1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Copyright (C) 2020 NVIDIA CORPORATION.
4
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/kernel.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/reset.h>
23 #include <linux/spi/spi.h>
24 #include <linux/acpi.h>
25 #include <linux/property.h>
26
27 #define QSPI_COMMAND1 0x000
28 #define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
29 #define QSPI_PACKED BIT(5)
30 #define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7)
31 #define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7)
32 #define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0)
33 #define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1)
34 #define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2)
35 #define QSPI_SDR_DDR_SEL BIT(9)
36 #define QSPI_TX_EN BIT(11)
37 #define QSPI_RX_EN BIT(12)
38 #define QSPI_CS_SW_VAL BIT(20)
39 #define QSPI_CS_SW_HW BIT(21)
40
41 #define QSPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
42 #define QSPI_CS_POL_INACTIVE_MASK (0xF << 22)
43 #define QSPI_CS_SEL_0 (0 << 26)
44 #define QSPI_CS_SEL_1 (1 << 26)
45 #define QSPI_CS_SEL_2 (2 << 26)
46 #define QSPI_CS_SEL_3 (3 << 26)
47 #define QSPI_CS_SEL_MASK (3 << 26)
48 #define QSPI_CS_SEL(x) (((x) & 0x3) << 26)
49
50 #define QSPI_CONTROL_MODE_0 (0 << 28)
51 #define QSPI_CONTROL_MODE_3 (3 << 28)
52 #define QSPI_CONTROL_MODE_MASK (3 << 28)
53 #define QSPI_M_S BIT(30)
54 #define QSPI_PIO BIT(31)
55
56 #define QSPI_COMMAND2 0x004
57 #define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10)
58 #define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0)
59
60 #define QSPI_CS_TIMING1 0x008
61 #define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
62
63 #define QSPI_CS_TIMING2 0x00c
64 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0)
65 #define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5)
66
67 #define QSPI_TRANS_STATUS 0x010
68 #define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff)
69 #define QSPI_RDY BIT(30)
70
71 #define QSPI_FIFO_STATUS 0x014
72 #define QSPI_RX_FIFO_EMPTY BIT(0)
73 #define QSPI_RX_FIFO_FULL BIT(1)
74 #define QSPI_TX_FIFO_EMPTY BIT(2)
75 #define QSPI_TX_FIFO_FULL BIT(3)
76 #define QSPI_RX_FIFO_UNF BIT(4)
77 #define QSPI_RX_FIFO_OVF BIT(5)
78 #define QSPI_TX_FIFO_UNF BIT(6)
79 #define QSPI_TX_FIFO_OVF BIT(7)
80 #define QSPI_ERR BIT(8)
81 #define QSPI_TX_FIFO_FLUSH BIT(14)
82 #define QSPI_RX_FIFO_FLUSH BIT(15)
83 #define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f)
84 #define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f)
85
86 #define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \
87 QSPI_RX_FIFO_OVF | \
88 QSPI_TX_FIFO_UNF | \
89 QSPI_TX_FIFO_OVF)
90 #define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \
91 QSPI_TX_FIFO_EMPTY)
92
93 #define QSPI_TX_DATA 0x018
94 #define QSPI_RX_DATA 0x01c
95
96 #define QSPI_DMA_CTL 0x020
97 #define QSPI_TX_TRIG(n) (((n) & 0x3) << 15)
98 #define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0)
99 #define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1)
100 #define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2)
101 #define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3)
102
103 #define QSPI_RX_TRIG(n) (((n) & 0x3) << 19)
104 #define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0)
105 #define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1)
106 #define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2)
107 #define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3)
108
109 #define QSPI_DMA_EN BIT(31)
110
111 #define QSPI_DMA_BLK 0x024
112 #define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0)
113
114 #define QSPI_TX_FIFO 0x108
115 #define QSPI_RX_FIFO 0x188
116
117 #define QSPI_FIFO_DEPTH 64
118
119 #define QSPI_INTR_MASK 0x18c
120 #define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25)
121 #define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26)
122 #define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27)
123 #define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28)
124 #define QSPI_INTR_RDY_MASK BIT(29)
125 #define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \
126 QSPI_INTR_RX_FIFO_OVF_MASK | \
127 QSPI_INTR_TX_FIFO_UNF_MASK | \
128 QSPI_INTR_TX_FIFO_OVF_MASK)
129
130 #define QSPI_MISC_REG 0x194
131 #define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0)
132 #define QSPI_DUMMY_CYCLES_MAX 0xff
133
134 #define QSPI_CMB_SEQ_CMD 0x19c
135 #define QSPI_COMMAND_VALUE_SET(X) (((x) & 0xFF) << 0)
136
137 #define QSPI_CMB_SEQ_CMD_CFG 0x1a0
138 #define QSPI_COMMAND_X1_X2_X4(x) (((x) & 0x3) << 13)
139 #define QSPI_COMMAND_X1_X2_X4_MASK (0x03 << 13)
140 #define QSPI_COMMAND_SDR_DDR BIT(12)
141 #define QSPI_COMMAND_SIZE_SET(x) (((x) & 0xFF) << 0)
142
143 #define QSPI_GLOBAL_CONFIG 0X1a4
144 #define QSPI_CMB_SEQ_EN BIT(0)
145
146 #define QSPI_CMB_SEQ_ADDR 0x1a8
147 #define QSPI_ADDRESS_VALUE_SET(X) (((x) & 0xFFFF) << 0)
148
149 #define QSPI_CMB_SEQ_ADDR_CFG 0x1ac
150 #define QSPI_ADDRESS_X1_X2_X4(x) (((x) & 0x3) << 13)
151 #define QSPI_ADDRESS_X1_X2_X4_MASK (0x03 << 13)
152 #define QSPI_ADDRESS_SDR_DDR BIT(12)
153 #define QSPI_ADDRESS_SIZE_SET(x) (((x) & 0xFF) << 0)
154
155 #define DATA_DIR_TX BIT(0)
156 #define DATA_DIR_RX BIT(1)
157
158 #define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
159 #define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024)
160 #define CMD_TRANSFER 0
161 #define ADDR_TRANSFER 1
162 #define DATA_TRANSFER 2
163
164 struct tegra_qspi_soc_data {
165 bool has_dma;
166 bool cmb_xfer_capable;
167 unsigned int cs_count;
168 };
169
170 struct tegra_qspi_client_data {
171 int tx_clk_tap_delay;
172 int rx_clk_tap_delay;
173 };
174
175 struct tegra_qspi {
176 struct device *dev;
177 struct spi_master *master;
178 /* lock to protect data accessed by irq */
179 spinlock_t lock;
180
181 struct clk *clk;
182 void __iomem *base;
183 phys_addr_t phys;
184 unsigned int irq;
185
186 u32 cur_speed;
187 unsigned int cur_pos;
188 unsigned int words_per_32bit;
189 unsigned int bytes_per_word;
190 unsigned int curr_dma_words;
191 unsigned int cur_direction;
192
193 unsigned int cur_rx_pos;
194 unsigned int cur_tx_pos;
195
196 unsigned int dma_buf_size;
197 unsigned int max_buf_size;
198 bool is_curr_dma_xfer;
199
200 struct completion rx_dma_complete;
201 struct completion tx_dma_complete;
202
203 u32 tx_status;
204 u32 rx_status;
205 u32 status_reg;
206 bool is_packed;
207 bool use_dma;
208
209 u32 command1_reg;
210 u32 dma_control_reg;
211 u32 def_command1_reg;
212 u32 def_command2_reg;
213 u32 spi_cs_timing1;
214 u32 spi_cs_timing2;
215 u8 dummy_cycles;
216
217 struct completion xfer_completion;
218 struct spi_transfer *curr_xfer;
219
220 struct dma_chan *rx_dma_chan;
221 u32 *rx_dma_buf;
222 dma_addr_t rx_dma_phys;
223 struct dma_async_tx_descriptor *rx_dma_desc;
224
225 struct dma_chan *tx_dma_chan;
226 u32 *tx_dma_buf;
227 dma_addr_t tx_dma_phys;
228 struct dma_async_tx_descriptor *tx_dma_desc;
229 const struct tegra_qspi_soc_data *soc_data;
230 };
231
tegra_qspi_readl(struct tegra_qspi * tqspi,unsigned long offset)232 static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
233 {
234 return readl(tqspi->base + offset);
235 }
236
tegra_qspi_writel(struct tegra_qspi * tqspi,u32 value,unsigned long offset)237 static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
238 {
239 writel(value, tqspi->base + offset);
240
241 /* read back register to make sure that register writes completed */
242 if (offset != QSPI_TX_FIFO)
243 readl(tqspi->base + QSPI_COMMAND1);
244 }
245
tegra_qspi_mask_clear_irq(struct tegra_qspi * tqspi)246 static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
247 {
248 u32 value;
249
250 /* write 1 to clear status register */
251 value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
252 tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
253
254 value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
255 if (!(value & QSPI_INTR_RDY_MASK)) {
256 value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
257 tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
258 }
259
260 /* clear fifo status error if any */
261 value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
262 if (value & QSPI_ERR)
263 tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
264 }
265
266 static unsigned int
tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi * tqspi,struct spi_transfer * t)267 tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
268 {
269 unsigned int max_word, max_len, total_fifo_words;
270 unsigned int remain_len = t->len - tqspi->cur_pos;
271 unsigned int bits_per_word = t->bits_per_word;
272
273 tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
274
275 /*
276 * Tegra QSPI controller supports packed or unpacked mode transfers.
277 * Packed mode is used for data transfers using 8, 16, or 32 bits per
278 * word with a minimum transfer of 1 word and for all other transfers
279 * unpacked mode will be used.
280 */
281
282 if ((bits_per_word == 8 || bits_per_word == 16 ||
283 bits_per_word == 32) && t->len > 3) {
284 tqspi->is_packed = true;
285 tqspi->words_per_32bit = 32 / bits_per_word;
286 } else {
287 tqspi->is_packed = false;
288 tqspi->words_per_32bit = 1;
289 }
290
291 if (tqspi->is_packed) {
292 max_len = min(remain_len, tqspi->max_buf_size);
293 tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
294 total_fifo_words = (max_len + 3) / 4;
295 } else {
296 max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
297 max_word = min(max_word, tqspi->max_buf_size / 4);
298 tqspi->curr_dma_words = max_word;
299 total_fifo_words = max_word;
300 }
301
302 return total_fifo_words;
303 }
304
305 static unsigned int
tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi * tqspi,struct spi_transfer * t)306 tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
307 {
308 unsigned int written_words, fifo_words_left, count;
309 unsigned int len, tx_empty_count, max_n_32bit, i;
310 u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
311 u32 fifo_status;
312
313 fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
314 tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
315
316 if (tqspi->is_packed) {
317 fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
318 written_words = min(fifo_words_left, tqspi->curr_dma_words);
319 len = written_words * tqspi->bytes_per_word;
320 max_n_32bit = DIV_ROUND_UP(len, 4);
321 for (count = 0; count < max_n_32bit; count++) {
322 u32 x = 0;
323
324 for (i = 0; (i < 4) && len; i++, len--)
325 x |= (u32)(*tx_buf++) << (i * 8);
326 tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
327 }
328
329 tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
330 } else {
331 unsigned int write_bytes;
332 u8 bytes_per_word = tqspi->bytes_per_word;
333
334 max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
335 written_words = max_n_32bit;
336 len = written_words * tqspi->bytes_per_word;
337 if (len > t->len - tqspi->cur_pos)
338 len = t->len - tqspi->cur_pos;
339 write_bytes = len;
340 for (count = 0; count < max_n_32bit; count++) {
341 u32 x = 0;
342
343 for (i = 0; len && (i < bytes_per_word); i++, len--)
344 x |= (u32)(*tx_buf++) << (i * 8);
345 tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
346 }
347
348 tqspi->cur_tx_pos += write_bytes;
349 }
350
351 return written_words;
352 }
353
354 static unsigned int
tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi * tqspi,struct spi_transfer * t)355 tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
356 {
357 u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
358 unsigned int len, rx_full_count, count, i;
359 unsigned int read_words = 0;
360 u32 fifo_status, x;
361
362 fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
363 rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
364 if (tqspi->is_packed) {
365 len = tqspi->curr_dma_words * tqspi->bytes_per_word;
366 for (count = 0; count < rx_full_count; count++) {
367 x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
368
369 for (i = 0; len && (i < 4); i++, len--)
370 *rx_buf++ = (x >> i * 8) & 0xff;
371 }
372
373 read_words += tqspi->curr_dma_words;
374 tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
375 } else {
376 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
377 u8 bytes_per_word = tqspi->bytes_per_word;
378 unsigned int read_bytes;
379
380 len = rx_full_count * bytes_per_word;
381 if (len > t->len - tqspi->cur_pos)
382 len = t->len - tqspi->cur_pos;
383 read_bytes = len;
384 for (count = 0; count < rx_full_count; count++) {
385 x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
386
387 for (i = 0; len && (i < bytes_per_word); i++, len--)
388 *rx_buf++ = (x >> (i * 8)) & 0xff;
389 }
390
391 read_words += rx_full_count;
392 tqspi->cur_rx_pos += read_bytes;
393 }
394
395 return read_words;
396 }
397
398 static void
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi * tqspi,struct spi_transfer * t)399 tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
400 {
401 dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
402 tqspi->dma_buf_size, DMA_TO_DEVICE);
403
404 /*
405 * In packed mode, each word in FIFO may contain multiple packets
406 * based on bits per word. So all bytes in each FIFO word are valid.
407 *
408 * In unpacked mode, each word in FIFO contains single packet and
409 * based on bits per word any remaining bits in FIFO word will be
410 * ignored by the hardware and are invalid bits.
411 */
412 if (tqspi->is_packed) {
413 tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
414 } else {
415 u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
416 unsigned int i, count, consume, write_bytes;
417
418 /*
419 * Fill tx_dma_buf to contain single packet in each word based
420 * on bits per word from SPI core tx_buf.
421 */
422 consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
423 if (consume > t->len - tqspi->cur_pos)
424 consume = t->len - tqspi->cur_pos;
425 write_bytes = consume;
426 for (count = 0; count < tqspi->curr_dma_words; count++) {
427 u32 x = 0;
428
429 for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
430 x |= (u32)(*tx_buf++) << (i * 8);
431 tqspi->tx_dma_buf[count] = x;
432 }
433
434 tqspi->cur_tx_pos += write_bytes;
435 }
436
437 dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
438 tqspi->dma_buf_size, DMA_TO_DEVICE);
439 }
440
441 static void
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi * tqspi,struct spi_transfer * t)442 tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
443 {
444 dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
445 tqspi->dma_buf_size, DMA_FROM_DEVICE);
446
447 if (tqspi->is_packed) {
448 tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
449 } else {
450 unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
451 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
452 unsigned int i, count, consume, read_bytes;
453
454 /*
455 * Each FIFO word contains single data packet.
456 * Skip invalid bits in each FIFO word based on bits per word
457 * and align bytes while filling in SPI core rx_buf.
458 */
459 consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
460 if (consume > t->len - tqspi->cur_pos)
461 consume = t->len - tqspi->cur_pos;
462 read_bytes = consume;
463 for (count = 0; count < tqspi->curr_dma_words; count++) {
464 u32 x = tqspi->rx_dma_buf[count] & rx_mask;
465
466 for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
467 *rx_buf++ = (x >> (i * 8)) & 0xff;
468 }
469
470 tqspi->cur_rx_pos += read_bytes;
471 }
472
473 dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
474 tqspi->dma_buf_size, DMA_FROM_DEVICE);
475 }
476
tegra_qspi_dma_complete(void * args)477 static void tegra_qspi_dma_complete(void *args)
478 {
479 struct completion *dma_complete = args;
480
481 complete(dma_complete);
482 }
483
tegra_qspi_start_tx_dma(struct tegra_qspi * tqspi,struct spi_transfer * t,int len)484 static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
485 {
486 dma_addr_t tx_dma_phys;
487
488 reinit_completion(&tqspi->tx_dma_complete);
489
490 if (tqspi->is_packed)
491 tx_dma_phys = t->tx_dma;
492 else
493 tx_dma_phys = tqspi->tx_dma_phys;
494
495 tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
496 len, DMA_MEM_TO_DEV,
497 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
498
499 if (!tqspi->tx_dma_desc) {
500 dev_err(tqspi->dev, "Unable to get TX descriptor\n");
501 return -EIO;
502 }
503
504 tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
505 tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
506 dmaengine_submit(tqspi->tx_dma_desc);
507 dma_async_issue_pending(tqspi->tx_dma_chan);
508
509 return 0;
510 }
511
tegra_qspi_start_rx_dma(struct tegra_qspi * tqspi,struct spi_transfer * t,int len)512 static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
513 {
514 dma_addr_t rx_dma_phys;
515
516 reinit_completion(&tqspi->rx_dma_complete);
517
518 if (tqspi->is_packed)
519 rx_dma_phys = t->rx_dma;
520 else
521 rx_dma_phys = tqspi->rx_dma_phys;
522
523 tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
524 len, DMA_DEV_TO_MEM,
525 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
526
527 if (!tqspi->rx_dma_desc) {
528 dev_err(tqspi->dev, "Unable to get RX descriptor\n");
529 return -EIO;
530 }
531
532 tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
533 tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
534 dmaengine_submit(tqspi->rx_dma_desc);
535 dma_async_issue_pending(tqspi->rx_dma_chan);
536
537 return 0;
538 }
539
tegra_qspi_flush_fifos(struct tegra_qspi * tqspi,bool atomic)540 static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
541 {
542 void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
543 u32 val;
544
545 val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
546 if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
547 return 0;
548
549 val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
550 tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
551
552 if (!atomic)
553 return readl_relaxed_poll_timeout(addr, val,
554 (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
555 1000, 1000000);
556
557 return readl_relaxed_poll_timeout_atomic(addr, val,
558 (val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
559 1000, 1000000);
560 }
561
tegra_qspi_unmask_irq(struct tegra_qspi * tqspi)562 static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
563 {
564 u32 intr_mask;
565
566 intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
567 intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
568 tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
569 }
570
tegra_qspi_dma_map_xfer(struct tegra_qspi * tqspi,struct spi_transfer * t)571 static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
572 {
573 u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
574 u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
575 unsigned int len;
576
577 len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
578
579 if (t->tx_buf) {
580 t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
581 if (dma_mapping_error(tqspi->dev, t->tx_dma))
582 return -ENOMEM;
583 }
584
585 if (t->rx_buf) {
586 t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
587 if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
588 dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
589 return -ENOMEM;
590 }
591 }
592
593 return 0;
594 }
595
tegra_qspi_dma_unmap_xfer(struct tegra_qspi * tqspi,struct spi_transfer * t)596 static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
597 {
598 unsigned int len;
599
600 len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
601
602 dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
603 dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
604 }
605
tegra_qspi_start_dma_based_transfer(struct tegra_qspi * tqspi,struct spi_transfer * t)606 static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
607 {
608 struct dma_slave_config dma_sconfig = { 0 };
609 unsigned int len;
610 u8 dma_burst;
611 int ret = 0;
612 u32 val;
613
614 if (tqspi->is_packed) {
615 ret = tegra_qspi_dma_map_xfer(tqspi, t);
616 if (ret < 0)
617 return ret;
618 }
619
620 val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
621 tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
622
623 tegra_qspi_unmask_irq(tqspi);
624
625 if (tqspi->is_packed)
626 len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
627 else
628 len = tqspi->curr_dma_words * 4;
629
630 /* set attention level based on length of transfer */
631 val = 0;
632 if (len & 0xf) {
633 val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
634 dma_burst = 1;
635 } else if (((len) >> 4) & 0x1) {
636 val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
637 dma_burst = 4;
638 } else {
639 val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
640 dma_burst = 8;
641 }
642
643 tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
644 tqspi->dma_control_reg = val;
645
646 dma_sconfig.device_fc = true;
647 if (tqspi->cur_direction & DATA_DIR_TX) {
648 dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
649 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
650 dma_sconfig.dst_maxburst = dma_burst;
651 ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
652 if (ret < 0) {
653 dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
654 return ret;
655 }
656
657 tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
658 ret = tegra_qspi_start_tx_dma(tqspi, t, len);
659 if (ret < 0) {
660 dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
661 return ret;
662 }
663 }
664
665 if (tqspi->cur_direction & DATA_DIR_RX) {
666 dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
667 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
668 dma_sconfig.src_maxburst = dma_burst;
669 ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
670 if (ret < 0) {
671 dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
672 return ret;
673 }
674
675 dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
676 tqspi->dma_buf_size,
677 DMA_FROM_DEVICE);
678
679 ret = tegra_qspi_start_rx_dma(tqspi, t, len);
680 if (ret < 0) {
681 dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
682 if (tqspi->cur_direction & DATA_DIR_TX)
683 dmaengine_terminate_all(tqspi->tx_dma_chan);
684 return ret;
685 }
686 }
687
688 tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
689
690 tqspi->is_curr_dma_xfer = true;
691 tqspi->dma_control_reg = val;
692 val |= QSPI_DMA_EN;
693 tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
694
695 return ret;
696 }
697
tegra_qspi_start_cpu_based_transfer(struct tegra_qspi * qspi,struct spi_transfer * t)698 static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
699 {
700 u32 val;
701 unsigned int cur_words;
702
703 if (qspi->cur_direction & DATA_DIR_TX)
704 cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
705 else
706 cur_words = qspi->curr_dma_words;
707
708 val = QSPI_DMA_BLK_SET(cur_words - 1);
709 tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
710
711 tegra_qspi_unmask_irq(qspi);
712
713 qspi->is_curr_dma_xfer = false;
714 val = qspi->command1_reg;
715 val |= QSPI_PIO;
716 tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
717
718 return 0;
719 }
720
tegra_qspi_deinit_dma(struct tegra_qspi * tqspi)721 static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
722 {
723 if (!tqspi->soc_data->has_dma)
724 return;
725
726 if (tqspi->tx_dma_buf) {
727 dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
728 tqspi->tx_dma_buf, tqspi->tx_dma_phys);
729 tqspi->tx_dma_buf = NULL;
730 }
731
732 if (tqspi->tx_dma_chan) {
733 dma_release_channel(tqspi->tx_dma_chan);
734 tqspi->tx_dma_chan = NULL;
735 }
736
737 if (tqspi->rx_dma_buf) {
738 dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
739 tqspi->rx_dma_buf, tqspi->rx_dma_phys);
740 tqspi->rx_dma_buf = NULL;
741 }
742
743 if (tqspi->rx_dma_chan) {
744 dma_release_channel(tqspi->rx_dma_chan);
745 tqspi->rx_dma_chan = NULL;
746 }
747 }
748
tegra_qspi_init_dma(struct tegra_qspi * tqspi)749 static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
750 {
751 struct dma_chan *dma_chan;
752 dma_addr_t dma_phys;
753 u32 *dma_buf;
754 int err;
755
756 if (!tqspi->soc_data->has_dma)
757 return 0;
758
759 dma_chan = dma_request_chan(tqspi->dev, "rx");
760 if (IS_ERR(dma_chan)) {
761 err = PTR_ERR(dma_chan);
762 goto err_out;
763 }
764
765 tqspi->rx_dma_chan = dma_chan;
766
767 dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
768 if (!dma_buf) {
769 err = -ENOMEM;
770 goto err_out;
771 }
772
773 tqspi->rx_dma_buf = dma_buf;
774 tqspi->rx_dma_phys = dma_phys;
775
776 dma_chan = dma_request_chan(tqspi->dev, "tx");
777 if (IS_ERR(dma_chan)) {
778 err = PTR_ERR(dma_chan);
779 goto err_out;
780 }
781
782 tqspi->tx_dma_chan = dma_chan;
783
784 dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
785 if (!dma_buf) {
786 err = -ENOMEM;
787 goto err_out;
788 }
789
790 tqspi->tx_dma_buf = dma_buf;
791 tqspi->tx_dma_phys = dma_phys;
792 tqspi->use_dma = true;
793
794 return 0;
795
796 err_out:
797 tegra_qspi_deinit_dma(tqspi);
798
799 if (err != -EPROBE_DEFER) {
800 dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
801 dev_err(tqspi->dev, "falling back to PIO\n");
802 return 0;
803 }
804
805 return err;
806 }
807
tegra_qspi_setup_transfer_one(struct spi_device * spi,struct spi_transfer * t,bool is_first_of_msg)808 static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
809 bool is_first_of_msg)
810 {
811 struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
812 struct tegra_qspi_client_data *cdata = spi->controller_data;
813 u32 command1, command2, speed = t->speed_hz;
814 u8 bits_per_word = t->bits_per_word;
815 u32 tx_tap = 0, rx_tap = 0;
816 int req_mode;
817
818 if (!has_acpi_companion(tqspi->dev) && speed != tqspi->cur_speed) {
819 clk_set_rate(tqspi->clk, speed);
820 tqspi->cur_speed = speed;
821 }
822
823 tqspi->cur_pos = 0;
824 tqspi->cur_rx_pos = 0;
825 tqspi->cur_tx_pos = 0;
826 tqspi->curr_xfer = t;
827
828 if (is_first_of_msg) {
829 tegra_qspi_mask_clear_irq(tqspi);
830
831 command1 = tqspi->def_command1_reg;
832 command1 |= QSPI_CS_SEL(spi->chip_select);
833 command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
834
835 command1 &= ~QSPI_CONTROL_MODE_MASK;
836 req_mode = spi->mode & 0x3;
837 if (req_mode == SPI_MODE_3)
838 command1 |= QSPI_CONTROL_MODE_3;
839 else
840 command1 |= QSPI_CONTROL_MODE_0;
841
842 if (spi->mode & SPI_CS_HIGH)
843 command1 |= QSPI_CS_SW_VAL;
844 else
845 command1 &= ~QSPI_CS_SW_VAL;
846 tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
847
848 if (cdata && cdata->tx_clk_tap_delay)
849 tx_tap = cdata->tx_clk_tap_delay;
850
851 if (cdata && cdata->rx_clk_tap_delay)
852 rx_tap = cdata->rx_clk_tap_delay;
853
854 command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
855 if (command2 != tqspi->def_command2_reg)
856 tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
857
858 } else {
859 command1 = tqspi->command1_reg;
860 command1 &= ~QSPI_BIT_LENGTH(~0);
861 command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
862 }
863
864 command1 &= ~QSPI_SDR_DDR_SEL;
865
866 return command1;
867 }
868
tegra_qspi_start_transfer_one(struct spi_device * spi,struct spi_transfer * t,u32 command1)869 static int tegra_qspi_start_transfer_one(struct spi_device *spi,
870 struct spi_transfer *t, u32 command1)
871 {
872 struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
873 unsigned int total_fifo_words;
874 u8 bus_width = 0;
875 int ret;
876
877 total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
878
879 command1 &= ~QSPI_PACKED;
880 if (tqspi->is_packed)
881 command1 |= QSPI_PACKED;
882 tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
883
884 tqspi->cur_direction = 0;
885
886 command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
887 if (t->rx_buf) {
888 command1 |= QSPI_RX_EN;
889 tqspi->cur_direction |= DATA_DIR_RX;
890 bus_width = t->rx_nbits;
891 }
892
893 if (t->tx_buf) {
894 command1 |= QSPI_TX_EN;
895 tqspi->cur_direction |= DATA_DIR_TX;
896 bus_width = t->tx_nbits;
897 }
898
899 command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
900
901 if (bus_width == SPI_NBITS_QUAD)
902 command1 |= QSPI_INTERFACE_WIDTH_QUAD;
903 else if (bus_width == SPI_NBITS_DUAL)
904 command1 |= QSPI_INTERFACE_WIDTH_DUAL;
905 else
906 command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
907
908 tqspi->command1_reg = command1;
909
910 tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
911
912 ret = tegra_qspi_flush_fifos(tqspi, false);
913 if (ret < 0)
914 return ret;
915
916 if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
917 ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
918 else
919 ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
920
921 return ret;
922 }
923
tegra_qspi_parse_cdata_dt(struct spi_device * spi)924 static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
925 {
926 struct tegra_qspi_client_data *cdata;
927 struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
928
929 cdata = devm_kzalloc(tqspi->dev, sizeof(*cdata), GFP_KERNEL);
930 if (!cdata)
931 return NULL;
932
933 device_property_read_u32(&spi->dev, "nvidia,tx-clk-tap-delay",
934 &cdata->tx_clk_tap_delay);
935 device_property_read_u32(&spi->dev, "nvidia,rx-clk-tap-delay",
936 &cdata->rx_clk_tap_delay);
937
938 return cdata;
939 }
940
tegra_qspi_setup(struct spi_device * spi)941 static int tegra_qspi_setup(struct spi_device *spi)
942 {
943 struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
944 struct tegra_qspi_client_data *cdata = spi->controller_data;
945 unsigned long flags;
946 u32 val;
947 int ret;
948
949 ret = pm_runtime_resume_and_get(tqspi->dev);
950 if (ret < 0) {
951 dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
952 return ret;
953 }
954
955 if (!cdata) {
956 cdata = tegra_qspi_parse_cdata_dt(spi);
957 spi->controller_data = cdata;
958 }
959 spin_lock_irqsave(&tqspi->lock, flags);
960
961 /* keep default cs state to inactive */
962 val = tqspi->def_command1_reg;
963 val |= QSPI_CS_SEL(spi->chip_select);
964 if (spi->mode & SPI_CS_HIGH)
965 val &= ~QSPI_CS_POL_INACTIVE(spi->chip_select);
966 else
967 val |= QSPI_CS_POL_INACTIVE(spi->chip_select);
968
969 tqspi->def_command1_reg = val;
970 tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
971
972 spin_unlock_irqrestore(&tqspi->lock, flags);
973
974 pm_runtime_put(tqspi->dev);
975
976 return 0;
977 }
978
tegra_qspi_dump_regs(struct tegra_qspi * tqspi)979 static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
980 {
981 dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
982 dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
983 tegra_qspi_readl(tqspi, QSPI_COMMAND1),
984 tegra_qspi_readl(tqspi, QSPI_COMMAND2));
985 dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
986 tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
987 tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
988 dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n",
989 tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
990 tegra_qspi_readl(tqspi, QSPI_MISC_REG));
991 dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
992 tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
993 tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
994 }
995
tegra_qspi_handle_error(struct tegra_qspi * tqspi)996 static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
997 {
998 dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
999 tegra_qspi_dump_regs(tqspi);
1000 tegra_qspi_flush_fifos(tqspi, true);
1001 if (device_reset(tqspi->dev) < 0)
1002 dev_warn_once(tqspi->dev, "device reset failed\n");
1003 }
1004
tegra_qspi_transfer_end(struct spi_device * spi)1005 static void tegra_qspi_transfer_end(struct spi_device *spi)
1006 {
1007 struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
1008 int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
1009
1010 if (cs_val)
1011 tqspi->command1_reg |= QSPI_CS_SW_VAL;
1012 else
1013 tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
1014 tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
1015 tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
1016 }
1017
tegra_qspi_cmd_config(bool is_ddr,u8 bus_width,u8 len)1018 static u32 tegra_qspi_cmd_config(bool is_ddr, u8 bus_width, u8 len)
1019 {
1020 u32 cmd_config = 0;
1021
1022 /* Extract Command configuration and value */
1023 if (is_ddr)
1024 cmd_config |= QSPI_COMMAND_SDR_DDR;
1025 else
1026 cmd_config &= ~QSPI_COMMAND_SDR_DDR;
1027
1028 cmd_config |= QSPI_COMMAND_X1_X2_X4(bus_width);
1029 cmd_config |= QSPI_COMMAND_SIZE_SET((len * 8) - 1);
1030
1031 return cmd_config;
1032 }
1033
tegra_qspi_addr_config(bool is_ddr,u8 bus_width,u8 len)1034 static u32 tegra_qspi_addr_config(bool is_ddr, u8 bus_width, u8 len)
1035 {
1036 u32 addr_config = 0;
1037
1038 /* Extract Address configuration and value */
1039 is_ddr = 0; //Only SDR mode supported
1040 bus_width = 0; //X1 mode
1041
1042 if (is_ddr)
1043 addr_config |= QSPI_ADDRESS_SDR_DDR;
1044 else
1045 addr_config &= ~QSPI_ADDRESS_SDR_DDR;
1046
1047 addr_config |= QSPI_ADDRESS_X1_X2_X4(bus_width);
1048 addr_config |= QSPI_ADDRESS_SIZE_SET((len * 8) - 1);
1049
1050 return addr_config;
1051 }
1052
tegra_qspi_combined_seq_xfer(struct tegra_qspi * tqspi,struct spi_message * msg)1053 static int tegra_qspi_combined_seq_xfer(struct tegra_qspi *tqspi,
1054 struct spi_message *msg)
1055 {
1056 bool is_first_msg = true;
1057 struct spi_transfer *xfer;
1058 struct spi_device *spi = msg->spi;
1059 u8 transfer_phase = 0;
1060 u32 cmd1 = 0, dma_ctl = 0;
1061 int ret = 0;
1062 u32 address_value = 0;
1063 u32 cmd_config = 0, addr_config = 0;
1064 u8 cmd_value = 0, val = 0;
1065
1066 /* Enable Combined sequence mode */
1067 val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
1068 val |= QSPI_CMB_SEQ_EN;
1069 tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
1070 /* Process individual transfer list */
1071 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1072 switch (transfer_phase) {
1073 case CMD_TRANSFER:
1074 /* X1 SDR mode */
1075 cmd_config = tegra_qspi_cmd_config(false, 0,
1076 xfer->len);
1077 cmd_value = *((const u8 *)(xfer->tx_buf));
1078 break;
1079 case ADDR_TRANSFER:
1080 /* X1 SDR mode */
1081 addr_config = tegra_qspi_addr_config(false, 0,
1082 xfer->len);
1083 address_value = *((const u32 *)(xfer->tx_buf));
1084 break;
1085 case DATA_TRANSFER:
1086 /* Program Command, Address value in register */
1087 tegra_qspi_writel(tqspi, cmd_value, QSPI_CMB_SEQ_CMD);
1088 tegra_qspi_writel(tqspi, address_value,
1089 QSPI_CMB_SEQ_ADDR);
1090 /* Program Command and Address config in register */
1091 tegra_qspi_writel(tqspi, cmd_config,
1092 QSPI_CMB_SEQ_CMD_CFG);
1093 tegra_qspi_writel(tqspi, addr_config,
1094 QSPI_CMB_SEQ_ADDR_CFG);
1095
1096 reinit_completion(&tqspi->xfer_completion);
1097 cmd1 = tegra_qspi_setup_transfer_one(spi, xfer,
1098 is_first_msg);
1099 ret = tegra_qspi_start_transfer_one(spi, xfer,
1100 cmd1);
1101
1102 if (ret < 0) {
1103 dev_err(tqspi->dev, "Failed to start transfer-one: %d\n",
1104 ret);
1105 return ret;
1106 }
1107
1108 is_first_msg = false;
1109 ret = wait_for_completion_timeout
1110 (&tqspi->xfer_completion,
1111 QSPI_DMA_TIMEOUT);
1112
1113 if (WARN_ON(ret == 0)) {
1114 dev_err(tqspi->dev, "QSPI Transfer failed with timeout: %d\n",
1115 ret);
1116 if (tqspi->is_curr_dma_xfer &&
1117 (tqspi->cur_direction & DATA_DIR_TX))
1118 dmaengine_terminate_all
1119 (tqspi->tx_dma_chan);
1120
1121 if (tqspi->is_curr_dma_xfer &&
1122 (tqspi->cur_direction & DATA_DIR_RX))
1123 dmaengine_terminate_all
1124 (tqspi->rx_dma_chan);
1125
1126 /* Abort transfer by resetting pio/dma bit */
1127 if (!tqspi->is_curr_dma_xfer) {
1128 cmd1 = tegra_qspi_readl
1129 (tqspi,
1130 QSPI_COMMAND1);
1131 cmd1 &= ~QSPI_PIO;
1132 tegra_qspi_writel
1133 (tqspi, cmd1,
1134 QSPI_COMMAND1);
1135 } else {
1136 dma_ctl = tegra_qspi_readl
1137 (tqspi,
1138 QSPI_DMA_CTL);
1139 dma_ctl &= ~QSPI_DMA_EN;
1140 tegra_qspi_writel(tqspi, dma_ctl,
1141 QSPI_DMA_CTL);
1142 }
1143
1144 /* Reset controller if timeout happens */
1145 if (device_reset(tqspi->dev) < 0)
1146 dev_warn_once(tqspi->dev,
1147 "device reset failed\n");
1148 ret = -EIO;
1149 goto exit;
1150 }
1151
1152 if (tqspi->tx_status || tqspi->rx_status) {
1153 dev_err(tqspi->dev, "QSPI Transfer failed\n");
1154 tqspi->tx_status = 0;
1155 tqspi->rx_status = 0;
1156 ret = -EIO;
1157 goto exit;
1158 }
1159 break;
1160 default:
1161 ret = -EINVAL;
1162 goto exit;
1163 }
1164 msg->actual_length += xfer->len;
1165 transfer_phase++;
1166 }
1167 if (!xfer->cs_change) {
1168 tegra_qspi_transfer_end(spi);
1169 spi_transfer_delay_exec(xfer);
1170 }
1171 ret = 0;
1172
1173 exit:
1174 msg->status = ret;
1175
1176 return ret;
1177 }
1178
tegra_qspi_non_combined_seq_xfer(struct tegra_qspi * tqspi,struct spi_message * msg)1179 static int tegra_qspi_non_combined_seq_xfer(struct tegra_qspi *tqspi,
1180 struct spi_message *msg)
1181 {
1182 struct spi_device *spi = msg->spi;
1183 struct spi_transfer *transfer;
1184 bool is_first_msg = true;
1185 int ret = 0, val = 0;
1186
1187 msg->status = 0;
1188 msg->actual_length = 0;
1189 tqspi->tx_status = 0;
1190 tqspi->rx_status = 0;
1191
1192 /* Disable Combined sequence mode */
1193 val = tegra_qspi_readl(tqspi, QSPI_GLOBAL_CONFIG);
1194 val &= ~QSPI_CMB_SEQ_EN;
1195 tegra_qspi_writel(tqspi, val, QSPI_GLOBAL_CONFIG);
1196 list_for_each_entry(transfer, &msg->transfers, transfer_list) {
1197 struct spi_transfer *xfer = transfer;
1198 u8 dummy_bytes = 0;
1199 u32 cmd1;
1200
1201 tqspi->dummy_cycles = 0;
1202 /*
1203 * Tegra QSPI hardware supports dummy bytes transfer after actual transfer
1204 * bytes based on programmed dummy clock cycles in the QSPI_MISC register.
1205 * So, check if the next transfer is dummy data transfer and program dummy
1206 * clock cycles along with the current transfer and skip next transfer.
1207 */
1208 if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
1209 struct spi_transfer *next_xfer;
1210
1211 next_xfer = list_next_entry(xfer, transfer_list);
1212 if (next_xfer->dummy_data) {
1213 u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
1214
1215 if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
1216 tqspi->dummy_cycles = dummy_cycles;
1217 dummy_bytes = next_xfer->len;
1218 transfer = next_xfer;
1219 }
1220 }
1221 }
1222
1223 reinit_completion(&tqspi->xfer_completion);
1224
1225 cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
1226
1227 ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
1228 if (ret < 0) {
1229 dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
1230 goto complete_xfer;
1231 }
1232
1233 ret = wait_for_completion_timeout(&tqspi->xfer_completion,
1234 QSPI_DMA_TIMEOUT);
1235 if (WARN_ON(ret == 0)) {
1236 dev_err(tqspi->dev, "transfer timeout\n");
1237 if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
1238 dmaengine_terminate_all(tqspi->tx_dma_chan);
1239 if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
1240 dmaengine_terminate_all(tqspi->rx_dma_chan);
1241 tegra_qspi_handle_error(tqspi);
1242 ret = -EIO;
1243 goto complete_xfer;
1244 }
1245
1246 if (tqspi->tx_status || tqspi->rx_status) {
1247 tegra_qspi_handle_error(tqspi);
1248 ret = -EIO;
1249 goto complete_xfer;
1250 }
1251
1252 msg->actual_length += xfer->len + dummy_bytes;
1253
1254 complete_xfer:
1255 if (ret < 0) {
1256 tegra_qspi_transfer_end(spi);
1257 spi_transfer_delay_exec(xfer);
1258 goto exit;
1259 }
1260
1261 if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
1262 /* de-activate CS after last transfer only when cs_change is not set */
1263 if (!xfer->cs_change) {
1264 tegra_qspi_transfer_end(spi);
1265 spi_transfer_delay_exec(xfer);
1266 }
1267 } else if (xfer->cs_change) {
1268 /* de-activated CS between the transfers only when cs_change is set */
1269 tegra_qspi_transfer_end(spi);
1270 spi_transfer_delay_exec(xfer);
1271 }
1272 }
1273
1274 ret = 0;
1275 exit:
1276 msg->status = ret;
1277
1278 return ret;
1279 }
1280
tegra_qspi_validate_cmb_seq(struct tegra_qspi * tqspi,struct spi_message * msg)1281 static bool tegra_qspi_validate_cmb_seq(struct tegra_qspi *tqspi,
1282 struct spi_message *msg)
1283 {
1284 int transfer_count = 0;
1285 struct spi_transfer *xfer;
1286
1287 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1288 transfer_count++;
1289 }
1290 if (!tqspi->soc_data->cmb_xfer_capable || transfer_count != 3)
1291 return false;
1292 xfer = list_first_entry(&msg->transfers, typeof(*xfer),
1293 transfer_list);
1294 if (xfer->len > 2)
1295 return false;
1296 xfer = list_next_entry(xfer, transfer_list);
1297 if (xfer->len > 4 || xfer->len < 3)
1298 return false;
1299 xfer = list_next_entry(xfer, transfer_list);
1300 if (!tqspi->soc_data->has_dma || xfer->len > (QSPI_FIFO_DEPTH << 2))
1301 return false;
1302
1303 return true;
1304 }
1305
tegra_qspi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1306 static int tegra_qspi_transfer_one_message(struct spi_master *master,
1307 struct spi_message *msg)
1308 {
1309 struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1310 int ret;
1311
1312 if (tegra_qspi_validate_cmb_seq(tqspi, msg))
1313 ret = tegra_qspi_combined_seq_xfer(tqspi, msg);
1314 else
1315 ret = tegra_qspi_non_combined_seq_xfer(tqspi, msg);
1316
1317 spi_finalize_current_message(master);
1318
1319 return ret;
1320 }
1321
handle_cpu_based_xfer(struct tegra_qspi * tqspi)1322 static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
1323 {
1324 struct spi_transfer *t = tqspi->curr_xfer;
1325 unsigned long flags;
1326
1327 spin_lock_irqsave(&tqspi->lock, flags);
1328
1329 if (tqspi->tx_status || tqspi->rx_status) {
1330 tegra_qspi_handle_error(tqspi);
1331 complete(&tqspi->xfer_completion);
1332 goto exit;
1333 }
1334
1335 if (tqspi->cur_direction & DATA_DIR_RX)
1336 tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
1337
1338 if (tqspi->cur_direction & DATA_DIR_TX)
1339 tqspi->cur_pos = tqspi->cur_tx_pos;
1340 else
1341 tqspi->cur_pos = tqspi->cur_rx_pos;
1342
1343 if (tqspi->cur_pos == t->len) {
1344 complete(&tqspi->xfer_completion);
1345 goto exit;
1346 }
1347
1348 tegra_qspi_calculate_curr_xfer_param(tqspi, t);
1349 tegra_qspi_start_cpu_based_transfer(tqspi, t);
1350 exit:
1351 spin_unlock_irqrestore(&tqspi->lock, flags);
1352 return IRQ_HANDLED;
1353 }
1354
handle_dma_based_xfer(struct tegra_qspi * tqspi)1355 static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
1356 {
1357 struct spi_transfer *t = tqspi->curr_xfer;
1358 unsigned int total_fifo_words;
1359 unsigned long flags;
1360 long wait_status;
1361 int err = 0;
1362
1363 if (tqspi->cur_direction & DATA_DIR_TX) {
1364 if (tqspi->tx_status) {
1365 dmaengine_terminate_all(tqspi->tx_dma_chan);
1366 err += 1;
1367 } else {
1368 wait_status = wait_for_completion_interruptible_timeout(
1369 &tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
1370 if (wait_status <= 0) {
1371 dmaengine_terminate_all(tqspi->tx_dma_chan);
1372 dev_err(tqspi->dev, "failed TX DMA transfer\n");
1373 err += 1;
1374 }
1375 }
1376 }
1377
1378 if (tqspi->cur_direction & DATA_DIR_RX) {
1379 if (tqspi->rx_status) {
1380 dmaengine_terminate_all(tqspi->rx_dma_chan);
1381 err += 2;
1382 } else {
1383 wait_status = wait_for_completion_interruptible_timeout(
1384 &tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
1385 if (wait_status <= 0) {
1386 dmaengine_terminate_all(tqspi->rx_dma_chan);
1387 dev_err(tqspi->dev, "failed RX DMA transfer\n");
1388 err += 2;
1389 }
1390 }
1391 }
1392
1393 spin_lock_irqsave(&tqspi->lock, flags);
1394
1395 if (err) {
1396 tegra_qspi_dma_unmap_xfer(tqspi, t);
1397 tegra_qspi_handle_error(tqspi);
1398 complete(&tqspi->xfer_completion);
1399 goto exit;
1400 }
1401
1402 if (tqspi->cur_direction & DATA_DIR_RX)
1403 tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
1404
1405 if (tqspi->cur_direction & DATA_DIR_TX)
1406 tqspi->cur_pos = tqspi->cur_tx_pos;
1407 else
1408 tqspi->cur_pos = tqspi->cur_rx_pos;
1409
1410 if (tqspi->cur_pos == t->len) {
1411 tegra_qspi_dma_unmap_xfer(tqspi, t);
1412 complete(&tqspi->xfer_completion);
1413 goto exit;
1414 }
1415
1416 tegra_qspi_dma_unmap_xfer(tqspi, t);
1417
1418 /* continue transfer in current message */
1419 total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
1420 if (total_fifo_words > QSPI_FIFO_DEPTH)
1421 err = tegra_qspi_start_dma_based_transfer(tqspi, t);
1422 else
1423 err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
1424
1425 exit:
1426 spin_unlock_irqrestore(&tqspi->lock, flags);
1427 return IRQ_HANDLED;
1428 }
1429
tegra_qspi_isr_thread(int irq,void * context_data)1430 static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
1431 {
1432 struct tegra_qspi *tqspi = context_data;
1433
1434 tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
1435
1436 if (tqspi->cur_direction & DATA_DIR_TX)
1437 tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
1438
1439 if (tqspi->cur_direction & DATA_DIR_RX)
1440 tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
1441
1442 tegra_qspi_mask_clear_irq(tqspi);
1443
1444 if (!tqspi->is_curr_dma_xfer)
1445 return handle_cpu_based_xfer(tqspi);
1446
1447 return handle_dma_based_xfer(tqspi);
1448 }
1449
1450 static struct tegra_qspi_soc_data tegra210_qspi_soc_data = {
1451 .has_dma = true,
1452 .cmb_xfer_capable = false,
1453 .cs_count = 1,
1454 };
1455
1456 static struct tegra_qspi_soc_data tegra186_qspi_soc_data = {
1457 .has_dma = true,
1458 .cmb_xfer_capable = true,
1459 .cs_count = 1,
1460 };
1461
1462 static struct tegra_qspi_soc_data tegra234_qspi_soc_data = {
1463 .has_dma = false,
1464 .cmb_xfer_capable = true,
1465 .cs_count = 1,
1466 };
1467
1468 static struct tegra_qspi_soc_data tegra241_qspi_soc_data = {
1469 .has_dma = false,
1470 .cmb_xfer_capable = true,
1471 .cs_count = 4,
1472 };
1473
1474 static const struct of_device_id tegra_qspi_of_match[] = {
1475 {
1476 .compatible = "nvidia,tegra210-qspi",
1477 .data = &tegra210_qspi_soc_data,
1478 }, {
1479 .compatible = "nvidia,tegra186-qspi",
1480 .data = &tegra186_qspi_soc_data,
1481 }, {
1482 .compatible = "nvidia,tegra194-qspi",
1483 .data = &tegra186_qspi_soc_data,
1484 }, {
1485 .compatible = "nvidia,tegra234-qspi",
1486 .data = &tegra234_qspi_soc_data,
1487 }, {
1488 .compatible = "nvidia,tegra241-qspi",
1489 .data = &tegra241_qspi_soc_data,
1490 },
1491 {}
1492 };
1493
1494 MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
1495
1496 #ifdef CONFIG_ACPI
1497 static const struct acpi_device_id tegra_qspi_acpi_match[] = {
1498 {
1499 .id = "NVDA1213",
1500 .driver_data = (kernel_ulong_t)&tegra210_qspi_soc_data,
1501 }, {
1502 .id = "NVDA1313",
1503 .driver_data = (kernel_ulong_t)&tegra186_qspi_soc_data,
1504 }, {
1505 .id = "NVDA1413",
1506 .driver_data = (kernel_ulong_t)&tegra234_qspi_soc_data,
1507 }, {
1508 .id = "NVDA1513",
1509 .driver_data = (kernel_ulong_t)&tegra241_qspi_soc_data,
1510 },
1511 {}
1512 };
1513
1514 MODULE_DEVICE_TABLE(acpi, tegra_qspi_acpi_match);
1515 #endif
1516
tegra_qspi_probe(struct platform_device * pdev)1517 static int tegra_qspi_probe(struct platform_device *pdev)
1518 {
1519 struct spi_master *master;
1520 struct tegra_qspi *tqspi;
1521 struct resource *r;
1522 int ret, qspi_irq;
1523 int bus_num;
1524
1525 master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi));
1526 if (!master)
1527 return -ENOMEM;
1528
1529 platform_set_drvdata(pdev, master);
1530 tqspi = spi_master_get_devdata(master);
1531
1532 master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
1533 SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
1534 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
1535 master->setup = tegra_qspi_setup;
1536 master->transfer_one_message = tegra_qspi_transfer_one_message;
1537 master->num_chipselect = 1;
1538 master->auto_runtime_pm = true;
1539
1540 bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
1541 if (bus_num >= 0)
1542 master->bus_num = bus_num;
1543
1544 tqspi->master = master;
1545 tqspi->dev = &pdev->dev;
1546 spin_lock_init(&tqspi->lock);
1547
1548 tqspi->soc_data = device_get_match_data(&pdev->dev);
1549 master->num_chipselect = tqspi->soc_data->cs_count;
1550 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1551 tqspi->base = devm_ioremap_resource(&pdev->dev, r);
1552 if (IS_ERR(tqspi->base))
1553 return PTR_ERR(tqspi->base);
1554
1555 tqspi->phys = r->start;
1556 qspi_irq = platform_get_irq(pdev, 0);
1557 if (qspi_irq < 0)
1558 return qspi_irq;
1559 tqspi->irq = qspi_irq;
1560
1561 if (!has_acpi_companion(tqspi->dev)) {
1562 tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
1563 if (IS_ERR(tqspi->clk)) {
1564 ret = PTR_ERR(tqspi->clk);
1565 dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
1566 return ret;
1567 }
1568
1569 }
1570
1571 tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
1572 tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
1573
1574 ret = tegra_qspi_init_dma(tqspi);
1575 if (ret < 0)
1576 return ret;
1577
1578 if (tqspi->use_dma)
1579 tqspi->max_buf_size = tqspi->dma_buf_size;
1580
1581 init_completion(&tqspi->tx_dma_complete);
1582 init_completion(&tqspi->rx_dma_complete);
1583 init_completion(&tqspi->xfer_completion);
1584
1585 pm_runtime_enable(&pdev->dev);
1586 ret = pm_runtime_resume_and_get(&pdev->dev);
1587 if (ret < 0) {
1588 dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
1589 goto exit_pm_disable;
1590 }
1591
1592 if (device_reset(tqspi->dev) < 0)
1593 dev_warn_once(tqspi->dev, "device reset failed\n");
1594
1595 tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL;
1596 tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
1597 tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
1598 tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
1599 tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
1600
1601 pm_runtime_put(&pdev->dev);
1602
1603 ret = request_threaded_irq(tqspi->irq, NULL,
1604 tegra_qspi_isr_thread, IRQF_ONESHOT,
1605 dev_name(&pdev->dev), tqspi);
1606 if (ret < 0) {
1607 dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
1608 goto exit_pm_disable;
1609 }
1610
1611 master->dev.of_node = pdev->dev.of_node;
1612 ret = spi_register_master(master);
1613 if (ret < 0) {
1614 dev_err(&pdev->dev, "failed to register master: %d\n", ret);
1615 goto exit_free_irq;
1616 }
1617
1618 return 0;
1619
1620 exit_free_irq:
1621 free_irq(qspi_irq, tqspi);
1622 exit_pm_disable:
1623 pm_runtime_force_suspend(&pdev->dev);
1624 tegra_qspi_deinit_dma(tqspi);
1625 return ret;
1626 }
1627
tegra_qspi_remove(struct platform_device * pdev)1628 static int tegra_qspi_remove(struct platform_device *pdev)
1629 {
1630 struct spi_master *master = platform_get_drvdata(pdev);
1631 struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1632
1633 spi_unregister_master(master);
1634 free_irq(tqspi->irq, tqspi);
1635 pm_runtime_force_suspend(&pdev->dev);
1636 tegra_qspi_deinit_dma(tqspi);
1637
1638 return 0;
1639 }
1640
tegra_qspi_suspend(struct device * dev)1641 static int __maybe_unused tegra_qspi_suspend(struct device *dev)
1642 {
1643 struct spi_master *master = dev_get_drvdata(dev);
1644
1645 return spi_master_suspend(master);
1646 }
1647
tegra_qspi_resume(struct device * dev)1648 static int __maybe_unused tegra_qspi_resume(struct device *dev)
1649 {
1650 struct spi_master *master = dev_get_drvdata(dev);
1651 struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1652 int ret;
1653
1654 ret = pm_runtime_resume_and_get(dev);
1655 if (ret < 0) {
1656 dev_err(dev, "failed to get runtime PM: %d\n", ret);
1657 return ret;
1658 }
1659
1660 tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
1661 tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
1662 pm_runtime_put(dev);
1663
1664 return spi_master_resume(master);
1665 }
1666
tegra_qspi_runtime_suspend(struct device * dev)1667 static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
1668 {
1669 struct spi_master *master = dev_get_drvdata(dev);
1670 struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1671
1672 /* Runtime pm disabled with ACPI */
1673 if (has_acpi_companion(tqspi->dev))
1674 return 0;
1675 /* flush all write which are in PPSB queue by reading back */
1676 tegra_qspi_readl(tqspi, QSPI_COMMAND1);
1677
1678 clk_disable_unprepare(tqspi->clk);
1679
1680 return 0;
1681 }
1682
tegra_qspi_runtime_resume(struct device * dev)1683 static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
1684 {
1685 struct spi_master *master = dev_get_drvdata(dev);
1686 struct tegra_qspi *tqspi = spi_master_get_devdata(master);
1687 int ret;
1688
1689 /* Runtime pm disabled with ACPI */
1690 if (has_acpi_companion(tqspi->dev))
1691 return 0;
1692 ret = clk_prepare_enable(tqspi->clk);
1693 if (ret < 0)
1694 dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
1695
1696 return ret;
1697 }
1698
1699 static const struct dev_pm_ops tegra_qspi_pm_ops = {
1700 SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
1701 SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
1702 };
1703
1704 static struct platform_driver tegra_qspi_driver = {
1705 .driver = {
1706 .name = "tegra-qspi",
1707 .pm = &tegra_qspi_pm_ops,
1708 .of_match_table = tegra_qspi_of_match,
1709 .acpi_match_table = ACPI_PTR(tegra_qspi_acpi_match),
1710 },
1711 .probe = tegra_qspi_probe,
1712 .remove = tegra_qspi_remove,
1713 };
1714 module_platform_driver(tegra_qspi_driver);
1715
1716 MODULE_ALIAS("platform:qspi-tegra");
1717 MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
1718 MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
1719 MODULE_LICENSE("GPL v2");
1720