1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/list.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 
21 #define QUP_CONFIG			0x0000
22 #define QUP_STATE			0x0004
23 #define QUP_IO_M_MODES			0x0008
24 #define QUP_SW_RESET			0x000c
25 #define QUP_OPERATIONAL			0x0018
26 #define QUP_ERROR_FLAGS			0x001c
27 #define QUP_ERROR_FLAGS_EN		0x0020
28 #define QUP_OPERATIONAL_MASK		0x0028
29 #define QUP_HW_VERSION			0x0030
30 #define QUP_MX_OUTPUT_CNT		0x0100
31 #define QUP_OUTPUT_FIFO			0x0110
32 #define QUP_MX_WRITE_CNT		0x0150
33 #define QUP_MX_INPUT_CNT		0x0200
34 #define QUP_MX_READ_CNT			0x0208
35 #define QUP_INPUT_FIFO			0x0218
36 
37 #define SPI_CONFIG			0x0300
38 #define SPI_IO_CONTROL			0x0304
39 #define SPI_ERROR_FLAGS			0x0308
40 #define SPI_ERROR_FLAGS_EN		0x030c
41 
42 /* QUP_CONFIG fields */
43 #define QUP_CONFIG_SPI_MODE		(1 << 8)
44 #define QUP_CONFIG_CLOCK_AUTO_GATE	BIT(13)
45 #define QUP_CONFIG_NO_INPUT		BIT(7)
46 #define QUP_CONFIG_NO_OUTPUT		BIT(6)
47 #define QUP_CONFIG_N			0x001f
48 
49 /* QUP_STATE fields */
50 #define QUP_STATE_VALID			BIT(2)
51 #define QUP_STATE_RESET			0
52 #define QUP_STATE_RUN			1
53 #define QUP_STATE_PAUSE			3
54 #define QUP_STATE_MASK			3
55 #define QUP_STATE_CLEAR			2
56 
57 #define QUP_HW_VERSION_2_1_1		0x20010001
58 
59 /* QUP_IO_M_MODES fields */
60 #define QUP_IO_M_PACK_EN		BIT(15)
61 #define QUP_IO_M_UNPACK_EN		BIT(14)
62 #define QUP_IO_M_INPUT_MODE_MASK_SHIFT	12
63 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT	10
64 #define QUP_IO_M_INPUT_MODE_MASK	(3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
65 #define QUP_IO_M_OUTPUT_MODE_MASK	(3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
66 
67 #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 0)) >> 0)
68 #define QUP_IO_M_OUTPUT_FIFO_SIZE(x)	(((x) & (0x07 << 2)) >> 2)
69 #define QUP_IO_M_INPUT_BLOCK_SIZE(x)	(((x) & (0x03 << 5)) >> 5)
70 #define QUP_IO_M_INPUT_FIFO_SIZE(x)	(((x) & (0x07 << 7)) >> 7)
71 
72 #define QUP_IO_M_MODE_FIFO		0
73 #define QUP_IO_M_MODE_BLOCK		1
74 #define QUP_IO_M_MODE_DMOV		2
75 #define QUP_IO_M_MODE_BAM		3
76 
77 /* QUP_OPERATIONAL fields */
78 #define QUP_OP_IN_BLOCK_READ_REQ	BIT(13)
79 #define QUP_OP_OUT_BLOCK_WRITE_REQ	BIT(12)
80 #define QUP_OP_MAX_INPUT_DONE_FLAG	BIT(11)
81 #define QUP_OP_MAX_OUTPUT_DONE_FLAG	BIT(10)
82 #define QUP_OP_IN_SERVICE_FLAG		BIT(9)
83 #define QUP_OP_OUT_SERVICE_FLAG		BIT(8)
84 #define QUP_OP_IN_FIFO_FULL		BIT(7)
85 #define QUP_OP_OUT_FIFO_FULL		BIT(6)
86 #define QUP_OP_IN_FIFO_NOT_EMPTY	BIT(5)
87 #define QUP_OP_OUT_FIFO_NOT_EMPTY	BIT(4)
88 
89 /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
90 #define QUP_ERROR_OUTPUT_OVER_RUN	BIT(5)
91 #define QUP_ERROR_INPUT_UNDER_RUN	BIT(4)
92 #define QUP_ERROR_OUTPUT_UNDER_RUN	BIT(3)
93 #define QUP_ERROR_INPUT_OVER_RUN	BIT(2)
94 
95 /* SPI_CONFIG fields */
96 #define SPI_CONFIG_HS_MODE		BIT(10)
97 #define SPI_CONFIG_INPUT_FIRST		BIT(9)
98 #define SPI_CONFIG_LOOPBACK		BIT(8)
99 
100 /* SPI_IO_CONTROL fields */
101 #define SPI_IO_C_FORCE_CS		BIT(11)
102 #define SPI_IO_C_CLK_IDLE_HIGH		BIT(10)
103 #define SPI_IO_C_MX_CS_MODE		BIT(8)
104 #define SPI_IO_C_CS_N_POLARITY_0	BIT(4)
105 #define SPI_IO_C_CS_SELECT(x)		(((x) & 3) << 2)
106 #define SPI_IO_C_CS_SELECT_MASK		0x000c
107 #define SPI_IO_C_TRISTATE_CS		BIT(1)
108 #define SPI_IO_C_NO_TRI_STATE		BIT(0)
109 
110 /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
111 #define SPI_ERROR_CLK_OVER_RUN		BIT(1)
112 #define SPI_ERROR_CLK_UNDER_RUN		BIT(0)
113 
114 #define SPI_NUM_CHIPSELECTS		4
115 
116 #define SPI_MAX_XFER			(SZ_64K - 64)
117 
118 /* high speed mode is when bus rate is greater then 26MHz */
119 #define SPI_HS_MIN_RATE			26000000
120 #define SPI_MAX_RATE			50000000
121 
122 #define SPI_DELAY_THRESHOLD		1
123 #define SPI_DELAY_RETRY			10
124 
125 struct spi_qup {
126 	void __iomem		*base;
127 	struct device		*dev;
128 	struct clk		*cclk;	/* core clock */
129 	struct clk		*iclk;	/* interface clock */
130 	int			irq;
131 	spinlock_t		lock;
132 
133 	int			in_fifo_sz;
134 	int			out_fifo_sz;
135 	int			in_blk_sz;
136 	int			out_blk_sz;
137 
138 	struct spi_transfer	*xfer;
139 	struct completion	done;
140 	int			error;
141 	int			w_size;	/* bytes per SPI word */
142 	int			n_words;
143 	int			tx_bytes;
144 	int			rx_bytes;
145 	const u8		*tx_buf;
146 	u8			*rx_buf;
147 	int			qup_v1;
148 
149 	int			mode;
150 	struct dma_slave_config	rx_conf;
151 	struct dma_slave_config	tx_conf;
152 };
153 
154 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
155 
spi_qup_is_flag_set(struct spi_qup * controller,u32 flag)156 static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
157 {
158 	u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
159 
160 	return (opflag & flag) != 0;
161 }
162 
spi_qup_is_dma_xfer(int mode)163 static inline bool spi_qup_is_dma_xfer(int mode)
164 {
165 	if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
166 		return true;
167 
168 	return false;
169 }
170 
171 /* get's the transaction size length */
spi_qup_len(struct spi_qup * controller)172 static inline unsigned int spi_qup_len(struct spi_qup *controller)
173 {
174 	return controller->n_words * controller->w_size;
175 }
176 
spi_qup_is_valid_state(struct spi_qup * controller)177 static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
178 {
179 	u32 opstate = readl_relaxed(controller->base + QUP_STATE);
180 
181 	return opstate & QUP_STATE_VALID;
182 }
183 
spi_qup_set_state(struct spi_qup * controller,u32 state)184 static int spi_qup_set_state(struct spi_qup *controller, u32 state)
185 {
186 	unsigned long loop;
187 	u32 cur_state;
188 
189 	loop = 0;
190 	while (!spi_qup_is_valid_state(controller)) {
191 
192 		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
193 
194 		if (++loop > SPI_DELAY_RETRY)
195 			return -EIO;
196 	}
197 
198 	if (loop)
199 		dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
200 			loop, state);
201 
202 	cur_state = readl_relaxed(controller->base + QUP_STATE);
203 	/*
204 	 * Per spec: for PAUSE_STATE to RESET_STATE, two writes
205 	 * of (b10) are required
206 	 */
207 	if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
208 	    (state == QUP_STATE_RESET)) {
209 		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
210 		writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
211 	} else {
212 		cur_state &= ~QUP_STATE_MASK;
213 		cur_state |= state;
214 		writel_relaxed(cur_state, controller->base + QUP_STATE);
215 	}
216 
217 	loop = 0;
218 	while (!spi_qup_is_valid_state(controller)) {
219 
220 		usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
221 
222 		if (++loop > SPI_DELAY_RETRY)
223 			return -EIO;
224 	}
225 
226 	return 0;
227 }
228 
spi_qup_read_from_fifo(struct spi_qup * controller,u32 num_words)229 static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
230 {
231 	u8 *rx_buf = controller->rx_buf;
232 	int i, shift, num_bytes;
233 	u32 word;
234 
235 	for (; num_words; num_words--) {
236 
237 		word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
238 
239 		num_bytes = min_t(int, spi_qup_len(controller) -
240 				       controller->rx_bytes,
241 				       controller->w_size);
242 
243 		if (!rx_buf) {
244 			controller->rx_bytes += num_bytes;
245 			continue;
246 		}
247 
248 		for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
249 			/*
250 			 * The data format depends on bytes per SPI word:
251 			 *  4 bytes: 0x12345678
252 			 *  2 bytes: 0x00001234
253 			 *  1 byte : 0x00000012
254 			 */
255 			shift = BITS_PER_BYTE;
256 			shift *= (controller->w_size - i - 1);
257 			rx_buf[controller->rx_bytes] = word >> shift;
258 		}
259 	}
260 }
261 
spi_qup_read(struct spi_qup * controller,u32 * opflags)262 static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
263 {
264 	u32 remainder, words_per_block, num_words;
265 	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
266 
267 	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
268 				 controller->w_size);
269 	words_per_block = controller->in_blk_sz >> 2;
270 
271 	do {
272 		/* ACK by clearing service flag */
273 		writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
274 			       controller->base + QUP_OPERATIONAL);
275 
276 		if (!remainder)
277 			goto exit;
278 
279 		if (is_block_mode) {
280 			num_words = (remainder > words_per_block) ?
281 					words_per_block : remainder;
282 		} else {
283 			if (!spi_qup_is_flag_set(controller,
284 						 QUP_OP_IN_FIFO_NOT_EMPTY))
285 				break;
286 
287 			num_words = 1;
288 		}
289 
290 		/* read up to the maximum transfer size available */
291 		spi_qup_read_from_fifo(controller, num_words);
292 
293 		remainder -= num_words;
294 
295 		/* if block mode, check to see if next block is available */
296 		if (is_block_mode && !spi_qup_is_flag_set(controller,
297 					QUP_OP_IN_BLOCK_READ_REQ))
298 			break;
299 
300 	} while (remainder);
301 
302 	/*
303 	 * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
304 	 * reads, it has to be cleared again at the very end.  However, be sure
305 	 * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
306 	 * present and this is used to determine if transaction is complete
307 	 */
308 exit:
309 	if (!remainder) {
310 		*opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
311 		if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
312 			writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
313 				       controller->base + QUP_OPERATIONAL);
314 	}
315 }
316 
spi_qup_write_to_fifo(struct spi_qup * controller,u32 num_words)317 static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
318 {
319 	const u8 *tx_buf = controller->tx_buf;
320 	int i, num_bytes;
321 	u32 word, data;
322 
323 	for (; num_words; num_words--) {
324 		word = 0;
325 
326 		num_bytes = min_t(int, spi_qup_len(controller) -
327 				       controller->tx_bytes,
328 				       controller->w_size);
329 		if (tx_buf)
330 			for (i = 0; i < num_bytes; i++) {
331 				data = tx_buf[controller->tx_bytes + i];
332 				word |= data << (BITS_PER_BYTE * (3 - i));
333 			}
334 
335 		controller->tx_bytes += num_bytes;
336 
337 		writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
338 	}
339 }
340 
spi_qup_dma_done(void * data)341 static void spi_qup_dma_done(void *data)
342 {
343 	struct spi_qup *qup = data;
344 
345 	complete(&qup->done);
346 }
347 
spi_qup_write(struct spi_qup * controller)348 static void spi_qup_write(struct spi_qup *controller)
349 {
350 	bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
351 	u32 remainder, words_per_block, num_words;
352 
353 	remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
354 				 controller->w_size);
355 	words_per_block = controller->out_blk_sz >> 2;
356 
357 	do {
358 		/* ACK by clearing service flag */
359 		writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
360 			       controller->base + QUP_OPERATIONAL);
361 
362 		/* make sure the interrupt is valid */
363 		if (!remainder)
364 			return;
365 
366 		if (is_block_mode) {
367 			num_words = (remainder > words_per_block) ?
368 				words_per_block : remainder;
369 		} else {
370 			if (spi_qup_is_flag_set(controller,
371 						QUP_OP_OUT_FIFO_FULL))
372 				break;
373 
374 			num_words = 1;
375 		}
376 
377 		spi_qup_write_to_fifo(controller, num_words);
378 
379 		remainder -= num_words;
380 
381 		/* if block mode, check to see if next block is available */
382 		if (is_block_mode && !spi_qup_is_flag_set(controller,
383 					QUP_OP_OUT_BLOCK_WRITE_REQ))
384 			break;
385 
386 	} while (remainder);
387 }
388 
spi_qup_prep_sg(struct spi_master * master,struct scatterlist * sgl,unsigned int nents,enum dma_transfer_direction dir,dma_async_tx_callback callback)389 static int spi_qup_prep_sg(struct spi_master *master, struct scatterlist *sgl,
390 			   unsigned int nents, enum dma_transfer_direction dir,
391 			   dma_async_tx_callback callback)
392 {
393 	struct spi_qup *qup = spi_master_get_devdata(master);
394 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
395 	struct dma_async_tx_descriptor *desc;
396 	struct dma_chan *chan;
397 	dma_cookie_t cookie;
398 
399 	if (dir == DMA_MEM_TO_DEV)
400 		chan = master->dma_tx;
401 	else
402 		chan = master->dma_rx;
403 
404 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
405 	if (IS_ERR_OR_NULL(desc))
406 		return desc ? PTR_ERR(desc) : -EINVAL;
407 
408 	desc->callback = callback;
409 	desc->callback_param = qup;
410 
411 	cookie = dmaengine_submit(desc);
412 
413 	return dma_submit_error(cookie);
414 }
415 
spi_qup_dma_terminate(struct spi_master * master,struct spi_transfer * xfer)416 static void spi_qup_dma_terminate(struct spi_master *master,
417 				  struct spi_transfer *xfer)
418 {
419 	if (xfer->tx_buf)
420 		dmaengine_terminate_all(master->dma_tx);
421 	if (xfer->rx_buf)
422 		dmaengine_terminate_all(master->dma_rx);
423 }
424 
spi_qup_sgl_get_nents_len(struct scatterlist * sgl,u32 max,u32 * nents)425 static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
426 				     u32 *nents)
427 {
428 	struct scatterlist *sg;
429 	u32 total = 0;
430 
431 	for (sg = sgl; sg; sg = sg_next(sg)) {
432 		unsigned int len = sg_dma_len(sg);
433 
434 		/* check for overflow as well as limit */
435 		if (((total + len) < total) || ((total + len) > max))
436 			break;
437 
438 		total += len;
439 		(*nents)++;
440 	}
441 
442 	return total;
443 }
444 
spi_qup_do_dma(struct spi_device * spi,struct spi_transfer * xfer,unsigned long timeout)445 static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
446 			  unsigned long timeout)
447 {
448 	dma_async_tx_callback rx_done = NULL, tx_done = NULL;
449 	struct spi_master *master = spi->master;
450 	struct spi_qup *qup = spi_master_get_devdata(master);
451 	struct scatterlist *tx_sgl, *rx_sgl;
452 	int ret;
453 
454 	if (xfer->rx_buf)
455 		rx_done = spi_qup_dma_done;
456 	else if (xfer->tx_buf)
457 		tx_done = spi_qup_dma_done;
458 
459 	rx_sgl = xfer->rx_sg.sgl;
460 	tx_sgl = xfer->tx_sg.sgl;
461 
462 	do {
463 		u32 rx_nents = 0, tx_nents = 0;
464 
465 		if (rx_sgl)
466 			qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
467 					SPI_MAX_XFER, &rx_nents) / qup->w_size;
468 		if (tx_sgl)
469 			qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
470 					SPI_MAX_XFER, &tx_nents) / qup->w_size;
471 		if (!qup->n_words)
472 			return -EIO;
473 
474 		ret = spi_qup_io_config(spi, xfer);
475 		if (ret)
476 			return ret;
477 
478 		/* before issuing the descriptors, set the QUP to run */
479 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
480 		if (ret) {
481 			dev_warn(qup->dev, "cannot set RUN state\n");
482 			return ret;
483 		}
484 		if (rx_sgl) {
485 			ret = spi_qup_prep_sg(master, rx_sgl, rx_nents,
486 					      DMA_DEV_TO_MEM, rx_done);
487 			if (ret)
488 				return ret;
489 			dma_async_issue_pending(master->dma_rx);
490 		}
491 
492 		if (tx_sgl) {
493 			ret = spi_qup_prep_sg(master, tx_sgl, tx_nents,
494 					      DMA_MEM_TO_DEV, tx_done);
495 			if (ret)
496 				return ret;
497 
498 			dma_async_issue_pending(master->dma_tx);
499 		}
500 
501 		if (!wait_for_completion_timeout(&qup->done, timeout))
502 			return -ETIMEDOUT;
503 
504 		for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
505 			;
506 		for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
507 			;
508 
509 	} while (rx_sgl || tx_sgl);
510 
511 	return 0;
512 }
513 
spi_qup_do_pio(struct spi_device * spi,struct spi_transfer * xfer,unsigned long timeout)514 static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
515 			  unsigned long timeout)
516 {
517 	struct spi_master *master = spi->master;
518 	struct spi_qup *qup = spi_master_get_devdata(master);
519 	int ret, n_words, iterations, offset = 0;
520 
521 	n_words = qup->n_words;
522 	iterations = n_words / SPI_MAX_XFER; /* round down */
523 	qup->rx_buf = xfer->rx_buf;
524 	qup->tx_buf = xfer->tx_buf;
525 
526 	do {
527 		if (iterations)
528 			qup->n_words = SPI_MAX_XFER;
529 		else
530 			qup->n_words = n_words % SPI_MAX_XFER;
531 
532 		if (qup->tx_buf && offset)
533 			qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
534 
535 		if (qup->rx_buf && offset)
536 			qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
537 
538 		/*
539 		 * if the transaction is small enough, we need
540 		 * to fallback to FIFO mode
541 		 */
542 		if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
543 			qup->mode = QUP_IO_M_MODE_FIFO;
544 
545 		ret = spi_qup_io_config(spi, xfer);
546 		if (ret)
547 			return ret;
548 
549 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
550 		if (ret) {
551 			dev_warn(qup->dev, "cannot set RUN state\n");
552 			return ret;
553 		}
554 
555 		ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
556 		if (ret) {
557 			dev_warn(qup->dev, "cannot set PAUSE state\n");
558 			return ret;
559 		}
560 
561 		if (qup->mode == QUP_IO_M_MODE_FIFO)
562 			spi_qup_write(qup);
563 
564 		ret = spi_qup_set_state(qup, QUP_STATE_RUN);
565 		if (ret) {
566 			dev_warn(qup->dev, "cannot set RUN state\n");
567 			return ret;
568 		}
569 
570 		if (!wait_for_completion_timeout(&qup->done, timeout))
571 			return -ETIMEDOUT;
572 
573 		offset++;
574 	} while (iterations--);
575 
576 	return 0;
577 }
578 
spi_qup_data_pending(struct spi_qup * controller)579 static bool spi_qup_data_pending(struct spi_qup *controller)
580 {
581 	unsigned int remainder_tx, remainder_rx;
582 
583 	remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) -
584 				    controller->tx_bytes, controller->w_size);
585 
586 	remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) -
587 				    controller->rx_bytes, controller->w_size);
588 
589 	return remainder_tx || remainder_rx;
590 }
591 
spi_qup_qup_irq(int irq,void * dev_id)592 static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
593 {
594 	struct spi_qup *controller = dev_id;
595 	u32 opflags, qup_err, spi_err;
596 	int error = 0;
597 
598 	qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
599 	spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
600 	opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
601 
602 	writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
603 	writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
604 
605 	if (qup_err) {
606 		if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
607 			dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
608 		if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
609 			dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
610 		if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
611 			dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
612 		if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
613 			dev_warn(controller->dev, "INPUT_OVER_RUN\n");
614 
615 		error = -EIO;
616 	}
617 
618 	if (spi_err) {
619 		if (spi_err & SPI_ERROR_CLK_OVER_RUN)
620 			dev_warn(controller->dev, "CLK_OVER_RUN\n");
621 		if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
622 			dev_warn(controller->dev, "CLK_UNDER_RUN\n");
623 
624 		error = -EIO;
625 	}
626 
627 	spin_lock(&controller->lock);
628 	if (!controller->error)
629 		controller->error = error;
630 	spin_unlock(&controller->lock);
631 
632 	if (spi_qup_is_dma_xfer(controller->mode)) {
633 		writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
634 	} else {
635 		if (opflags & QUP_OP_IN_SERVICE_FLAG)
636 			spi_qup_read(controller, &opflags);
637 
638 		if (opflags & QUP_OP_OUT_SERVICE_FLAG)
639 			spi_qup_write(controller);
640 
641 		if (!spi_qup_data_pending(controller))
642 			complete(&controller->done);
643 	}
644 
645 	if (error)
646 		complete(&controller->done);
647 
648 	if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) {
649 		if (!spi_qup_is_dma_xfer(controller->mode)) {
650 			if (spi_qup_data_pending(controller))
651 				return IRQ_HANDLED;
652 		}
653 		complete(&controller->done);
654 	}
655 
656 	return IRQ_HANDLED;
657 }
658 
659 /* set clock freq ... bits per word, determine mode */
spi_qup_io_prep(struct spi_device * spi,struct spi_transfer * xfer)660 static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
661 {
662 	struct spi_qup *controller = spi_master_get_devdata(spi->master);
663 	int ret;
664 
665 	if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
666 		dev_err(controller->dev, "too big size for loopback %d > %d\n",
667 			xfer->len, controller->in_fifo_sz);
668 		return -EIO;
669 	}
670 
671 	ret = clk_set_rate(controller->cclk, xfer->speed_hz);
672 	if (ret) {
673 		dev_err(controller->dev, "fail to set frequency %d",
674 			xfer->speed_hz);
675 		return -EIO;
676 	}
677 
678 	controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
679 	controller->n_words = xfer->len / controller->w_size;
680 
681 	if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
682 		controller->mode = QUP_IO_M_MODE_FIFO;
683 	else if (spi->master->can_dma &&
684 		 spi->master->can_dma(spi->master, spi, xfer) &&
685 		 spi->master->cur_msg_mapped)
686 		controller->mode = QUP_IO_M_MODE_BAM;
687 	else
688 		controller->mode = QUP_IO_M_MODE_BLOCK;
689 
690 	return 0;
691 }
692 
693 /* prep qup for another spi transaction of specific type */
spi_qup_io_config(struct spi_device * spi,struct spi_transfer * xfer)694 static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
695 {
696 	struct spi_qup *controller = spi_master_get_devdata(spi->master);
697 	u32 config, iomode, control;
698 	unsigned long flags;
699 
700 	spin_lock_irqsave(&controller->lock, flags);
701 	controller->xfer     = xfer;
702 	controller->error    = 0;
703 	controller->rx_bytes = 0;
704 	controller->tx_bytes = 0;
705 	spin_unlock_irqrestore(&controller->lock, flags);
706 
707 
708 	if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
709 		dev_err(controller->dev, "cannot set RESET state\n");
710 		return -EIO;
711 	}
712 
713 	switch (controller->mode) {
714 	case QUP_IO_M_MODE_FIFO:
715 		writel_relaxed(controller->n_words,
716 			       controller->base + QUP_MX_READ_CNT);
717 		writel_relaxed(controller->n_words,
718 			       controller->base + QUP_MX_WRITE_CNT);
719 		/* must be zero for FIFO */
720 		writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
721 		writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
722 		break;
723 	case QUP_IO_M_MODE_BAM:
724 		writel_relaxed(controller->n_words,
725 			       controller->base + QUP_MX_INPUT_CNT);
726 		writel_relaxed(controller->n_words,
727 			       controller->base + QUP_MX_OUTPUT_CNT);
728 		/* must be zero for BLOCK and BAM */
729 		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
730 		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
731 
732 		if (!controller->qup_v1) {
733 			void __iomem *input_cnt;
734 
735 			input_cnt = controller->base + QUP_MX_INPUT_CNT;
736 			/*
737 			 * for DMA transfers, both QUP_MX_INPUT_CNT and
738 			 * QUP_MX_OUTPUT_CNT must be zero to all cases but one.
739 			 * That case is a non-balanced transfer when there is
740 			 * only a rx_buf.
741 			 */
742 			if (xfer->tx_buf)
743 				writel_relaxed(0, input_cnt);
744 			else
745 				writel_relaxed(controller->n_words, input_cnt);
746 
747 			writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
748 		}
749 		break;
750 	case QUP_IO_M_MODE_BLOCK:
751 		reinit_completion(&controller->done);
752 		writel_relaxed(controller->n_words,
753 			       controller->base + QUP_MX_INPUT_CNT);
754 		writel_relaxed(controller->n_words,
755 			       controller->base + QUP_MX_OUTPUT_CNT);
756 		/* must be zero for BLOCK and BAM */
757 		writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
758 		writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
759 		break;
760 	default:
761 		dev_err(controller->dev, "unknown mode = %d\n",
762 				controller->mode);
763 		return -EIO;
764 	}
765 
766 	iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
767 	/* Set input and output transfer mode */
768 	iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
769 
770 	if (!spi_qup_is_dma_xfer(controller->mode))
771 		iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
772 	else
773 		iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
774 
775 	iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
776 	iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
777 
778 	writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
779 
780 	control = readl_relaxed(controller->base + SPI_IO_CONTROL);
781 
782 	if (spi->mode & SPI_CPOL)
783 		control |= SPI_IO_C_CLK_IDLE_HIGH;
784 	else
785 		control &= ~SPI_IO_C_CLK_IDLE_HIGH;
786 
787 	writel_relaxed(control, controller->base + SPI_IO_CONTROL);
788 
789 	config = readl_relaxed(controller->base + SPI_CONFIG);
790 
791 	if (spi->mode & SPI_LOOP)
792 		config |= SPI_CONFIG_LOOPBACK;
793 	else
794 		config &= ~SPI_CONFIG_LOOPBACK;
795 
796 	if (spi->mode & SPI_CPHA)
797 		config &= ~SPI_CONFIG_INPUT_FIRST;
798 	else
799 		config |= SPI_CONFIG_INPUT_FIRST;
800 
801 	/*
802 	 * HS_MODE improves signal stability for spi-clk high rates,
803 	 * but is invalid in loop back mode.
804 	 */
805 	if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
806 		config |= SPI_CONFIG_HS_MODE;
807 	else
808 		config &= ~SPI_CONFIG_HS_MODE;
809 
810 	writel_relaxed(config, controller->base + SPI_CONFIG);
811 
812 	config = readl_relaxed(controller->base + QUP_CONFIG);
813 	config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
814 	config |= xfer->bits_per_word - 1;
815 	config |= QUP_CONFIG_SPI_MODE;
816 
817 	if (spi_qup_is_dma_xfer(controller->mode)) {
818 		if (!xfer->tx_buf)
819 			config |= QUP_CONFIG_NO_OUTPUT;
820 		if (!xfer->rx_buf)
821 			config |= QUP_CONFIG_NO_INPUT;
822 	}
823 
824 	writel_relaxed(config, controller->base + QUP_CONFIG);
825 
826 	/* only write to OPERATIONAL_MASK when register is present */
827 	if (!controller->qup_v1) {
828 		u32 mask = 0;
829 
830 		/*
831 		 * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
832 		 * status change in BAM mode
833 		 */
834 
835 		if (spi_qup_is_dma_xfer(controller->mode))
836 			mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
837 
838 		writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
839 	}
840 
841 	return 0;
842 }
843 
spi_qup_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)844 static int spi_qup_transfer_one(struct spi_master *master,
845 			      struct spi_device *spi,
846 			      struct spi_transfer *xfer)
847 {
848 	struct spi_qup *controller = spi_master_get_devdata(master);
849 	unsigned long timeout, flags;
850 	int ret;
851 
852 	ret = spi_qup_io_prep(spi, xfer);
853 	if (ret)
854 		return ret;
855 
856 	timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
857 	timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
858 				     xfer->len) * 8, timeout);
859 	timeout = 100 * msecs_to_jiffies(timeout);
860 
861 	reinit_completion(&controller->done);
862 
863 	spin_lock_irqsave(&controller->lock, flags);
864 	controller->xfer     = xfer;
865 	controller->error    = 0;
866 	controller->rx_bytes = 0;
867 	controller->tx_bytes = 0;
868 	spin_unlock_irqrestore(&controller->lock, flags);
869 
870 	if (spi_qup_is_dma_xfer(controller->mode))
871 		ret = spi_qup_do_dma(spi, xfer, timeout);
872 	else
873 		ret = spi_qup_do_pio(spi, xfer, timeout);
874 
875 	spi_qup_set_state(controller, QUP_STATE_RESET);
876 	spin_lock_irqsave(&controller->lock, flags);
877 	if (!ret)
878 		ret = controller->error;
879 	spin_unlock_irqrestore(&controller->lock, flags);
880 
881 	if (ret && spi_qup_is_dma_xfer(controller->mode))
882 		spi_qup_dma_terminate(master, xfer);
883 
884 	return ret;
885 }
886 
spi_qup_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)887 static bool spi_qup_can_dma(struct spi_master *master, struct spi_device *spi,
888 			    struct spi_transfer *xfer)
889 {
890 	struct spi_qup *qup = spi_master_get_devdata(master);
891 	size_t dma_align = dma_get_cache_alignment();
892 	int n_words;
893 
894 	if (xfer->rx_buf) {
895 		if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
896 		    IS_ERR_OR_NULL(master->dma_rx))
897 			return false;
898 		if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
899 			return false;
900 	}
901 
902 	if (xfer->tx_buf) {
903 		if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
904 		    IS_ERR_OR_NULL(master->dma_tx))
905 			return false;
906 		if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
907 			return false;
908 	}
909 
910 	n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
911 	if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
912 		return false;
913 
914 	return true;
915 }
916 
spi_qup_release_dma(struct spi_master * master)917 static void spi_qup_release_dma(struct spi_master *master)
918 {
919 	if (!IS_ERR_OR_NULL(master->dma_rx))
920 		dma_release_channel(master->dma_rx);
921 	if (!IS_ERR_OR_NULL(master->dma_tx))
922 		dma_release_channel(master->dma_tx);
923 }
924 
spi_qup_init_dma(struct spi_master * master,resource_size_t base)925 static int spi_qup_init_dma(struct spi_master *master, resource_size_t base)
926 {
927 	struct spi_qup *spi = spi_master_get_devdata(master);
928 	struct dma_slave_config *rx_conf = &spi->rx_conf,
929 				*tx_conf = &spi->tx_conf;
930 	struct device *dev = spi->dev;
931 	int ret;
932 
933 	/* allocate dma resources, if available */
934 	master->dma_rx = dma_request_chan(dev, "rx");
935 	if (IS_ERR(master->dma_rx))
936 		return PTR_ERR(master->dma_rx);
937 
938 	master->dma_tx = dma_request_chan(dev, "tx");
939 	if (IS_ERR(master->dma_tx)) {
940 		ret = PTR_ERR(master->dma_tx);
941 		goto err_tx;
942 	}
943 
944 	/* set DMA parameters */
945 	rx_conf->direction = DMA_DEV_TO_MEM;
946 	rx_conf->device_fc = 1;
947 	rx_conf->src_addr = base + QUP_INPUT_FIFO;
948 	rx_conf->src_maxburst = spi->in_blk_sz;
949 
950 	tx_conf->direction = DMA_MEM_TO_DEV;
951 	tx_conf->device_fc = 1;
952 	tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
953 	tx_conf->dst_maxburst = spi->out_blk_sz;
954 
955 	ret = dmaengine_slave_config(master->dma_rx, rx_conf);
956 	if (ret) {
957 		dev_err(dev, "failed to configure RX channel\n");
958 		goto err;
959 	}
960 
961 	ret = dmaengine_slave_config(master->dma_tx, tx_conf);
962 	if (ret) {
963 		dev_err(dev, "failed to configure TX channel\n");
964 		goto err;
965 	}
966 
967 	return 0;
968 
969 err:
970 	dma_release_channel(master->dma_tx);
971 err_tx:
972 	dma_release_channel(master->dma_rx);
973 	return ret;
974 }
975 
spi_qup_set_cs(struct spi_device * spi,bool val)976 static void spi_qup_set_cs(struct spi_device *spi, bool val)
977 {
978 	struct spi_qup *controller;
979 	u32 spi_ioc;
980 	u32 spi_ioc_orig;
981 
982 	controller = spi_master_get_devdata(spi->master);
983 	spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
984 	spi_ioc_orig = spi_ioc;
985 	if (!val)
986 		spi_ioc |= SPI_IO_C_FORCE_CS;
987 	else
988 		spi_ioc &= ~SPI_IO_C_FORCE_CS;
989 
990 	if (spi_ioc != spi_ioc_orig)
991 		writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
992 }
993 
spi_qup_probe(struct platform_device * pdev)994 static int spi_qup_probe(struct platform_device *pdev)
995 {
996 	struct spi_master *master;
997 	struct clk *iclk, *cclk;
998 	struct spi_qup *controller;
999 	struct resource *res;
1000 	struct device *dev;
1001 	void __iomem *base;
1002 	u32 max_freq, iomode, num_cs;
1003 	int ret, irq, size;
1004 
1005 	dev = &pdev->dev;
1006 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1007 	base = devm_ioremap_resource(dev, res);
1008 	if (IS_ERR(base))
1009 		return PTR_ERR(base);
1010 
1011 	irq = platform_get_irq(pdev, 0);
1012 	if (irq < 0)
1013 		return irq;
1014 
1015 	cclk = devm_clk_get(dev, "core");
1016 	if (IS_ERR(cclk))
1017 		return PTR_ERR(cclk);
1018 
1019 	iclk = devm_clk_get(dev, "iface");
1020 	if (IS_ERR(iclk))
1021 		return PTR_ERR(iclk);
1022 
1023 	/* This is optional parameter */
1024 	if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
1025 		max_freq = SPI_MAX_RATE;
1026 
1027 	if (!max_freq || max_freq > SPI_MAX_RATE) {
1028 		dev_err(dev, "invalid clock frequency %d\n", max_freq);
1029 		return -ENXIO;
1030 	}
1031 
1032 	ret = clk_prepare_enable(cclk);
1033 	if (ret) {
1034 		dev_err(dev, "cannot enable core clock\n");
1035 		return ret;
1036 	}
1037 
1038 	ret = clk_prepare_enable(iclk);
1039 	if (ret) {
1040 		clk_disable_unprepare(cclk);
1041 		dev_err(dev, "cannot enable iface clock\n");
1042 		return ret;
1043 	}
1044 
1045 	master = spi_alloc_master(dev, sizeof(struct spi_qup));
1046 	if (!master) {
1047 		clk_disable_unprepare(cclk);
1048 		clk_disable_unprepare(iclk);
1049 		dev_err(dev, "cannot allocate master\n");
1050 		return -ENOMEM;
1051 	}
1052 
1053 	/* use num-cs unless not present or out of range */
1054 	if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
1055 	    num_cs > SPI_NUM_CHIPSELECTS)
1056 		master->num_chipselect = SPI_NUM_CHIPSELECTS;
1057 	else
1058 		master->num_chipselect = num_cs;
1059 
1060 	master->use_gpio_descriptors = true;
1061 	master->max_native_cs = SPI_NUM_CHIPSELECTS;
1062 	master->bus_num = pdev->id;
1063 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1064 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1065 	master->max_speed_hz = max_freq;
1066 	master->transfer_one = spi_qup_transfer_one;
1067 	master->dev.of_node = pdev->dev.of_node;
1068 	master->auto_runtime_pm = true;
1069 	master->dma_alignment = dma_get_cache_alignment();
1070 	master->max_dma_len = SPI_MAX_XFER;
1071 
1072 	platform_set_drvdata(pdev, master);
1073 
1074 	controller = spi_master_get_devdata(master);
1075 
1076 	controller->dev = dev;
1077 	controller->base = base;
1078 	controller->iclk = iclk;
1079 	controller->cclk = cclk;
1080 	controller->irq = irq;
1081 
1082 	ret = spi_qup_init_dma(master, res->start);
1083 	if (ret == -EPROBE_DEFER)
1084 		goto error;
1085 	else if (!ret)
1086 		master->can_dma = spi_qup_can_dma;
1087 
1088 	controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
1089 
1090 	if (!controller->qup_v1)
1091 		master->set_cs = spi_qup_set_cs;
1092 
1093 	spin_lock_init(&controller->lock);
1094 	init_completion(&controller->done);
1095 
1096 	iomode = readl_relaxed(base + QUP_IO_M_MODES);
1097 
1098 	size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
1099 	if (size)
1100 		controller->out_blk_sz = size * 16;
1101 	else
1102 		controller->out_blk_sz = 4;
1103 
1104 	size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
1105 	if (size)
1106 		controller->in_blk_sz = size * 16;
1107 	else
1108 		controller->in_blk_sz = 4;
1109 
1110 	size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
1111 	controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
1112 
1113 	size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
1114 	controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
1115 
1116 	dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1117 		 controller->in_blk_sz, controller->in_fifo_sz,
1118 		 controller->out_blk_sz, controller->out_fifo_sz);
1119 
1120 	writel_relaxed(1, base + QUP_SW_RESET);
1121 
1122 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1123 	if (ret) {
1124 		dev_err(dev, "cannot set RESET state\n");
1125 		goto error_dma;
1126 	}
1127 
1128 	writel_relaxed(0, base + QUP_OPERATIONAL);
1129 	writel_relaxed(0, base + QUP_IO_M_MODES);
1130 
1131 	if (!controller->qup_v1)
1132 		writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
1133 
1134 	writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
1135 		       base + SPI_ERROR_FLAGS_EN);
1136 
1137 	/* if earlier version of the QUP, disable INPUT_OVERRUN */
1138 	if (controller->qup_v1)
1139 		writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
1140 			QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
1141 			base + QUP_ERROR_FLAGS_EN);
1142 
1143 	writel_relaxed(0, base + SPI_CONFIG);
1144 	writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
1145 
1146 	ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
1147 			       IRQF_TRIGGER_HIGH, pdev->name, controller);
1148 	if (ret)
1149 		goto error_dma;
1150 
1151 	pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
1152 	pm_runtime_use_autosuspend(dev);
1153 	pm_runtime_set_active(dev);
1154 	pm_runtime_enable(dev);
1155 
1156 	ret = devm_spi_register_master(dev, master);
1157 	if (ret)
1158 		goto disable_pm;
1159 
1160 	return 0;
1161 
1162 disable_pm:
1163 	pm_runtime_disable(&pdev->dev);
1164 error_dma:
1165 	spi_qup_release_dma(master);
1166 error:
1167 	clk_disable_unprepare(cclk);
1168 	clk_disable_unprepare(iclk);
1169 	spi_master_put(master);
1170 	return ret;
1171 }
1172 
1173 #ifdef CONFIG_PM
spi_qup_pm_suspend_runtime(struct device * device)1174 static int spi_qup_pm_suspend_runtime(struct device *device)
1175 {
1176 	struct spi_master *master = dev_get_drvdata(device);
1177 	struct spi_qup *controller = spi_master_get_devdata(master);
1178 	u32 config;
1179 
1180 	/* Enable clocks auto gaiting */
1181 	config = readl(controller->base + QUP_CONFIG);
1182 	config |= QUP_CONFIG_CLOCK_AUTO_GATE;
1183 	writel_relaxed(config, controller->base + QUP_CONFIG);
1184 
1185 	clk_disable_unprepare(controller->cclk);
1186 	clk_disable_unprepare(controller->iclk);
1187 
1188 	return 0;
1189 }
1190 
spi_qup_pm_resume_runtime(struct device * device)1191 static int spi_qup_pm_resume_runtime(struct device *device)
1192 {
1193 	struct spi_master *master = dev_get_drvdata(device);
1194 	struct spi_qup *controller = spi_master_get_devdata(master);
1195 	u32 config;
1196 	int ret;
1197 
1198 	ret = clk_prepare_enable(controller->iclk);
1199 	if (ret)
1200 		return ret;
1201 
1202 	ret = clk_prepare_enable(controller->cclk);
1203 	if (ret) {
1204 		clk_disable_unprepare(controller->iclk);
1205 		return ret;
1206 	}
1207 
1208 	/* Disable clocks auto gaiting */
1209 	config = readl_relaxed(controller->base + QUP_CONFIG);
1210 	config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
1211 	writel_relaxed(config, controller->base + QUP_CONFIG);
1212 	return 0;
1213 }
1214 #endif /* CONFIG_PM */
1215 
1216 #ifdef CONFIG_PM_SLEEP
spi_qup_suspend(struct device * device)1217 static int spi_qup_suspend(struct device *device)
1218 {
1219 	struct spi_master *master = dev_get_drvdata(device);
1220 	struct spi_qup *controller = spi_master_get_devdata(master);
1221 	int ret;
1222 
1223 	if (pm_runtime_suspended(device)) {
1224 		ret = spi_qup_pm_resume_runtime(device);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 	ret = spi_master_suspend(master);
1229 	if (ret)
1230 		return ret;
1231 
1232 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1233 	if (ret)
1234 		return ret;
1235 
1236 	clk_disable_unprepare(controller->cclk);
1237 	clk_disable_unprepare(controller->iclk);
1238 	return 0;
1239 }
1240 
spi_qup_resume(struct device * device)1241 static int spi_qup_resume(struct device *device)
1242 {
1243 	struct spi_master *master = dev_get_drvdata(device);
1244 	struct spi_qup *controller = spi_master_get_devdata(master);
1245 	int ret;
1246 
1247 	ret = clk_prepare_enable(controller->iclk);
1248 	if (ret)
1249 		return ret;
1250 
1251 	ret = clk_prepare_enable(controller->cclk);
1252 	if (ret) {
1253 		clk_disable_unprepare(controller->iclk);
1254 		return ret;
1255 	}
1256 
1257 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1258 	if (ret)
1259 		goto disable_clk;
1260 
1261 	ret = spi_master_resume(master);
1262 	if (ret)
1263 		goto disable_clk;
1264 
1265 	return 0;
1266 
1267 disable_clk:
1268 	clk_disable_unprepare(controller->cclk);
1269 	clk_disable_unprepare(controller->iclk);
1270 	return ret;
1271 }
1272 #endif /* CONFIG_PM_SLEEP */
1273 
spi_qup_remove(struct platform_device * pdev)1274 static int spi_qup_remove(struct platform_device *pdev)
1275 {
1276 	struct spi_master *master = dev_get_drvdata(&pdev->dev);
1277 	struct spi_qup *controller = spi_master_get_devdata(master);
1278 	int ret;
1279 
1280 	ret = pm_runtime_resume_and_get(&pdev->dev);
1281 	if (ret < 0)
1282 		return ret;
1283 
1284 	ret = spi_qup_set_state(controller, QUP_STATE_RESET);
1285 	if (ret)
1286 		return ret;
1287 
1288 	spi_qup_release_dma(master);
1289 
1290 	clk_disable_unprepare(controller->cclk);
1291 	clk_disable_unprepare(controller->iclk);
1292 
1293 	pm_runtime_put_noidle(&pdev->dev);
1294 	pm_runtime_disable(&pdev->dev);
1295 
1296 	return 0;
1297 }
1298 
1299 static const struct of_device_id spi_qup_dt_match[] = {
1300 	{ .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
1301 	{ .compatible = "qcom,spi-qup-v2.1.1", },
1302 	{ .compatible = "qcom,spi-qup-v2.2.1", },
1303 	{ }
1304 };
1305 MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
1306 
1307 static const struct dev_pm_ops spi_qup_dev_pm_ops = {
1308 	SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
1309 	SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
1310 			   spi_qup_pm_resume_runtime,
1311 			   NULL)
1312 };
1313 
1314 static struct platform_driver spi_qup_driver = {
1315 	.driver = {
1316 		.name		= "spi_qup",
1317 		.pm		= &spi_qup_dev_pm_ops,
1318 		.of_match_table = spi_qup_dt_match,
1319 	},
1320 	.probe = spi_qup_probe,
1321 	.remove = spi_qup_remove,
1322 };
1323 module_platform_driver(spi_qup_driver);
1324 
1325 MODULE_LICENSE("GPL v2");
1326 MODULE_ALIAS("platform:spi_qup");
1327