1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * Freescale QuadSPI driver.
5  *
6  * Copyright (C) 2013 Freescale Semiconductor, Inc.
7  * Copyright (C) 2018 Bootlin
8  * Copyright (C) 2018 exceet electronics GmbH
9  * Copyright (C) 2018 Kontron Electronics GmbH
10  *
11  * Transition to SPI MEM interface:
12  * Authors:
13  *     Boris Brezillon <bbrezillon@kernel.org>
14  *     Frieder Schrempf <frieder.schrempf@kontron.de>
15  *     Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
16  *     Suresh Gupta <suresh.gupta@nxp.com>
17  *
18  * Based on the original fsl-quadspi.c SPI NOR driver:
19  * Author: Freescale Semiconductor, Inc.
20  *
21  */
22 
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_qos.h>
39 #include <linux/sizes.h>
40 
41 #include <linux/spi/spi.h>
42 #include <linux/spi/spi-mem.h>
43 
44 /*
45  * The driver only uses one single LUT entry, that is updated on
46  * each call of exec_op(). Index 0 is preset at boot with a basic
47  * read operation, so let's use the last entry (15).
48  */
49 #define	SEQID_LUT			15
50 
51 /* Registers used by the driver */
52 #define QUADSPI_MCR			0x00
53 #define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
54 #define QUADSPI_MCR_MDIS_MASK		BIT(14)
55 #define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
56 #define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
57 #define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
58 #define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
59 #define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
60 #define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)
61 
62 #define QUADSPI_IPCR			0x08
63 #define QUADSPI_IPCR_SEQID(x)		((x) << 24)
64 
65 #define QUADSPI_FLSHCR			0x0c
66 #define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
67 #define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
68 #define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)
69 
70 #define QUADSPI_BUF0CR                  0x10
71 #define QUADSPI_BUF1CR                  0x14
72 #define QUADSPI_BUF2CR                  0x18
73 #define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
74 
75 #define QUADSPI_BUF3CR			0x1c
76 #define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
77 #define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
78 #define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)
79 
80 #define QUADSPI_BFGENCR			0x20
81 #define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)
82 
83 #define QUADSPI_BUF0IND			0x30
84 #define QUADSPI_BUF1IND			0x34
85 #define QUADSPI_BUF2IND			0x38
86 #define QUADSPI_SFAR			0x100
87 
88 #define QUADSPI_SMPR			0x108
89 #define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
90 #define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
91 #define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
92 #define QUADSPI_SMPR_HSENA_MASK		BIT(0)
93 
94 #define QUADSPI_RBCT			0x110
95 #define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
96 #define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)
97 
98 #define QUADSPI_TBDR			0x154
99 
100 #define QUADSPI_SR			0x15c
101 #define QUADSPI_SR_IP_ACC_MASK		BIT(1)
102 #define QUADSPI_SR_AHB_ACC_MASK		BIT(2)
103 
104 #define QUADSPI_FR			0x160
105 #define QUADSPI_FR_TFF_MASK		BIT(0)
106 
107 #define QUADSPI_RSER			0x164
108 #define QUADSPI_RSER_TFIE		BIT(0)
109 
110 #define QUADSPI_SPTRCLR			0x16c
111 #define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
112 #define QUADSPI_SPTRCLR_BFPTRC		BIT(0)
113 
114 #define QUADSPI_SFA1AD			0x180
115 #define QUADSPI_SFA2AD			0x184
116 #define QUADSPI_SFB1AD			0x188
117 #define QUADSPI_SFB2AD			0x18c
118 #define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))
119 
120 #define QUADSPI_LUTKEY			0x300
121 #define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
122 
123 #define QUADSPI_LCKCR			0x304
124 #define QUADSPI_LCKER_LOCK		BIT(0)
125 #define QUADSPI_LCKER_UNLOCK		BIT(1)
126 
127 #define QUADSPI_LUT_BASE		0x310
128 #define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
129 #define QUADSPI_LUT_REG(idx) \
130 	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
131 
132 /* Instruction set for the LUT register */
133 #define LUT_STOP		0
134 #define LUT_CMD			1
135 #define LUT_ADDR		2
136 #define LUT_DUMMY		3
137 #define LUT_MODE		4
138 #define LUT_MODE2		5
139 #define LUT_MODE4		6
140 #define LUT_FSL_READ		7
141 #define LUT_FSL_WRITE		8
142 #define LUT_JMP_ON_CS		9
143 #define LUT_ADDR_DDR		10
144 #define LUT_MODE_DDR		11
145 #define LUT_MODE2_DDR		12
146 #define LUT_MODE4_DDR		13
147 #define LUT_FSL_READ_DDR	14
148 #define LUT_FSL_WRITE_DDR	15
149 #define LUT_DATA_LEARN		16
150 
151 /*
152  * The PAD definitions for LUT register.
153  *
154  * The pad stands for the number of IO lines [0:3].
155  * For example, the quad read needs four IO lines,
156  * so you should use LUT_PAD(4).
157  */
158 #define LUT_PAD(x) (fls(x) - 1)
159 
160 /*
161  * Macro for constructing the LUT entries with the following
162  * register layout:
163  *
164  *  ---------------------------------------------------
165  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
166  *  ---------------------------------------------------
167  */
168 #define LUT_DEF(idx, ins, pad, opr)					\
169 	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
170 
171 /* Controller needs driver to swap endianness */
172 #define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)
173 
174 /* Controller needs 4x internal clock */
175 #define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)
176 
177 /*
178  * TKT253890, the controller needs the driver to fill the txfifo with
179  * 16 bytes at least to trigger a data transfer, even though the extra
180  * data won't be transferred.
181  */
182 #define QUADSPI_QUIRK_TKT253890		BIT(2)
183 
184 /* TKT245618, the controller cannot wake up from wait mode */
185 #define QUADSPI_QUIRK_TKT245618		BIT(3)
186 
187 /*
188  * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
189  * internally. No need to add it when setting SFXXAD and SFAR registers
190  */
191 #define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)
192 
193 /*
194  * Controller uses TDH bits in register QUADSPI_FLSHCR.
195  * They need to be set in accordance with the DDR/SDR mode.
196  */
197 #define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)
198 
199 struct fsl_qspi_devtype_data {
200 	unsigned int rxfifo;
201 	unsigned int txfifo;
202 	int invalid_mstrid;
203 	unsigned int ahb_buf_size;
204 	unsigned int quirks;
205 	bool little_endian;
206 };
207 
208 static const struct fsl_qspi_devtype_data vybrid_data = {
209 	.rxfifo = SZ_128,
210 	.txfifo = SZ_64,
211 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
212 	.ahb_buf_size = SZ_1K,
213 	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
214 	.little_endian = true,
215 };
216 
217 static const struct fsl_qspi_devtype_data imx6sx_data = {
218 	.rxfifo = SZ_128,
219 	.txfifo = SZ_512,
220 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
221 	.ahb_buf_size = SZ_1K,
222 	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
223 	.little_endian = true,
224 };
225 
226 static const struct fsl_qspi_devtype_data imx7d_data = {
227 	.rxfifo = SZ_128,
228 	.txfifo = SZ_512,
229 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
230 	.ahb_buf_size = SZ_1K,
231 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
232 		  QUADSPI_QUIRK_USE_TDH_SETTING,
233 	.little_endian = true,
234 };
235 
236 static const struct fsl_qspi_devtype_data imx6ul_data = {
237 	.rxfifo = SZ_128,
238 	.txfifo = SZ_512,
239 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
240 	.ahb_buf_size = SZ_1K,
241 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
242 		  QUADSPI_QUIRK_USE_TDH_SETTING,
243 	.little_endian = true,
244 };
245 
246 static const struct fsl_qspi_devtype_data ls1021a_data = {
247 	.rxfifo = SZ_128,
248 	.txfifo = SZ_64,
249 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
250 	.ahb_buf_size = SZ_1K,
251 	.quirks = 0,
252 	.little_endian = false,
253 };
254 
255 static const struct fsl_qspi_devtype_data ls2080a_data = {
256 	.rxfifo = SZ_128,
257 	.txfifo = SZ_64,
258 	.ahb_buf_size = SZ_1K,
259 	.invalid_mstrid = 0x0,
260 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
261 	.little_endian = true,
262 };
263 
264 struct fsl_qspi {
265 	void __iomem *iobase;
266 	void __iomem *ahb_addr;
267 	u32 memmap_phy;
268 	struct clk *clk, *clk_en;
269 	struct device *dev;
270 	struct completion c;
271 	const struct fsl_qspi_devtype_data *devtype_data;
272 	struct mutex lock;
273 	struct pm_qos_request pm_qos_req;
274 	int selected;
275 };
276 
needs_swap_endian(struct fsl_qspi * q)277 static inline int needs_swap_endian(struct fsl_qspi *q)
278 {
279 	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
280 }
281 
needs_4x_clock(struct fsl_qspi * q)282 static inline int needs_4x_clock(struct fsl_qspi *q)
283 {
284 	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
285 }
286 
needs_fill_txfifo(struct fsl_qspi * q)287 static inline int needs_fill_txfifo(struct fsl_qspi *q)
288 {
289 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
290 }
291 
needs_wakeup_wait_mode(struct fsl_qspi * q)292 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
293 {
294 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
295 }
296 
needs_amba_base_offset(struct fsl_qspi * q)297 static inline int needs_amba_base_offset(struct fsl_qspi *q)
298 {
299 	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
300 }
301 
needs_tdh_setting(struct fsl_qspi * q)302 static inline int needs_tdh_setting(struct fsl_qspi *q)
303 {
304 	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
305 }
306 
307 /*
308  * An IC bug makes it necessary to rearrange the 32-bit data.
309  * Later chips, such as IMX6SLX, have fixed this bug.
310  */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)311 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
312 {
313 	return needs_swap_endian(q) ? __swab32(a) : a;
314 }
315 
316 /*
317  * R/W functions for big- or little-endian registers:
318  * The QSPI controller's endianness is independent of
319  * the CPU core's endianness. So far, although the CPU
320  * core is little-endian the QSPI controller can use
321  * big-endian or little-endian.
322  */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)323 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
324 {
325 	if (q->devtype_data->little_endian)
326 		iowrite32(val, addr);
327 	else
328 		iowrite32be(val, addr);
329 }
330 
qspi_readl(struct fsl_qspi * q,void __iomem * addr)331 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
332 {
333 	if (q->devtype_data->little_endian)
334 		return ioread32(addr);
335 
336 	return ioread32be(addr);
337 }
338 
fsl_qspi_irq_handler(int irq,void * dev_id)339 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
340 {
341 	struct fsl_qspi *q = dev_id;
342 	u32 reg;
343 
344 	/* clear interrupt */
345 	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
346 	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
347 
348 	if (reg & QUADSPI_FR_TFF_MASK)
349 		complete(&q->c);
350 
351 	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
352 	return IRQ_HANDLED;
353 }
354 
fsl_qspi_check_buswidth(struct fsl_qspi * q,u8 width)355 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
356 {
357 	switch (width) {
358 	case 1:
359 	case 2:
360 	case 4:
361 		return 0;
362 	}
363 
364 	return -ENOTSUPP;
365 }
366 
fsl_qspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)367 static bool fsl_qspi_supports_op(struct spi_mem *mem,
368 				 const struct spi_mem_op *op)
369 {
370 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
371 	int ret;
372 
373 	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
374 
375 	if (op->addr.nbytes)
376 		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
377 
378 	if (op->dummy.nbytes)
379 		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
380 
381 	if (op->data.nbytes)
382 		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
383 
384 	if (ret)
385 		return false;
386 
387 	/*
388 	 * The number of instructions needed for the op, needs
389 	 * to fit into a single LUT entry.
390 	 */
391 	if (op->addr.nbytes +
392 	   (op->dummy.nbytes ? 1:0) +
393 	   (op->data.nbytes ? 1:0) > 6)
394 		return false;
395 
396 	/* Max 64 dummy clock cycles supported */
397 	if (op->dummy.nbytes &&
398 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
399 		return false;
400 
401 	/* Max data length, check controller limits and alignment */
402 	if (op->data.dir == SPI_MEM_DATA_IN &&
403 	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
404 	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
405 	      !IS_ALIGNED(op->data.nbytes, 8))))
406 		return false;
407 
408 	if (op->data.dir == SPI_MEM_DATA_OUT &&
409 	    op->data.nbytes > q->devtype_data->txfifo)
410 		return false;
411 
412 	return spi_mem_default_supports_op(mem, op);
413 }
414 
fsl_qspi_prepare_lut(struct fsl_qspi * q,const struct spi_mem_op * op)415 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
416 				 const struct spi_mem_op *op)
417 {
418 	void __iomem *base = q->iobase;
419 	u32 lutval[4] = {};
420 	int lutidx = 1, i;
421 
422 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
423 			     op->cmd.opcode);
424 
425 	/*
426 	 * For some unknown reason, using LUT_ADDR doesn't work in some
427 	 * cases (at least with only one byte long addresses), so
428 	 * let's use LUT_MODE to write the address bytes one by one
429 	 */
430 	for (i = 0; i < op->addr.nbytes; i++) {
431 		u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
432 
433 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
434 					      LUT_PAD(op->addr.buswidth),
435 					      addrbyte);
436 		lutidx++;
437 	}
438 
439 	if (op->dummy.nbytes) {
440 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
441 					      LUT_PAD(op->dummy.buswidth),
442 					      op->dummy.nbytes * 8 /
443 					      op->dummy.buswidth);
444 		lutidx++;
445 	}
446 
447 	if (op->data.nbytes) {
448 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
449 					      op->data.dir == SPI_MEM_DATA_IN ?
450 					      LUT_FSL_READ : LUT_FSL_WRITE,
451 					      LUT_PAD(op->data.buswidth),
452 					      0);
453 		lutidx++;
454 	}
455 
456 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
457 
458 	/* unlock LUT */
459 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
460 	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
461 
462 	/* fill LUT */
463 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
464 		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
465 
466 	/* lock LUT */
467 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
468 	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
469 }
470 
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)471 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
472 {
473 	int ret;
474 
475 	ret = clk_prepare_enable(q->clk_en);
476 	if (ret)
477 		return ret;
478 
479 	ret = clk_prepare_enable(q->clk);
480 	if (ret) {
481 		clk_disable_unprepare(q->clk_en);
482 		return ret;
483 	}
484 
485 	if (needs_wakeup_wait_mode(q))
486 		cpu_latency_qos_add_request(&q->pm_qos_req, 0);
487 
488 	return 0;
489 }
490 
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)491 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
492 {
493 	if (needs_wakeup_wait_mode(q))
494 		cpu_latency_qos_remove_request(&q->pm_qos_req);
495 
496 	clk_disable_unprepare(q->clk);
497 	clk_disable_unprepare(q->clk_en);
498 }
499 
500 /*
501  * If we have changed the content of the flash by writing or erasing, or if we
502  * read from flash with a different offset into the page buffer, we need to
503  * invalidate the AHB buffer. If we do not do so, we may read out the wrong
504  * data. The spec tells us reset the AHB domain and Serial Flash domain at
505  * the same time.
506  */
fsl_qspi_invalidate(struct fsl_qspi * q)507 static void fsl_qspi_invalidate(struct fsl_qspi *q)
508 {
509 	u32 reg;
510 
511 	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
512 	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
513 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
514 
515 	/*
516 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
517 	 * Delay 1 us is enough.
518 	 */
519 	udelay(1);
520 
521 	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
522 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
523 }
524 
fsl_qspi_select_mem(struct fsl_qspi * q,struct spi_device * spi)525 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
526 {
527 	unsigned long rate = spi->max_speed_hz;
528 	int ret;
529 
530 	if (q->selected == spi_get_chipselect(spi, 0))
531 		return;
532 
533 	if (needs_4x_clock(q))
534 		rate *= 4;
535 
536 	fsl_qspi_clk_disable_unprep(q);
537 
538 	ret = clk_set_rate(q->clk, rate);
539 	if (ret)
540 		return;
541 
542 	ret = fsl_qspi_clk_prep_enable(q);
543 	if (ret)
544 		return;
545 
546 	q->selected = spi_get_chipselect(spi, 0);
547 
548 	fsl_qspi_invalidate(q);
549 }
550 
fsl_qspi_read_ahb(struct fsl_qspi * q,const struct spi_mem_op * op)551 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
552 {
553 	memcpy_fromio(op->data.buf.in,
554 		      q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
555 		      op->data.nbytes);
556 }
557 
fsl_qspi_fill_txfifo(struct fsl_qspi * q,const struct spi_mem_op * op)558 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
559 				 const struct spi_mem_op *op)
560 {
561 	void __iomem *base = q->iobase;
562 	int i;
563 	u32 val;
564 
565 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
566 		memcpy(&val, op->data.buf.out + i, 4);
567 		val = fsl_qspi_endian_xchg(q, val);
568 		qspi_writel(q, val, base + QUADSPI_TBDR);
569 	}
570 
571 	if (i < op->data.nbytes) {
572 		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
573 		val = fsl_qspi_endian_xchg(q, val);
574 		qspi_writel(q, val, base + QUADSPI_TBDR);
575 	}
576 
577 	if (needs_fill_txfifo(q)) {
578 		for (i = op->data.nbytes; i < 16; i += 4)
579 			qspi_writel(q, 0, base + QUADSPI_TBDR);
580 	}
581 }
582 
fsl_qspi_read_rxfifo(struct fsl_qspi * q,const struct spi_mem_op * op)583 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
584 			  const struct spi_mem_op *op)
585 {
586 	void __iomem *base = q->iobase;
587 	int i;
588 	u8 *buf = op->data.buf.in;
589 	u32 val;
590 
591 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
592 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
593 		val = fsl_qspi_endian_xchg(q, val);
594 		memcpy(buf + i, &val, 4);
595 	}
596 
597 	if (i < op->data.nbytes) {
598 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
599 		val = fsl_qspi_endian_xchg(q, val);
600 		memcpy(buf + i, &val, op->data.nbytes - i);
601 	}
602 }
603 
fsl_qspi_do_op(struct fsl_qspi * q,const struct spi_mem_op * op)604 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
605 {
606 	void __iomem *base = q->iobase;
607 	int err = 0;
608 
609 	init_completion(&q->c);
610 
611 	/*
612 	 * Always start the sequence at the same index since we update
613 	 * the LUT at each exec_op() call. And also specify the DATA
614 	 * length, since it's has not been specified in the LUT.
615 	 */
616 	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
617 		    base + QUADSPI_IPCR);
618 
619 	/* Wait for the interrupt. */
620 	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
621 		err = -ETIMEDOUT;
622 
623 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
624 		fsl_qspi_read_rxfifo(q, op);
625 
626 	return err;
627 }
628 
fsl_qspi_readl_poll_tout(struct fsl_qspi * q,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us)629 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
630 				    u32 mask, u32 delay_us, u32 timeout_us)
631 {
632 	u32 reg;
633 
634 	if (!q->devtype_data->little_endian)
635 		mask = (u32)cpu_to_be32(mask);
636 
637 	return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
638 				  timeout_us);
639 }
640 
fsl_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)641 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
642 {
643 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
644 	void __iomem *base = q->iobase;
645 	u32 addr_offset = 0;
646 	int err = 0;
647 	int invalid_mstrid = q->devtype_data->invalid_mstrid;
648 
649 	mutex_lock(&q->lock);
650 
651 	/* wait for the controller being ready */
652 	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
653 				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
654 
655 	fsl_qspi_select_mem(q, mem->spi);
656 
657 	if (needs_amba_base_offset(q))
658 		addr_offset = q->memmap_phy;
659 
660 	qspi_writel(q,
661 		    q->selected * q->devtype_data->ahb_buf_size + addr_offset,
662 		    base + QUADSPI_SFAR);
663 
664 	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
665 		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
666 		    base + QUADSPI_MCR);
667 
668 	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
669 		    base + QUADSPI_SPTRCLR);
670 
671 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
672 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
673 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
674 
675 	fsl_qspi_prepare_lut(q, op);
676 
677 	/*
678 	 * If we have large chunks of data, we read them through the AHB bus
679 	 * by accessing the mapped memory. In all other cases we use
680 	 * IP commands to access the flash.
681 	 */
682 	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
683 	    op->data.dir == SPI_MEM_DATA_IN) {
684 		fsl_qspi_read_ahb(q, op);
685 	} else {
686 		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
687 			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
688 
689 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
690 			fsl_qspi_fill_txfifo(q, op);
691 
692 		err = fsl_qspi_do_op(q, op);
693 	}
694 
695 	/* Invalidate the data in the AHB buffer. */
696 	fsl_qspi_invalidate(q);
697 
698 	mutex_unlock(&q->lock);
699 
700 	return err;
701 }
702 
fsl_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)703 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
704 {
705 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
706 
707 	if (op->data.dir == SPI_MEM_DATA_OUT) {
708 		if (op->data.nbytes > q->devtype_data->txfifo)
709 			op->data.nbytes = q->devtype_data->txfifo;
710 	} else {
711 		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
712 			op->data.nbytes = q->devtype_data->ahb_buf_size;
713 		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
714 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
715 	}
716 
717 	return 0;
718 }
719 
fsl_qspi_default_setup(struct fsl_qspi * q)720 static int fsl_qspi_default_setup(struct fsl_qspi *q)
721 {
722 	void __iomem *base = q->iobase;
723 	u32 reg, addr_offset = 0;
724 	int ret;
725 
726 	/* disable and unprepare clock to avoid glitch pass to controller */
727 	fsl_qspi_clk_disable_unprep(q);
728 
729 	/* the default frequency, we will change it later if necessary. */
730 	ret = clk_set_rate(q->clk, 66000000);
731 	if (ret)
732 		return ret;
733 
734 	ret = fsl_qspi_clk_prep_enable(q);
735 	if (ret)
736 		return ret;
737 
738 	/* Reset the module */
739 	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
740 		    base + QUADSPI_MCR);
741 	udelay(1);
742 
743 	/* Disable the module */
744 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
745 		    base + QUADSPI_MCR);
746 
747 	/*
748 	 * Previous boot stages (BootROM, bootloader) might have used DDR
749 	 * mode and did not clear the TDH bits. As we currently use SDR mode
750 	 * only, clear the TDH bits if necessary.
751 	 */
752 	if (needs_tdh_setting(q))
753 		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
754 			    ~QUADSPI_FLSHCR_TDH_MASK,
755 			    base + QUADSPI_FLSHCR);
756 
757 	reg = qspi_readl(q, base + QUADSPI_SMPR);
758 	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
759 			| QUADSPI_SMPR_FSPHS_MASK
760 			| QUADSPI_SMPR_HSENA_MASK
761 			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
762 
763 	/* We only use the buffer3 for AHB read */
764 	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
765 	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
766 	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
767 
768 	qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
769 		    q->iobase + QUADSPI_BFGENCR);
770 	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
771 	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
772 		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
773 		    base + QUADSPI_BUF3CR);
774 
775 	if (needs_amba_base_offset(q))
776 		addr_offset = q->memmap_phy;
777 
778 	/*
779 	 * In HW there can be a maximum of four chips on two buses with
780 	 * two chip selects on each bus. We use four chip selects in SW
781 	 * to differentiate between the four chips.
782 	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
783 	 * SFB2AD accordingly.
784 	 */
785 	qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
786 		    base + QUADSPI_SFA1AD);
787 	qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
788 		    base + QUADSPI_SFA2AD);
789 	qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
790 		    base + QUADSPI_SFB1AD);
791 	qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
792 		    base + QUADSPI_SFB2AD);
793 
794 	q->selected = -1;
795 
796 	/* Enable the module */
797 	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
798 		    base + QUADSPI_MCR);
799 
800 	/* clear all interrupt status */
801 	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
802 
803 	/* enable the interrupt */
804 	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
805 
806 	return 0;
807 }
808 
fsl_qspi_get_name(struct spi_mem * mem)809 static const char *fsl_qspi_get_name(struct spi_mem *mem)
810 {
811 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
812 	struct device *dev = &mem->spi->dev;
813 	const char *name;
814 
815 	/*
816 	 * In order to keep mtdparts compatible with the old MTD driver at
817 	 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
818 	 * platform_device of the controller.
819 	 */
820 	if (of_get_available_child_count(q->dev->of_node) == 1)
821 		return dev_name(q->dev);
822 
823 	name = devm_kasprintf(dev, GFP_KERNEL,
824 			      "%s-%d", dev_name(q->dev),
825 			      spi_get_chipselect(mem->spi, 0));
826 
827 	if (!name) {
828 		dev_err(dev, "failed to get memory for custom flash name\n");
829 		return ERR_PTR(-ENOMEM);
830 	}
831 
832 	return name;
833 }
834 
835 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
836 	.adjust_op_size = fsl_qspi_adjust_op_size,
837 	.supports_op = fsl_qspi_supports_op,
838 	.exec_op = fsl_qspi_exec_op,
839 	.get_name = fsl_qspi_get_name,
840 };
841 
fsl_qspi_probe(struct platform_device * pdev)842 static int fsl_qspi_probe(struct platform_device *pdev)
843 {
844 	struct spi_controller *ctlr;
845 	struct device *dev = &pdev->dev;
846 	struct device_node *np = dev->of_node;
847 	struct resource *res;
848 	struct fsl_qspi *q;
849 	int ret;
850 
851 	ctlr = spi_alloc_host(&pdev->dev, sizeof(*q));
852 	if (!ctlr)
853 		return -ENOMEM;
854 
855 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
856 			  SPI_TX_DUAL | SPI_TX_QUAD;
857 
858 	q = spi_controller_get_devdata(ctlr);
859 	q->dev = dev;
860 	q->devtype_data = of_device_get_match_data(dev);
861 	if (!q->devtype_data) {
862 		ret = -ENODEV;
863 		goto err_put_ctrl;
864 	}
865 
866 	platform_set_drvdata(pdev, q);
867 
868 	/* find the resources */
869 	q->iobase = devm_platform_ioremap_resource_byname(pdev, "QuadSPI");
870 	if (IS_ERR(q->iobase)) {
871 		ret = PTR_ERR(q->iobase);
872 		goto err_put_ctrl;
873 	}
874 
875 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
876 					"QuadSPI-memory");
877 	if (!res) {
878 		ret = -EINVAL;
879 		goto err_put_ctrl;
880 	}
881 	q->memmap_phy = res->start;
882 	/* Since there are 4 cs, map size required is 4 times ahb_buf_size */
883 	q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
884 				   (q->devtype_data->ahb_buf_size * 4));
885 	if (!q->ahb_addr) {
886 		ret = -ENOMEM;
887 		goto err_put_ctrl;
888 	}
889 
890 	/* find the clocks */
891 	q->clk_en = devm_clk_get(dev, "qspi_en");
892 	if (IS_ERR(q->clk_en)) {
893 		ret = PTR_ERR(q->clk_en);
894 		goto err_put_ctrl;
895 	}
896 
897 	q->clk = devm_clk_get(dev, "qspi");
898 	if (IS_ERR(q->clk)) {
899 		ret = PTR_ERR(q->clk);
900 		goto err_put_ctrl;
901 	}
902 
903 	ret = fsl_qspi_clk_prep_enable(q);
904 	if (ret) {
905 		dev_err(dev, "can not enable the clock\n");
906 		goto err_put_ctrl;
907 	}
908 
909 	/* find the irq */
910 	ret = platform_get_irq(pdev, 0);
911 	if (ret < 0)
912 		goto err_disable_clk;
913 
914 	ret = devm_request_irq(dev, ret,
915 			fsl_qspi_irq_handler, 0, pdev->name, q);
916 	if (ret) {
917 		dev_err(dev, "failed to request irq: %d\n", ret);
918 		goto err_disable_clk;
919 	}
920 
921 	mutex_init(&q->lock);
922 
923 	ctlr->bus_num = -1;
924 	ctlr->num_chipselect = 4;
925 	ctlr->mem_ops = &fsl_qspi_mem_ops;
926 
927 	fsl_qspi_default_setup(q);
928 
929 	ctlr->dev.of_node = np;
930 
931 	ret = devm_spi_register_controller(dev, ctlr);
932 	if (ret)
933 		goto err_destroy_mutex;
934 
935 	return 0;
936 
937 err_destroy_mutex:
938 	mutex_destroy(&q->lock);
939 
940 err_disable_clk:
941 	fsl_qspi_clk_disable_unprep(q);
942 
943 err_put_ctrl:
944 	spi_controller_put(ctlr);
945 
946 	dev_err(dev, "Freescale QuadSPI probe failed\n");
947 	return ret;
948 }
949 
fsl_qspi_remove(struct platform_device * pdev)950 static void fsl_qspi_remove(struct platform_device *pdev)
951 {
952 	struct fsl_qspi *q = platform_get_drvdata(pdev);
953 
954 	/* disable the hardware */
955 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
956 	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
957 
958 	fsl_qspi_clk_disable_unprep(q);
959 
960 	mutex_destroy(&q->lock);
961 }
962 
fsl_qspi_suspend(struct device * dev)963 static int fsl_qspi_suspend(struct device *dev)
964 {
965 	return 0;
966 }
967 
fsl_qspi_resume(struct device * dev)968 static int fsl_qspi_resume(struct device *dev)
969 {
970 	struct fsl_qspi *q = dev_get_drvdata(dev);
971 
972 	fsl_qspi_default_setup(q);
973 
974 	return 0;
975 }
976 
977 static const struct of_device_id fsl_qspi_dt_ids[] = {
978 	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
979 	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
980 	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
981 	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
982 	{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
983 	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
984 	{ /* sentinel */ }
985 };
986 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
987 
988 static const struct dev_pm_ops fsl_qspi_pm_ops = {
989 	.suspend	= fsl_qspi_suspend,
990 	.resume		= fsl_qspi_resume,
991 };
992 
993 static struct platform_driver fsl_qspi_driver = {
994 	.driver = {
995 		.name	= "fsl-quadspi",
996 		.of_match_table = fsl_qspi_dt_ids,
997 		.pm =   &fsl_qspi_pm_ops,
998 	},
999 	.probe          = fsl_qspi_probe,
1000 	.remove_new	= fsl_qspi_remove,
1001 };
1002 module_platform_driver(fsl_qspi_driver);
1003 
1004 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1005 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1006 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1007 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1008 MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
1009 MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
1010 MODULE_LICENSE("GPL v2");
1011