1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59
scsi_init_sense_cache(struct Scsi_Host * shost)60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 int ret = 0;
63
64 mutex_lock(&scsi_sense_cache_mutex);
65 if (!scsi_sense_cache) {
66 scsi_sense_cache =
67 kmem_cache_create_usercopy("scsi_sense_cache",
68 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 0, SCSI_SENSE_BUFFERSIZE, NULL);
70 if (!scsi_sense_cache)
71 ret = -ENOMEM;
72 }
73 mutex_unlock(&scsi_sense_cache_mutex);
74 return ret;
75 }
76
77 /*
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
81 */
82 #define SCSI_QUEUE_DELAY 3
83
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 struct Scsi_Host *host = cmd->device->host;
88 struct scsi_device *device = cmd->device;
89 struct scsi_target *starget = scsi_target(device);
90
91 /*
92 * Set the appropriate busy bit for the device/host.
93 *
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
96 *
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
103 */
104 switch (reason) {
105 case SCSI_MLQUEUE_HOST_BUSY:
106 atomic_set(&host->host_blocked, host->max_host_blocked);
107 break;
108 case SCSI_MLQUEUE_DEVICE_BUSY:
109 case SCSI_MLQUEUE_EH_RETRY:
110 atomic_set(&device->device_blocked,
111 device->max_device_blocked);
112 break;
113 case SCSI_MLQUEUE_TARGET_BUSY:
114 atomic_set(&starget->target_blocked,
115 starget->max_target_blocked);
116 break;
117 }
118 }
119
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 struct request *rq = scsi_cmd_to_rq(cmd);
123
124 if (rq->rq_flags & RQF_DONTPREP) {
125 rq->rq_flags &= ~RQF_DONTPREP;
126 scsi_mq_uninit_cmd(cmd);
127 } else {
128 WARN_ON_ONCE(true);
129 }
130 blk_mq_requeue_request(rq, true);
131 }
132
133 /**
134 * __scsi_queue_insert - private queue insertion
135 * @cmd: The SCSI command being requeued
136 * @reason: The reason for the requeue
137 * @unbusy: Whether the queue should be unbusied
138 *
139 * This is a private queue insertion. The public interface
140 * scsi_queue_insert() always assumes the queue should be unbusied
141 * because it's always called before the completion. This function is
142 * for a requeue after completion, which should only occur in this
143 * file.
144 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 struct scsi_device *device = cmd->device;
148
149 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 "Inserting command %p into mlqueue\n", cmd));
151
152 scsi_set_blocked(cmd, reason);
153
154 /*
155 * Decrement the counters, since these commands are no longer
156 * active on the host/device.
157 */
158 if (unbusy)
159 scsi_device_unbusy(device, cmd);
160
161 /*
162 * Requeue this command. It will go before all other commands
163 * that are already in the queue. Schedule requeue work under
164 * lock such that the kblockd_schedule_work() call happens
165 * before blk_cleanup_queue() finishes.
166 */
167 cmd->result = 0;
168
169 blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
170 }
171
172 /**
173 * scsi_queue_insert - Reinsert a command in the queue.
174 * @cmd: command that we are adding to queue.
175 * @reason: why we are inserting command to queue.
176 *
177 * We do this for one of two cases. Either the host is busy and it cannot accept
178 * any more commands for the time being, or the device returned QUEUE_FULL and
179 * can accept no more commands.
180 *
181 * Context: This could be called either from an interrupt context or a normal
182 * process context.
183 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
185 {
186 __scsi_queue_insert(cmd, reason, true);
187 }
188
189
190 /**
191 * __scsi_execute - insert request and wait for the result
192 * @sdev: scsi device
193 * @cmd: scsi command
194 * @data_direction: data direction
195 * @buffer: data buffer
196 * @bufflen: len of buffer
197 * @sense: optional sense buffer
198 * @sshdr: optional decoded sense header
199 * @timeout: request timeout in HZ
200 * @retries: number of times to retry request
201 * @flags: flags for ->cmd_flags
202 * @rq_flags: flags for ->rq_flags
203 * @resid: optional residual length
204 *
205 * Returns the scsi_cmnd result field if a command was executed, or a negative
206 * Linux error code if we didn't get that far.
207 */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, struct scsi_sense_hdr *sshdr,
211 int timeout, int retries, u64 flags, req_flags_t rq_flags,
212 int *resid)
213 {
214 struct request *req;
215 struct scsi_request *rq;
216 int ret;
217
218 req = blk_get_request(sdev->request_queue,
219 data_direction == DMA_TO_DEVICE ?
220 REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
221 rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
222 if (IS_ERR(req))
223 return PTR_ERR(req);
224
225 rq = scsi_req(req);
226
227 if (bufflen) {
228 ret = blk_rq_map_kern(sdev->request_queue, req,
229 buffer, bufflen, GFP_NOIO);
230 if (ret)
231 goto out;
232 }
233 rq->cmd_len = COMMAND_SIZE(cmd[0]);
234 memcpy(rq->cmd, cmd, rq->cmd_len);
235 rq->retries = retries;
236 req->timeout = timeout;
237 req->cmd_flags |= flags;
238 req->rq_flags |= rq_flags | RQF_QUIET;
239
240 /*
241 * head injection *required* here otherwise quiesce won't work
242 */
243 blk_execute_rq(NULL, req, 1);
244
245 /*
246 * Some devices (USB mass-storage in particular) may transfer
247 * garbage data together with a residue indicating that the data
248 * is invalid. Prevent the garbage from being misinterpreted
249 * and prevent security leaks by zeroing out the excess data.
250 */
251 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
252 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
253
254 if (resid)
255 *resid = rq->resid_len;
256 if (sense && rq->sense_len)
257 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
258 if (sshdr)
259 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
260 ret = rq->result;
261 out:
262 blk_put_request(req);
263
264 return ret;
265 }
266 EXPORT_SYMBOL(__scsi_execute);
267
268 /*
269 * Wake up the error handler if necessary. Avoid as follows that the error
270 * handler is not woken up if host in-flight requests number ==
271 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
272 * with an RCU read lock in this function to ensure that this function in
273 * its entirety either finishes before scsi_eh_scmd_add() increases the
274 * host_failed counter or that it notices the shost state change made by
275 * scsi_eh_scmd_add().
276 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
278 {
279 unsigned long flags;
280
281 rcu_read_lock();
282 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
283 if (unlikely(scsi_host_in_recovery(shost))) {
284 spin_lock_irqsave(shost->host_lock, flags);
285 if (shost->host_failed || shost->host_eh_scheduled)
286 scsi_eh_wakeup(shost);
287 spin_unlock_irqrestore(shost->host_lock, flags);
288 }
289 rcu_read_unlock();
290 }
291
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 struct Scsi_Host *shost = sdev->host;
295 struct scsi_target *starget = scsi_target(sdev);
296
297 scsi_dec_host_busy(shost, cmd);
298
299 if (starget->can_queue > 0)
300 atomic_dec(&starget->target_busy);
301
302 sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 cmd->budget_token = -1;
304 }
305
scsi_kick_queue(struct request_queue * q)306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 blk_mq_run_hw_queues(q, false);
309 }
310
311 /*
312 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313 * and call blk_run_queue for all the scsi_devices on the target -
314 * including current_sdev first.
315 *
316 * Called with *no* scsi locks held.
317 */
scsi_single_lun_run(struct scsi_device * current_sdev)318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 struct Scsi_Host *shost = current_sdev->host;
321 struct scsi_device *sdev, *tmp;
322 struct scsi_target *starget = scsi_target(current_sdev);
323 unsigned long flags;
324
325 spin_lock_irqsave(shost->host_lock, flags);
326 starget->starget_sdev_user = NULL;
327 spin_unlock_irqrestore(shost->host_lock, flags);
328
329 /*
330 * Call blk_run_queue for all LUNs on the target, starting with
331 * current_sdev. We race with others (to set starget_sdev_user),
332 * but in most cases, we will be first. Ideally, each LU on the
333 * target would get some limited time or requests on the target.
334 */
335 scsi_kick_queue(current_sdev->request_queue);
336
337 spin_lock_irqsave(shost->host_lock, flags);
338 if (starget->starget_sdev_user)
339 goto out;
340 list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 same_target_siblings) {
342 if (sdev == current_sdev)
343 continue;
344 if (scsi_device_get(sdev))
345 continue;
346
347 spin_unlock_irqrestore(shost->host_lock, flags);
348 scsi_kick_queue(sdev->request_queue);
349 spin_lock_irqsave(shost->host_lock, flags);
350
351 scsi_device_put(sdev);
352 }
353 out:
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356
scsi_device_is_busy(struct scsi_device * sdev)357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 return true;
361 if (atomic_read(&sdev->device_blocked) > 0)
362 return true;
363 return false;
364 }
365
scsi_target_is_busy(struct scsi_target * starget)366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 if (starget->can_queue > 0) {
369 if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 return true;
371 if (atomic_read(&starget->target_blocked) > 0)
372 return true;
373 }
374 return false;
375 }
376
scsi_host_is_busy(struct Scsi_Host * shost)377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 if (atomic_read(&shost->host_blocked) > 0)
380 return true;
381 if (shost->host_self_blocked)
382 return true;
383 return false;
384 }
385
scsi_starved_list_run(struct Scsi_Host * shost)386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 LIST_HEAD(starved_list);
389 struct scsi_device *sdev;
390 unsigned long flags;
391
392 spin_lock_irqsave(shost->host_lock, flags);
393 list_splice_init(&shost->starved_list, &starved_list);
394
395 while (!list_empty(&starved_list)) {
396 struct request_queue *slq;
397
398 /*
399 * As long as shost is accepting commands and we have
400 * starved queues, call blk_run_queue. scsi_request_fn
401 * drops the queue_lock and can add us back to the
402 * starved_list.
403 *
404 * host_lock protects the starved_list and starved_entry.
405 * scsi_request_fn must get the host_lock before checking
406 * or modifying starved_list or starved_entry.
407 */
408 if (scsi_host_is_busy(shost))
409 break;
410
411 sdev = list_entry(starved_list.next,
412 struct scsi_device, starved_entry);
413 list_del_init(&sdev->starved_entry);
414 if (scsi_target_is_busy(scsi_target(sdev))) {
415 list_move_tail(&sdev->starved_entry,
416 &shost->starved_list);
417 continue;
418 }
419
420 /*
421 * Once we drop the host lock, a racing scsi_remove_device()
422 * call may remove the sdev from the starved list and destroy
423 * it and the queue. Mitigate by taking a reference to the
424 * queue and never touching the sdev again after we drop the
425 * host lock. Note: if __scsi_remove_device() invokes
426 * blk_cleanup_queue() before the queue is run from this
427 * function then blk_run_queue() will return immediately since
428 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
429 */
430 slq = sdev->request_queue;
431 if (!blk_get_queue(slq))
432 continue;
433 spin_unlock_irqrestore(shost->host_lock, flags);
434
435 scsi_kick_queue(slq);
436 blk_put_queue(slq);
437
438 spin_lock_irqsave(shost->host_lock, flags);
439 }
440 /* put any unprocessed entries back */
441 list_splice(&starved_list, &shost->starved_list);
442 spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444
445 /**
446 * scsi_run_queue - Select a proper request queue to serve next.
447 * @q: last request's queue
448 *
449 * The previous command was completely finished, start a new one if possible.
450 */
scsi_run_queue(struct request_queue * q)451 static void scsi_run_queue(struct request_queue *q)
452 {
453 struct scsi_device *sdev = q->queuedata;
454
455 if (scsi_target(sdev)->single_lun)
456 scsi_single_lun_run(sdev);
457 if (!list_empty(&sdev->host->starved_list))
458 scsi_starved_list_run(sdev->host);
459
460 blk_mq_run_hw_queues(q, false);
461 }
462
scsi_requeue_run_queue(struct work_struct * work)463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 struct scsi_device *sdev;
466 struct request_queue *q;
467
468 sdev = container_of(work, struct scsi_device, requeue_work);
469 q = sdev->request_queue;
470 scsi_run_queue(q);
471 }
472
scsi_run_host_queues(struct Scsi_Host * shost)473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 struct scsi_device *sdev;
476
477 shost_for_each_device(sdev, shost)
478 scsi_run_queue(sdev->request_queue);
479 }
480
scsi_uninit_cmd(struct scsi_cmnd * cmd)481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485
486 if (drv->uninit_command)
487 drv->uninit_command(cmd);
488 }
489 }
490
scsi_free_sgtables(struct scsi_cmnd * cmd)491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 if (cmd->sdb.table.nents)
494 sg_free_table_chained(&cmd->sdb.table,
495 SCSI_INLINE_SG_CNT);
496 if (scsi_prot_sg_count(cmd))
497 sg_free_table_chained(&cmd->prot_sdb->table,
498 SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 scsi_free_sgtables(cmd);
505 scsi_uninit_cmd(cmd);
506 }
507
scsi_run_queue_async(struct scsi_device * sdev)508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 if (scsi_target(sdev)->single_lun ||
511 !list_empty(&sdev->host->starved_list)) {
512 kblockd_schedule_work(&sdev->requeue_work);
513 } else {
514 /*
515 * smp_mb() present in sbitmap_queue_clear() or implied in
516 * .end_io is for ordering writing .device_busy in
517 * scsi_device_unbusy() and reading sdev->restarts.
518 */
519 int old = atomic_read(&sdev->restarts);
520
521 /*
522 * ->restarts has to be kept as non-zero if new budget
523 * contention occurs.
524 *
525 * No need to run queue when either another re-run
526 * queue wins in updating ->restarts or a new budget
527 * contention occurs.
528 */
529 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 blk_mq_run_hw_queues(sdev->request_queue, true);
531 }
532 }
533
534 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 unsigned int bytes)
537 {
538 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 struct scsi_device *sdev = cmd->device;
540 struct request_queue *q = sdev->request_queue;
541
542 if (blk_update_request(req, error, bytes))
543 return true;
544
545 if (blk_queue_add_random(q))
546 add_disk_randomness(req->rq_disk);
547
548 if (!blk_rq_is_passthrough(req)) {
549 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550 cmd->flags &= ~SCMD_INITIALIZED;
551 }
552
553 /*
554 * Calling rcu_barrier() is not necessary here because the
555 * SCSI error handler guarantees that the function called by
556 * call_rcu() has been called before scsi_end_request() is
557 * called.
558 */
559 destroy_rcu_head(&cmd->rcu);
560
561 /*
562 * In the MQ case the command gets freed by __blk_mq_end_request,
563 * so we have to do all cleanup that depends on it earlier.
564 *
565 * We also can't kick the queues from irq context, so we
566 * will have to defer it to a workqueue.
567 */
568 scsi_mq_uninit_cmd(cmd);
569
570 /*
571 * queue is still alive, so grab the ref for preventing it
572 * from being cleaned up during running queue.
573 */
574 percpu_ref_get(&q->q_usage_counter);
575
576 __blk_mq_end_request(req, error);
577
578 scsi_run_queue_async(sdev);
579
580 percpu_ref_put(&q->q_usage_counter);
581 return false;
582 }
583
584 /**
585 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586 * @cmd: SCSI command
587 * @result: scsi error code
588 *
589 * Translate a SCSI result code into a blk_status_t value. May reset the host
590 * byte of @cmd->result.
591 */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
593 {
594 switch (host_byte(result)) {
595 case DID_OK:
596 if (scsi_status_is_good(result))
597 return BLK_STS_OK;
598 return BLK_STS_IOERR;
599 case DID_TRANSPORT_FAILFAST:
600 case DID_TRANSPORT_MARGINAL:
601 return BLK_STS_TRANSPORT;
602 case DID_TARGET_FAILURE:
603 set_host_byte(cmd, DID_OK);
604 return BLK_STS_TARGET;
605 case DID_NEXUS_FAILURE:
606 set_host_byte(cmd, DID_OK);
607 return BLK_STS_NEXUS;
608 case DID_ALLOC_FAILURE:
609 set_host_byte(cmd, DID_OK);
610 return BLK_STS_NOSPC;
611 case DID_MEDIUM_ERROR:
612 set_host_byte(cmd, DID_OK);
613 return BLK_STS_MEDIUM;
614 default:
615 return BLK_STS_IOERR;
616 }
617 }
618
619 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621 struct request_queue *q)
622 {
623 /* A new command will be prepared and issued. */
624 scsi_mq_requeue_cmd(cmd);
625 }
626
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629 struct request *req = scsi_cmd_to_rq(cmd);
630 unsigned long wait_for;
631
632 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633 return false;
634
635 wait_for = (cmd->allowed + 1) * req->timeout;
636 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638 wait_for/HZ);
639 return true;
640 }
641 return false;
642 }
643
644 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647 struct request_queue *q = cmd->device->request_queue;
648 struct request *req = scsi_cmd_to_rq(cmd);
649 int level = 0;
650 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651 ACTION_DELAYED_RETRY} action;
652 struct scsi_sense_hdr sshdr;
653 bool sense_valid;
654 bool sense_current = true; /* false implies "deferred sense" */
655 blk_status_t blk_stat;
656
657 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658 if (sense_valid)
659 sense_current = !scsi_sense_is_deferred(&sshdr);
660
661 blk_stat = scsi_result_to_blk_status(cmd, result);
662
663 if (host_byte(result) == DID_RESET) {
664 /* Third party bus reset or reset for error recovery
665 * reasons. Just retry the command and see what
666 * happens.
667 */
668 action = ACTION_RETRY;
669 } else if (sense_valid && sense_current) {
670 switch (sshdr.sense_key) {
671 case UNIT_ATTENTION:
672 if (cmd->device->removable) {
673 /* Detected disc change. Set a bit
674 * and quietly refuse further access.
675 */
676 cmd->device->changed = 1;
677 action = ACTION_FAIL;
678 } else {
679 /* Must have been a power glitch, or a
680 * bus reset. Could not have been a
681 * media change, so we just retry the
682 * command and see what happens.
683 */
684 action = ACTION_RETRY;
685 }
686 break;
687 case ILLEGAL_REQUEST:
688 /* If we had an ILLEGAL REQUEST returned, then
689 * we may have performed an unsupported
690 * command. The only thing this should be
691 * would be a ten byte read where only a six
692 * byte read was supported. Also, on a system
693 * where READ CAPACITY failed, we may have
694 * read past the end of the disk.
695 */
696 if ((cmd->device->use_10_for_rw &&
697 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698 (cmd->cmnd[0] == READ_10 ||
699 cmd->cmnd[0] == WRITE_10)) {
700 /* This will issue a new 6-byte command. */
701 cmd->device->use_10_for_rw = 0;
702 action = ACTION_REPREP;
703 } else if (sshdr.asc == 0x10) /* DIX */ {
704 action = ACTION_FAIL;
705 blk_stat = BLK_STS_PROTECTION;
706 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708 action = ACTION_FAIL;
709 blk_stat = BLK_STS_TARGET;
710 } else
711 action = ACTION_FAIL;
712 break;
713 case ABORTED_COMMAND:
714 action = ACTION_FAIL;
715 if (sshdr.asc == 0x10) /* DIF */
716 blk_stat = BLK_STS_PROTECTION;
717 break;
718 case NOT_READY:
719 /* If the device is in the process of becoming
720 * ready, or has a temporary blockage, retry.
721 */
722 if (sshdr.asc == 0x04) {
723 switch (sshdr.ascq) {
724 case 0x01: /* becoming ready */
725 case 0x04: /* format in progress */
726 case 0x05: /* rebuild in progress */
727 case 0x06: /* recalculation in progress */
728 case 0x07: /* operation in progress */
729 case 0x08: /* Long write in progress */
730 case 0x09: /* self test in progress */
731 case 0x11: /* notify (enable spinup) required */
732 case 0x14: /* space allocation in progress */
733 case 0x1a: /* start stop unit in progress */
734 case 0x1b: /* sanitize in progress */
735 case 0x1d: /* configuration in progress */
736 case 0x24: /* depopulation in progress */
737 action = ACTION_DELAYED_RETRY;
738 break;
739 case 0x0a: /* ALUA state transition */
740 blk_stat = BLK_STS_AGAIN;
741 fallthrough;
742 default:
743 action = ACTION_FAIL;
744 break;
745 }
746 } else
747 action = ACTION_FAIL;
748 break;
749 case VOLUME_OVERFLOW:
750 /* See SSC3rXX or current. */
751 action = ACTION_FAIL;
752 break;
753 case DATA_PROTECT:
754 action = ACTION_FAIL;
755 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
756 (sshdr.asc == 0x55 &&
757 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
758 /* Insufficient zone resources */
759 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
760 }
761 break;
762 default:
763 action = ACTION_FAIL;
764 break;
765 }
766 } else
767 action = ACTION_FAIL;
768
769 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
770 action = ACTION_FAIL;
771
772 switch (action) {
773 case ACTION_FAIL:
774 /* Give up and fail the remainder of the request */
775 if (!(req->rq_flags & RQF_QUIET)) {
776 static DEFINE_RATELIMIT_STATE(_rs,
777 DEFAULT_RATELIMIT_INTERVAL,
778 DEFAULT_RATELIMIT_BURST);
779
780 if (unlikely(scsi_logging_level))
781 level =
782 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 SCSI_LOG_MLCOMPLETE_BITS);
784
785 /*
786 * if logging is enabled the failure will be printed
787 * in scsi_log_completion(), so avoid duplicate messages
788 */
789 if (!level && __ratelimit(&_rs)) {
790 scsi_print_result(cmd, NULL, FAILED);
791 if (sense_valid)
792 scsi_print_sense(cmd);
793 scsi_print_command(cmd);
794 }
795 }
796 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 return;
798 fallthrough;
799 case ACTION_REPREP:
800 scsi_io_completion_reprep(cmd, q);
801 break;
802 case ACTION_RETRY:
803 /* Retry the same command immediately */
804 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 break;
806 case ACTION_DELAYED_RETRY:
807 /* Retry the same command after a delay */
808 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 break;
810 }
811 }
812
813 /*
814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815 * new result that may suppress further error checking. Also modifies
816 * *blk_statp in some cases.
817 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 blk_status_t *blk_statp)
820 {
821 bool sense_valid;
822 bool sense_current = true; /* false implies "deferred sense" */
823 struct request *req = scsi_cmd_to_rq(cmd);
824 struct scsi_sense_hdr sshdr;
825
826 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 if (sense_valid)
828 sense_current = !scsi_sense_is_deferred(&sshdr);
829
830 if (blk_rq_is_passthrough(req)) {
831 if (sense_valid) {
832 /*
833 * SG_IO wants current and deferred errors
834 */
835 scsi_req(req)->sense_len =
836 min(8 + cmd->sense_buffer[7],
837 SCSI_SENSE_BUFFERSIZE);
838 }
839 if (sense_current)
840 *blk_statp = scsi_result_to_blk_status(cmd, result);
841 } else if (blk_rq_bytes(req) == 0 && sense_current) {
842 /*
843 * Flush commands do not transfers any data, and thus cannot use
844 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 * This sets *blk_statp explicitly for the problem case.
846 */
847 *blk_statp = scsi_result_to_blk_status(cmd, result);
848 }
849 /*
850 * Recovered errors need reporting, but they're always treated as
851 * success, so fiddle the result code here. For passthrough requests
852 * we already took a copy of the original into sreq->result which
853 * is what gets returned to the user
854 */
855 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 bool do_print = true;
857 /*
858 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 * skip print since caller wants ATA registers. Only occurs
860 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 */
862 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 do_print = false;
864 else if (req->rq_flags & RQF_QUIET)
865 do_print = false;
866 if (do_print)
867 scsi_print_sense(cmd);
868 result = 0;
869 /* for passthrough, *blk_statp may be set */
870 *blk_statp = BLK_STS_OK;
871 }
872 /*
873 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 * intermediate statuses (both obsolete in SAM-4) as good.
878 */
879 if ((result & 0xff) && scsi_status_is_good(result)) {
880 result = 0;
881 *blk_statp = BLK_STS_OK;
882 }
883 return result;
884 }
885
886 /**
887 * scsi_io_completion - Completion processing for SCSI commands.
888 * @cmd: command that is finished.
889 * @good_bytes: number of processed bytes.
890 *
891 * We will finish off the specified number of sectors. If we are done, the
892 * command block will be released and the queue function will be goosed. If we
893 * are not done then we have to figure out what to do next:
894 *
895 * a) We can call scsi_io_completion_reprep(). The request will be
896 * unprepared and put back on the queue. Then a new command will
897 * be created for it. This should be used if we made forward
898 * progress, or if we want to switch from READ(10) to READ(6) for
899 * example.
900 *
901 * b) We can call scsi_io_completion_action(). The request will be
902 * put back on the queue and retried using the same command as
903 * before, possibly after a delay.
904 *
905 * c) We can call scsi_end_request() with blk_stat other than
906 * BLK_STS_OK, to fail the remainder of the request.
907 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 int result = cmd->result;
911 struct request_queue *q = cmd->device->request_queue;
912 struct request *req = scsi_cmd_to_rq(cmd);
913 blk_status_t blk_stat = BLK_STS_OK;
914
915 if (unlikely(result)) /* a nz result may or may not be an error */
916 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917
918 if (unlikely(blk_rq_is_passthrough(req))) {
919 /*
920 * scsi_result_to_blk_status may have reset the host_byte
921 */
922 scsi_req(req)->result = cmd->result;
923 }
924
925 /*
926 * Next deal with any sectors which we were able to correctly
927 * handle.
928 */
929 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 "%u sectors total, %d bytes done.\n",
931 blk_rq_sectors(req), good_bytes));
932
933 /*
934 * Failed, zero length commands always need to drop down
935 * to retry code. Fast path should return in this block.
936 */
937 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 return; /* no bytes remaining */
940 }
941
942 /* Kill remainder if no retries. */
943 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 WARN_ONCE(true,
946 "Bytes remaining after failed, no-retry command");
947 return;
948 }
949
950 /*
951 * If there had been no error, but we have leftover bytes in the
952 * requeues just queue the command up again.
953 */
954 if (likely(result == 0))
955 scsi_io_completion_reprep(cmd, q);
956 else
957 scsi_io_completion_action(cmd, result);
958 }
959
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 struct request *rq)
962 {
963 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 !op_is_write(req_op(rq)) &&
965 sdev->host->hostt->dma_need_drain(rq);
966 }
967
968 /**
969 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
970 * @cmd: SCSI command data structure to initialize.
971 *
972 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
973 * for @cmd.
974 *
975 * Returns:
976 * * BLK_STS_OK - on success
977 * * BLK_STS_RESOURCE - if the failure is retryable
978 * * BLK_STS_IOERR - if the failure is fatal
979 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
981 {
982 struct scsi_device *sdev = cmd->device;
983 struct request *rq = scsi_cmd_to_rq(cmd);
984 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
985 struct scatterlist *last_sg = NULL;
986 blk_status_t ret;
987 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
988 int count;
989
990 if (WARN_ON_ONCE(!nr_segs))
991 return BLK_STS_IOERR;
992
993 /*
994 * Make sure there is space for the drain. The driver must adjust
995 * max_hw_segments to be prepared for this.
996 */
997 if (need_drain)
998 nr_segs++;
999
1000 /*
1001 * If sg table allocation fails, requeue request later.
1002 */
1003 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1004 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1005 return BLK_STS_RESOURCE;
1006
1007 /*
1008 * Next, walk the list, and fill in the addresses and sizes of
1009 * each segment.
1010 */
1011 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1012
1013 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1014 unsigned int pad_len =
1015 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1016
1017 last_sg->length += pad_len;
1018 cmd->extra_len += pad_len;
1019 }
1020
1021 if (need_drain) {
1022 sg_unmark_end(last_sg);
1023 last_sg = sg_next(last_sg);
1024 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1025 sg_mark_end(last_sg);
1026
1027 cmd->extra_len += sdev->dma_drain_len;
1028 count++;
1029 }
1030
1031 BUG_ON(count > cmd->sdb.table.nents);
1032 cmd->sdb.table.nents = count;
1033 cmd->sdb.length = blk_rq_payload_bytes(rq);
1034
1035 if (blk_integrity_rq(rq)) {
1036 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 int ivecs;
1038
1039 if (WARN_ON_ONCE(!prot_sdb)) {
1040 /*
1041 * This can happen if someone (e.g. multipath)
1042 * queues a command to a device on an adapter
1043 * that does not support DIX.
1044 */
1045 ret = BLK_STS_IOERR;
1046 goto out_free_sgtables;
1047 }
1048
1049 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1050
1051 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1052 prot_sdb->table.sgl,
1053 SCSI_INLINE_PROT_SG_CNT)) {
1054 ret = BLK_STS_RESOURCE;
1055 goto out_free_sgtables;
1056 }
1057
1058 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1059 prot_sdb->table.sgl);
1060 BUG_ON(count > ivecs);
1061 BUG_ON(count > queue_max_integrity_segments(rq->q));
1062
1063 cmd->prot_sdb = prot_sdb;
1064 cmd->prot_sdb->table.nents = count;
1065 }
1066
1067 return BLK_STS_OK;
1068 out_free_sgtables:
1069 scsi_free_sgtables(cmd);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL(scsi_alloc_sgtables);
1073
1074 /**
1075 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1076 * @rq: Request associated with the SCSI command to be initialized.
1077 *
1078 * This function initializes the members of struct scsi_cmnd that must be
1079 * initialized before request processing starts and that won't be
1080 * reinitialized if a SCSI command is requeued.
1081 *
1082 * Called from inside blk_get_request() for pass-through requests and from
1083 * inside scsi_init_command() for filesystem requests.
1084 */
scsi_initialize_rq(struct request * rq)1085 static void scsi_initialize_rq(struct request *rq)
1086 {
1087 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1088 struct scsi_request *req = &cmd->req;
1089
1090 memset(req->__cmd, 0, sizeof(req->__cmd));
1091 req->cmd = req->__cmd;
1092 req->cmd_len = BLK_MAX_CDB;
1093 req->sense_len = 0;
1094
1095 init_rcu_head(&cmd->rcu);
1096 cmd->jiffies_at_alloc = jiffies;
1097 cmd->retries = 0;
1098 }
1099
1100 /*
1101 * Only called when the request isn't completed by SCSI, and not freed by
1102 * SCSI
1103 */
scsi_cleanup_rq(struct request * rq)1104 static void scsi_cleanup_rq(struct request *rq)
1105 {
1106 if (rq->rq_flags & RQF_DONTPREP) {
1107 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1108 rq->rq_flags &= ~RQF_DONTPREP;
1109 }
1110 }
1111
1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1114 {
1115 void *buf = cmd->sense_buffer;
1116 void *prot = cmd->prot_sdb;
1117 struct request *rq = scsi_cmd_to_rq(cmd);
1118 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1119 unsigned long jiffies_at_alloc;
1120 int retries, to_clear;
1121 bool in_flight;
1122 int budget_token = cmd->budget_token;
1123
1124 if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1125 flags |= SCMD_INITIALIZED;
1126 scsi_initialize_rq(rq);
1127 }
1128
1129 jiffies_at_alloc = cmd->jiffies_at_alloc;
1130 retries = cmd->retries;
1131 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1132 /*
1133 * Zero out the cmd, except for the embedded scsi_request. Only clear
1134 * the driver-private command data if the LLD does not supply a
1135 * function to initialize that data.
1136 */
1137 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1138 if (!dev->host->hostt->init_cmd_priv)
1139 to_clear += dev->host->hostt->cmd_size;
1140 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1141
1142 cmd->device = dev;
1143 cmd->sense_buffer = buf;
1144 cmd->prot_sdb = prot;
1145 cmd->flags = flags;
1146 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 cmd->retries = retries;
1149 if (in_flight)
1150 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1151 cmd->budget_token = budget_token;
1152
1153 }
1154
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1156 struct request *req)
1157 {
1158 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1159
1160 /*
1161 * Passthrough requests may transfer data, in which case they must
1162 * a bio attached to them. Or they might contain a SCSI command
1163 * that does not transfer data, in which case they may optionally
1164 * submit a request without an attached bio.
1165 */
1166 if (req->bio) {
1167 blk_status_t ret = scsi_alloc_sgtables(cmd);
1168 if (unlikely(ret != BLK_STS_OK))
1169 return ret;
1170 } else {
1171 BUG_ON(blk_rq_bytes(req));
1172
1173 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1174 }
1175
1176 cmd->cmd_len = scsi_req(req)->cmd_len;
1177 if (cmd->cmd_len == 0)
1178 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1179 cmd->cmnd = scsi_req(req)->cmd;
1180 cmd->transfersize = blk_rq_bytes(req);
1181 cmd->allowed = scsi_req(req)->retries;
1182 return BLK_STS_OK;
1183 }
1184
1185 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188 switch (sdev->sdev_state) {
1189 case SDEV_CREATED:
1190 return BLK_STS_OK;
1191 case SDEV_OFFLINE:
1192 case SDEV_TRANSPORT_OFFLINE:
1193 /*
1194 * If the device is offline we refuse to process any
1195 * commands. The device must be brought online
1196 * before trying any recovery commands.
1197 */
1198 if (!sdev->offline_already) {
1199 sdev->offline_already = true;
1200 sdev_printk(KERN_ERR, sdev,
1201 "rejecting I/O to offline device\n");
1202 }
1203 return BLK_STS_IOERR;
1204 case SDEV_DEL:
1205 /*
1206 * If the device is fully deleted, we refuse to
1207 * process any commands as well.
1208 */
1209 sdev_printk(KERN_ERR, sdev,
1210 "rejecting I/O to dead device\n");
1211 return BLK_STS_IOERR;
1212 case SDEV_BLOCK:
1213 case SDEV_CREATED_BLOCK:
1214 return BLK_STS_RESOURCE;
1215 case SDEV_QUIESCE:
1216 /*
1217 * If the device is blocked we only accept power management
1218 * commands.
1219 */
1220 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221 return BLK_STS_RESOURCE;
1222 return BLK_STS_OK;
1223 default:
1224 /*
1225 * For any other not fully online state we only allow
1226 * power management commands.
1227 */
1228 if (req && !(req->rq_flags & RQF_PM))
1229 return BLK_STS_IOERR;
1230 return BLK_STS_OK;
1231 }
1232 }
1233
1234 /*
1235 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236 * and return the token else return -1.
1237 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239 struct scsi_device *sdev)
1240 {
1241 int token;
1242
1243 token = sbitmap_get(&sdev->budget_map);
1244 if (atomic_read(&sdev->device_blocked)) {
1245 if (token < 0)
1246 goto out;
1247
1248 if (scsi_device_busy(sdev) > 1)
1249 goto out_dec;
1250
1251 /*
1252 * unblock after device_blocked iterates to zero
1253 */
1254 if (atomic_dec_return(&sdev->device_blocked) > 0)
1255 goto out_dec;
1256 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257 "unblocking device at zero depth\n"));
1258 }
1259
1260 return token;
1261 out_dec:
1262 if (token >= 0)
1263 sbitmap_put(&sdev->budget_map, token);
1264 out:
1265 return -1;
1266 }
1267
1268 /*
1269 * scsi_target_queue_ready: checks if there we can send commands to target
1270 * @sdev: scsi device on starget to check.
1271 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 struct scsi_device *sdev)
1274 {
1275 struct scsi_target *starget = scsi_target(sdev);
1276 unsigned int busy;
1277
1278 if (starget->single_lun) {
1279 spin_lock_irq(shost->host_lock);
1280 if (starget->starget_sdev_user &&
1281 starget->starget_sdev_user != sdev) {
1282 spin_unlock_irq(shost->host_lock);
1283 return 0;
1284 }
1285 starget->starget_sdev_user = sdev;
1286 spin_unlock_irq(shost->host_lock);
1287 }
1288
1289 if (starget->can_queue <= 0)
1290 return 1;
1291
1292 busy = atomic_inc_return(&starget->target_busy) - 1;
1293 if (atomic_read(&starget->target_blocked) > 0) {
1294 if (busy)
1295 goto starved;
1296
1297 /*
1298 * unblock after target_blocked iterates to zero
1299 */
1300 if (atomic_dec_return(&starget->target_blocked) > 0)
1301 goto out_dec;
1302
1303 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304 "unblocking target at zero depth\n"));
1305 }
1306
1307 if (busy >= starget->can_queue)
1308 goto starved;
1309
1310 return 1;
1311
1312 starved:
1313 spin_lock_irq(shost->host_lock);
1314 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315 spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317 if (starget->can_queue > 0)
1318 atomic_dec(&starget->target_busy);
1319 return 0;
1320 }
1321
1322 /*
1323 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324 * return 0. We must end up running the queue again whenever 0 is
1325 * returned, else IO can hang.
1326 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328 struct Scsi_Host *shost,
1329 struct scsi_device *sdev,
1330 struct scsi_cmnd *cmd)
1331 {
1332 if (scsi_host_in_recovery(shost))
1333 return 0;
1334
1335 if (atomic_read(&shost->host_blocked) > 0) {
1336 if (scsi_host_busy(shost) > 0)
1337 goto starved;
1338
1339 /*
1340 * unblock after host_blocked iterates to zero
1341 */
1342 if (atomic_dec_return(&shost->host_blocked) > 0)
1343 goto out_dec;
1344
1345 SCSI_LOG_MLQUEUE(3,
1346 shost_printk(KERN_INFO, shost,
1347 "unblocking host at zero depth\n"));
1348 }
1349
1350 if (shost->host_self_blocked)
1351 goto starved;
1352
1353 /* We're OK to process the command, so we can't be starved */
1354 if (!list_empty(&sdev->starved_entry)) {
1355 spin_lock_irq(shost->host_lock);
1356 if (!list_empty(&sdev->starved_entry))
1357 list_del_init(&sdev->starved_entry);
1358 spin_unlock_irq(shost->host_lock);
1359 }
1360
1361 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362
1363 return 1;
1364
1365 starved:
1366 spin_lock_irq(shost->host_lock);
1367 if (list_empty(&sdev->starved_entry))
1368 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369 spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371 scsi_dec_host_busy(shost, cmd);
1372 return 0;
1373 }
1374
1375 /*
1376 * Busy state exporting function for request stacking drivers.
1377 *
1378 * For efficiency, no lock is taken to check the busy state of
1379 * shost/starget/sdev, since the returned value is not guaranteed and
1380 * may be changed after request stacking drivers call the function,
1381 * regardless of taking lock or not.
1382 *
1383 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384 * needs to return 'not busy'. Otherwise, request stacking drivers
1385 * may hold requests forever.
1386 */
scsi_mq_lld_busy(struct request_queue * q)1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389 struct scsi_device *sdev = q->queuedata;
1390 struct Scsi_Host *shost;
1391
1392 if (blk_queue_dying(q))
1393 return false;
1394
1395 shost = sdev->host;
1396
1397 /*
1398 * Ignore host/starget busy state.
1399 * Since block layer does not have a concept of fairness across
1400 * multiple queues, congestion of host/starget needs to be handled
1401 * in SCSI layer.
1402 */
1403 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404 return true;
1405
1406 return false;
1407 }
1408
1409 /*
1410 * Block layer request completion callback. May be called from interrupt
1411 * context.
1412 */
scsi_complete(struct request * rq)1413 static void scsi_complete(struct request *rq)
1414 {
1415 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416 enum scsi_disposition disposition;
1417
1418 INIT_LIST_HEAD(&cmd->eh_entry);
1419
1420 atomic_inc(&cmd->device->iodone_cnt);
1421 if (cmd->result)
1422 atomic_inc(&cmd->device->ioerr_cnt);
1423
1424 disposition = scsi_decide_disposition(cmd);
1425 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426 disposition = SUCCESS;
1427
1428 scsi_log_completion(cmd, disposition);
1429
1430 switch (disposition) {
1431 case SUCCESS:
1432 scsi_finish_command(cmd);
1433 break;
1434 case NEEDS_RETRY:
1435 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 break;
1437 case ADD_TO_MLQUEUE:
1438 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 break;
1440 default:
1441 scsi_eh_scmd_add(cmd);
1442 break;
1443 }
1444 }
1445
1446 /**
1447 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448 * @cmd: command block we are dispatching.
1449 *
1450 * Return: nonzero return request was rejected and device's queue needs to be
1451 * plugged.
1452 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 struct Scsi_Host *host = cmd->device->host;
1456 int rtn = 0;
1457
1458 atomic_inc(&cmd->device->iorequest_cnt);
1459
1460 /* check if the device is still usable */
1461 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 * returns an immediate error upwards, and signals
1464 * that the device is no longer present */
1465 cmd->result = DID_NO_CONNECT << 16;
1466 goto done;
1467 }
1468
1469 /* Check to see if the scsi lld made this device blocked. */
1470 if (unlikely(scsi_device_blocked(cmd->device))) {
1471 /*
1472 * in blocked state, the command is just put back on
1473 * the device queue. The suspend state has already
1474 * blocked the queue so future requests should not
1475 * occur until the device transitions out of the
1476 * suspend state.
1477 */
1478 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 "queuecommand : device blocked\n"));
1480 return SCSI_MLQUEUE_DEVICE_BUSY;
1481 }
1482
1483 /* Store the LUN value in cmnd, if needed. */
1484 if (cmd->device->lun_in_cdb)
1485 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486 (cmd->device->lun << 5 & 0xe0);
1487
1488 scsi_log_send(cmd);
1489
1490 /*
1491 * Before we queue this command, check if the command
1492 * length exceeds what the host adapter can handle.
1493 */
1494 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 "queuecommand : command too long. "
1497 "cdb_size=%d host->max_cmd_len=%d\n",
1498 cmd->cmd_len, cmd->device->host->max_cmd_len));
1499 cmd->result = (DID_ABORT << 16);
1500 goto done;
1501 }
1502
1503 if (unlikely(host->shost_state == SHOST_DEL)) {
1504 cmd->result = (DID_NO_CONNECT << 16);
1505 goto done;
1506
1507 }
1508
1509 trace_scsi_dispatch_cmd_start(cmd);
1510 rtn = host->hostt->queuecommand(host, cmd);
1511 if (rtn) {
1512 trace_scsi_dispatch_cmd_error(cmd, rtn);
1513 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515 rtn = SCSI_MLQUEUE_HOST_BUSY;
1516
1517 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 "queuecommand : request rejected\n"));
1519 }
1520
1521 return rtn;
1522 done:
1523 cmd->scsi_done(cmd);
1524 return 0;
1525 }
1526
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531 sizeof(struct scatterlist);
1532 }
1533
scsi_prepare_cmd(struct request * req)1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537 struct scsi_device *sdev = req->q->queuedata;
1538 struct Scsi_Host *shost = sdev->host;
1539 struct scatterlist *sg;
1540
1541 scsi_init_command(sdev, cmd);
1542
1543 cmd->prot_op = SCSI_PROT_NORMAL;
1544 if (blk_rq_bytes(req))
1545 cmd->sc_data_direction = rq_dma_dir(req);
1546 else
1547 cmd->sc_data_direction = DMA_NONE;
1548
1549 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1550 cmd->sdb.table.sgl = sg;
1551
1552 if (scsi_host_get_prot(shost)) {
1553 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1554
1555 cmd->prot_sdb->table.sgl =
1556 (struct scatterlist *)(cmd->prot_sdb + 1);
1557 }
1558
1559 /*
1560 * Special handling for passthrough commands, which don't go to the ULP
1561 * at all:
1562 */
1563 if (blk_rq_is_passthrough(req))
1564 return scsi_setup_scsi_cmnd(sdev, req);
1565
1566 if (sdev->handler && sdev->handler->prep_fn) {
1567 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1568
1569 if (ret != BLK_STS_OK)
1570 return ret;
1571 }
1572
1573 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1574 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1575 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1576 }
1577
scsi_mq_done(struct scsi_cmnd * cmd)1578 static void scsi_mq_done(struct scsi_cmnd *cmd)
1579 {
1580 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1581 return;
1582 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1583 return;
1584 trace_scsi_dispatch_cmd_done(cmd);
1585 blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1586 }
1587
scsi_mq_put_budget(struct request_queue * q,int budget_token)1588 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1589 {
1590 struct scsi_device *sdev = q->queuedata;
1591
1592 sbitmap_put(&sdev->budget_map, budget_token);
1593 }
1594
scsi_mq_get_budget(struct request_queue * q)1595 static int scsi_mq_get_budget(struct request_queue *q)
1596 {
1597 struct scsi_device *sdev = q->queuedata;
1598 int token = scsi_dev_queue_ready(q, sdev);
1599
1600 if (token >= 0)
1601 return token;
1602
1603 atomic_inc(&sdev->restarts);
1604
1605 /*
1606 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1607 * .restarts must be incremented before .device_busy is read because the
1608 * code in scsi_run_queue_async() depends on the order of these operations.
1609 */
1610 smp_mb__after_atomic();
1611
1612 /*
1613 * If all in-flight requests originated from this LUN are completed
1614 * before reading .device_busy, sdev->device_busy will be observed as
1615 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1616 * soon. Otherwise, completion of one of these requests will observe
1617 * the .restarts flag, and the request queue will be run for handling
1618 * this request, see scsi_end_request().
1619 */
1620 if (unlikely(scsi_device_busy(sdev) == 0 &&
1621 !scsi_device_blocked(sdev)))
1622 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1623 return -1;
1624 }
1625
scsi_mq_set_rq_budget_token(struct request * req,int token)1626 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1627 {
1628 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1629
1630 cmd->budget_token = token;
1631 }
1632
scsi_mq_get_rq_budget_token(struct request * req)1633 static int scsi_mq_get_rq_budget_token(struct request *req)
1634 {
1635 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1636
1637 return cmd->budget_token;
1638 }
1639
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1640 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1641 const struct blk_mq_queue_data *bd)
1642 {
1643 struct request *req = bd->rq;
1644 struct request_queue *q = req->q;
1645 struct scsi_device *sdev = q->queuedata;
1646 struct Scsi_Host *shost = sdev->host;
1647 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1648 blk_status_t ret;
1649 int reason;
1650
1651 WARN_ON_ONCE(cmd->budget_token < 0);
1652
1653 /*
1654 * If the device is not in running state we will reject some or all
1655 * commands.
1656 */
1657 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1658 ret = scsi_device_state_check(sdev, req);
1659 if (ret != BLK_STS_OK)
1660 goto out_put_budget;
1661 }
1662
1663 ret = BLK_STS_RESOURCE;
1664 if (!scsi_target_queue_ready(shost, sdev))
1665 goto out_put_budget;
1666 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1667 goto out_dec_target_busy;
1668
1669 if (!(req->rq_flags & RQF_DONTPREP)) {
1670 ret = scsi_prepare_cmd(req);
1671 if (ret != BLK_STS_OK)
1672 goto out_dec_host_busy;
1673 req->rq_flags |= RQF_DONTPREP;
1674 } else {
1675 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1676 }
1677
1678 cmd->flags &= SCMD_PRESERVED_FLAGS;
1679 if (sdev->simple_tags)
1680 cmd->flags |= SCMD_TAGGED;
1681 if (bd->last)
1682 cmd->flags |= SCMD_LAST;
1683
1684 scsi_set_resid(cmd, 0);
1685 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1686 cmd->scsi_done = scsi_mq_done;
1687
1688 blk_mq_start_request(req);
1689 reason = scsi_dispatch_cmd(cmd);
1690 if (reason) {
1691 scsi_set_blocked(cmd, reason);
1692 ret = BLK_STS_RESOURCE;
1693 goto out_dec_host_busy;
1694 }
1695
1696 return BLK_STS_OK;
1697
1698 out_dec_host_busy:
1699 scsi_dec_host_busy(shost, cmd);
1700 out_dec_target_busy:
1701 if (scsi_target(sdev)->can_queue > 0)
1702 atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704 scsi_mq_put_budget(q, cmd->budget_token);
1705 cmd->budget_token = -1;
1706 switch (ret) {
1707 case BLK_STS_OK:
1708 break;
1709 case BLK_STS_RESOURCE:
1710 case BLK_STS_ZONE_RESOURCE:
1711 if (scsi_device_blocked(sdev))
1712 ret = BLK_STS_DEV_RESOURCE;
1713 break;
1714 case BLK_STS_AGAIN:
1715 scsi_req(req)->result = DID_BUS_BUSY << 16;
1716 if (req->rq_flags & RQF_DONTPREP)
1717 scsi_mq_uninit_cmd(cmd);
1718 break;
1719 default:
1720 if (unlikely(!scsi_device_online(sdev)))
1721 scsi_req(req)->result = DID_NO_CONNECT << 16;
1722 else
1723 scsi_req(req)->result = DID_ERROR << 16;
1724 /*
1725 * Make sure to release all allocated resources when
1726 * we hit an error, as we will never see this command
1727 * again.
1728 */
1729 if (req->rq_flags & RQF_DONTPREP)
1730 scsi_mq_uninit_cmd(cmd);
1731 scsi_run_queue_async(sdev);
1732 break;
1733 }
1734 return ret;
1735 }
1736
scsi_timeout(struct request * req,bool reserved)1737 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1738 bool reserved)
1739 {
1740 if (reserved)
1741 return BLK_EH_RESET_TIMER;
1742 return scsi_times_out(req);
1743 }
1744
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1745 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1746 unsigned int hctx_idx, unsigned int numa_node)
1747 {
1748 struct Scsi_Host *shost = set->driver_data;
1749 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1750 struct scatterlist *sg;
1751 int ret = 0;
1752
1753 cmd->sense_buffer =
1754 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1755 if (!cmd->sense_buffer)
1756 return -ENOMEM;
1757 cmd->req.sense = cmd->sense_buffer;
1758
1759 if (scsi_host_get_prot(shost)) {
1760 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1761 shost->hostt->cmd_size;
1762 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1763 }
1764
1765 if (shost->hostt->init_cmd_priv) {
1766 ret = shost->hostt->init_cmd_priv(shost, cmd);
1767 if (ret < 0)
1768 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1769 }
1770
1771 return ret;
1772 }
1773
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1774 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1775 unsigned int hctx_idx)
1776 {
1777 struct Scsi_Host *shost = set->driver_data;
1778 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1779
1780 if (shost->hostt->exit_cmd_priv)
1781 shost->hostt->exit_cmd_priv(shost, cmd);
1782 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1783 }
1784
1785
scsi_mq_poll(struct blk_mq_hw_ctx * hctx)1786 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1787 {
1788 struct Scsi_Host *shost = hctx->driver_data;
1789
1790 if (shost->hostt->mq_poll)
1791 return shost->hostt->mq_poll(shost, hctx->queue_num);
1792
1793 return 0;
1794 }
1795
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1796 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1797 unsigned int hctx_idx)
1798 {
1799 struct Scsi_Host *shost = data;
1800
1801 hctx->driver_data = shost;
1802 return 0;
1803 }
1804
scsi_map_queues(struct blk_mq_tag_set * set)1805 static int scsi_map_queues(struct blk_mq_tag_set *set)
1806 {
1807 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1808
1809 if (shost->hostt->map_queues)
1810 return shost->hostt->map_queues(shost);
1811 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1812 }
1813
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1814 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1815 {
1816 struct device *dev = shost->dma_dev;
1817
1818 /*
1819 * this limit is imposed by hardware restrictions
1820 */
1821 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1822 SG_MAX_SEGMENTS));
1823
1824 if (scsi_host_prot_dma(shost)) {
1825 shost->sg_prot_tablesize =
1826 min_not_zero(shost->sg_prot_tablesize,
1827 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1828 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1829 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1830 }
1831
1832 if (dev->dma_mask) {
1833 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1834 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1835 }
1836 blk_queue_max_hw_sectors(q, shost->max_sectors);
1837 blk_queue_segment_boundary(q, shost->dma_boundary);
1838 dma_set_seg_boundary(dev, shost->dma_boundary);
1839
1840 blk_queue_max_segment_size(q, shost->max_segment_size);
1841 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1842 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1843
1844 /*
1845 * Set a reasonable default alignment: The larger of 32-byte (dword),
1846 * which is a common minimum for HBAs, and the minimum DMA alignment,
1847 * which is set by the platform.
1848 *
1849 * Devices that require a bigger alignment can increase it later.
1850 */
1851 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1852 }
1853 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1854
1855 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1856 .get_budget = scsi_mq_get_budget,
1857 .put_budget = scsi_mq_put_budget,
1858 .queue_rq = scsi_queue_rq,
1859 .complete = scsi_complete,
1860 .timeout = scsi_timeout,
1861 #ifdef CONFIG_BLK_DEBUG_FS
1862 .show_rq = scsi_show_rq,
1863 #endif
1864 .init_request = scsi_mq_init_request,
1865 .exit_request = scsi_mq_exit_request,
1866 .initialize_rq_fn = scsi_initialize_rq,
1867 .cleanup_rq = scsi_cleanup_rq,
1868 .busy = scsi_mq_lld_busy,
1869 .map_queues = scsi_map_queues,
1870 .init_hctx = scsi_init_hctx,
1871 .poll = scsi_mq_poll,
1872 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1873 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1874 };
1875
1876
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1877 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1878 {
1879 struct Scsi_Host *shost = hctx->driver_data;
1880
1881 shost->hostt->commit_rqs(shost, hctx->queue_num);
1882 }
1883
1884 static const struct blk_mq_ops scsi_mq_ops = {
1885 .get_budget = scsi_mq_get_budget,
1886 .put_budget = scsi_mq_put_budget,
1887 .queue_rq = scsi_queue_rq,
1888 .commit_rqs = scsi_commit_rqs,
1889 .complete = scsi_complete,
1890 .timeout = scsi_timeout,
1891 #ifdef CONFIG_BLK_DEBUG_FS
1892 .show_rq = scsi_show_rq,
1893 #endif
1894 .init_request = scsi_mq_init_request,
1895 .exit_request = scsi_mq_exit_request,
1896 .initialize_rq_fn = scsi_initialize_rq,
1897 .cleanup_rq = scsi_cleanup_rq,
1898 .busy = scsi_mq_lld_busy,
1899 .map_queues = scsi_map_queues,
1900 .init_hctx = scsi_init_hctx,
1901 .poll = scsi_mq_poll,
1902 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1903 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1904 };
1905
scsi_mq_setup_tags(struct Scsi_Host * shost)1906 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1907 {
1908 unsigned int cmd_size, sgl_size;
1909 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1910
1911 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1912 scsi_mq_inline_sgl_size(shost));
1913 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1914 if (scsi_host_get_prot(shost))
1915 cmd_size += sizeof(struct scsi_data_buffer) +
1916 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1917
1918 memset(tag_set, 0, sizeof(*tag_set));
1919 if (shost->hostt->commit_rqs)
1920 tag_set->ops = &scsi_mq_ops;
1921 else
1922 tag_set->ops = &scsi_mq_ops_no_commit;
1923 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1924 tag_set->nr_maps = shost->nr_maps ? : 1;
1925 tag_set->queue_depth = shost->can_queue;
1926 tag_set->cmd_size = cmd_size;
1927 tag_set->numa_node = NUMA_NO_NODE;
1928 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1929 tag_set->flags |=
1930 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1931 tag_set->driver_data = shost;
1932 if (shost->host_tagset)
1933 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1934
1935 return blk_mq_alloc_tag_set(tag_set);
1936 }
1937
scsi_mq_destroy_tags(struct Scsi_Host * shost)1938 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1939 {
1940 blk_mq_free_tag_set(&shost->tag_set);
1941 }
1942
1943 /**
1944 * scsi_device_from_queue - return sdev associated with a request_queue
1945 * @q: The request queue to return the sdev from
1946 *
1947 * Return the sdev associated with a request queue or NULL if the
1948 * request_queue does not reference a SCSI device.
1949 */
scsi_device_from_queue(struct request_queue * q)1950 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1951 {
1952 struct scsi_device *sdev = NULL;
1953
1954 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1955 q->mq_ops == &scsi_mq_ops)
1956 sdev = q->queuedata;
1957 if (!sdev || !get_device(&sdev->sdev_gendev))
1958 sdev = NULL;
1959
1960 return sdev;
1961 }
1962
1963 /**
1964 * scsi_block_requests - Utility function used by low-level drivers to prevent
1965 * further commands from being queued to the device.
1966 * @shost: host in question
1967 *
1968 * There is no timer nor any other means by which the requests get unblocked
1969 * other than the low-level driver calling scsi_unblock_requests().
1970 */
scsi_block_requests(struct Scsi_Host * shost)1971 void scsi_block_requests(struct Scsi_Host *shost)
1972 {
1973 shost->host_self_blocked = 1;
1974 }
1975 EXPORT_SYMBOL(scsi_block_requests);
1976
1977 /**
1978 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1979 * further commands to be queued to the device.
1980 * @shost: host in question
1981 *
1982 * There is no timer nor any other means by which the requests get unblocked
1983 * other than the low-level driver calling scsi_unblock_requests(). This is done
1984 * as an API function so that changes to the internals of the scsi mid-layer
1985 * won't require wholesale changes to drivers that use this feature.
1986 */
scsi_unblock_requests(struct Scsi_Host * shost)1987 void scsi_unblock_requests(struct Scsi_Host *shost)
1988 {
1989 shost->host_self_blocked = 0;
1990 scsi_run_host_queues(shost);
1991 }
1992 EXPORT_SYMBOL(scsi_unblock_requests);
1993
scsi_exit_queue(void)1994 void scsi_exit_queue(void)
1995 {
1996 kmem_cache_destroy(scsi_sense_cache);
1997 }
1998
1999 /**
2000 * scsi_mode_select - issue a mode select
2001 * @sdev: SCSI device to be queried
2002 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2003 * @sp: Save page bit (0 == don't save, 1 == save)
2004 * @modepage: mode page being requested
2005 * @buffer: request buffer (may not be smaller than eight bytes)
2006 * @len: length of request buffer.
2007 * @timeout: command timeout
2008 * @retries: number of retries before failing
2009 * @data: returns a structure abstracting the mode header data
2010 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2011 * must be SCSI_SENSE_BUFFERSIZE big.
2012 *
2013 * Returns zero if successful; negative error number or scsi
2014 * status on error
2015 *
2016 */
2017 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2018 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2019 unsigned char *buffer, int len, int timeout, int retries,
2020 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2021 {
2022 unsigned char cmd[10];
2023 unsigned char *real_buffer;
2024 int ret;
2025
2026 memset(cmd, 0, sizeof(cmd));
2027 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2028
2029 if (sdev->use_10_for_ms) {
2030 if (len > 65535)
2031 return -EINVAL;
2032 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2033 if (!real_buffer)
2034 return -ENOMEM;
2035 memcpy(real_buffer + 8, buffer, len);
2036 len += 8;
2037 real_buffer[0] = 0;
2038 real_buffer[1] = 0;
2039 real_buffer[2] = data->medium_type;
2040 real_buffer[3] = data->device_specific;
2041 real_buffer[4] = data->longlba ? 0x01 : 0;
2042 real_buffer[5] = 0;
2043 real_buffer[6] = data->block_descriptor_length >> 8;
2044 real_buffer[7] = data->block_descriptor_length;
2045
2046 cmd[0] = MODE_SELECT_10;
2047 cmd[7] = len >> 8;
2048 cmd[8] = len;
2049 } else {
2050 if (len > 255 || data->block_descriptor_length > 255 ||
2051 data->longlba)
2052 return -EINVAL;
2053
2054 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2055 if (!real_buffer)
2056 return -ENOMEM;
2057 memcpy(real_buffer + 4, buffer, len);
2058 len += 4;
2059 real_buffer[0] = 0;
2060 real_buffer[1] = data->medium_type;
2061 real_buffer[2] = data->device_specific;
2062 real_buffer[3] = data->block_descriptor_length;
2063
2064 cmd[0] = MODE_SELECT;
2065 cmd[4] = len;
2066 }
2067
2068 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2069 sshdr, timeout, retries, NULL);
2070 kfree(real_buffer);
2071 return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(scsi_mode_select);
2074
2075 /**
2076 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2077 * @sdev: SCSI device to be queried
2078 * @dbd: set if mode sense will allow block descriptors to be returned
2079 * @modepage: mode page being requested
2080 * @buffer: request buffer (may not be smaller than eight bytes)
2081 * @len: length of request buffer.
2082 * @timeout: command timeout
2083 * @retries: number of retries before failing
2084 * @data: returns a structure abstracting the mode header data
2085 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2086 * must be SCSI_SENSE_BUFFERSIZE big.
2087 *
2088 * Returns zero if successful, or a negative error number on failure
2089 */
2090 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2091 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2092 unsigned char *buffer, int len, int timeout, int retries,
2093 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2094 {
2095 unsigned char cmd[12];
2096 int use_10_for_ms;
2097 int header_length;
2098 int result, retry_count = retries;
2099 struct scsi_sense_hdr my_sshdr;
2100
2101 memset(data, 0, sizeof(*data));
2102 memset(&cmd[0], 0, 12);
2103
2104 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2105 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2106 cmd[2] = modepage;
2107
2108 /* caller might not be interested in sense, but we need it */
2109 if (!sshdr)
2110 sshdr = &my_sshdr;
2111
2112 retry:
2113 use_10_for_ms = sdev->use_10_for_ms;
2114
2115 if (use_10_for_ms) {
2116 if (len < 8)
2117 len = 8;
2118
2119 cmd[0] = MODE_SENSE_10;
2120 cmd[8] = len;
2121 header_length = 8;
2122 } else {
2123 if (len < 4)
2124 len = 4;
2125
2126 cmd[0] = MODE_SENSE;
2127 cmd[4] = len;
2128 header_length = 4;
2129 }
2130
2131 memset(buffer, 0, len);
2132
2133 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2134 sshdr, timeout, retries, NULL);
2135 if (result < 0)
2136 return result;
2137
2138 /* This code looks awful: what it's doing is making sure an
2139 * ILLEGAL REQUEST sense return identifies the actual command
2140 * byte as the problem. MODE_SENSE commands can return
2141 * ILLEGAL REQUEST if the code page isn't supported */
2142
2143 if (!scsi_status_is_good(result)) {
2144 if (scsi_sense_valid(sshdr)) {
2145 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2146 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2147 /*
2148 * Invalid command operation code
2149 */
2150 if (use_10_for_ms) {
2151 sdev->use_10_for_ms = 0;
2152 goto retry;
2153 }
2154 }
2155 if (scsi_status_is_check_condition(result) &&
2156 sshdr->sense_key == UNIT_ATTENTION &&
2157 retry_count) {
2158 retry_count--;
2159 goto retry;
2160 }
2161 }
2162 return -EIO;
2163 }
2164 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2165 (modepage == 6 || modepage == 8))) {
2166 /* Initio breakage? */
2167 header_length = 0;
2168 data->length = 13;
2169 data->medium_type = 0;
2170 data->device_specific = 0;
2171 data->longlba = 0;
2172 data->block_descriptor_length = 0;
2173 } else if (use_10_for_ms) {
2174 data->length = buffer[0]*256 + buffer[1] + 2;
2175 data->medium_type = buffer[2];
2176 data->device_specific = buffer[3];
2177 data->longlba = buffer[4] & 0x01;
2178 data->block_descriptor_length = buffer[6]*256
2179 + buffer[7];
2180 } else {
2181 data->length = buffer[0] + 1;
2182 data->medium_type = buffer[1];
2183 data->device_specific = buffer[2];
2184 data->block_descriptor_length = buffer[3];
2185 }
2186 data->header_length = header_length;
2187
2188 return 0;
2189 }
2190 EXPORT_SYMBOL(scsi_mode_sense);
2191
2192 /**
2193 * scsi_test_unit_ready - test if unit is ready
2194 * @sdev: scsi device to change the state of.
2195 * @timeout: command timeout
2196 * @retries: number of retries before failing
2197 * @sshdr: outpout pointer for decoded sense information.
2198 *
2199 * Returns zero if unsuccessful or an error if TUR failed. For
2200 * removable media, UNIT_ATTENTION sets ->changed flag.
2201 **/
2202 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2203 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2204 struct scsi_sense_hdr *sshdr)
2205 {
2206 char cmd[] = {
2207 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2208 };
2209 int result;
2210
2211 /* try to eat the UNIT_ATTENTION if there are enough retries */
2212 do {
2213 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2214 timeout, 1, NULL);
2215 if (sdev->removable && scsi_sense_valid(sshdr) &&
2216 sshdr->sense_key == UNIT_ATTENTION)
2217 sdev->changed = 1;
2218 } while (scsi_sense_valid(sshdr) &&
2219 sshdr->sense_key == UNIT_ATTENTION && --retries);
2220
2221 return result;
2222 }
2223 EXPORT_SYMBOL(scsi_test_unit_ready);
2224
2225 /**
2226 * scsi_device_set_state - Take the given device through the device state model.
2227 * @sdev: scsi device to change the state of.
2228 * @state: state to change to.
2229 *
2230 * Returns zero if successful or an error if the requested
2231 * transition is illegal.
2232 */
2233 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2234 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2235 {
2236 enum scsi_device_state oldstate = sdev->sdev_state;
2237
2238 if (state == oldstate)
2239 return 0;
2240
2241 switch (state) {
2242 case SDEV_CREATED:
2243 switch (oldstate) {
2244 case SDEV_CREATED_BLOCK:
2245 break;
2246 default:
2247 goto illegal;
2248 }
2249 break;
2250
2251 case SDEV_RUNNING:
2252 switch (oldstate) {
2253 case SDEV_CREATED:
2254 case SDEV_OFFLINE:
2255 case SDEV_TRANSPORT_OFFLINE:
2256 case SDEV_QUIESCE:
2257 case SDEV_BLOCK:
2258 break;
2259 default:
2260 goto illegal;
2261 }
2262 break;
2263
2264 case SDEV_QUIESCE:
2265 switch (oldstate) {
2266 case SDEV_RUNNING:
2267 case SDEV_OFFLINE:
2268 case SDEV_TRANSPORT_OFFLINE:
2269 break;
2270 default:
2271 goto illegal;
2272 }
2273 break;
2274
2275 case SDEV_OFFLINE:
2276 case SDEV_TRANSPORT_OFFLINE:
2277 switch (oldstate) {
2278 case SDEV_CREATED:
2279 case SDEV_RUNNING:
2280 case SDEV_QUIESCE:
2281 case SDEV_BLOCK:
2282 break;
2283 default:
2284 goto illegal;
2285 }
2286 break;
2287
2288 case SDEV_BLOCK:
2289 switch (oldstate) {
2290 case SDEV_RUNNING:
2291 case SDEV_CREATED_BLOCK:
2292 case SDEV_QUIESCE:
2293 case SDEV_OFFLINE:
2294 break;
2295 default:
2296 goto illegal;
2297 }
2298 break;
2299
2300 case SDEV_CREATED_BLOCK:
2301 switch (oldstate) {
2302 case SDEV_CREATED:
2303 break;
2304 default:
2305 goto illegal;
2306 }
2307 break;
2308
2309 case SDEV_CANCEL:
2310 switch (oldstate) {
2311 case SDEV_CREATED:
2312 case SDEV_RUNNING:
2313 case SDEV_QUIESCE:
2314 case SDEV_OFFLINE:
2315 case SDEV_TRANSPORT_OFFLINE:
2316 break;
2317 default:
2318 goto illegal;
2319 }
2320 break;
2321
2322 case SDEV_DEL:
2323 switch (oldstate) {
2324 case SDEV_CREATED:
2325 case SDEV_RUNNING:
2326 case SDEV_OFFLINE:
2327 case SDEV_TRANSPORT_OFFLINE:
2328 case SDEV_CANCEL:
2329 case SDEV_BLOCK:
2330 case SDEV_CREATED_BLOCK:
2331 break;
2332 default:
2333 goto illegal;
2334 }
2335 break;
2336
2337 }
2338 sdev->offline_already = false;
2339 sdev->sdev_state = state;
2340 return 0;
2341
2342 illegal:
2343 SCSI_LOG_ERROR_RECOVERY(1,
2344 sdev_printk(KERN_ERR, sdev,
2345 "Illegal state transition %s->%s",
2346 scsi_device_state_name(oldstate),
2347 scsi_device_state_name(state))
2348 );
2349 return -EINVAL;
2350 }
2351 EXPORT_SYMBOL(scsi_device_set_state);
2352
2353 /**
2354 * scsi_evt_emit - emit a single SCSI device uevent
2355 * @sdev: associated SCSI device
2356 * @evt: event to emit
2357 *
2358 * Send a single uevent (scsi_event) to the associated scsi_device.
2359 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2360 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2361 {
2362 int idx = 0;
2363 char *envp[3];
2364
2365 switch (evt->evt_type) {
2366 case SDEV_EVT_MEDIA_CHANGE:
2367 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2368 break;
2369 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2370 scsi_rescan_device(&sdev->sdev_gendev);
2371 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2372 break;
2373 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2374 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2375 break;
2376 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2377 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2378 break;
2379 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2380 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2381 break;
2382 case SDEV_EVT_LUN_CHANGE_REPORTED:
2383 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2384 break;
2385 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2386 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2387 break;
2388 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2389 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2390 break;
2391 default:
2392 /* do nothing */
2393 break;
2394 }
2395
2396 envp[idx++] = NULL;
2397
2398 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2399 }
2400
2401 /**
2402 * scsi_evt_thread - send a uevent for each scsi event
2403 * @work: work struct for scsi_device
2404 *
2405 * Dispatch queued events to their associated scsi_device kobjects
2406 * as uevents.
2407 */
scsi_evt_thread(struct work_struct * work)2408 void scsi_evt_thread(struct work_struct *work)
2409 {
2410 struct scsi_device *sdev;
2411 enum scsi_device_event evt_type;
2412 LIST_HEAD(event_list);
2413
2414 sdev = container_of(work, struct scsi_device, event_work);
2415
2416 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2417 if (test_and_clear_bit(evt_type, sdev->pending_events))
2418 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2419
2420 while (1) {
2421 struct scsi_event *evt;
2422 struct list_head *this, *tmp;
2423 unsigned long flags;
2424
2425 spin_lock_irqsave(&sdev->list_lock, flags);
2426 list_splice_init(&sdev->event_list, &event_list);
2427 spin_unlock_irqrestore(&sdev->list_lock, flags);
2428
2429 if (list_empty(&event_list))
2430 break;
2431
2432 list_for_each_safe(this, tmp, &event_list) {
2433 evt = list_entry(this, struct scsi_event, node);
2434 list_del(&evt->node);
2435 scsi_evt_emit(sdev, evt);
2436 kfree(evt);
2437 }
2438 }
2439 }
2440
2441 /**
2442 * sdev_evt_send - send asserted event to uevent thread
2443 * @sdev: scsi_device event occurred on
2444 * @evt: event to send
2445 *
2446 * Assert scsi device event asynchronously.
2447 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2448 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2449 {
2450 unsigned long flags;
2451
2452 #if 0
2453 /* FIXME: currently this check eliminates all media change events
2454 * for polled devices. Need to update to discriminate between AN
2455 * and polled events */
2456 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2457 kfree(evt);
2458 return;
2459 }
2460 #endif
2461
2462 spin_lock_irqsave(&sdev->list_lock, flags);
2463 list_add_tail(&evt->node, &sdev->event_list);
2464 schedule_work(&sdev->event_work);
2465 spin_unlock_irqrestore(&sdev->list_lock, flags);
2466 }
2467 EXPORT_SYMBOL_GPL(sdev_evt_send);
2468
2469 /**
2470 * sdev_evt_alloc - allocate a new scsi event
2471 * @evt_type: type of event to allocate
2472 * @gfpflags: GFP flags for allocation
2473 *
2474 * Allocates and returns a new scsi_event.
2475 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2476 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2477 gfp_t gfpflags)
2478 {
2479 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2480 if (!evt)
2481 return NULL;
2482
2483 evt->evt_type = evt_type;
2484 INIT_LIST_HEAD(&evt->node);
2485
2486 /* evt_type-specific initialization, if any */
2487 switch (evt_type) {
2488 case SDEV_EVT_MEDIA_CHANGE:
2489 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2490 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2491 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2492 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2493 case SDEV_EVT_LUN_CHANGE_REPORTED:
2494 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2495 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2496 default:
2497 /* do nothing */
2498 break;
2499 }
2500
2501 return evt;
2502 }
2503 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2504
2505 /**
2506 * sdev_evt_send_simple - send asserted event to uevent thread
2507 * @sdev: scsi_device event occurred on
2508 * @evt_type: type of event to send
2509 * @gfpflags: GFP flags for allocation
2510 *
2511 * Assert scsi device event asynchronously, given an event type.
2512 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2513 void sdev_evt_send_simple(struct scsi_device *sdev,
2514 enum scsi_device_event evt_type, gfp_t gfpflags)
2515 {
2516 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2517 if (!evt) {
2518 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2519 evt_type);
2520 return;
2521 }
2522
2523 sdev_evt_send(sdev, evt);
2524 }
2525 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2526
2527 /**
2528 * scsi_device_quiesce - Block all commands except power management.
2529 * @sdev: scsi device to quiesce.
2530 *
2531 * This works by trying to transition to the SDEV_QUIESCE state
2532 * (which must be a legal transition). When the device is in this
2533 * state, only power management requests will be accepted, all others will
2534 * be deferred.
2535 *
2536 * Must be called with user context, may sleep.
2537 *
2538 * Returns zero if unsuccessful or an error if not.
2539 */
2540 int
scsi_device_quiesce(struct scsi_device * sdev)2541 scsi_device_quiesce(struct scsi_device *sdev)
2542 {
2543 struct request_queue *q = sdev->request_queue;
2544 int err;
2545
2546 /*
2547 * It is allowed to call scsi_device_quiesce() multiple times from
2548 * the same context but concurrent scsi_device_quiesce() calls are
2549 * not allowed.
2550 */
2551 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2552
2553 if (sdev->quiesced_by == current)
2554 return 0;
2555
2556 blk_set_pm_only(q);
2557
2558 blk_mq_freeze_queue(q);
2559 /*
2560 * Ensure that the effect of blk_set_pm_only() will be visible
2561 * for percpu_ref_tryget() callers that occur after the queue
2562 * unfreeze even if the queue was already frozen before this function
2563 * was called. See also https://lwn.net/Articles/573497/.
2564 */
2565 synchronize_rcu();
2566 blk_mq_unfreeze_queue(q);
2567
2568 mutex_lock(&sdev->state_mutex);
2569 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2570 if (err == 0)
2571 sdev->quiesced_by = current;
2572 else
2573 blk_clear_pm_only(q);
2574 mutex_unlock(&sdev->state_mutex);
2575
2576 return err;
2577 }
2578 EXPORT_SYMBOL(scsi_device_quiesce);
2579
2580 /**
2581 * scsi_device_resume - Restart user issued commands to a quiesced device.
2582 * @sdev: scsi device to resume.
2583 *
2584 * Moves the device from quiesced back to running and restarts the
2585 * queues.
2586 *
2587 * Must be called with user context, may sleep.
2588 */
scsi_device_resume(struct scsi_device * sdev)2589 void scsi_device_resume(struct scsi_device *sdev)
2590 {
2591 /* check if the device state was mutated prior to resume, and if
2592 * so assume the state is being managed elsewhere (for example
2593 * device deleted during suspend)
2594 */
2595 mutex_lock(&sdev->state_mutex);
2596 if (sdev->sdev_state == SDEV_QUIESCE)
2597 scsi_device_set_state(sdev, SDEV_RUNNING);
2598 if (sdev->quiesced_by) {
2599 sdev->quiesced_by = NULL;
2600 blk_clear_pm_only(sdev->request_queue);
2601 }
2602 mutex_unlock(&sdev->state_mutex);
2603 }
2604 EXPORT_SYMBOL(scsi_device_resume);
2605
2606 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2607 device_quiesce_fn(struct scsi_device *sdev, void *data)
2608 {
2609 scsi_device_quiesce(sdev);
2610 }
2611
2612 void
scsi_target_quiesce(struct scsi_target * starget)2613 scsi_target_quiesce(struct scsi_target *starget)
2614 {
2615 starget_for_each_device(starget, NULL, device_quiesce_fn);
2616 }
2617 EXPORT_SYMBOL(scsi_target_quiesce);
2618
2619 static void
device_resume_fn(struct scsi_device * sdev,void * data)2620 device_resume_fn(struct scsi_device *sdev, void *data)
2621 {
2622 scsi_device_resume(sdev);
2623 }
2624
2625 void
scsi_target_resume(struct scsi_target * starget)2626 scsi_target_resume(struct scsi_target *starget)
2627 {
2628 starget_for_each_device(starget, NULL, device_resume_fn);
2629 }
2630 EXPORT_SYMBOL(scsi_target_resume);
2631
2632 /**
2633 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2634 * @sdev: device to block
2635 *
2636 * Pause SCSI command processing on the specified device. Does not sleep.
2637 *
2638 * Returns zero if successful or a negative error code upon failure.
2639 *
2640 * Notes:
2641 * This routine transitions the device to the SDEV_BLOCK state (which must be
2642 * a legal transition). When the device is in this state, command processing
2643 * is paused until the device leaves the SDEV_BLOCK state. See also
2644 * scsi_internal_device_unblock_nowait().
2645 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2646 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2647 {
2648 struct request_queue *q = sdev->request_queue;
2649 int err = 0;
2650
2651 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2652 if (err) {
2653 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2654
2655 if (err)
2656 return err;
2657 }
2658
2659 /*
2660 * The device has transitioned to SDEV_BLOCK. Stop the
2661 * block layer from calling the midlayer with this device's
2662 * request queue.
2663 */
2664 blk_mq_quiesce_queue_nowait(q);
2665 return 0;
2666 }
2667 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2668
2669 /**
2670 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2671 * @sdev: device to block
2672 *
2673 * Pause SCSI command processing on the specified device and wait until all
2674 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2675 *
2676 * Returns zero if successful or a negative error code upon failure.
2677 *
2678 * Note:
2679 * This routine transitions the device to the SDEV_BLOCK state (which must be
2680 * a legal transition). When the device is in this state, command processing
2681 * is paused until the device leaves the SDEV_BLOCK state. See also
2682 * scsi_internal_device_unblock().
2683 */
scsi_internal_device_block(struct scsi_device * sdev)2684 static int scsi_internal_device_block(struct scsi_device *sdev)
2685 {
2686 struct request_queue *q = sdev->request_queue;
2687 int err;
2688
2689 mutex_lock(&sdev->state_mutex);
2690 err = scsi_internal_device_block_nowait(sdev);
2691 if (err == 0)
2692 blk_mq_quiesce_queue(q);
2693 mutex_unlock(&sdev->state_mutex);
2694
2695 return err;
2696 }
2697
scsi_start_queue(struct scsi_device * sdev)2698 void scsi_start_queue(struct scsi_device *sdev)
2699 {
2700 struct request_queue *q = sdev->request_queue;
2701
2702 blk_mq_unquiesce_queue(q);
2703 }
2704
2705 /**
2706 * scsi_internal_device_unblock_nowait - resume a device after a block request
2707 * @sdev: device to resume
2708 * @new_state: state to set the device to after unblocking
2709 *
2710 * Restart the device queue for a previously suspended SCSI device. Does not
2711 * sleep.
2712 *
2713 * Returns zero if successful or a negative error code upon failure.
2714 *
2715 * Notes:
2716 * This routine transitions the device to the SDEV_RUNNING state or to one of
2717 * the offline states (which must be a legal transition) allowing the midlayer
2718 * to goose the queue for this device.
2719 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2720 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2721 enum scsi_device_state new_state)
2722 {
2723 switch (new_state) {
2724 case SDEV_RUNNING:
2725 case SDEV_TRANSPORT_OFFLINE:
2726 break;
2727 default:
2728 return -EINVAL;
2729 }
2730
2731 /*
2732 * Try to transition the scsi device to SDEV_RUNNING or one of the
2733 * offlined states and goose the device queue if successful.
2734 */
2735 switch (sdev->sdev_state) {
2736 case SDEV_BLOCK:
2737 case SDEV_TRANSPORT_OFFLINE:
2738 sdev->sdev_state = new_state;
2739 break;
2740 case SDEV_CREATED_BLOCK:
2741 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2742 new_state == SDEV_OFFLINE)
2743 sdev->sdev_state = new_state;
2744 else
2745 sdev->sdev_state = SDEV_CREATED;
2746 break;
2747 case SDEV_CANCEL:
2748 case SDEV_OFFLINE:
2749 break;
2750 default:
2751 return -EINVAL;
2752 }
2753 scsi_start_queue(sdev);
2754
2755 return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2758
2759 /**
2760 * scsi_internal_device_unblock - resume a device after a block request
2761 * @sdev: device to resume
2762 * @new_state: state to set the device to after unblocking
2763 *
2764 * Restart the device queue for a previously suspended SCSI device. May sleep.
2765 *
2766 * Returns zero if successful or a negative error code upon failure.
2767 *
2768 * Notes:
2769 * This routine transitions the device to the SDEV_RUNNING state or to one of
2770 * the offline states (which must be a legal transition) allowing the midlayer
2771 * to goose the queue for this device.
2772 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2773 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2774 enum scsi_device_state new_state)
2775 {
2776 int ret;
2777
2778 mutex_lock(&sdev->state_mutex);
2779 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2780 mutex_unlock(&sdev->state_mutex);
2781
2782 return ret;
2783 }
2784
2785 static void
device_block(struct scsi_device * sdev,void * data)2786 device_block(struct scsi_device *sdev, void *data)
2787 {
2788 int ret;
2789
2790 ret = scsi_internal_device_block(sdev);
2791
2792 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2793 dev_name(&sdev->sdev_gendev), ret);
2794 }
2795
2796 static int
target_block(struct device * dev,void * data)2797 target_block(struct device *dev, void *data)
2798 {
2799 if (scsi_is_target_device(dev))
2800 starget_for_each_device(to_scsi_target(dev), NULL,
2801 device_block);
2802 return 0;
2803 }
2804
2805 void
scsi_target_block(struct device * dev)2806 scsi_target_block(struct device *dev)
2807 {
2808 if (scsi_is_target_device(dev))
2809 starget_for_each_device(to_scsi_target(dev), NULL,
2810 device_block);
2811 else
2812 device_for_each_child(dev, NULL, target_block);
2813 }
2814 EXPORT_SYMBOL_GPL(scsi_target_block);
2815
2816 static void
device_unblock(struct scsi_device * sdev,void * data)2817 device_unblock(struct scsi_device *sdev, void *data)
2818 {
2819 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2820 }
2821
2822 static int
target_unblock(struct device * dev,void * data)2823 target_unblock(struct device *dev, void *data)
2824 {
2825 if (scsi_is_target_device(dev))
2826 starget_for_each_device(to_scsi_target(dev), data,
2827 device_unblock);
2828 return 0;
2829 }
2830
2831 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2832 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2833 {
2834 if (scsi_is_target_device(dev))
2835 starget_for_each_device(to_scsi_target(dev), &new_state,
2836 device_unblock);
2837 else
2838 device_for_each_child(dev, &new_state, target_unblock);
2839 }
2840 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2841
2842 int
scsi_host_block(struct Scsi_Host * shost)2843 scsi_host_block(struct Scsi_Host *shost)
2844 {
2845 struct scsi_device *sdev;
2846 int ret = 0;
2847
2848 /*
2849 * Call scsi_internal_device_block_nowait so we can avoid
2850 * calling synchronize_rcu() for each LUN.
2851 */
2852 shost_for_each_device(sdev, shost) {
2853 mutex_lock(&sdev->state_mutex);
2854 ret = scsi_internal_device_block_nowait(sdev);
2855 mutex_unlock(&sdev->state_mutex);
2856 if (ret) {
2857 scsi_device_put(sdev);
2858 break;
2859 }
2860 }
2861
2862 /*
2863 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2864 * calling synchronize_rcu() once is enough.
2865 */
2866 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2867
2868 if (!ret)
2869 synchronize_rcu();
2870
2871 return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(scsi_host_block);
2874
2875 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2876 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2877 {
2878 struct scsi_device *sdev;
2879 int ret = 0;
2880
2881 shost_for_each_device(sdev, shost) {
2882 ret = scsi_internal_device_unblock(sdev, new_state);
2883 if (ret) {
2884 scsi_device_put(sdev);
2885 break;
2886 }
2887 }
2888 return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2891
2892 /**
2893 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2894 * @sgl: scatter-gather list
2895 * @sg_count: number of segments in sg
2896 * @offset: offset in bytes into sg, on return offset into the mapped area
2897 * @len: bytes to map, on return number of bytes mapped
2898 *
2899 * Returns virtual address of the start of the mapped page
2900 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2901 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2902 size_t *offset, size_t *len)
2903 {
2904 int i;
2905 size_t sg_len = 0, len_complete = 0;
2906 struct scatterlist *sg;
2907 struct page *page;
2908
2909 WARN_ON(!irqs_disabled());
2910
2911 for_each_sg(sgl, sg, sg_count, i) {
2912 len_complete = sg_len; /* Complete sg-entries */
2913 sg_len += sg->length;
2914 if (sg_len > *offset)
2915 break;
2916 }
2917
2918 if (unlikely(i == sg_count)) {
2919 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2920 "elements %d\n",
2921 __func__, sg_len, *offset, sg_count);
2922 WARN_ON(1);
2923 return NULL;
2924 }
2925
2926 /* Offset starting from the beginning of first page in this sg-entry */
2927 *offset = *offset - len_complete + sg->offset;
2928
2929 /* Assumption: contiguous pages can be accessed as "page + i" */
2930 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2931 *offset &= ~PAGE_MASK;
2932
2933 /* Bytes in this sg-entry from *offset to the end of the page */
2934 sg_len = PAGE_SIZE - *offset;
2935 if (*len > sg_len)
2936 *len = sg_len;
2937
2938 return kmap_atomic(page);
2939 }
2940 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2941
2942 /**
2943 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2944 * @virt: virtual address to be unmapped
2945 */
scsi_kunmap_atomic_sg(void * virt)2946 void scsi_kunmap_atomic_sg(void *virt)
2947 {
2948 kunmap_atomic(virt);
2949 }
2950 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2951
sdev_disable_disk_events(struct scsi_device * sdev)2952 void sdev_disable_disk_events(struct scsi_device *sdev)
2953 {
2954 atomic_inc(&sdev->disk_events_disable_depth);
2955 }
2956 EXPORT_SYMBOL(sdev_disable_disk_events);
2957
sdev_enable_disk_events(struct scsi_device * sdev)2958 void sdev_enable_disk_events(struct scsi_device *sdev)
2959 {
2960 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2961 return;
2962 atomic_dec(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_enable_disk_events);
2965
designator_prio(const unsigned char * d)2966 static unsigned char designator_prio(const unsigned char *d)
2967 {
2968 if (d[1] & 0x30)
2969 /* not associated with LUN */
2970 return 0;
2971
2972 if (d[3] == 0)
2973 /* invalid length */
2974 return 0;
2975
2976 /*
2977 * Order of preference for lun descriptor:
2978 * - SCSI name string
2979 * - NAA IEEE Registered Extended
2980 * - EUI-64 based 16-byte
2981 * - EUI-64 based 12-byte
2982 * - NAA IEEE Registered
2983 * - NAA IEEE Extended
2984 * - EUI-64 based 8-byte
2985 * - SCSI name string (truncated)
2986 * - T10 Vendor ID
2987 * as longer descriptors reduce the likelyhood
2988 * of identification clashes.
2989 */
2990
2991 switch (d[1] & 0xf) {
2992 case 8:
2993 /* SCSI name string, variable-length UTF-8 */
2994 return 9;
2995 case 3:
2996 switch (d[4] >> 4) {
2997 case 6:
2998 /* NAA registered extended */
2999 return 8;
3000 case 5:
3001 /* NAA registered */
3002 return 5;
3003 case 4:
3004 /* NAA extended */
3005 return 4;
3006 case 3:
3007 /* NAA locally assigned */
3008 return 1;
3009 default:
3010 break;
3011 }
3012 break;
3013 case 2:
3014 switch (d[3]) {
3015 case 16:
3016 /* EUI64-based, 16 byte */
3017 return 7;
3018 case 12:
3019 /* EUI64-based, 12 byte */
3020 return 6;
3021 case 8:
3022 /* EUI64-based, 8 byte */
3023 return 3;
3024 default:
3025 break;
3026 }
3027 break;
3028 case 1:
3029 /* T10 vendor ID */
3030 return 1;
3031 default:
3032 break;
3033 }
3034
3035 return 0;
3036 }
3037
3038 /**
3039 * scsi_vpd_lun_id - return a unique device identification
3040 * @sdev: SCSI device
3041 * @id: buffer for the identification
3042 * @id_len: length of the buffer
3043 *
3044 * Copies a unique device identification into @id based
3045 * on the information in the VPD page 0x83 of the device.
3046 * The string will be formatted as a SCSI name string.
3047 *
3048 * Returns the length of the identification or error on failure.
3049 * If the identifier is longer than the supplied buffer the actual
3050 * identifier length is returned and the buffer is not zero-padded.
3051 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3052 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3053 {
3054 u8 cur_id_prio = 0;
3055 u8 cur_id_size = 0;
3056 const unsigned char *d, *cur_id_str;
3057 const struct scsi_vpd *vpd_pg83;
3058 int id_size = -EINVAL;
3059
3060 rcu_read_lock();
3061 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3062 if (!vpd_pg83) {
3063 rcu_read_unlock();
3064 return -ENXIO;
3065 }
3066
3067 /* The id string must be at least 20 bytes + terminating NULL byte */
3068 if (id_len < 21) {
3069 rcu_read_unlock();
3070 return -EINVAL;
3071 }
3072
3073 memset(id, 0, id_len);
3074 for (d = vpd_pg83->data + 4;
3075 d < vpd_pg83->data + vpd_pg83->len;
3076 d += d[3] + 4) {
3077 u8 prio = designator_prio(d);
3078
3079 if (prio == 0 || cur_id_prio > prio)
3080 continue;
3081
3082 switch (d[1] & 0xf) {
3083 case 0x1:
3084 /* T10 Vendor ID */
3085 if (cur_id_size > d[3])
3086 break;
3087 cur_id_prio = prio;
3088 cur_id_size = d[3];
3089 if (cur_id_size + 4 > id_len)
3090 cur_id_size = id_len - 4;
3091 cur_id_str = d + 4;
3092 id_size = snprintf(id, id_len, "t10.%*pE",
3093 cur_id_size, cur_id_str);
3094 break;
3095 case 0x2:
3096 /* EUI-64 */
3097 cur_id_prio = prio;
3098 cur_id_size = d[3];
3099 cur_id_str = d + 4;
3100 switch (cur_id_size) {
3101 case 8:
3102 id_size = snprintf(id, id_len,
3103 "eui.%8phN",
3104 cur_id_str);
3105 break;
3106 case 12:
3107 id_size = snprintf(id, id_len,
3108 "eui.%12phN",
3109 cur_id_str);
3110 break;
3111 case 16:
3112 id_size = snprintf(id, id_len,
3113 "eui.%16phN",
3114 cur_id_str);
3115 break;
3116 default:
3117 break;
3118 }
3119 break;
3120 case 0x3:
3121 /* NAA */
3122 cur_id_prio = prio;
3123 cur_id_size = d[3];
3124 cur_id_str = d + 4;
3125 switch (cur_id_size) {
3126 case 8:
3127 id_size = snprintf(id, id_len,
3128 "naa.%8phN",
3129 cur_id_str);
3130 break;
3131 case 16:
3132 id_size = snprintf(id, id_len,
3133 "naa.%16phN",
3134 cur_id_str);
3135 break;
3136 default:
3137 break;
3138 }
3139 break;
3140 case 0x8:
3141 /* SCSI name string */
3142 if (cur_id_size > d[3])
3143 break;
3144 /* Prefer others for truncated descriptor */
3145 if (d[3] > id_len) {
3146 prio = 2;
3147 if (cur_id_prio > prio)
3148 break;
3149 }
3150 cur_id_prio = prio;
3151 cur_id_size = id_size = d[3];
3152 cur_id_str = d + 4;
3153 if (cur_id_size >= id_len)
3154 cur_id_size = id_len - 1;
3155 memcpy(id, cur_id_str, cur_id_size);
3156 break;
3157 default:
3158 break;
3159 }
3160 }
3161 rcu_read_unlock();
3162
3163 return id_size;
3164 }
3165 EXPORT_SYMBOL(scsi_vpd_lun_id);
3166
3167 /*
3168 * scsi_vpd_tpg_id - return a target port group identifier
3169 * @sdev: SCSI device
3170 *
3171 * Returns the Target Port Group identifier from the information
3172 * froom VPD page 0x83 of the device.
3173 *
3174 * Returns the identifier or error on failure.
3175 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3176 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3177 {
3178 const unsigned char *d;
3179 const struct scsi_vpd *vpd_pg83;
3180 int group_id = -EAGAIN, rel_port = -1;
3181
3182 rcu_read_lock();
3183 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3184 if (!vpd_pg83) {
3185 rcu_read_unlock();
3186 return -ENXIO;
3187 }
3188
3189 d = vpd_pg83->data + 4;
3190 while (d < vpd_pg83->data + vpd_pg83->len) {
3191 switch (d[1] & 0xf) {
3192 case 0x4:
3193 /* Relative target port */
3194 rel_port = get_unaligned_be16(&d[6]);
3195 break;
3196 case 0x5:
3197 /* Target port group */
3198 group_id = get_unaligned_be16(&d[6]);
3199 break;
3200 default:
3201 break;
3202 }
3203 d += d[3] + 4;
3204 }
3205 rcu_read_unlock();
3206
3207 if (group_id >= 0 && rel_id && rel_port != -1)
3208 *rel_id = rel_port;
3209
3210 return group_id;
3211 }
3212 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3213
3214 /**
3215 * scsi_build_sense - build sense data for a command
3216 * @scmd: scsi command for which the sense should be formatted
3217 * @desc: Sense format (non-zero == descriptor format,
3218 * 0 == fixed format)
3219 * @key: Sense key
3220 * @asc: Additional sense code
3221 * @ascq: Additional sense code qualifier
3222 *
3223 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3224 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3225 {
3226 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3227 scmd->result = SAM_STAT_CHECK_CONDITION;
3228 }
3229 EXPORT_SYMBOL_GPL(scsi_build_sense);
3230