1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
scsi_init_sense_cache(struct Scsi_Host * shost)60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	struct request *rq = scsi_cmd_to_rq(cmd);
123 
124 	if (rq->rq_flags & RQF_DONTPREP) {
125 		rq->rq_flags &= ~RQF_DONTPREP;
126 		scsi_mq_uninit_cmd(cmd);
127 	} else {
128 		WARN_ON_ONCE(true);
129 	}
130 	blk_mq_requeue_request(rq, true);
131 }
132 
133 /**
134  * __scsi_queue_insert - private queue insertion
135  * @cmd: The SCSI command being requeued
136  * @reason:  The reason for the requeue
137  * @unbusy: Whether the queue should be unbusied
138  *
139  * This is a private queue insertion.  The public interface
140  * scsi_queue_insert() always assumes the queue should be unbusied
141  * because it's always called before the completion.  This function is
142  * for a requeue after completion, which should only occur in this
143  * file.
144  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 	struct scsi_device *device = cmd->device;
148 
149 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 		"Inserting command %p into mlqueue\n", cmd));
151 
152 	scsi_set_blocked(cmd, reason);
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	if (unbusy)
159 		scsi_device_unbusy(device, cmd);
160 
161 	/*
162 	 * Requeue this command.  It will go before all other commands
163 	 * that are already in the queue. Schedule requeue work under
164 	 * lock such that the kblockd_schedule_work() call happens
165 	 * before blk_cleanup_queue() finishes.
166 	 */
167 	cmd->result = 0;
168 
169 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
170 }
171 
172 /**
173  * scsi_queue_insert - Reinsert a command in the queue.
174  * @cmd:    command that we are adding to queue.
175  * @reason: why we are inserting command to queue.
176  *
177  * We do this for one of two cases. Either the host is busy and it cannot accept
178  * any more commands for the time being, or the device returned QUEUE_FULL and
179  * can accept no more commands.
180  *
181  * Context: This could be called either from an interrupt context or a normal
182  * process context.
183  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
185 {
186 	__scsi_queue_insert(cmd, reason, true);
187 }
188 
189 
190 /**
191  * __scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @sshdr:	optional decoded sense header
199  * @timeout:	request timeout in HZ
200  * @retries:	number of times to retry request
201  * @flags:	flags for ->cmd_flags
202  * @rq_flags:	flags for ->rq_flags
203  * @resid:	optional residual length
204  *
205  * Returns the scsi_cmnd result field if a command was executed, or a negative
206  * Linux error code if we didn't get that far.
207  */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
211 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
212 		 int *resid)
213 {
214 	struct request *req;
215 	struct scsi_request *rq;
216 	int ret;
217 
218 	req = blk_get_request(sdev->request_queue,
219 			data_direction == DMA_TO_DEVICE ?
220 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
221 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
222 	if (IS_ERR(req))
223 		return PTR_ERR(req);
224 
225 	rq = scsi_req(req);
226 
227 	if (bufflen) {
228 		ret = blk_rq_map_kern(sdev->request_queue, req,
229 				      buffer, bufflen, GFP_NOIO);
230 		if (ret)
231 			goto out;
232 	}
233 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(rq->cmd, cmd, rq->cmd_len);
235 	rq->retries = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
252 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
253 
254 	if (resid)
255 		*resid = rq->resid_len;
256 	if (sense && rq->sense_len)
257 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
260 	ret = rq->result;
261  out:
262 	blk_put_request(req);
263 
264 	return ret;
265 }
266 EXPORT_SYMBOL(__scsi_execute);
267 
268 /*
269  * Wake up the error handler if necessary. Avoid as follows that the error
270  * handler is not woken up if host in-flight requests number ==
271  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
272  * with an RCU read lock in this function to ensure that this function in
273  * its entirety either finishes before scsi_eh_scmd_add() increases the
274  * host_failed counter or that it notices the shost state change made by
275  * scsi_eh_scmd_add().
276  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
278 {
279 	unsigned long flags;
280 
281 	rcu_read_lock();
282 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
283 	if (unlikely(scsi_host_in_recovery(shost))) {
284 		spin_lock_irqsave(shost->host_lock, flags);
285 		if (shost->host_failed || shost->host_eh_scheduled)
286 			scsi_eh_wakeup(shost);
287 		spin_unlock_irqrestore(shost->host_lock, flags);
288 	}
289 	rcu_read_unlock();
290 }
291 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)292 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
293 {
294 	struct Scsi_Host *shost = sdev->host;
295 	struct scsi_target *starget = scsi_target(sdev);
296 
297 	scsi_dec_host_busy(shost, cmd);
298 
299 	if (starget->can_queue > 0)
300 		atomic_dec(&starget->target_busy);
301 
302 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
303 	cmd->budget_token = -1;
304 }
305 
scsi_kick_queue(struct request_queue * q)306 static void scsi_kick_queue(struct request_queue *q)
307 {
308 	blk_mq_run_hw_queues(q, false);
309 }
310 
311 /*
312  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
313  * and call blk_run_queue for all the scsi_devices on the target -
314  * including current_sdev first.
315  *
316  * Called with *no* scsi locks held.
317  */
scsi_single_lun_run(struct scsi_device * current_sdev)318 static void scsi_single_lun_run(struct scsi_device *current_sdev)
319 {
320 	struct Scsi_Host *shost = current_sdev->host;
321 	struct scsi_device *sdev, *tmp;
322 	struct scsi_target *starget = scsi_target(current_sdev);
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(shost->host_lock, flags);
326 	starget->starget_sdev_user = NULL;
327 	spin_unlock_irqrestore(shost->host_lock, flags);
328 
329 	/*
330 	 * Call blk_run_queue for all LUNs on the target, starting with
331 	 * current_sdev. We race with others (to set starget_sdev_user),
332 	 * but in most cases, we will be first. Ideally, each LU on the
333 	 * target would get some limited time or requests on the target.
334 	 */
335 	scsi_kick_queue(current_sdev->request_queue);
336 
337 	spin_lock_irqsave(shost->host_lock, flags);
338 	if (starget->starget_sdev_user)
339 		goto out;
340 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
341 			same_target_siblings) {
342 		if (sdev == current_sdev)
343 			continue;
344 		if (scsi_device_get(sdev))
345 			continue;
346 
347 		spin_unlock_irqrestore(shost->host_lock, flags);
348 		scsi_kick_queue(sdev->request_queue);
349 		spin_lock_irqsave(shost->host_lock, flags);
350 
351 		scsi_device_put(sdev);
352 	}
353  out:
354 	spin_unlock_irqrestore(shost->host_lock, flags);
355 }
356 
scsi_device_is_busy(struct scsi_device * sdev)357 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
358 {
359 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
360 		return true;
361 	if (atomic_read(&sdev->device_blocked) > 0)
362 		return true;
363 	return false;
364 }
365 
scsi_target_is_busy(struct scsi_target * starget)366 static inline bool scsi_target_is_busy(struct scsi_target *starget)
367 {
368 	if (starget->can_queue > 0) {
369 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
370 			return true;
371 		if (atomic_read(&starget->target_blocked) > 0)
372 			return true;
373 	}
374 	return false;
375 }
376 
scsi_host_is_busy(struct Scsi_Host * shost)377 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
378 {
379 	if (atomic_read(&shost->host_blocked) > 0)
380 		return true;
381 	if (shost->host_self_blocked)
382 		return true;
383 	return false;
384 }
385 
scsi_starved_list_run(struct Scsi_Host * shost)386 static void scsi_starved_list_run(struct Scsi_Host *shost)
387 {
388 	LIST_HEAD(starved_list);
389 	struct scsi_device *sdev;
390 	unsigned long flags;
391 
392 	spin_lock_irqsave(shost->host_lock, flags);
393 	list_splice_init(&shost->starved_list, &starved_list);
394 
395 	while (!list_empty(&starved_list)) {
396 		struct request_queue *slq;
397 
398 		/*
399 		 * As long as shost is accepting commands and we have
400 		 * starved queues, call blk_run_queue. scsi_request_fn
401 		 * drops the queue_lock and can add us back to the
402 		 * starved_list.
403 		 *
404 		 * host_lock protects the starved_list and starved_entry.
405 		 * scsi_request_fn must get the host_lock before checking
406 		 * or modifying starved_list or starved_entry.
407 		 */
408 		if (scsi_host_is_busy(shost))
409 			break;
410 
411 		sdev = list_entry(starved_list.next,
412 				  struct scsi_device, starved_entry);
413 		list_del_init(&sdev->starved_entry);
414 		if (scsi_target_is_busy(scsi_target(sdev))) {
415 			list_move_tail(&sdev->starved_entry,
416 				       &shost->starved_list);
417 			continue;
418 		}
419 
420 		/*
421 		 * Once we drop the host lock, a racing scsi_remove_device()
422 		 * call may remove the sdev from the starved list and destroy
423 		 * it and the queue.  Mitigate by taking a reference to the
424 		 * queue and never touching the sdev again after we drop the
425 		 * host lock.  Note: if __scsi_remove_device() invokes
426 		 * blk_cleanup_queue() before the queue is run from this
427 		 * function then blk_run_queue() will return immediately since
428 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
429 		 */
430 		slq = sdev->request_queue;
431 		if (!blk_get_queue(slq))
432 			continue;
433 		spin_unlock_irqrestore(shost->host_lock, flags);
434 
435 		scsi_kick_queue(slq);
436 		blk_put_queue(slq);
437 
438 		spin_lock_irqsave(shost->host_lock, flags);
439 	}
440 	/* put any unprocessed entries back */
441 	list_splice(&starved_list, &shost->starved_list);
442 	spin_unlock_irqrestore(shost->host_lock, flags);
443 }
444 
445 /**
446  * scsi_run_queue - Select a proper request queue to serve next.
447  * @q:  last request's queue
448  *
449  * The previous command was completely finished, start a new one if possible.
450  */
scsi_run_queue(struct request_queue * q)451 static void scsi_run_queue(struct request_queue *q)
452 {
453 	struct scsi_device *sdev = q->queuedata;
454 
455 	if (scsi_target(sdev)->single_lun)
456 		scsi_single_lun_run(sdev);
457 	if (!list_empty(&sdev->host->starved_list))
458 		scsi_starved_list_run(sdev->host);
459 
460 	blk_mq_run_hw_queues(q, false);
461 }
462 
scsi_requeue_run_queue(struct work_struct * work)463 void scsi_requeue_run_queue(struct work_struct *work)
464 {
465 	struct scsi_device *sdev;
466 	struct request_queue *q;
467 
468 	sdev = container_of(work, struct scsi_device, requeue_work);
469 	q = sdev->request_queue;
470 	scsi_run_queue(q);
471 }
472 
scsi_run_host_queues(struct Scsi_Host * shost)473 void scsi_run_host_queues(struct Scsi_Host *shost)
474 {
475 	struct scsi_device *sdev;
476 
477 	shost_for_each_device(sdev, shost)
478 		scsi_run_queue(sdev->request_queue);
479 }
480 
scsi_uninit_cmd(struct scsi_cmnd * cmd)481 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
482 {
483 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
484 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
485 
486 		if (drv->uninit_command)
487 			drv->uninit_command(cmd);
488 	}
489 }
490 
scsi_free_sgtables(struct scsi_cmnd * cmd)491 void scsi_free_sgtables(struct scsi_cmnd *cmd)
492 {
493 	if (cmd->sdb.table.nents)
494 		sg_free_table_chained(&cmd->sdb.table,
495 				SCSI_INLINE_SG_CNT);
496 	if (scsi_prot_sg_count(cmd))
497 		sg_free_table_chained(&cmd->prot_sdb->table,
498 				SCSI_INLINE_PROT_SG_CNT);
499 }
500 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
501 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)502 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
503 {
504 	scsi_free_sgtables(cmd);
505 	scsi_uninit_cmd(cmd);
506 }
507 
scsi_run_queue_async(struct scsi_device * sdev)508 static void scsi_run_queue_async(struct scsi_device *sdev)
509 {
510 	if (scsi_target(sdev)->single_lun ||
511 	    !list_empty(&sdev->host->starved_list)) {
512 		kblockd_schedule_work(&sdev->requeue_work);
513 	} else {
514 		/*
515 		 * smp_mb() present in sbitmap_queue_clear() or implied in
516 		 * .end_io is for ordering writing .device_busy in
517 		 * scsi_device_unbusy() and reading sdev->restarts.
518 		 */
519 		int old = atomic_read(&sdev->restarts);
520 
521 		/*
522 		 * ->restarts has to be kept as non-zero if new budget
523 		 *  contention occurs.
524 		 *
525 		 *  No need to run queue when either another re-run
526 		 *  queue wins in updating ->restarts or a new budget
527 		 *  contention occurs.
528 		 */
529 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
530 			blk_mq_run_hw_queues(sdev->request_queue, true);
531 	}
532 }
533 
534 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)535 static bool scsi_end_request(struct request *req, blk_status_t error,
536 		unsigned int bytes)
537 {
538 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
539 	struct scsi_device *sdev = cmd->device;
540 	struct request_queue *q = sdev->request_queue;
541 
542 	if (blk_update_request(req, error, bytes))
543 		return true;
544 
545 	if (blk_queue_add_random(q))
546 		add_disk_randomness(req->rq_disk);
547 
548 	if (!blk_rq_is_passthrough(req)) {
549 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
550 		cmd->flags &= ~SCMD_INITIALIZED;
551 	}
552 
553 	/*
554 	 * Calling rcu_barrier() is not necessary here because the
555 	 * SCSI error handler guarantees that the function called by
556 	 * call_rcu() has been called before scsi_end_request() is
557 	 * called.
558 	 */
559 	destroy_rcu_head(&cmd->rcu);
560 
561 	/*
562 	 * In the MQ case the command gets freed by __blk_mq_end_request,
563 	 * so we have to do all cleanup that depends on it earlier.
564 	 *
565 	 * We also can't kick the queues from irq context, so we
566 	 * will have to defer it to a workqueue.
567 	 */
568 	scsi_mq_uninit_cmd(cmd);
569 
570 	/*
571 	 * queue is still alive, so grab the ref for preventing it
572 	 * from being cleaned up during running queue.
573 	 */
574 	percpu_ref_get(&q->q_usage_counter);
575 
576 	__blk_mq_end_request(req, error);
577 
578 	scsi_run_queue_async(sdev);
579 
580 	percpu_ref_put(&q->q_usage_counter);
581 	return false;
582 }
583 
584 /**
585  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
586  * @cmd:	SCSI command
587  * @result:	scsi error code
588  *
589  * Translate a SCSI result code into a blk_status_t value. May reset the host
590  * byte of @cmd->result.
591  */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)592 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
593 {
594 	switch (host_byte(result)) {
595 	case DID_OK:
596 		if (scsi_status_is_good(result))
597 			return BLK_STS_OK;
598 		return BLK_STS_IOERR;
599 	case DID_TRANSPORT_FAILFAST:
600 	case DID_TRANSPORT_MARGINAL:
601 		return BLK_STS_TRANSPORT;
602 	case DID_TARGET_FAILURE:
603 		set_host_byte(cmd, DID_OK);
604 		return BLK_STS_TARGET;
605 	case DID_NEXUS_FAILURE:
606 		set_host_byte(cmd, DID_OK);
607 		return BLK_STS_NEXUS;
608 	case DID_ALLOC_FAILURE:
609 		set_host_byte(cmd, DID_OK);
610 		return BLK_STS_NOSPC;
611 	case DID_MEDIUM_ERROR:
612 		set_host_byte(cmd, DID_OK);
613 		return BLK_STS_MEDIUM;
614 	default:
615 		return BLK_STS_IOERR;
616 	}
617 }
618 
619 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621 				      struct request_queue *q)
622 {
623 	/* A new command will be prepared and issued. */
624 	scsi_mq_requeue_cmd(cmd);
625 }
626 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629 	struct request *req = scsi_cmd_to_rq(cmd);
630 	unsigned long wait_for;
631 
632 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633 		return false;
634 
635 	wait_for = (cmd->allowed + 1) * req->timeout;
636 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638 			    wait_for/HZ);
639 		return true;
640 	}
641 	return false;
642 }
643 
644 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647 	struct request_queue *q = cmd->device->request_queue;
648 	struct request *req = scsi_cmd_to_rq(cmd);
649 	int level = 0;
650 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651 	      ACTION_DELAYED_RETRY} action;
652 	struct scsi_sense_hdr sshdr;
653 	bool sense_valid;
654 	bool sense_current = true;      /* false implies "deferred sense" */
655 	blk_status_t blk_stat;
656 
657 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658 	if (sense_valid)
659 		sense_current = !scsi_sense_is_deferred(&sshdr);
660 
661 	blk_stat = scsi_result_to_blk_status(cmd, result);
662 
663 	if (host_byte(result) == DID_RESET) {
664 		/* Third party bus reset or reset for error recovery
665 		 * reasons.  Just retry the command and see what
666 		 * happens.
667 		 */
668 		action = ACTION_RETRY;
669 	} else if (sense_valid && sense_current) {
670 		switch (sshdr.sense_key) {
671 		case UNIT_ATTENTION:
672 			if (cmd->device->removable) {
673 				/* Detected disc change.  Set a bit
674 				 * and quietly refuse further access.
675 				 */
676 				cmd->device->changed = 1;
677 				action = ACTION_FAIL;
678 			} else {
679 				/* Must have been a power glitch, or a
680 				 * bus reset.  Could not have been a
681 				 * media change, so we just retry the
682 				 * command and see what happens.
683 				 */
684 				action = ACTION_RETRY;
685 			}
686 			break;
687 		case ILLEGAL_REQUEST:
688 			/* If we had an ILLEGAL REQUEST returned, then
689 			 * we may have performed an unsupported
690 			 * command.  The only thing this should be
691 			 * would be a ten byte read where only a six
692 			 * byte read was supported.  Also, on a system
693 			 * where READ CAPACITY failed, we may have
694 			 * read past the end of the disk.
695 			 */
696 			if ((cmd->device->use_10_for_rw &&
697 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698 			    (cmd->cmnd[0] == READ_10 ||
699 			     cmd->cmnd[0] == WRITE_10)) {
700 				/* This will issue a new 6-byte command. */
701 				cmd->device->use_10_for_rw = 0;
702 				action = ACTION_REPREP;
703 			} else if (sshdr.asc == 0x10) /* DIX */ {
704 				action = ACTION_FAIL;
705 				blk_stat = BLK_STS_PROTECTION;
706 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708 				action = ACTION_FAIL;
709 				blk_stat = BLK_STS_TARGET;
710 			} else
711 				action = ACTION_FAIL;
712 			break;
713 		case ABORTED_COMMAND:
714 			action = ACTION_FAIL;
715 			if (sshdr.asc == 0x10) /* DIF */
716 				blk_stat = BLK_STS_PROTECTION;
717 			break;
718 		case NOT_READY:
719 			/* If the device is in the process of becoming
720 			 * ready, or has a temporary blockage, retry.
721 			 */
722 			if (sshdr.asc == 0x04) {
723 				switch (sshdr.ascq) {
724 				case 0x01: /* becoming ready */
725 				case 0x04: /* format in progress */
726 				case 0x05: /* rebuild in progress */
727 				case 0x06: /* recalculation in progress */
728 				case 0x07: /* operation in progress */
729 				case 0x08: /* Long write in progress */
730 				case 0x09: /* self test in progress */
731 				case 0x11: /* notify (enable spinup) required */
732 				case 0x14: /* space allocation in progress */
733 				case 0x1a: /* start stop unit in progress */
734 				case 0x1b: /* sanitize in progress */
735 				case 0x1d: /* configuration in progress */
736 				case 0x24: /* depopulation in progress */
737 					action = ACTION_DELAYED_RETRY;
738 					break;
739 				case 0x0a: /* ALUA state transition */
740 					blk_stat = BLK_STS_AGAIN;
741 					fallthrough;
742 				default:
743 					action = ACTION_FAIL;
744 					break;
745 				}
746 			} else
747 				action = ACTION_FAIL;
748 			break;
749 		case VOLUME_OVERFLOW:
750 			/* See SSC3rXX or current. */
751 			action = ACTION_FAIL;
752 			break;
753 		case DATA_PROTECT:
754 			action = ACTION_FAIL;
755 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
756 			    (sshdr.asc == 0x55 &&
757 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
758 				/* Insufficient zone resources */
759 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
760 			}
761 			break;
762 		default:
763 			action = ACTION_FAIL;
764 			break;
765 		}
766 	} else
767 		action = ACTION_FAIL;
768 
769 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
770 		action = ACTION_FAIL;
771 
772 	switch (action) {
773 	case ACTION_FAIL:
774 		/* Give up and fail the remainder of the request */
775 		if (!(req->rq_flags & RQF_QUIET)) {
776 			static DEFINE_RATELIMIT_STATE(_rs,
777 					DEFAULT_RATELIMIT_INTERVAL,
778 					DEFAULT_RATELIMIT_BURST);
779 
780 			if (unlikely(scsi_logging_level))
781 				level =
782 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
783 						    SCSI_LOG_MLCOMPLETE_BITS);
784 
785 			/*
786 			 * if logging is enabled the failure will be printed
787 			 * in scsi_log_completion(), so avoid duplicate messages
788 			 */
789 			if (!level && __ratelimit(&_rs)) {
790 				scsi_print_result(cmd, NULL, FAILED);
791 				if (sense_valid)
792 					scsi_print_sense(cmd);
793 				scsi_print_command(cmd);
794 			}
795 		}
796 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
797 			return;
798 		fallthrough;
799 	case ACTION_REPREP:
800 		scsi_io_completion_reprep(cmd, q);
801 		break;
802 	case ACTION_RETRY:
803 		/* Retry the same command immediately */
804 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
805 		break;
806 	case ACTION_DELAYED_RETRY:
807 		/* Retry the same command after a delay */
808 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
809 		break;
810 	}
811 }
812 
813 /*
814  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
815  * new result that may suppress further error checking. Also modifies
816  * *blk_statp in some cases.
817  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)818 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
819 					blk_status_t *blk_statp)
820 {
821 	bool sense_valid;
822 	bool sense_current = true;	/* false implies "deferred sense" */
823 	struct request *req = scsi_cmd_to_rq(cmd);
824 	struct scsi_sense_hdr sshdr;
825 
826 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
827 	if (sense_valid)
828 		sense_current = !scsi_sense_is_deferred(&sshdr);
829 
830 	if (blk_rq_is_passthrough(req)) {
831 		if (sense_valid) {
832 			/*
833 			 * SG_IO wants current and deferred errors
834 			 */
835 			scsi_req(req)->sense_len =
836 				min(8 + cmd->sense_buffer[7],
837 				    SCSI_SENSE_BUFFERSIZE);
838 		}
839 		if (sense_current)
840 			*blk_statp = scsi_result_to_blk_status(cmd, result);
841 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
842 		/*
843 		 * Flush commands do not transfers any data, and thus cannot use
844 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
845 		 * This sets *blk_statp explicitly for the problem case.
846 		 */
847 		*blk_statp = scsi_result_to_blk_status(cmd, result);
848 	}
849 	/*
850 	 * Recovered errors need reporting, but they're always treated as
851 	 * success, so fiddle the result code here.  For passthrough requests
852 	 * we already took a copy of the original into sreq->result which
853 	 * is what gets returned to the user
854 	 */
855 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
856 		bool do_print = true;
857 		/*
858 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
859 		 * skip print since caller wants ATA registers. Only occurs
860 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
861 		 */
862 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
863 			do_print = false;
864 		else if (req->rq_flags & RQF_QUIET)
865 			do_print = false;
866 		if (do_print)
867 			scsi_print_sense(cmd);
868 		result = 0;
869 		/* for passthrough, *blk_statp may be set */
870 		*blk_statp = BLK_STS_OK;
871 	}
872 	/*
873 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
874 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
875 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
876 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
877 	 * intermediate statuses (both obsolete in SAM-4) as good.
878 	 */
879 	if ((result & 0xff) && scsi_status_is_good(result)) {
880 		result = 0;
881 		*blk_statp = BLK_STS_OK;
882 	}
883 	return result;
884 }
885 
886 /**
887  * scsi_io_completion - Completion processing for SCSI commands.
888  * @cmd:	command that is finished.
889  * @good_bytes:	number of processed bytes.
890  *
891  * We will finish off the specified number of sectors. If we are done, the
892  * command block will be released and the queue function will be goosed. If we
893  * are not done then we have to figure out what to do next:
894  *
895  *   a) We can call scsi_io_completion_reprep().  The request will be
896  *	unprepared and put back on the queue.  Then a new command will
897  *	be created for it.  This should be used if we made forward
898  *	progress, or if we want to switch from READ(10) to READ(6) for
899  *	example.
900  *
901  *   b) We can call scsi_io_completion_action().  The request will be
902  *	put back on the queue and retried using the same command as
903  *	before, possibly after a delay.
904  *
905  *   c) We can call scsi_end_request() with blk_stat other than
906  *	BLK_STS_OK, to fail the remainder of the request.
907  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)908 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
909 {
910 	int result = cmd->result;
911 	struct request_queue *q = cmd->device->request_queue;
912 	struct request *req = scsi_cmd_to_rq(cmd);
913 	blk_status_t blk_stat = BLK_STS_OK;
914 
915 	if (unlikely(result))	/* a nz result may or may not be an error */
916 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
917 
918 	if (unlikely(blk_rq_is_passthrough(req))) {
919 		/*
920 		 * scsi_result_to_blk_status may have reset the host_byte
921 		 */
922 		scsi_req(req)->result = cmd->result;
923 	}
924 
925 	/*
926 	 * Next deal with any sectors which we were able to correctly
927 	 * handle.
928 	 */
929 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
930 		"%u sectors total, %d bytes done.\n",
931 		blk_rq_sectors(req), good_bytes));
932 
933 	/*
934 	 * Failed, zero length commands always need to drop down
935 	 * to retry code. Fast path should return in this block.
936 	 */
937 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
938 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
939 			return; /* no bytes remaining */
940 	}
941 
942 	/* Kill remainder if no retries. */
943 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
944 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
945 			WARN_ONCE(true,
946 			    "Bytes remaining after failed, no-retry command");
947 		return;
948 	}
949 
950 	/*
951 	 * If there had been no error, but we have leftover bytes in the
952 	 * requeues just queue the command up again.
953 	 */
954 	if (likely(result == 0))
955 		scsi_io_completion_reprep(cmd, q);
956 	else
957 		scsi_io_completion_action(cmd, result);
958 }
959 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)960 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
961 		struct request *rq)
962 {
963 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
964 	       !op_is_write(req_op(rq)) &&
965 	       sdev->host->hostt->dma_need_drain(rq);
966 }
967 
968 /**
969  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
970  * @cmd: SCSI command data structure to initialize.
971  *
972  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
973  * for @cmd.
974  *
975  * Returns:
976  * * BLK_STS_OK       - on success
977  * * BLK_STS_RESOURCE - if the failure is retryable
978  * * BLK_STS_IOERR    - if the failure is fatal
979  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)980 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
981 {
982 	struct scsi_device *sdev = cmd->device;
983 	struct request *rq = scsi_cmd_to_rq(cmd);
984 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
985 	struct scatterlist *last_sg = NULL;
986 	blk_status_t ret;
987 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
988 	int count;
989 
990 	if (WARN_ON_ONCE(!nr_segs))
991 		return BLK_STS_IOERR;
992 
993 	/*
994 	 * Make sure there is space for the drain.  The driver must adjust
995 	 * max_hw_segments to be prepared for this.
996 	 */
997 	if (need_drain)
998 		nr_segs++;
999 
1000 	/*
1001 	 * If sg table allocation fails, requeue request later.
1002 	 */
1003 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1004 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1005 		return BLK_STS_RESOURCE;
1006 
1007 	/*
1008 	 * Next, walk the list, and fill in the addresses and sizes of
1009 	 * each segment.
1010 	 */
1011 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1012 
1013 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1014 		unsigned int pad_len =
1015 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1016 
1017 		last_sg->length += pad_len;
1018 		cmd->extra_len += pad_len;
1019 	}
1020 
1021 	if (need_drain) {
1022 		sg_unmark_end(last_sg);
1023 		last_sg = sg_next(last_sg);
1024 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1025 		sg_mark_end(last_sg);
1026 
1027 		cmd->extra_len += sdev->dma_drain_len;
1028 		count++;
1029 	}
1030 
1031 	BUG_ON(count > cmd->sdb.table.nents);
1032 	cmd->sdb.table.nents = count;
1033 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1034 
1035 	if (blk_integrity_rq(rq)) {
1036 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037 		int ivecs;
1038 
1039 		if (WARN_ON_ONCE(!prot_sdb)) {
1040 			/*
1041 			 * This can happen if someone (e.g. multipath)
1042 			 * queues a command to a device on an adapter
1043 			 * that does not support DIX.
1044 			 */
1045 			ret = BLK_STS_IOERR;
1046 			goto out_free_sgtables;
1047 		}
1048 
1049 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1050 
1051 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1052 				prot_sdb->table.sgl,
1053 				SCSI_INLINE_PROT_SG_CNT)) {
1054 			ret = BLK_STS_RESOURCE;
1055 			goto out_free_sgtables;
1056 		}
1057 
1058 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1059 						prot_sdb->table.sgl);
1060 		BUG_ON(count > ivecs);
1061 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1062 
1063 		cmd->prot_sdb = prot_sdb;
1064 		cmd->prot_sdb->table.nents = count;
1065 	}
1066 
1067 	return BLK_STS_OK;
1068 out_free_sgtables:
1069 	scsi_free_sgtables(cmd);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(scsi_alloc_sgtables);
1073 
1074 /**
1075  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1076  * @rq: Request associated with the SCSI command to be initialized.
1077  *
1078  * This function initializes the members of struct scsi_cmnd that must be
1079  * initialized before request processing starts and that won't be
1080  * reinitialized if a SCSI command is requeued.
1081  *
1082  * Called from inside blk_get_request() for pass-through requests and from
1083  * inside scsi_init_command() for filesystem requests.
1084  */
scsi_initialize_rq(struct request * rq)1085 static void scsi_initialize_rq(struct request *rq)
1086 {
1087 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1088 	struct scsi_request *req = &cmd->req;
1089 
1090 	memset(req->__cmd, 0, sizeof(req->__cmd));
1091 	req->cmd = req->__cmd;
1092 	req->cmd_len = BLK_MAX_CDB;
1093 	req->sense_len = 0;
1094 
1095 	init_rcu_head(&cmd->rcu);
1096 	cmd->jiffies_at_alloc = jiffies;
1097 	cmd->retries = 0;
1098 }
1099 
1100 /*
1101  * Only called when the request isn't completed by SCSI, and not freed by
1102  * SCSI
1103  */
scsi_cleanup_rq(struct request * rq)1104 static void scsi_cleanup_rq(struct request *rq)
1105 {
1106 	if (rq->rq_flags & RQF_DONTPREP) {
1107 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1108 		rq->rq_flags &= ~RQF_DONTPREP;
1109 	}
1110 }
1111 
1112 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1113 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1114 {
1115 	void *buf = cmd->sense_buffer;
1116 	void *prot = cmd->prot_sdb;
1117 	struct request *rq = scsi_cmd_to_rq(cmd);
1118 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1119 	unsigned long jiffies_at_alloc;
1120 	int retries, to_clear;
1121 	bool in_flight;
1122 	int budget_token = cmd->budget_token;
1123 
1124 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1125 		flags |= SCMD_INITIALIZED;
1126 		scsi_initialize_rq(rq);
1127 	}
1128 
1129 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1130 	retries = cmd->retries;
1131 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1132 	/*
1133 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1134 	 * the driver-private command data if the LLD does not supply a
1135 	 * function to initialize that data.
1136 	 */
1137 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1138 	if (!dev->host->hostt->init_cmd_priv)
1139 		to_clear += dev->host->hostt->cmd_size;
1140 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1141 
1142 	cmd->device = dev;
1143 	cmd->sense_buffer = buf;
1144 	cmd->prot_sdb = prot;
1145 	cmd->flags = flags;
1146 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1147 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1148 	cmd->retries = retries;
1149 	if (in_flight)
1150 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1151 	cmd->budget_token = budget_token;
1152 
1153 }
1154 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1155 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1156 		struct request *req)
1157 {
1158 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1159 
1160 	/*
1161 	 * Passthrough requests may transfer data, in which case they must
1162 	 * a bio attached to them.  Or they might contain a SCSI command
1163 	 * that does not transfer data, in which case they may optionally
1164 	 * submit a request without an attached bio.
1165 	 */
1166 	if (req->bio) {
1167 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1168 		if (unlikely(ret != BLK_STS_OK))
1169 			return ret;
1170 	} else {
1171 		BUG_ON(blk_rq_bytes(req));
1172 
1173 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1174 	}
1175 
1176 	cmd->cmd_len = scsi_req(req)->cmd_len;
1177 	if (cmd->cmd_len == 0)
1178 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1179 	cmd->cmnd = scsi_req(req)->cmd;
1180 	cmd->transfersize = blk_rq_bytes(req);
1181 	cmd->allowed = scsi_req(req)->retries;
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1186 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1187 {
1188 	switch (sdev->sdev_state) {
1189 	case SDEV_CREATED:
1190 		return BLK_STS_OK;
1191 	case SDEV_OFFLINE:
1192 	case SDEV_TRANSPORT_OFFLINE:
1193 		/*
1194 		 * If the device is offline we refuse to process any
1195 		 * commands.  The device must be brought online
1196 		 * before trying any recovery commands.
1197 		 */
1198 		if (!sdev->offline_already) {
1199 			sdev->offline_already = true;
1200 			sdev_printk(KERN_ERR, sdev,
1201 				    "rejecting I/O to offline device\n");
1202 		}
1203 		return BLK_STS_IOERR;
1204 	case SDEV_DEL:
1205 		/*
1206 		 * If the device is fully deleted, we refuse to
1207 		 * process any commands as well.
1208 		 */
1209 		sdev_printk(KERN_ERR, sdev,
1210 			    "rejecting I/O to dead device\n");
1211 		return BLK_STS_IOERR;
1212 	case SDEV_BLOCK:
1213 	case SDEV_CREATED_BLOCK:
1214 		return BLK_STS_RESOURCE;
1215 	case SDEV_QUIESCE:
1216 		/*
1217 		 * If the device is blocked we only accept power management
1218 		 * commands.
1219 		 */
1220 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1221 			return BLK_STS_RESOURCE;
1222 		return BLK_STS_OK;
1223 	default:
1224 		/*
1225 		 * For any other not fully online state we only allow
1226 		 * power management commands.
1227 		 */
1228 		if (req && !(req->rq_flags & RQF_PM))
1229 			return BLK_STS_IOERR;
1230 		return BLK_STS_OK;
1231 	}
1232 }
1233 
1234 /*
1235  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1236  * and return the token else return -1.
1237  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1238 static inline int scsi_dev_queue_ready(struct request_queue *q,
1239 				  struct scsi_device *sdev)
1240 {
1241 	int token;
1242 
1243 	token = sbitmap_get(&sdev->budget_map);
1244 	if (atomic_read(&sdev->device_blocked)) {
1245 		if (token < 0)
1246 			goto out;
1247 
1248 		if (scsi_device_busy(sdev) > 1)
1249 			goto out_dec;
1250 
1251 		/*
1252 		 * unblock after device_blocked iterates to zero
1253 		 */
1254 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1255 			goto out_dec;
1256 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1257 				   "unblocking device at zero depth\n"));
1258 	}
1259 
1260 	return token;
1261 out_dec:
1262 	if (token >= 0)
1263 		sbitmap_put(&sdev->budget_map, token);
1264 out:
1265 	return -1;
1266 }
1267 
1268 /*
1269  * scsi_target_queue_ready: checks if there we can send commands to target
1270  * @sdev: scsi device on starget to check.
1271  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1272 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1273 					   struct scsi_device *sdev)
1274 {
1275 	struct scsi_target *starget = scsi_target(sdev);
1276 	unsigned int busy;
1277 
1278 	if (starget->single_lun) {
1279 		spin_lock_irq(shost->host_lock);
1280 		if (starget->starget_sdev_user &&
1281 		    starget->starget_sdev_user != sdev) {
1282 			spin_unlock_irq(shost->host_lock);
1283 			return 0;
1284 		}
1285 		starget->starget_sdev_user = sdev;
1286 		spin_unlock_irq(shost->host_lock);
1287 	}
1288 
1289 	if (starget->can_queue <= 0)
1290 		return 1;
1291 
1292 	busy = atomic_inc_return(&starget->target_busy) - 1;
1293 	if (atomic_read(&starget->target_blocked) > 0) {
1294 		if (busy)
1295 			goto starved;
1296 
1297 		/*
1298 		 * unblock after target_blocked iterates to zero
1299 		 */
1300 		if (atomic_dec_return(&starget->target_blocked) > 0)
1301 			goto out_dec;
1302 
1303 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1304 				 "unblocking target at zero depth\n"));
1305 	}
1306 
1307 	if (busy >= starget->can_queue)
1308 		goto starved;
1309 
1310 	return 1;
1311 
1312 starved:
1313 	spin_lock_irq(shost->host_lock);
1314 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1315 	spin_unlock_irq(shost->host_lock);
1316 out_dec:
1317 	if (starget->can_queue > 0)
1318 		atomic_dec(&starget->target_busy);
1319 	return 0;
1320 }
1321 
1322 /*
1323  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1324  * return 0. We must end up running the queue again whenever 0 is
1325  * returned, else IO can hang.
1326  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1327 static inline int scsi_host_queue_ready(struct request_queue *q,
1328 				   struct Scsi_Host *shost,
1329 				   struct scsi_device *sdev,
1330 				   struct scsi_cmnd *cmd)
1331 {
1332 	if (scsi_host_in_recovery(shost))
1333 		return 0;
1334 
1335 	if (atomic_read(&shost->host_blocked) > 0) {
1336 		if (scsi_host_busy(shost) > 0)
1337 			goto starved;
1338 
1339 		/*
1340 		 * unblock after host_blocked iterates to zero
1341 		 */
1342 		if (atomic_dec_return(&shost->host_blocked) > 0)
1343 			goto out_dec;
1344 
1345 		SCSI_LOG_MLQUEUE(3,
1346 			shost_printk(KERN_INFO, shost,
1347 				     "unblocking host at zero depth\n"));
1348 	}
1349 
1350 	if (shost->host_self_blocked)
1351 		goto starved;
1352 
1353 	/* We're OK to process the command, so we can't be starved */
1354 	if (!list_empty(&sdev->starved_entry)) {
1355 		spin_lock_irq(shost->host_lock);
1356 		if (!list_empty(&sdev->starved_entry))
1357 			list_del_init(&sdev->starved_entry);
1358 		spin_unlock_irq(shost->host_lock);
1359 	}
1360 
1361 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1362 
1363 	return 1;
1364 
1365 starved:
1366 	spin_lock_irq(shost->host_lock);
1367 	if (list_empty(&sdev->starved_entry))
1368 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1369 	spin_unlock_irq(shost->host_lock);
1370 out_dec:
1371 	scsi_dec_host_busy(shost, cmd);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Busy state exporting function for request stacking drivers.
1377  *
1378  * For efficiency, no lock is taken to check the busy state of
1379  * shost/starget/sdev, since the returned value is not guaranteed and
1380  * may be changed after request stacking drivers call the function,
1381  * regardless of taking lock or not.
1382  *
1383  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1384  * needs to return 'not busy'. Otherwise, request stacking drivers
1385  * may hold requests forever.
1386  */
scsi_mq_lld_busy(struct request_queue * q)1387 static bool scsi_mq_lld_busy(struct request_queue *q)
1388 {
1389 	struct scsi_device *sdev = q->queuedata;
1390 	struct Scsi_Host *shost;
1391 
1392 	if (blk_queue_dying(q))
1393 		return false;
1394 
1395 	shost = sdev->host;
1396 
1397 	/*
1398 	 * Ignore host/starget busy state.
1399 	 * Since block layer does not have a concept of fairness across
1400 	 * multiple queues, congestion of host/starget needs to be handled
1401 	 * in SCSI layer.
1402 	 */
1403 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1404 		return true;
1405 
1406 	return false;
1407 }
1408 
1409 /*
1410  * Block layer request completion callback. May be called from interrupt
1411  * context.
1412  */
scsi_complete(struct request * rq)1413 static void scsi_complete(struct request *rq)
1414 {
1415 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1416 	enum scsi_disposition disposition;
1417 
1418 	INIT_LIST_HEAD(&cmd->eh_entry);
1419 
1420 	atomic_inc(&cmd->device->iodone_cnt);
1421 	if (cmd->result)
1422 		atomic_inc(&cmd->device->ioerr_cnt);
1423 
1424 	disposition = scsi_decide_disposition(cmd);
1425 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1426 		disposition = SUCCESS;
1427 
1428 	scsi_log_completion(cmd, disposition);
1429 
1430 	switch (disposition) {
1431 	case SUCCESS:
1432 		scsi_finish_command(cmd);
1433 		break;
1434 	case NEEDS_RETRY:
1435 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1436 		break;
1437 	case ADD_TO_MLQUEUE:
1438 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1439 		break;
1440 	default:
1441 		scsi_eh_scmd_add(cmd);
1442 		break;
1443 	}
1444 }
1445 
1446 /**
1447  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1448  * @cmd: command block we are dispatching.
1449  *
1450  * Return: nonzero return request was rejected and device's queue needs to be
1451  * plugged.
1452  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1453 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1454 {
1455 	struct Scsi_Host *host = cmd->device->host;
1456 	int rtn = 0;
1457 
1458 	atomic_inc(&cmd->device->iorequest_cnt);
1459 
1460 	/* check if the device is still usable */
1461 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1462 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1463 		 * returns an immediate error upwards, and signals
1464 		 * that the device is no longer present */
1465 		cmd->result = DID_NO_CONNECT << 16;
1466 		goto done;
1467 	}
1468 
1469 	/* Check to see if the scsi lld made this device blocked. */
1470 	if (unlikely(scsi_device_blocked(cmd->device))) {
1471 		/*
1472 		 * in blocked state, the command is just put back on
1473 		 * the device queue.  The suspend state has already
1474 		 * blocked the queue so future requests should not
1475 		 * occur until the device transitions out of the
1476 		 * suspend state.
1477 		 */
1478 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1479 			"queuecommand : device blocked\n"));
1480 		return SCSI_MLQUEUE_DEVICE_BUSY;
1481 	}
1482 
1483 	/* Store the LUN value in cmnd, if needed. */
1484 	if (cmd->device->lun_in_cdb)
1485 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1486 			       (cmd->device->lun << 5 & 0xe0);
1487 
1488 	scsi_log_send(cmd);
1489 
1490 	/*
1491 	 * Before we queue this command, check if the command
1492 	 * length exceeds what the host adapter can handle.
1493 	 */
1494 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1495 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1496 			       "queuecommand : command too long. "
1497 			       "cdb_size=%d host->max_cmd_len=%d\n",
1498 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1499 		cmd->result = (DID_ABORT << 16);
1500 		goto done;
1501 	}
1502 
1503 	if (unlikely(host->shost_state == SHOST_DEL)) {
1504 		cmd->result = (DID_NO_CONNECT << 16);
1505 		goto done;
1506 
1507 	}
1508 
1509 	trace_scsi_dispatch_cmd_start(cmd);
1510 	rtn = host->hostt->queuecommand(host, cmd);
1511 	if (rtn) {
1512 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1513 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1514 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1515 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1516 
1517 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1518 			"queuecommand : request rejected\n"));
1519 	}
1520 
1521 	return rtn;
1522  done:
1523 	cmd->scsi_done(cmd);
1524 	return 0;
1525 }
1526 
1527 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1528 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1529 {
1530 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1531 		sizeof(struct scatterlist);
1532 }
1533 
scsi_prepare_cmd(struct request * req)1534 static blk_status_t scsi_prepare_cmd(struct request *req)
1535 {
1536 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1537 	struct scsi_device *sdev = req->q->queuedata;
1538 	struct Scsi_Host *shost = sdev->host;
1539 	struct scatterlist *sg;
1540 
1541 	scsi_init_command(sdev, cmd);
1542 
1543 	cmd->prot_op = SCSI_PROT_NORMAL;
1544 	if (blk_rq_bytes(req))
1545 		cmd->sc_data_direction = rq_dma_dir(req);
1546 	else
1547 		cmd->sc_data_direction = DMA_NONE;
1548 
1549 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1550 	cmd->sdb.table.sgl = sg;
1551 
1552 	if (scsi_host_get_prot(shost)) {
1553 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1554 
1555 		cmd->prot_sdb->table.sgl =
1556 			(struct scatterlist *)(cmd->prot_sdb + 1);
1557 	}
1558 
1559 	/*
1560 	 * Special handling for passthrough commands, which don't go to the ULP
1561 	 * at all:
1562 	 */
1563 	if (blk_rq_is_passthrough(req))
1564 		return scsi_setup_scsi_cmnd(sdev, req);
1565 
1566 	if (sdev->handler && sdev->handler->prep_fn) {
1567 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1568 
1569 		if (ret != BLK_STS_OK)
1570 			return ret;
1571 	}
1572 
1573 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1574 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1575 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1576 }
1577 
scsi_mq_done(struct scsi_cmnd * cmd)1578 static void scsi_mq_done(struct scsi_cmnd *cmd)
1579 {
1580 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1581 		return;
1582 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1583 		return;
1584 	trace_scsi_dispatch_cmd_done(cmd);
1585 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1586 }
1587 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1588 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1589 {
1590 	struct scsi_device *sdev = q->queuedata;
1591 
1592 	sbitmap_put(&sdev->budget_map, budget_token);
1593 }
1594 
scsi_mq_get_budget(struct request_queue * q)1595 static int scsi_mq_get_budget(struct request_queue *q)
1596 {
1597 	struct scsi_device *sdev = q->queuedata;
1598 	int token = scsi_dev_queue_ready(q, sdev);
1599 
1600 	if (token >= 0)
1601 		return token;
1602 
1603 	atomic_inc(&sdev->restarts);
1604 
1605 	/*
1606 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1607 	 * .restarts must be incremented before .device_busy is read because the
1608 	 * code in scsi_run_queue_async() depends on the order of these operations.
1609 	 */
1610 	smp_mb__after_atomic();
1611 
1612 	/*
1613 	 * If all in-flight requests originated from this LUN are completed
1614 	 * before reading .device_busy, sdev->device_busy will be observed as
1615 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1616 	 * soon. Otherwise, completion of one of these requests will observe
1617 	 * the .restarts flag, and the request queue will be run for handling
1618 	 * this request, see scsi_end_request().
1619 	 */
1620 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1621 				!scsi_device_blocked(sdev)))
1622 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1623 	return -1;
1624 }
1625 
scsi_mq_set_rq_budget_token(struct request * req,int token)1626 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1627 {
1628 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1629 
1630 	cmd->budget_token = token;
1631 }
1632 
scsi_mq_get_rq_budget_token(struct request * req)1633 static int scsi_mq_get_rq_budget_token(struct request *req)
1634 {
1635 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1636 
1637 	return cmd->budget_token;
1638 }
1639 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1640 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1641 			 const struct blk_mq_queue_data *bd)
1642 {
1643 	struct request *req = bd->rq;
1644 	struct request_queue *q = req->q;
1645 	struct scsi_device *sdev = q->queuedata;
1646 	struct Scsi_Host *shost = sdev->host;
1647 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1648 	blk_status_t ret;
1649 	int reason;
1650 
1651 	WARN_ON_ONCE(cmd->budget_token < 0);
1652 
1653 	/*
1654 	 * If the device is not in running state we will reject some or all
1655 	 * commands.
1656 	 */
1657 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1658 		ret = scsi_device_state_check(sdev, req);
1659 		if (ret != BLK_STS_OK)
1660 			goto out_put_budget;
1661 	}
1662 
1663 	ret = BLK_STS_RESOURCE;
1664 	if (!scsi_target_queue_ready(shost, sdev))
1665 		goto out_put_budget;
1666 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1667 		goto out_dec_target_busy;
1668 
1669 	if (!(req->rq_flags & RQF_DONTPREP)) {
1670 		ret = scsi_prepare_cmd(req);
1671 		if (ret != BLK_STS_OK)
1672 			goto out_dec_host_busy;
1673 		req->rq_flags |= RQF_DONTPREP;
1674 	} else {
1675 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1676 	}
1677 
1678 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1679 	if (sdev->simple_tags)
1680 		cmd->flags |= SCMD_TAGGED;
1681 	if (bd->last)
1682 		cmd->flags |= SCMD_LAST;
1683 
1684 	scsi_set_resid(cmd, 0);
1685 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1686 	cmd->scsi_done = scsi_mq_done;
1687 
1688 	blk_mq_start_request(req);
1689 	reason = scsi_dispatch_cmd(cmd);
1690 	if (reason) {
1691 		scsi_set_blocked(cmd, reason);
1692 		ret = BLK_STS_RESOURCE;
1693 		goto out_dec_host_busy;
1694 	}
1695 
1696 	return BLK_STS_OK;
1697 
1698 out_dec_host_busy:
1699 	scsi_dec_host_busy(shost, cmd);
1700 out_dec_target_busy:
1701 	if (scsi_target(sdev)->can_queue > 0)
1702 		atomic_dec(&scsi_target(sdev)->target_busy);
1703 out_put_budget:
1704 	scsi_mq_put_budget(q, cmd->budget_token);
1705 	cmd->budget_token = -1;
1706 	switch (ret) {
1707 	case BLK_STS_OK:
1708 		break;
1709 	case BLK_STS_RESOURCE:
1710 	case BLK_STS_ZONE_RESOURCE:
1711 		if (scsi_device_blocked(sdev))
1712 			ret = BLK_STS_DEV_RESOURCE;
1713 		break;
1714 	case BLK_STS_AGAIN:
1715 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1716 		if (req->rq_flags & RQF_DONTPREP)
1717 			scsi_mq_uninit_cmd(cmd);
1718 		break;
1719 	default:
1720 		if (unlikely(!scsi_device_online(sdev)))
1721 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1722 		else
1723 			scsi_req(req)->result = DID_ERROR << 16;
1724 		/*
1725 		 * Make sure to release all allocated resources when
1726 		 * we hit an error, as we will never see this command
1727 		 * again.
1728 		 */
1729 		if (req->rq_flags & RQF_DONTPREP)
1730 			scsi_mq_uninit_cmd(cmd);
1731 		scsi_run_queue_async(sdev);
1732 		break;
1733 	}
1734 	return ret;
1735 }
1736 
scsi_timeout(struct request * req,bool reserved)1737 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1738 		bool reserved)
1739 {
1740 	if (reserved)
1741 		return BLK_EH_RESET_TIMER;
1742 	return scsi_times_out(req);
1743 }
1744 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1745 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1746 				unsigned int hctx_idx, unsigned int numa_node)
1747 {
1748 	struct Scsi_Host *shost = set->driver_data;
1749 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1750 	struct scatterlist *sg;
1751 	int ret = 0;
1752 
1753 	cmd->sense_buffer =
1754 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1755 	if (!cmd->sense_buffer)
1756 		return -ENOMEM;
1757 	cmd->req.sense = cmd->sense_buffer;
1758 
1759 	if (scsi_host_get_prot(shost)) {
1760 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1761 			shost->hostt->cmd_size;
1762 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1763 	}
1764 
1765 	if (shost->hostt->init_cmd_priv) {
1766 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1767 		if (ret < 0)
1768 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1769 	}
1770 
1771 	return ret;
1772 }
1773 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1774 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1775 				 unsigned int hctx_idx)
1776 {
1777 	struct Scsi_Host *shost = set->driver_data;
1778 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1779 
1780 	if (shost->hostt->exit_cmd_priv)
1781 		shost->hostt->exit_cmd_priv(shost, cmd);
1782 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1783 }
1784 
1785 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx)1786 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1787 {
1788 	struct Scsi_Host *shost = hctx->driver_data;
1789 
1790 	if (shost->hostt->mq_poll)
1791 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1792 
1793 	return 0;
1794 }
1795 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1796 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1797 			  unsigned int hctx_idx)
1798 {
1799 	struct Scsi_Host *shost = data;
1800 
1801 	hctx->driver_data = shost;
1802 	return 0;
1803 }
1804 
scsi_map_queues(struct blk_mq_tag_set * set)1805 static int scsi_map_queues(struct blk_mq_tag_set *set)
1806 {
1807 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1808 
1809 	if (shost->hostt->map_queues)
1810 		return shost->hostt->map_queues(shost);
1811 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1812 }
1813 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1814 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1815 {
1816 	struct device *dev = shost->dma_dev;
1817 
1818 	/*
1819 	 * this limit is imposed by hardware restrictions
1820 	 */
1821 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1822 					SG_MAX_SEGMENTS));
1823 
1824 	if (scsi_host_prot_dma(shost)) {
1825 		shost->sg_prot_tablesize =
1826 			min_not_zero(shost->sg_prot_tablesize,
1827 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1828 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1829 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1830 	}
1831 
1832 	if (dev->dma_mask) {
1833 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1834 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1835 	}
1836 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1837 	blk_queue_segment_boundary(q, shost->dma_boundary);
1838 	dma_set_seg_boundary(dev, shost->dma_boundary);
1839 
1840 	blk_queue_max_segment_size(q, shost->max_segment_size);
1841 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1842 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1843 
1844 	/*
1845 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1846 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1847 	 * which is set by the platform.
1848 	 *
1849 	 * Devices that require a bigger alignment can increase it later.
1850 	 */
1851 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1852 }
1853 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1854 
1855 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1856 	.get_budget	= scsi_mq_get_budget,
1857 	.put_budget	= scsi_mq_put_budget,
1858 	.queue_rq	= scsi_queue_rq,
1859 	.complete	= scsi_complete,
1860 	.timeout	= scsi_timeout,
1861 #ifdef CONFIG_BLK_DEBUG_FS
1862 	.show_rq	= scsi_show_rq,
1863 #endif
1864 	.init_request	= scsi_mq_init_request,
1865 	.exit_request	= scsi_mq_exit_request,
1866 	.initialize_rq_fn = scsi_initialize_rq,
1867 	.cleanup_rq	= scsi_cleanup_rq,
1868 	.busy		= scsi_mq_lld_busy,
1869 	.map_queues	= scsi_map_queues,
1870 	.init_hctx	= scsi_init_hctx,
1871 	.poll		= scsi_mq_poll,
1872 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1873 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1874 };
1875 
1876 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1877 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1878 {
1879 	struct Scsi_Host *shost = hctx->driver_data;
1880 
1881 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1882 }
1883 
1884 static const struct blk_mq_ops scsi_mq_ops = {
1885 	.get_budget	= scsi_mq_get_budget,
1886 	.put_budget	= scsi_mq_put_budget,
1887 	.queue_rq	= scsi_queue_rq,
1888 	.commit_rqs	= scsi_commit_rqs,
1889 	.complete	= scsi_complete,
1890 	.timeout	= scsi_timeout,
1891 #ifdef CONFIG_BLK_DEBUG_FS
1892 	.show_rq	= scsi_show_rq,
1893 #endif
1894 	.init_request	= scsi_mq_init_request,
1895 	.exit_request	= scsi_mq_exit_request,
1896 	.initialize_rq_fn = scsi_initialize_rq,
1897 	.cleanup_rq	= scsi_cleanup_rq,
1898 	.busy		= scsi_mq_lld_busy,
1899 	.map_queues	= scsi_map_queues,
1900 	.init_hctx	= scsi_init_hctx,
1901 	.poll		= scsi_mq_poll,
1902 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1903 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1904 };
1905 
scsi_mq_setup_tags(struct Scsi_Host * shost)1906 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1907 {
1908 	unsigned int cmd_size, sgl_size;
1909 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1910 
1911 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1912 				scsi_mq_inline_sgl_size(shost));
1913 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1914 	if (scsi_host_get_prot(shost))
1915 		cmd_size += sizeof(struct scsi_data_buffer) +
1916 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1917 
1918 	memset(tag_set, 0, sizeof(*tag_set));
1919 	if (shost->hostt->commit_rqs)
1920 		tag_set->ops = &scsi_mq_ops;
1921 	else
1922 		tag_set->ops = &scsi_mq_ops_no_commit;
1923 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1924 	tag_set->nr_maps = shost->nr_maps ? : 1;
1925 	tag_set->queue_depth = shost->can_queue;
1926 	tag_set->cmd_size = cmd_size;
1927 	tag_set->numa_node = NUMA_NO_NODE;
1928 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1929 	tag_set->flags |=
1930 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1931 	tag_set->driver_data = shost;
1932 	if (shost->host_tagset)
1933 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1934 
1935 	return blk_mq_alloc_tag_set(tag_set);
1936 }
1937 
scsi_mq_destroy_tags(struct Scsi_Host * shost)1938 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1939 {
1940 	blk_mq_free_tag_set(&shost->tag_set);
1941 }
1942 
1943 /**
1944  * scsi_device_from_queue - return sdev associated with a request_queue
1945  * @q: The request queue to return the sdev from
1946  *
1947  * Return the sdev associated with a request queue or NULL if the
1948  * request_queue does not reference a SCSI device.
1949  */
scsi_device_from_queue(struct request_queue * q)1950 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1951 {
1952 	struct scsi_device *sdev = NULL;
1953 
1954 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1955 	    q->mq_ops == &scsi_mq_ops)
1956 		sdev = q->queuedata;
1957 	if (!sdev || !get_device(&sdev->sdev_gendev))
1958 		sdev = NULL;
1959 
1960 	return sdev;
1961 }
1962 
1963 /**
1964  * scsi_block_requests - Utility function used by low-level drivers to prevent
1965  * further commands from being queued to the device.
1966  * @shost:  host in question
1967  *
1968  * There is no timer nor any other means by which the requests get unblocked
1969  * other than the low-level driver calling scsi_unblock_requests().
1970  */
scsi_block_requests(struct Scsi_Host * shost)1971 void scsi_block_requests(struct Scsi_Host *shost)
1972 {
1973 	shost->host_self_blocked = 1;
1974 }
1975 EXPORT_SYMBOL(scsi_block_requests);
1976 
1977 /**
1978  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1979  * further commands to be queued to the device.
1980  * @shost:  host in question
1981  *
1982  * There is no timer nor any other means by which the requests get unblocked
1983  * other than the low-level driver calling scsi_unblock_requests(). This is done
1984  * as an API function so that changes to the internals of the scsi mid-layer
1985  * won't require wholesale changes to drivers that use this feature.
1986  */
scsi_unblock_requests(struct Scsi_Host * shost)1987 void scsi_unblock_requests(struct Scsi_Host *shost)
1988 {
1989 	shost->host_self_blocked = 0;
1990 	scsi_run_host_queues(shost);
1991 }
1992 EXPORT_SYMBOL(scsi_unblock_requests);
1993 
scsi_exit_queue(void)1994 void scsi_exit_queue(void)
1995 {
1996 	kmem_cache_destroy(scsi_sense_cache);
1997 }
1998 
1999 /**
2000  *	scsi_mode_select - issue a mode select
2001  *	@sdev:	SCSI device to be queried
2002  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2003  *	@sp:	Save page bit (0 == don't save, 1 == save)
2004  *	@modepage: mode page being requested
2005  *	@buffer: request buffer (may not be smaller than eight bytes)
2006  *	@len:	length of request buffer.
2007  *	@timeout: command timeout
2008  *	@retries: number of retries before failing
2009  *	@data: returns a structure abstracting the mode header data
2010  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2011  *		must be SCSI_SENSE_BUFFERSIZE big.
2012  *
2013  *	Returns zero if successful; negative error number or scsi
2014  *	status on error
2015  *
2016  */
2017 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2018 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2019 		 unsigned char *buffer, int len, int timeout, int retries,
2020 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2021 {
2022 	unsigned char cmd[10];
2023 	unsigned char *real_buffer;
2024 	int ret;
2025 
2026 	memset(cmd, 0, sizeof(cmd));
2027 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2028 
2029 	if (sdev->use_10_for_ms) {
2030 		if (len > 65535)
2031 			return -EINVAL;
2032 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2033 		if (!real_buffer)
2034 			return -ENOMEM;
2035 		memcpy(real_buffer + 8, buffer, len);
2036 		len += 8;
2037 		real_buffer[0] = 0;
2038 		real_buffer[1] = 0;
2039 		real_buffer[2] = data->medium_type;
2040 		real_buffer[3] = data->device_specific;
2041 		real_buffer[4] = data->longlba ? 0x01 : 0;
2042 		real_buffer[5] = 0;
2043 		real_buffer[6] = data->block_descriptor_length >> 8;
2044 		real_buffer[7] = data->block_descriptor_length;
2045 
2046 		cmd[0] = MODE_SELECT_10;
2047 		cmd[7] = len >> 8;
2048 		cmd[8] = len;
2049 	} else {
2050 		if (len > 255 || data->block_descriptor_length > 255 ||
2051 		    data->longlba)
2052 			return -EINVAL;
2053 
2054 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2055 		if (!real_buffer)
2056 			return -ENOMEM;
2057 		memcpy(real_buffer + 4, buffer, len);
2058 		len += 4;
2059 		real_buffer[0] = 0;
2060 		real_buffer[1] = data->medium_type;
2061 		real_buffer[2] = data->device_specific;
2062 		real_buffer[3] = data->block_descriptor_length;
2063 
2064 		cmd[0] = MODE_SELECT;
2065 		cmd[4] = len;
2066 	}
2067 
2068 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2069 			       sshdr, timeout, retries, NULL);
2070 	kfree(real_buffer);
2071 	return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(scsi_mode_select);
2074 
2075 /**
2076  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2077  *	@sdev:	SCSI device to be queried
2078  *	@dbd:	set if mode sense will allow block descriptors to be returned
2079  *	@modepage: mode page being requested
2080  *	@buffer: request buffer (may not be smaller than eight bytes)
2081  *	@len:	length of request buffer.
2082  *	@timeout: command timeout
2083  *	@retries: number of retries before failing
2084  *	@data: returns a structure abstracting the mode header data
2085  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2086  *		must be SCSI_SENSE_BUFFERSIZE big.
2087  *
2088  *	Returns zero if successful, or a negative error number on failure
2089  */
2090 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2091 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2092 		  unsigned char *buffer, int len, int timeout, int retries,
2093 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2094 {
2095 	unsigned char cmd[12];
2096 	int use_10_for_ms;
2097 	int header_length;
2098 	int result, retry_count = retries;
2099 	struct scsi_sense_hdr my_sshdr;
2100 
2101 	memset(data, 0, sizeof(*data));
2102 	memset(&cmd[0], 0, 12);
2103 
2104 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2105 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2106 	cmd[2] = modepage;
2107 
2108 	/* caller might not be interested in sense, but we need it */
2109 	if (!sshdr)
2110 		sshdr = &my_sshdr;
2111 
2112  retry:
2113 	use_10_for_ms = sdev->use_10_for_ms;
2114 
2115 	if (use_10_for_ms) {
2116 		if (len < 8)
2117 			len = 8;
2118 
2119 		cmd[0] = MODE_SENSE_10;
2120 		cmd[8] = len;
2121 		header_length = 8;
2122 	} else {
2123 		if (len < 4)
2124 			len = 4;
2125 
2126 		cmd[0] = MODE_SENSE;
2127 		cmd[4] = len;
2128 		header_length = 4;
2129 	}
2130 
2131 	memset(buffer, 0, len);
2132 
2133 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2134 				  sshdr, timeout, retries, NULL);
2135 	if (result < 0)
2136 		return result;
2137 
2138 	/* This code looks awful: what it's doing is making sure an
2139 	 * ILLEGAL REQUEST sense return identifies the actual command
2140 	 * byte as the problem.  MODE_SENSE commands can return
2141 	 * ILLEGAL REQUEST if the code page isn't supported */
2142 
2143 	if (!scsi_status_is_good(result)) {
2144 		if (scsi_sense_valid(sshdr)) {
2145 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2146 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2147 				/*
2148 				 * Invalid command operation code
2149 				 */
2150 				if (use_10_for_ms) {
2151 					sdev->use_10_for_ms = 0;
2152 					goto retry;
2153 				}
2154 			}
2155 			if (scsi_status_is_check_condition(result) &&
2156 			    sshdr->sense_key == UNIT_ATTENTION &&
2157 			    retry_count) {
2158 				retry_count--;
2159 				goto retry;
2160 			}
2161 		}
2162 		return -EIO;
2163 	}
2164 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2165 		     (modepage == 6 || modepage == 8))) {
2166 		/* Initio breakage? */
2167 		header_length = 0;
2168 		data->length = 13;
2169 		data->medium_type = 0;
2170 		data->device_specific = 0;
2171 		data->longlba = 0;
2172 		data->block_descriptor_length = 0;
2173 	} else if (use_10_for_ms) {
2174 		data->length = buffer[0]*256 + buffer[1] + 2;
2175 		data->medium_type = buffer[2];
2176 		data->device_specific = buffer[3];
2177 		data->longlba = buffer[4] & 0x01;
2178 		data->block_descriptor_length = buffer[6]*256
2179 			+ buffer[7];
2180 	} else {
2181 		data->length = buffer[0] + 1;
2182 		data->medium_type = buffer[1];
2183 		data->device_specific = buffer[2];
2184 		data->block_descriptor_length = buffer[3];
2185 	}
2186 	data->header_length = header_length;
2187 
2188 	return 0;
2189 }
2190 EXPORT_SYMBOL(scsi_mode_sense);
2191 
2192 /**
2193  *	scsi_test_unit_ready - test if unit is ready
2194  *	@sdev:	scsi device to change the state of.
2195  *	@timeout: command timeout
2196  *	@retries: number of retries before failing
2197  *	@sshdr: outpout pointer for decoded sense information.
2198  *
2199  *	Returns zero if unsuccessful or an error if TUR failed.  For
2200  *	removable media, UNIT_ATTENTION sets ->changed flag.
2201  **/
2202 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2203 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2204 		     struct scsi_sense_hdr *sshdr)
2205 {
2206 	char cmd[] = {
2207 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2208 	};
2209 	int result;
2210 
2211 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2212 	do {
2213 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2214 					  timeout, 1, NULL);
2215 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2216 		    sshdr->sense_key == UNIT_ATTENTION)
2217 			sdev->changed = 1;
2218 	} while (scsi_sense_valid(sshdr) &&
2219 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2220 
2221 	return result;
2222 }
2223 EXPORT_SYMBOL(scsi_test_unit_ready);
2224 
2225 /**
2226  *	scsi_device_set_state - Take the given device through the device state model.
2227  *	@sdev:	scsi device to change the state of.
2228  *	@state:	state to change to.
2229  *
2230  *	Returns zero if successful or an error if the requested
2231  *	transition is illegal.
2232  */
2233 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2234 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2235 {
2236 	enum scsi_device_state oldstate = sdev->sdev_state;
2237 
2238 	if (state == oldstate)
2239 		return 0;
2240 
2241 	switch (state) {
2242 	case SDEV_CREATED:
2243 		switch (oldstate) {
2244 		case SDEV_CREATED_BLOCK:
2245 			break;
2246 		default:
2247 			goto illegal;
2248 		}
2249 		break;
2250 
2251 	case SDEV_RUNNING:
2252 		switch (oldstate) {
2253 		case SDEV_CREATED:
2254 		case SDEV_OFFLINE:
2255 		case SDEV_TRANSPORT_OFFLINE:
2256 		case SDEV_QUIESCE:
2257 		case SDEV_BLOCK:
2258 			break;
2259 		default:
2260 			goto illegal;
2261 		}
2262 		break;
2263 
2264 	case SDEV_QUIESCE:
2265 		switch (oldstate) {
2266 		case SDEV_RUNNING:
2267 		case SDEV_OFFLINE:
2268 		case SDEV_TRANSPORT_OFFLINE:
2269 			break;
2270 		default:
2271 			goto illegal;
2272 		}
2273 		break;
2274 
2275 	case SDEV_OFFLINE:
2276 	case SDEV_TRANSPORT_OFFLINE:
2277 		switch (oldstate) {
2278 		case SDEV_CREATED:
2279 		case SDEV_RUNNING:
2280 		case SDEV_QUIESCE:
2281 		case SDEV_BLOCK:
2282 			break;
2283 		default:
2284 			goto illegal;
2285 		}
2286 		break;
2287 
2288 	case SDEV_BLOCK:
2289 		switch (oldstate) {
2290 		case SDEV_RUNNING:
2291 		case SDEV_CREATED_BLOCK:
2292 		case SDEV_QUIESCE:
2293 		case SDEV_OFFLINE:
2294 			break;
2295 		default:
2296 			goto illegal;
2297 		}
2298 		break;
2299 
2300 	case SDEV_CREATED_BLOCK:
2301 		switch (oldstate) {
2302 		case SDEV_CREATED:
2303 			break;
2304 		default:
2305 			goto illegal;
2306 		}
2307 		break;
2308 
2309 	case SDEV_CANCEL:
2310 		switch (oldstate) {
2311 		case SDEV_CREATED:
2312 		case SDEV_RUNNING:
2313 		case SDEV_QUIESCE:
2314 		case SDEV_OFFLINE:
2315 		case SDEV_TRANSPORT_OFFLINE:
2316 			break;
2317 		default:
2318 			goto illegal;
2319 		}
2320 		break;
2321 
2322 	case SDEV_DEL:
2323 		switch (oldstate) {
2324 		case SDEV_CREATED:
2325 		case SDEV_RUNNING:
2326 		case SDEV_OFFLINE:
2327 		case SDEV_TRANSPORT_OFFLINE:
2328 		case SDEV_CANCEL:
2329 		case SDEV_BLOCK:
2330 		case SDEV_CREATED_BLOCK:
2331 			break;
2332 		default:
2333 			goto illegal;
2334 		}
2335 		break;
2336 
2337 	}
2338 	sdev->offline_already = false;
2339 	sdev->sdev_state = state;
2340 	return 0;
2341 
2342  illegal:
2343 	SCSI_LOG_ERROR_RECOVERY(1,
2344 				sdev_printk(KERN_ERR, sdev,
2345 					    "Illegal state transition %s->%s",
2346 					    scsi_device_state_name(oldstate),
2347 					    scsi_device_state_name(state))
2348 				);
2349 	return -EINVAL;
2350 }
2351 EXPORT_SYMBOL(scsi_device_set_state);
2352 
2353 /**
2354  *	scsi_evt_emit - emit a single SCSI device uevent
2355  *	@sdev: associated SCSI device
2356  *	@evt: event to emit
2357  *
2358  *	Send a single uevent (scsi_event) to the associated scsi_device.
2359  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2360 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2361 {
2362 	int idx = 0;
2363 	char *envp[3];
2364 
2365 	switch (evt->evt_type) {
2366 	case SDEV_EVT_MEDIA_CHANGE:
2367 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2368 		break;
2369 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2370 		scsi_rescan_device(&sdev->sdev_gendev);
2371 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2372 		break;
2373 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2374 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2375 		break;
2376 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2377 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2378 		break;
2379 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2380 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2381 		break;
2382 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2383 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2384 		break;
2385 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2386 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2387 		break;
2388 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2389 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2390 		break;
2391 	default:
2392 		/* do nothing */
2393 		break;
2394 	}
2395 
2396 	envp[idx++] = NULL;
2397 
2398 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2399 }
2400 
2401 /**
2402  *	scsi_evt_thread - send a uevent for each scsi event
2403  *	@work: work struct for scsi_device
2404  *
2405  *	Dispatch queued events to their associated scsi_device kobjects
2406  *	as uevents.
2407  */
scsi_evt_thread(struct work_struct * work)2408 void scsi_evt_thread(struct work_struct *work)
2409 {
2410 	struct scsi_device *sdev;
2411 	enum scsi_device_event evt_type;
2412 	LIST_HEAD(event_list);
2413 
2414 	sdev = container_of(work, struct scsi_device, event_work);
2415 
2416 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2417 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2418 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2419 
2420 	while (1) {
2421 		struct scsi_event *evt;
2422 		struct list_head *this, *tmp;
2423 		unsigned long flags;
2424 
2425 		spin_lock_irqsave(&sdev->list_lock, flags);
2426 		list_splice_init(&sdev->event_list, &event_list);
2427 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2428 
2429 		if (list_empty(&event_list))
2430 			break;
2431 
2432 		list_for_each_safe(this, tmp, &event_list) {
2433 			evt = list_entry(this, struct scsi_event, node);
2434 			list_del(&evt->node);
2435 			scsi_evt_emit(sdev, evt);
2436 			kfree(evt);
2437 		}
2438 	}
2439 }
2440 
2441 /**
2442  * 	sdev_evt_send - send asserted event to uevent thread
2443  *	@sdev: scsi_device event occurred on
2444  *	@evt: event to send
2445  *
2446  *	Assert scsi device event asynchronously.
2447  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2448 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2449 {
2450 	unsigned long flags;
2451 
2452 #if 0
2453 	/* FIXME: currently this check eliminates all media change events
2454 	 * for polled devices.  Need to update to discriminate between AN
2455 	 * and polled events */
2456 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2457 		kfree(evt);
2458 		return;
2459 	}
2460 #endif
2461 
2462 	spin_lock_irqsave(&sdev->list_lock, flags);
2463 	list_add_tail(&evt->node, &sdev->event_list);
2464 	schedule_work(&sdev->event_work);
2465 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2466 }
2467 EXPORT_SYMBOL_GPL(sdev_evt_send);
2468 
2469 /**
2470  * 	sdev_evt_alloc - allocate a new scsi event
2471  *	@evt_type: type of event to allocate
2472  *	@gfpflags: GFP flags for allocation
2473  *
2474  *	Allocates and returns a new scsi_event.
2475  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2476 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2477 				  gfp_t gfpflags)
2478 {
2479 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2480 	if (!evt)
2481 		return NULL;
2482 
2483 	evt->evt_type = evt_type;
2484 	INIT_LIST_HEAD(&evt->node);
2485 
2486 	/* evt_type-specific initialization, if any */
2487 	switch (evt_type) {
2488 	case SDEV_EVT_MEDIA_CHANGE:
2489 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2490 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2491 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2492 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2493 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2494 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2495 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2496 	default:
2497 		/* do nothing */
2498 		break;
2499 	}
2500 
2501 	return evt;
2502 }
2503 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2504 
2505 /**
2506  * 	sdev_evt_send_simple - send asserted event to uevent thread
2507  *	@sdev: scsi_device event occurred on
2508  *	@evt_type: type of event to send
2509  *	@gfpflags: GFP flags for allocation
2510  *
2511  *	Assert scsi device event asynchronously, given an event type.
2512  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2513 void sdev_evt_send_simple(struct scsi_device *sdev,
2514 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2515 {
2516 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2517 	if (!evt) {
2518 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2519 			    evt_type);
2520 		return;
2521 	}
2522 
2523 	sdev_evt_send(sdev, evt);
2524 }
2525 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2526 
2527 /**
2528  *	scsi_device_quiesce - Block all commands except power management.
2529  *	@sdev:	scsi device to quiesce.
2530  *
2531  *	This works by trying to transition to the SDEV_QUIESCE state
2532  *	(which must be a legal transition).  When the device is in this
2533  *	state, only power management requests will be accepted, all others will
2534  *	be deferred.
2535  *
2536  *	Must be called with user context, may sleep.
2537  *
2538  *	Returns zero if unsuccessful or an error if not.
2539  */
2540 int
scsi_device_quiesce(struct scsi_device * sdev)2541 scsi_device_quiesce(struct scsi_device *sdev)
2542 {
2543 	struct request_queue *q = sdev->request_queue;
2544 	int err;
2545 
2546 	/*
2547 	 * It is allowed to call scsi_device_quiesce() multiple times from
2548 	 * the same context but concurrent scsi_device_quiesce() calls are
2549 	 * not allowed.
2550 	 */
2551 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2552 
2553 	if (sdev->quiesced_by == current)
2554 		return 0;
2555 
2556 	blk_set_pm_only(q);
2557 
2558 	blk_mq_freeze_queue(q);
2559 	/*
2560 	 * Ensure that the effect of blk_set_pm_only() will be visible
2561 	 * for percpu_ref_tryget() callers that occur after the queue
2562 	 * unfreeze even if the queue was already frozen before this function
2563 	 * was called. See also https://lwn.net/Articles/573497/.
2564 	 */
2565 	synchronize_rcu();
2566 	blk_mq_unfreeze_queue(q);
2567 
2568 	mutex_lock(&sdev->state_mutex);
2569 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2570 	if (err == 0)
2571 		sdev->quiesced_by = current;
2572 	else
2573 		blk_clear_pm_only(q);
2574 	mutex_unlock(&sdev->state_mutex);
2575 
2576 	return err;
2577 }
2578 EXPORT_SYMBOL(scsi_device_quiesce);
2579 
2580 /**
2581  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2582  *	@sdev:	scsi device to resume.
2583  *
2584  *	Moves the device from quiesced back to running and restarts the
2585  *	queues.
2586  *
2587  *	Must be called with user context, may sleep.
2588  */
scsi_device_resume(struct scsi_device * sdev)2589 void scsi_device_resume(struct scsi_device *sdev)
2590 {
2591 	/* check if the device state was mutated prior to resume, and if
2592 	 * so assume the state is being managed elsewhere (for example
2593 	 * device deleted during suspend)
2594 	 */
2595 	mutex_lock(&sdev->state_mutex);
2596 	if (sdev->sdev_state == SDEV_QUIESCE)
2597 		scsi_device_set_state(sdev, SDEV_RUNNING);
2598 	if (sdev->quiesced_by) {
2599 		sdev->quiesced_by = NULL;
2600 		blk_clear_pm_only(sdev->request_queue);
2601 	}
2602 	mutex_unlock(&sdev->state_mutex);
2603 }
2604 EXPORT_SYMBOL(scsi_device_resume);
2605 
2606 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2607 device_quiesce_fn(struct scsi_device *sdev, void *data)
2608 {
2609 	scsi_device_quiesce(sdev);
2610 }
2611 
2612 void
scsi_target_quiesce(struct scsi_target * starget)2613 scsi_target_quiesce(struct scsi_target *starget)
2614 {
2615 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2616 }
2617 EXPORT_SYMBOL(scsi_target_quiesce);
2618 
2619 static void
device_resume_fn(struct scsi_device * sdev,void * data)2620 device_resume_fn(struct scsi_device *sdev, void *data)
2621 {
2622 	scsi_device_resume(sdev);
2623 }
2624 
2625 void
scsi_target_resume(struct scsi_target * starget)2626 scsi_target_resume(struct scsi_target *starget)
2627 {
2628 	starget_for_each_device(starget, NULL, device_resume_fn);
2629 }
2630 EXPORT_SYMBOL(scsi_target_resume);
2631 
2632 /**
2633  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2634  * @sdev: device to block
2635  *
2636  * Pause SCSI command processing on the specified device. Does not sleep.
2637  *
2638  * Returns zero if successful or a negative error code upon failure.
2639  *
2640  * Notes:
2641  * This routine transitions the device to the SDEV_BLOCK state (which must be
2642  * a legal transition). When the device is in this state, command processing
2643  * is paused until the device leaves the SDEV_BLOCK state. See also
2644  * scsi_internal_device_unblock_nowait().
2645  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2646 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2647 {
2648 	struct request_queue *q = sdev->request_queue;
2649 	int err = 0;
2650 
2651 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2652 	if (err) {
2653 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2654 
2655 		if (err)
2656 			return err;
2657 	}
2658 
2659 	/*
2660 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2661 	 * block layer from calling the midlayer with this device's
2662 	 * request queue.
2663 	 */
2664 	blk_mq_quiesce_queue_nowait(q);
2665 	return 0;
2666 }
2667 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2668 
2669 /**
2670  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2671  * @sdev: device to block
2672  *
2673  * Pause SCSI command processing on the specified device and wait until all
2674  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2675  *
2676  * Returns zero if successful or a negative error code upon failure.
2677  *
2678  * Note:
2679  * This routine transitions the device to the SDEV_BLOCK state (which must be
2680  * a legal transition). When the device is in this state, command processing
2681  * is paused until the device leaves the SDEV_BLOCK state. See also
2682  * scsi_internal_device_unblock().
2683  */
scsi_internal_device_block(struct scsi_device * sdev)2684 static int scsi_internal_device_block(struct scsi_device *sdev)
2685 {
2686 	struct request_queue *q = sdev->request_queue;
2687 	int err;
2688 
2689 	mutex_lock(&sdev->state_mutex);
2690 	err = scsi_internal_device_block_nowait(sdev);
2691 	if (err == 0)
2692 		blk_mq_quiesce_queue(q);
2693 	mutex_unlock(&sdev->state_mutex);
2694 
2695 	return err;
2696 }
2697 
scsi_start_queue(struct scsi_device * sdev)2698 void scsi_start_queue(struct scsi_device *sdev)
2699 {
2700 	struct request_queue *q = sdev->request_queue;
2701 
2702 	blk_mq_unquiesce_queue(q);
2703 }
2704 
2705 /**
2706  * scsi_internal_device_unblock_nowait - resume a device after a block request
2707  * @sdev:	device to resume
2708  * @new_state:	state to set the device to after unblocking
2709  *
2710  * Restart the device queue for a previously suspended SCSI device. Does not
2711  * sleep.
2712  *
2713  * Returns zero if successful or a negative error code upon failure.
2714  *
2715  * Notes:
2716  * This routine transitions the device to the SDEV_RUNNING state or to one of
2717  * the offline states (which must be a legal transition) allowing the midlayer
2718  * to goose the queue for this device.
2719  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2720 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2721 					enum scsi_device_state new_state)
2722 {
2723 	switch (new_state) {
2724 	case SDEV_RUNNING:
2725 	case SDEV_TRANSPORT_OFFLINE:
2726 		break;
2727 	default:
2728 		return -EINVAL;
2729 	}
2730 
2731 	/*
2732 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2733 	 * offlined states and goose the device queue if successful.
2734 	 */
2735 	switch (sdev->sdev_state) {
2736 	case SDEV_BLOCK:
2737 	case SDEV_TRANSPORT_OFFLINE:
2738 		sdev->sdev_state = new_state;
2739 		break;
2740 	case SDEV_CREATED_BLOCK:
2741 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2742 		    new_state == SDEV_OFFLINE)
2743 			sdev->sdev_state = new_state;
2744 		else
2745 			sdev->sdev_state = SDEV_CREATED;
2746 		break;
2747 	case SDEV_CANCEL:
2748 	case SDEV_OFFLINE:
2749 		break;
2750 	default:
2751 		return -EINVAL;
2752 	}
2753 	scsi_start_queue(sdev);
2754 
2755 	return 0;
2756 }
2757 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2758 
2759 /**
2760  * scsi_internal_device_unblock - resume a device after a block request
2761  * @sdev:	device to resume
2762  * @new_state:	state to set the device to after unblocking
2763  *
2764  * Restart the device queue for a previously suspended SCSI device. May sleep.
2765  *
2766  * Returns zero if successful or a negative error code upon failure.
2767  *
2768  * Notes:
2769  * This routine transitions the device to the SDEV_RUNNING state or to one of
2770  * the offline states (which must be a legal transition) allowing the midlayer
2771  * to goose the queue for this device.
2772  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2773 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2774 					enum scsi_device_state new_state)
2775 {
2776 	int ret;
2777 
2778 	mutex_lock(&sdev->state_mutex);
2779 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2780 	mutex_unlock(&sdev->state_mutex);
2781 
2782 	return ret;
2783 }
2784 
2785 static void
device_block(struct scsi_device * sdev,void * data)2786 device_block(struct scsi_device *sdev, void *data)
2787 {
2788 	int ret;
2789 
2790 	ret = scsi_internal_device_block(sdev);
2791 
2792 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2793 		  dev_name(&sdev->sdev_gendev), ret);
2794 }
2795 
2796 static int
target_block(struct device * dev,void * data)2797 target_block(struct device *dev, void *data)
2798 {
2799 	if (scsi_is_target_device(dev))
2800 		starget_for_each_device(to_scsi_target(dev), NULL,
2801 					device_block);
2802 	return 0;
2803 }
2804 
2805 void
scsi_target_block(struct device * dev)2806 scsi_target_block(struct device *dev)
2807 {
2808 	if (scsi_is_target_device(dev))
2809 		starget_for_each_device(to_scsi_target(dev), NULL,
2810 					device_block);
2811 	else
2812 		device_for_each_child(dev, NULL, target_block);
2813 }
2814 EXPORT_SYMBOL_GPL(scsi_target_block);
2815 
2816 static void
device_unblock(struct scsi_device * sdev,void * data)2817 device_unblock(struct scsi_device *sdev, void *data)
2818 {
2819 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2820 }
2821 
2822 static int
target_unblock(struct device * dev,void * data)2823 target_unblock(struct device *dev, void *data)
2824 {
2825 	if (scsi_is_target_device(dev))
2826 		starget_for_each_device(to_scsi_target(dev), data,
2827 					device_unblock);
2828 	return 0;
2829 }
2830 
2831 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2832 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2833 {
2834 	if (scsi_is_target_device(dev))
2835 		starget_for_each_device(to_scsi_target(dev), &new_state,
2836 					device_unblock);
2837 	else
2838 		device_for_each_child(dev, &new_state, target_unblock);
2839 }
2840 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2841 
2842 int
scsi_host_block(struct Scsi_Host * shost)2843 scsi_host_block(struct Scsi_Host *shost)
2844 {
2845 	struct scsi_device *sdev;
2846 	int ret = 0;
2847 
2848 	/*
2849 	 * Call scsi_internal_device_block_nowait so we can avoid
2850 	 * calling synchronize_rcu() for each LUN.
2851 	 */
2852 	shost_for_each_device(sdev, shost) {
2853 		mutex_lock(&sdev->state_mutex);
2854 		ret = scsi_internal_device_block_nowait(sdev);
2855 		mutex_unlock(&sdev->state_mutex);
2856 		if (ret) {
2857 			scsi_device_put(sdev);
2858 			break;
2859 		}
2860 	}
2861 
2862 	/*
2863 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2864 	 * calling synchronize_rcu() once is enough.
2865 	 */
2866 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2867 
2868 	if (!ret)
2869 		synchronize_rcu();
2870 
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(scsi_host_block);
2874 
2875 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2876 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2877 {
2878 	struct scsi_device *sdev;
2879 	int ret = 0;
2880 
2881 	shost_for_each_device(sdev, shost) {
2882 		ret = scsi_internal_device_unblock(sdev, new_state);
2883 		if (ret) {
2884 			scsi_device_put(sdev);
2885 			break;
2886 		}
2887 	}
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2891 
2892 /**
2893  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2894  * @sgl:	scatter-gather list
2895  * @sg_count:	number of segments in sg
2896  * @offset:	offset in bytes into sg, on return offset into the mapped area
2897  * @len:	bytes to map, on return number of bytes mapped
2898  *
2899  * Returns virtual address of the start of the mapped page
2900  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2901 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2902 			  size_t *offset, size_t *len)
2903 {
2904 	int i;
2905 	size_t sg_len = 0, len_complete = 0;
2906 	struct scatterlist *sg;
2907 	struct page *page;
2908 
2909 	WARN_ON(!irqs_disabled());
2910 
2911 	for_each_sg(sgl, sg, sg_count, i) {
2912 		len_complete = sg_len; /* Complete sg-entries */
2913 		sg_len += sg->length;
2914 		if (sg_len > *offset)
2915 			break;
2916 	}
2917 
2918 	if (unlikely(i == sg_count)) {
2919 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2920 			"elements %d\n",
2921 		       __func__, sg_len, *offset, sg_count);
2922 		WARN_ON(1);
2923 		return NULL;
2924 	}
2925 
2926 	/* Offset starting from the beginning of first page in this sg-entry */
2927 	*offset = *offset - len_complete + sg->offset;
2928 
2929 	/* Assumption: contiguous pages can be accessed as "page + i" */
2930 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2931 	*offset &= ~PAGE_MASK;
2932 
2933 	/* Bytes in this sg-entry from *offset to the end of the page */
2934 	sg_len = PAGE_SIZE - *offset;
2935 	if (*len > sg_len)
2936 		*len = sg_len;
2937 
2938 	return kmap_atomic(page);
2939 }
2940 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2941 
2942 /**
2943  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2944  * @virt:	virtual address to be unmapped
2945  */
scsi_kunmap_atomic_sg(void * virt)2946 void scsi_kunmap_atomic_sg(void *virt)
2947 {
2948 	kunmap_atomic(virt);
2949 }
2950 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2951 
sdev_disable_disk_events(struct scsi_device * sdev)2952 void sdev_disable_disk_events(struct scsi_device *sdev)
2953 {
2954 	atomic_inc(&sdev->disk_events_disable_depth);
2955 }
2956 EXPORT_SYMBOL(sdev_disable_disk_events);
2957 
sdev_enable_disk_events(struct scsi_device * sdev)2958 void sdev_enable_disk_events(struct scsi_device *sdev)
2959 {
2960 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2961 		return;
2962 	atomic_dec(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_enable_disk_events);
2965 
designator_prio(const unsigned char * d)2966 static unsigned char designator_prio(const unsigned char *d)
2967 {
2968 	if (d[1] & 0x30)
2969 		/* not associated with LUN */
2970 		return 0;
2971 
2972 	if (d[3] == 0)
2973 		/* invalid length */
2974 		return 0;
2975 
2976 	/*
2977 	 * Order of preference for lun descriptor:
2978 	 * - SCSI name string
2979 	 * - NAA IEEE Registered Extended
2980 	 * - EUI-64 based 16-byte
2981 	 * - EUI-64 based 12-byte
2982 	 * - NAA IEEE Registered
2983 	 * - NAA IEEE Extended
2984 	 * - EUI-64 based 8-byte
2985 	 * - SCSI name string (truncated)
2986 	 * - T10 Vendor ID
2987 	 * as longer descriptors reduce the likelyhood
2988 	 * of identification clashes.
2989 	 */
2990 
2991 	switch (d[1] & 0xf) {
2992 	case 8:
2993 		/* SCSI name string, variable-length UTF-8 */
2994 		return 9;
2995 	case 3:
2996 		switch (d[4] >> 4) {
2997 		case 6:
2998 			/* NAA registered extended */
2999 			return 8;
3000 		case 5:
3001 			/* NAA registered */
3002 			return 5;
3003 		case 4:
3004 			/* NAA extended */
3005 			return 4;
3006 		case 3:
3007 			/* NAA locally assigned */
3008 			return 1;
3009 		default:
3010 			break;
3011 		}
3012 		break;
3013 	case 2:
3014 		switch (d[3]) {
3015 		case 16:
3016 			/* EUI64-based, 16 byte */
3017 			return 7;
3018 		case 12:
3019 			/* EUI64-based, 12 byte */
3020 			return 6;
3021 		case 8:
3022 			/* EUI64-based, 8 byte */
3023 			return 3;
3024 		default:
3025 			break;
3026 		}
3027 		break;
3028 	case 1:
3029 		/* T10 vendor ID */
3030 		return 1;
3031 	default:
3032 		break;
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 /**
3039  * scsi_vpd_lun_id - return a unique device identification
3040  * @sdev: SCSI device
3041  * @id:   buffer for the identification
3042  * @id_len:  length of the buffer
3043  *
3044  * Copies a unique device identification into @id based
3045  * on the information in the VPD page 0x83 of the device.
3046  * The string will be formatted as a SCSI name string.
3047  *
3048  * Returns the length of the identification or error on failure.
3049  * If the identifier is longer than the supplied buffer the actual
3050  * identifier length is returned and the buffer is not zero-padded.
3051  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3052 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3053 {
3054 	u8 cur_id_prio = 0;
3055 	u8 cur_id_size = 0;
3056 	const unsigned char *d, *cur_id_str;
3057 	const struct scsi_vpd *vpd_pg83;
3058 	int id_size = -EINVAL;
3059 
3060 	rcu_read_lock();
3061 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3062 	if (!vpd_pg83) {
3063 		rcu_read_unlock();
3064 		return -ENXIO;
3065 	}
3066 
3067 	/* The id string must be at least 20 bytes + terminating NULL byte */
3068 	if (id_len < 21) {
3069 		rcu_read_unlock();
3070 		return -EINVAL;
3071 	}
3072 
3073 	memset(id, 0, id_len);
3074 	for (d = vpd_pg83->data + 4;
3075 	     d < vpd_pg83->data + vpd_pg83->len;
3076 	     d += d[3] + 4) {
3077 		u8 prio = designator_prio(d);
3078 
3079 		if (prio == 0 || cur_id_prio > prio)
3080 			continue;
3081 
3082 		switch (d[1] & 0xf) {
3083 		case 0x1:
3084 			/* T10 Vendor ID */
3085 			if (cur_id_size > d[3])
3086 				break;
3087 			cur_id_prio = prio;
3088 			cur_id_size = d[3];
3089 			if (cur_id_size + 4 > id_len)
3090 				cur_id_size = id_len - 4;
3091 			cur_id_str = d + 4;
3092 			id_size = snprintf(id, id_len, "t10.%*pE",
3093 					   cur_id_size, cur_id_str);
3094 			break;
3095 		case 0x2:
3096 			/* EUI-64 */
3097 			cur_id_prio = prio;
3098 			cur_id_size = d[3];
3099 			cur_id_str = d + 4;
3100 			switch (cur_id_size) {
3101 			case 8:
3102 				id_size = snprintf(id, id_len,
3103 						   "eui.%8phN",
3104 						   cur_id_str);
3105 				break;
3106 			case 12:
3107 				id_size = snprintf(id, id_len,
3108 						   "eui.%12phN",
3109 						   cur_id_str);
3110 				break;
3111 			case 16:
3112 				id_size = snprintf(id, id_len,
3113 						   "eui.%16phN",
3114 						   cur_id_str);
3115 				break;
3116 			default:
3117 				break;
3118 			}
3119 			break;
3120 		case 0x3:
3121 			/* NAA */
3122 			cur_id_prio = prio;
3123 			cur_id_size = d[3];
3124 			cur_id_str = d + 4;
3125 			switch (cur_id_size) {
3126 			case 8:
3127 				id_size = snprintf(id, id_len,
3128 						   "naa.%8phN",
3129 						   cur_id_str);
3130 				break;
3131 			case 16:
3132 				id_size = snprintf(id, id_len,
3133 						   "naa.%16phN",
3134 						   cur_id_str);
3135 				break;
3136 			default:
3137 				break;
3138 			}
3139 			break;
3140 		case 0x8:
3141 			/* SCSI name string */
3142 			if (cur_id_size > d[3])
3143 				break;
3144 			/* Prefer others for truncated descriptor */
3145 			if (d[3] > id_len) {
3146 				prio = 2;
3147 				if (cur_id_prio > prio)
3148 					break;
3149 			}
3150 			cur_id_prio = prio;
3151 			cur_id_size = id_size = d[3];
3152 			cur_id_str = d + 4;
3153 			if (cur_id_size >= id_len)
3154 				cur_id_size = id_len - 1;
3155 			memcpy(id, cur_id_str, cur_id_size);
3156 			break;
3157 		default:
3158 			break;
3159 		}
3160 	}
3161 	rcu_read_unlock();
3162 
3163 	return id_size;
3164 }
3165 EXPORT_SYMBOL(scsi_vpd_lun_id);
3166 
3167 /*
3168  * scsi_vpd_tpg_id - return a target port group identifier
3169  * @sdev: SCSI device
3170  *
3171  * Returns the Target Port Group identifier from the information
3172  * froom VPD page 0x83 of the device.
3173  *
3174  * Returns the identifier or error on failure.
3175  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3176 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3177 {
3178 	const unsigned char *d;
3179 	const struct scsi_vpd *vpd_pg83;
3180 	int group_id = -EAGAIN, rel_port = -1;
3181 
3182 	rcu_read_lock();
3183 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3184 	if (!vpd_pg83) {
3185 		rcu_read_unlock();
3186 		return -ENXIO;
3187 	}
3188 
3189 	d = vpd_pg83->data + 4;
3190 	while (d < vpd_pg83->data + vpd_pg83->len) {
3191 		switch (d[1] & 0xf) {
3192 		case 0x4:
3193 			/* Relative target port */
3194 			rel_port = get_unaligned_be16(&d[6]);
3195 			break;
3196 		case 0x5:
3197 			/* Target port group */
3198 			group_id = get_unaligned_be16(&d[6]);
3199 			break;
3200 		default:
3201 			break;
3202 		}
3203 		d += d[3] + 4;
3204 	}
3205 	rcu_read_unlock();
3206 
3207 	if (group_id >= 0 && rel_id && rel_port != -1)
3208 		*rel_id = rel_port;
3209 
3210 	return group_id;
3211 }
3212 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3213 
3214 /**
3215  * scsi_build_sense - build sense data for a command
3216  * @scmd:	scsi command for which the sense should be formatted
3217  * @desc:	Sense format (non-zero == descriptor format,
3218  *              0 == fixed format)
3219  * @key:	Sense key
3220  * @asc:	Additional sense code
3221  * @ascq:	Additional sense code qualifier
3222  *
3223  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3224 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3225 {
3226 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3227 	scmd->result = SAM_STAT_CHECK_CONDITION;
3228 }
3229 EXPORT_SYMBOL_GPL(scsi_build_sense);
3230