->pwm, &state);
521
522 /*
523 * The DT case will set the pwm_period_ns field to 0 and store the
524 * period, parsed from the DT, in the PWM device. For the non-DT case,
525 * set the period from platform data if it has not already been set
526 * via the PWM lookup table.
527 */
528 if (!state.period && (data->pwm_period_ns > 0))
529 state.period = data->pwm_period_ns;
530
531 ret = pwm_apply_state(pb->pwm, &state);
532 if (ret) {
533 dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
534 ret);
535 goto err_alloc;
536 }
537
538 memset(&props, 0, sizeof(struct backlight_properties));
539
540 if (data->levels) {
541 pb->levels = data->levels;
542
543 /*
544 * For the DT case, only when brightness levels is defined
545 * data->levels is filled. For the non-DT case, data->levels
546 * can come from platform data, however is not usual.
547 */
548 for (i = 0; i <= data->max_brightness; i++)
549 if (data->levels[i] > pb->scale)
550 pb->scale = data->levels[i];
551
552 if (pwm_backlight_is_linear(data))
553 props.scale = BACKLIGHT_SCALE_LINEAR;
554 else
555 props.scale = BACKLIGHT_SCALE_NON_LINEAR;
556 } else if (!data->max_brightness) {
557 /*
558 * If no brightness levels are provided and max_brightness is
559 * not set, use the default brightness table. For the DT case,
560 * max_brightness is set to 0 when brightness levels is not
561 * specified. For the non-DT case, max_brightness is usually
562 * set to some value.
563 */
564
565 /* Get the PWM period (in nanoseconds) */
566 pwm_get_state(pb->pwm, &state);
567
568 ret = pwm_backlight_brightness_default(&pdev->dev, data,
569 state.period);
570 if (ret < 0) {
571 dev_err(&pdev->dev,
572 "failed to setup default brightness table\n");
573 goto err_alloc;
574 }
575
576 for (i = 0; i <= data->max_brightness; i++) {
577 if (data->levels[i] > pb->scale)
578 pb->scale = data->levels[i];
579
580 pb->levels = data->levels;
581 }
582
583 props.scale = BACKLIGHT_SCALE_NON_LINEAR;
584 } else {
585 /*
586 * That only happens for the non-DT case, where platform data
587 * sets the max_brightness value.
588 */
589 pb->scale = data->max_brightness;
590 }
591
592 pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
593 pb->scale));
594
595 props.type = BACKLIGHT_RAW;
596 props.max_brightness = data->max_brightness;
597 bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
598 &pwm_backlight_ops, &props);
599 if (IS_ERR(bl)) {
600 dev_err(&pdev->dev, "failed to register backlight\n");
601 ret = PTR_ERR(bl);
602 goto err_alloc;
603 }
604
605 if (data->dft_brightness > data->max_brightness) {
606 dev_warn(&pdev->dev,
607 "invalid default brightness level: %u, using %u\n",
608 data->dft_brightness, data->max_brightness);
609 data->dft_brightness = data->max_brightness;
610 }
611
612 bl->props.brightness = data->dft_brightness;
613 bl->props.power = pwm_backlight_initial_power_state(pb);
614 backlight_update_status(bl);
615
616 platform_set_drvdata(pdev, bl);
617 return 0;
618
619 err_alloc:
620 if (data->exit)
621 data->exit(&pdev->dev);
622 return ret;
623 }
624
pwm_backlight_remove(struct platform_device * pdev)625 static void pwm_backlight_remove(struct platform_device *pdev)
626 {
627 struct backlight_device *bl = platform_get_drvdata(pdev);
628 struct pwm_bl_data *pb = bl_get_data(bl);
629
630 backlight_device_unregister(bl);
631 pwm_backlight_power_off(pb);
632
633 if (pb->exit)
634 pb->exit(&pdev->dev);
635 }
636
pwm_backlight_shutdown(struct platform_device * pdev)637 static void pwm_backlight_shutdown(struct platform_device *pdev)
638 {
639 struct backlight_device *bl = platform_get_drvdata(pdev);
640 struct pwm_bl_data *pb = bl_get_data(bl);
641
642 pwm_backlight_power_off(pb);
643 }
644
645 #ifdef CONFIG_PM_SLEEP
pwm_backlight_suspend(struct device * dev)646 static int pwm_backlight_suspend(struct device *dev)
647 {
648 struct backlight_device *bl = dev_get_drvdata(dev);
649 struct pwm_bl_data *pb = bl_get_data(bl);
650
651 if (pb->notify)
652 pb->notify(pb->dev, 0);
653
654 pwm_backlight_power_off(pb);
655
656 if (pb->notify_after)
657 pb->notify_after(pb->dev, 0);
658
659 return 0;
660 }
661
pwm_backlight_resume(struct device * dev)662 static int pwm_backlight_resume(struct device *dev)
663 {
664 struct backlight_device *bl = dev_get_drvdata(dev);
665
666 backlight_update_status(bl);
667
668 return 0;
669 }
670 #endif
671
672 static const struct dev_pm_ops pwm_backlight_pm_ops = {
673 #ifdef CONFIG_PM_SLEEP
674 .suspend = pwm_backlight_suspend,
675 .resume = pwm_backlight_resume,
676 .poweroff = pwm_backlight_suspend,
677 .restore = pwm_backlight_resume,
678 #endif
679 };
680
681 static struct platform_driver pwm_backlight_driver = {
682 .driver = {
683 .name = "pwm-backlight",
684 .pm = &pwm_backlight_pm_ops,
685 .of_match_table = of_match_ptr(pwm_backlight_of_match),
686 },
687 .probe = pwm_backlight_probe,
688 .remove_new = pwm_backlight_remove,
689 .shutdown = pwm_backlight_shutdown,
690 };
691
692 module_platform_driver(pwm_backlight_driver);
693
694 MODULE_DESCRIPTION("PWM based Backlight Driver");
695 MODULE_LICENSE("GPL v2");
696 MODULE_ALIAS("platform:pwm-backlight");
697