1 /*
2  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
3  *
4  * Copyright (c) 1995-2000 Advanced System Products, Inc.
5  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
6  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
7  * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
8  * All Rights Reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 /*
17  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
18  * changed its name to ConnectCom Solutions, Inc.
19  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
20  */
21 
22 #include <linux/module.h>
23 #include <linux/string.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/ioport.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/proc_fs.h>
32 #include <linux/init.h>
33 #include <linux/blkdev.h>
34 #include <linux/isa.h>
35 #include <linux/eisa.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/firmware.h>
40 #include <linux/dmapool.h>
41 
42 #include <asm/io.h>
43 #include <asm/dma.h>
44 
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 
51 #define DRV_NAME "advansys"
52 #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
53 
54 /* FIXME:
55  *
56  *  1. Use scsi_transport_spi
57  *  2. advansys_info is not safe against multiple simultaneous callers
58  *  3. Add module_param to override ISA/VLB ioport array
59  */
60 
61 /* Enable driver /proc statistics. */
62 #define ADVANSYS_STATS
63 
64 /* Enable driver tracing. */
65 #undef ADVANSYS_DEBUG
66 
67 typedef unsigned char uchar;
68 
69 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
70 
71 #define PCI_VENDOR_ID_ASP		0x10cd
72 #define PCI_DEVICE_ID_ASP_1200A		0x1100
73 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
74 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
75 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
76 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
77 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
78 
79 #define PortAddr                 unsigned int	/* port address size  */
80 #define inp(port)                inb(port)
81 #define outp(port, byte)         outb((byte), (port))
82 
83 #define inpw(port)               inw(port)
84 #define outpw(port, word)        outw((word), (port))
85 
86 #define ASC_MAX_SG_QUEUE    7
87 #define ASC_MAX_SG_LIST     255
88 
89 #define ASC_CS_TYPE  unsigned short
90 
91 #define ASC_IS_ISA          (0x0001)
92 #define ASC_IS_ISAPNP       (0x0081)
93 #define ASC_IS_EISA         (0x0002)
94 #define ASC_IS_PCI          (0x0004)
95 #define ASC_IS_PCI_ULTRA    (0x0104)
96 #define ASC_IS_PCMCIA       (0x0008)
97 #define ASC_IS_MCA          (0x0020)
98 #define ASC_IS_VL           (0x0040)
99 #define ASC_IS_WIDESCSI_16  (0x0100)
100 #define ASC_IS_WIDESCSI_32  (0x0200)
101 #define ASC_IS_BIG_ENDIAN   (0x8000)
102 
103 #define ASC_CHIP_MIN_VER_VL      (0x01)
104 #define ASC_CHIP_MAX_VER_VL      (0x07)
105 #define ASC_CHIP_MIN_VER_PCI     (0x09)
106 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
107 #define ASC_CHIP_VER_PCI_BIT     (0x08)
108 #define ASC_CHIP_MIN_VER_ISA     (0x11)
109 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
110 #define ASC_CHIP_MAX_VER_ISA     (0x27)
111 #define ASC_CHIP_VER_ISA_BIT     (0x30)
112 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
113 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
114 #define ASC_CHIP_VER_PCI             0x08
115 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
116 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
117 #define ASC_CHIP_MIN_VER_EISA (0x41)
118 #define ASC_CHIP_MAX_VER_EISA (0x47)
119 #define ASC_CHIP_VER_EISA_BIT (0x40)
120 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
121 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
122 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
123 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
124 
125 #define ASC_SCSI_ID_BITS  3
126 #define ASC_SCSI_TIX_TYPE     uchar
127 #define ASC_ALL_DEVICE_BIT_SET  0xFF
128 #define ASC_SCSI_BIT_ID_TYPE  uchar
129 #define ASC_MAX_TID       7
130 #define ASC_MAX_LUN       7
131 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
132 #define ASC_MAX_SENSE_LEN   32
133 #define ASC_MIN_SENSE_LEN   14
134 #define ASC_SCSI_RESET_HOLD_TIME_US  60
135 
136 /*
137  * Narrow boards only support 12-byte commands, while wide boards
138  * extend to 16-byte commands.
139  */
140 #define ASC_MAX_CDB_LEN     12
141 #define ADV_MAX_CDB_LEN     16
142 
143 #define MS_SDTR_LEN    0x03
144 #define MS_WDTR_LEN    0x02
145 
146 #define ASC_SG_LIST_PER_Q   7
147 #define QS_FREE        0x00
148 #define QS_READY       0x01
149 #define QS_DISC1       0x02
150 #define QS_DISC2       0x04
151 #define QS_BUSY        0x08
152 #define QS_ABORTED     0x40
153 #define QS_DONE        0x80
154 #define QC_NO_CALLBACK   0x01
155 #define QC_SG_SWAP_QUEUE 0x02
156 #define QC_SG_HEAD       0x04
157 #define QC_DATA_IN       0x08
158 #define QC_DATA_OUT      0x10
159 #define QC_URGENT        0x20
160 #define QC_MSG_OUT       0x40
161 #define QC_REQ_SENSE     0x80
162 #define QCSG_SG_XFER_LIST  0x02
163 #define QCSG_SG_XFER_MORE  0x04
164 #define QCSG_SG_XFER_END   0x08
165 #define QD_IN_PROGRESS       0x00
166 #define QD_NO_ERROR          0x01
167 #define QD_ABORTED_BY_HOST   0x02
168 #define QD_WITH_ERROR        0x04
169 #define QD_INVALID_REQUEST   0x80
170 #define QD_INVALID_HOST_NUM  0x81
171 #define QD_INVALID_DEVICE    0x82
172 #define QD_ERR_INTERNAL      0xFF
173 #define QHSTA_NO_ERROR               0x00
174 #define QHSTA_M_SEL_TIMEOUT          0x11
175 #define QHSTA_M_DATA_OVER_RUN        0x12
176 #define QHSTA_M_DATA_UNDER_RUN       0x12
177 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
178 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
179 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
180 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
181 #define QHSTA_D_HOST_ABORT_FAILED       0x23
182 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
183 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
184 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
185 #define QHSTA_M_WTM_TIMEOUT         0x41
186 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
187 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
188 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
189 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
190 #define QHSTA_M_BAD_TAG_CODE        0x46
191 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
192 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
193 #define QHSTA_D_LRAM_CMP_ERROR        0x81
194 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
195 #define ASC_FLAG_SCSIQ_REQ        0x01
196 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
197 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
198 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
199 #define ASC_FLAG_WIN16            0x10
200 #define ASC_FLAG_WIN32            0x20
201 #define ASC_FLAG_ISA_OVER_16MB    0x40
202 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
203 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
204 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
205 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
206 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
207 #define ASC_SCSIQ_CPY_BEG              4
208 #define ASC_SCSIQ_SGHD_CPY_BEG         2
209 #define ASC_SCSIQ_B_FWD                0
210 #define ASC_SCSIQ_B_BWD                1
211 #define ASC_SCSIQ_B_STATUS             2
212 #define ASC_SCSIQ_B_QNO                3
213 #define ASC_SCSIQ_B_CNTL               4
214 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
215 #define ASC_SCSIQ_D_DATA_ADDR          8
216 #define ASC_SCSIQ_D_DATA_CNT          12
217 #define ASC_SCSIQ_B_SENSE_LEN         20
218 #define ASC_SCSIQ_DONE_INFO_BEG       22
219 #define ASC_SCSIQ_D_SRBPTR            22
220 #define ASC_SCSIQ_B_TARGET_IX         26
221 #define ASC_SCSIQ_B_CDB_LEN           28
222 #define ASC_SCSIQ_B_TAG_CODE          29
223 #define ASC_SCSIQ_W_VM_ID             30
224 #define ASC_SCSIQ_DONE_STATUS         32
225 #define ASC_SCSIQ_HOST_STATUS         33
226 #define ASC_SCSIQ_SCSI_STATUS         34
227 #define ASC_SCSIQ_CDB_BEG             36
228 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
229 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
230 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
231 #define ASC_SCSIQ_B_SG_WK_QP          49
232 #define ASC_SCSIQ_B_SG_WK_IX          50
233 #define ASC_SCSIQ_W_ALT_DC1           52
234 #define ASC_SCSIQ_B_LIST_CNT          6
235 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
236 #define ASC_SGQ_B_SG_CNTL             4
237 #define ASC_SGQ_B_SG_HEAD_QP          5
238 #define ASC_SGQ_B_SG_LIST_CNT         6
239 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
240 #define ASC_SGQ_LIST_BEG              8
241 #define ASC_DEF_SCSI1_QNG    4
242 #define ASC_MAX_SCSI1_QNG    4
243 #define ASC_DEF_SCSI2_QNG    16
244 #define ASC_MAX_SCSI2_QNG    32
245 #define ASC_TAG_CODE_MASK    0x23
246 #define ASC_STOP_REQ_RISC_STOP      0x01
247 #define ASC_STOP_ACK_RISC_STOP      0x03
248 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
249 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
250 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
251 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
252 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
253 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
254 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
255 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
256 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
257 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
258 
259 typedef struct asc_scsiq_1 {
260 	uchar status;
261 	uchar q_no;
262 	uchar cntl;
263 	uchar sg_queue_cnt;
264 	uchar target_id;
265 	uchar target_lun;
266 	__le32 data_addr;
267 	__le32 data_cnt;
268 	__le32 sense_addr;
269 	uchar sense_len;
270 	uchar extra_bytes;
271 } ASC_SCSIQ_1;
272 
273 typedef struct asc_scsiq_2 {
274 	u32 srb_tag;
275 	uchar target_ix;
276 	uchar flag;
277 	uchar cdb_len;
278 	uchar tag_code;
279 	ushort vm_id;
280 } ASC_SCSIQ_2;
281 
282 typedef struct asc_scsiq_3 {
283 	uchar done_stat;
284 	uchar host_stat;
285 	uchar scsi_stat;
286 	uchar scsi_msg;
287 } ASC_SCSIQ_3;
288 
289 typedef struct asc_scsiq_4 {
290 	uchar cdb[ASC_MAX_CDB_LEN];
291 	uchar y_first_sg_list_qp;
292 	uchar y_working_sg_qp;
293 	uchar y_working_sg_ix;
294 	uchar y_res;
295 	ushort x_req_count;
296 	ushort x_reconnect_rtn;
297 	__le32 x_saved_data_addr;
298 	__le32 x_saved_data_cnt;
299 } ASC_SCSIQ_4;
300 
301 typedef struct asc_q_done_info {
302 	ASC_SCSIQ_2 d2;
303 	ASC_SCSIQ_3 d3;
304 	uchar q_status;
305 	uchar q_no;
306 	uchar cntl;
307 	uchar sense_len;
308 	uchar extra_bytes;
309 	uchar res;
310 	u32 remain_bytes;
311 } ASC_QDONE_INFO;
312 
313 typedef struct asc_sg_list {
314 	__le32 addr;
315 	__le32 bytes;
316 } ASC_SG_LIST;
317 
318 typedef struct asc_sg_head {
319 	ushort entry_cnt;
320 	ushort queue_cnt;
321 	ushort entry_to_copy;
322 	ushort res;
323 	ASC_SG_LIST sg_list[0];
324 } ASC_SG_HEAD;
325 
326 typedef struct asc_scsi_q {
327 	ASC_SCSIQ_1 q1;
328 	ASC_SCSIQ_2 q2;
329 	uchar *cdbptr;
330 	ASC_SG_HEAD *sg_head;
331 	ushort remain_sg_entry_cnt;
332 	ushort next_sg_index;
333 } ASC_SCSI_Q;
334 
335 typedef struct asc_scsi_bios_req_q {
336 	ASC_SCSIQ_1 r1;
337 	ASC_SCSIQ_2 r2;
338 	uchar *cdbptr;
339 	ASC_SG_HEAD *sg_head;
340 	uchar *sense_ptr;
341 	ASC_SCSIQ_3 r3;
342 	uchar cdb[ASC_MAX_CDB_LEN];
343 	uchar sense[ASC_MIN_SENSE_LEN];
344 } ASC_SCSI_BIOS_REQ_Q;
345 
346 typedef struct asc_risc_q {
347 	uchar fwd;
348 	uchar bwd;
349 	ASC_SCSIQ_1 i1;
350 	ASC_SCSIQ_2 i2;
351 	ASC_SCSIQ_3 i3;
352 	ASC_SCSIQ_4 i4;
353 } ASC_RISC_Q;
354 
355 typedef struct asc_sg_list_q {
356 	uchar seq_no;
357 	uchar q_no;
358 	uchar cntl;
359 	uchar sg_head_qp;
360 	uchar sg_list_cnt;
361 	uchar sg_cur_list_cnt;
362 } ASC_SG_LIST_Q;
363 
364 typedef struct asc_risc_sg_list_q {
365 	uchar fwd;
366 	uchar bwd;
367 	ASC_SG_LIST_Q sg;
368 	ASC_SG_LIST sg_list[7];
369 } ASC_RISC_SG_LIST_Q;
370 
371 #define ASCQ_ERR_Q_STATUS             0x0D
372 #define ASCQ_ERR_CUR_QNG              0x17
373 #define ASCQ_ERR_SG_Q_LINKS           0x18
374 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
375 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
376 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
377 
378 /*
379  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
380  */
381 #define ASC_WARN_NO_ERROR             0x0000
382 #define ASC_WARN_IO_PORT_ROTATE       0x0001
383 #define ASC_WARN_EEPROM_CHKSUM        0x0002
384 #define ASC_WARN_IRQ_MODIFIED         0x0004
385 #define ASC_WARN_AUTO_CONFIG          0x0008
386 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
387 #define ASC_WARN_EEPROM_RECOVER       0x0020
388 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
389 
390 /*
391  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
392  */
393 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
394 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
395 #define ASC_IERR_SET_PC_ADDR		0x0004
396 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
397 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
398 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
399 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
400 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
401 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
402 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
403 #define ASC_IERR_NO_BUS_TYPE		0x0400
404 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
405 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
406 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
407 
408 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
409 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
410 #define ASC_MIN_FREE_Q        (0x02)
411 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
412 #define ASC_MAX_TOTAL_QNG 240
413 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
414 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
415 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
416 #define ASC_MAX_INRAM_TAG_QNG   16
417 #define ASC_IOADR_GAP   0x10
418 #define ASC_SYN_MAX_OFFSET         0x0F
419 #define ASC_DEF_SDTR_OFFSET        0x0F
420 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
421 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
422 
423 /* The narrow chip only supports a limited selection of transfer rates.
424  * These are encoded in the range 0..7 or 0..15 depending whether the chip
425  * is Ultra-capable or not.  These tables let us convert from one to the other.
426  */
427 static const unsigned char asc_syn_xfer_period[8] = {
428 	25, 30, 35, 40, 50, 60, 70, 85
429 };
430 
431 static const unsigned char asc_syn_ultra_xfer_period[16] = {
432 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
433 };
434 
435 typedef struct ext_msg {
436 	uchar msg_type;
437 	uchar msg_len;
438 	uchar msg_req;
439 	union {
440 		struct {
441 			uchar sdtr_xfer_period;
442 			uchar sdtr_req_ack_offset;
443 		} sdtr;
444 		struct {
445 			uchar wdtr_width;
446 		} wdtr;
447 		struct {
448 			uchar mdp_b3;
449 			uchar mdp_b2;
450 			uchar mdp_b1;
451 			uchar mdp_b0;
452 		} mdp;
453 	} u_ext_msg;
454 	uchar res;
455 } EXT_MSG;
456 
457 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
458 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
459 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
460 #define mdp_b3          u_ext_msg.mdp_b3
461 #define mdp_b2          u_ext_msg.mdp_b2
462 #define mdp_b1          u_ext_msg.mdp_b1
463 #define mdp_b0          u_ext_msg.mdp_b0
464 
465 typedef struct asc_dvc_cfg {
466 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
467 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
468 	ASC_SCSI_BIT_ID_TYPE disc_enable;
469 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
470 	uchar chip_scsi_id;
471 	uchar isa_dma_speed;
472 	uchar isa_dma_channel;
473 	uchar chip_version;
474 	ushort mcode_date;
475 	ushort mcode_version;
476 	uchar max_tag_qng[ASC_MAX_TID + 1];
477 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
478 	uchar adapter_info[6];
479 } ASC_DVC_CFG;
480 
481 #define ASC_DEF_DVC_CNTL       0xFFFF
482 #define ASC_DEF_CHIP_SCSI_ID   7
483 #define ASC_DEF_ISA_DMA_SPEED  4
484 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
485 #define ASC_INIT_STATE_END_GET_CFG   0x0002
486 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
487 #define ASC_INIT_STATE_END_SET_CFG   0x0008
488 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
489 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
490 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
491 #define ASC_INIT_STATE_END_INQUIRY   0x0080
492 #define ASC_INIT_RESET_SCSI_DONE     0x0100
493 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
494 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
495 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
496 #define ASC_MIN_TAGGED_CMD  7
497 #define ASC_MAX_SCSI_RESET_WAIT      30
498 #define ASC_OVERRUN_BSIZE		64
499 
500 struct asc_dvc_var;		/* Forward Declaration. */
501 
502 typedef struct asc_dvc_var {
503 	PortAddr iop_base;
504 	ushort err_code;
505 	ushort dvc_cntl;
506 	ushort bug_fix_cntl;
507 	ushort bus_type;
508 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
509 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
510 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
511 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
512 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
513 	ASC_SCSI_BIT_ID_TYPE start_motor;
514 	uchar *overrun_buf;
515 	dma_addr_t overrun_dma;
516 	uchar scsi_reset_wait;
517 	uchar chip_no;
518 	bool is_in_int;
519 	uchar max_total_qng;
520 	uchar cur_total_qng;
521 	uchar in_critical_cnt;
522 	uchar last_q_shortage;
523 	ushort init_state;
524 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
525 	uchar max_dvc_qng[ASC_MAX_TID + 1];
526 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
527 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
528 	const uchar *sdtr_period_tbl;
529 	ASC_DVC_CFG *cfg;
530 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
531 	char redo_scam;
532 	ushort res2;
533 	uchar dos_int13_table[ASC_MAX_TID + 1];
534 	unsigned int max_dma_count;
535 	ASC_SCSI_BIT_ID_TYPE no_scam;
536 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
537 	uchar min_sdtr_index;
538 	uchar max_sdtr_index;
539 	struct asc_board *drv_ptr;
540 	unsigned int uc_break;
541 } ASC_DVC_VAR;
542 
543 typedef struct asc_dvc_inq_info {
544 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
545 } ASC_DVC_INQ_INFO;
546 
547 typedef struct asc_cap_info {
548 	u32 lba;
549 	u32 blk_size;
550 } ASC_CAP_INFO;
551 
552 typedef struct asc_cap_info_array {
553 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
554 } ASC_CAP_INFO_ARRAY;
555 
556 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
557 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
558 #define ASC_CNTL_INITIATOR         (ushort)0x0001
559 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
560 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
561 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
562 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
563 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
564 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
565 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
566 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
567 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
568 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
569 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
570 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
571 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
572 #define ASC_EEP_DVC_CFG_BEG_VL    2
573 #define ASC_EEP_MAX_DVC_ADDR_VL   15
574 #define ASC_EEP_DVC_CFG_BEG      32
575 #define ASC_EEP_MAX_DVC_ADDR     45
576 #define ASC_EEP_MAX_RETRY        20
577 
578 /*
579  * These macros keep the chip SCSI id and ISA DMA speed
580  * bitfields in board order. C bitfields aren't portable
581  * between big and little-endian platforms so they are
582  * not used.
583  */
584 
585 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
586 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
587 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
588    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
589 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
590    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
591 
592 typedef struct asceep_config {
593 	ushort cfg_lsw;
594 	ushort cfg_msw;
595 	uchar init_sdtr;
596 	uchar disc_enable;
597 	uchar use_cmd_qng;
598 	uchar start_motor;
599 	uchar max_total_qng;
600 	uchar max_tag_qng;
601 	uchar bios_scan;
602 	uchar power_up_wait;
603 	uchar no_scam;
604 	uchar id_speed;		/* low order 4 bits is chip scsi id */
605 	/* high order 4 bits is isa dma speed */
606 	uchar dos_int13_table[ASC_MAX_TID + 1];
607 	uchar adapter_info[6];
608 	ushort cntl;
609 	ushort chksum;
610 } ASCEEP_CONFIG;
611 
612 #define ASC_EEP_CMD_READ          0x80
613 #define ASC_EEP_CMD_WRITE         0x40
614 #define ASC_EEP_CMD_WRITE_ABLE    0x30
615 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
616 #define ASCV_MSGOUT_BEG         0x0000
617 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
618 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
619 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
620 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
621 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
622 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
623 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
624 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
625 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
626 #define ASCV_BREAK_ADDR           (ushort)0x0028
627 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
628 #define ASCV_BREAK_CONTROL        (ushort)0x002C
629 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
630 
631 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
632 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
633 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
634 #define ASCV_STOP_CODE_B      (ushort)0x0036
635 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
636 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
637 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
638 #define ASCV_HALTCODE_W       (ushort)0x0040
639 #define ASCV_CHKSUM_W         (ushort)0x0042
640 #define ASCV_MC_DATE_W        (ushort)0x0044
641 #define ASCV_MC_VER_W         (ushort)0x0046
642 #define ASCV_NEXTRDY_B        (ushort)0x0048
643 #define ASCV_DONENEXT_B       (ushort)0x0049
644 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
645 #define ASCV_SCSIBUSY_B       (ushort)0x004B
646 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
647 #define ASCV_CURCDB_B         (ushort)0x004D
648 #define ASCV_RCLUN_B          (ushort)0x004E
649 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
650 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
651 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
652 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
653 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
654 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
655 #define ASCV_NULL_TARGET_B    (ushort)0x0057
656 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
657 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
658 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
659 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
660 #define ASCV_HOST_FLAG_B      (ushort)0x005D
661 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
662 #define ASCV_VER_SERIAL_B     (ushort)0x0065
663 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
664 #define ASCV_WTM_FLAG_B       (ushort)0x0068
665 #define ASCV_RISC_FLAG_B      (ushort)0x006A
666 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
667 #define ASC_HOST_FLAG_IN_ISR        0x01
668 #define ASC_HOST_FLAG_ACK_INT       0x02
669 #define ASC_RISC_FLAG_GEN_INT      0x01
670 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
671 #define IOP_CTRL         (0x0F)
672 #define IOP_STATUS       (0x0E)
673 #define IOP_INT_ACK      IOP_STATUS
674 #define IOP_REG_IFC      (0x0D)
675 #define IOP_SYN_OFFSET    (0x0B)
676 #define IOP_EXTRA_CONTROL (0x0D)
677 #define IOP_REG_PC        (0x0C)
678 #define IOP_RAM_ADDR      (0x0A)
679 #define IOP_RAM_DATA      (0x08)
680 #define IOP_EEP_DATA      (0x06)
681 #define IOP_EEP_CMD       (0x07)
682 #define IOP_VERSION       (0x03)
683 #define IOP_CONFIG_HIGH   (0x04)
684 #define IOP_CONFIG_LOW    (0x02)
685 #define IOP_SIG_BYTE      (0x01)
686 #define IOP_SIG_WORD      (0x00)
687 #define IOP_REG_DC1      (0x0E)
688 #define IOP_REG_DC0      (0x0C)
689 #define IOP_REG_SB       (0x0B)
690 #define IOP_REG_DA1      (0x0A)
691 #define IOP_REG_DA0      (0x08)
692 #define IOP_REG_SC       (0x09)
693 #define IOP_DMA_SPEED    (0x07)
694 #define IOP_REG_FLAG     (0x07)
695 #define IOP_FIFO_H       (0x06)
696 #define IOP_FIFO_L       (0x04)
697 #define IOP_REG_ID       (0x05)
698 #define IOP_REG_QP       (0x03)
699 #define IOP_REG_IH       (0x02)
700 #define IOP_REG_IX       (0x01)
701 #define IOP_REG_AX       (0x00)
702 #define IFC_REG_LOCK      (0x00)
703 #define IFC_REG_UNLOCK    (0x09)
704 #define IFC_WR_EN_FILTER  (0x10)
705 #define IFC_RD_NO_EEPROM  (0x10)
706 #define IFC_SLEW_RATE     (0x20)
707 #define IFC_ACT_NEG       (0x40)
708 #define IFC_INP_FILTER    (0x80)
709 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
710 #define SC_SEL   (uchar)(0x80)
711 #define SC_BSY   (uchar)(0x40)
712 #define SC_ACK   (uchar)(0x20)
713 #define SC_REQ   (uchar)(0x10)
714 #define SC_ATN   (uchar)(0x08)
715 #define SC_IO    (uchar)(0x04)
716 #define SC_CD    (uchar)(0x02)
717 #define SC_MSG   (uchar)(0x01)
718 #define SEC_SCSI_CTL         (uchar)(0x80)
719 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
720 #define SEC_SLEW_RATE        (uchar)(0x20)
721 #define SEC_ENABLE_FILTER    (uchar)(0x10)
722 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
723 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
724 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
725 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
726 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
727 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
728 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
729 #define ASC_MAX_QNO        0xF8
730 #define ASC_DATA_SEC_BEG   (ushort)0x0080
731 #define ASC_DATA_SEC_END   (ushort)0x0080
732 #define ASC_CODE_SEC_BEG   (ushort)0x0080
733 #define ASC_CODE_SEC_END   (ushort)0x0080
734 #define ASC_QADR_BEG       (0x4000)
735 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
736 #define ASC_QADR_END       (ushort)0x7FFF
737 #define ASC_QLAST_ADR      (ushort)0x7FC0
738 #define ASC_QBLK_SIZE      0x40
739 #define ASC_BIOS_DATA_QBEG 0xF8
740 #define ASC_MIN_ACTIVE_QNO 0x01
741 #define ASC_QLINK_END      0xFF
742 #define ASC_EEPROM_WORDS   0x10
743 #define ASC_MAX_MGS_LEN    0x10
744 #define ASC_BIOS_ADDR_DEF  0xDC00
745 #define ASC_BIOS_SIZE      0x3800
746 #define ASC_BIOS_RAM_OFF   0x3800
747 #define ASC_BIOS_RAM_SIZE  0x800
748 #define ASC_BIOS_MIN_ADDR  0xC000
749 #define ASC_BIOS_MAX_ADDR  0xEC00
750 #define ASC_BIOS_BANK_SIZE 0x0400
751 #define ASC_MCODE_START_ADDR  0x0080
752 #define ASC_CFG0_HOST_INT_ON    0x0020
753 #define ASC_CFG0_BIOS_ON        0x0040
754 #define ASC_CFG0_VERA_BURST_ON  0x0080
755 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
756 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
757 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
758 #define ASC_CFG_MSW_CLR_MASK    0x3080
759 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
760 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
761 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
762 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
763 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
764 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
765 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
766 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
767 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
768 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
769 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
770 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
771 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
772 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
773 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
774 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
775 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
776 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
777 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
778 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
779 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
780 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
781 #define CC_CHIP_RESET   (uchar)0x80
782 #define CC_SCSI_RESET   (uchar)0x40
783 #define CC_HALT         (uchar)0x20
784 #define CC_SINGLE_STEP  (uchar)0x10
785 #define CC_DMA_ABLE     (uchar)0x08
786 #define CC_TEST         (uchar)0x04
787 #define CC_BANK_ONE     (uchar)0x02
788 #define CC_DIAG         (uchar)0x01
789 #define ASC_1000_ID0W      0x04C1
790 #define ASC_1000_ID0W_FIX  0x00C1
791 #define ASC_1000_ID1B      0x25
792 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
793 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
794 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
795 #define INS_HALTINT        (ushort)0x6281
796 #define INS_HALT           (ushort)0x6280
797 #define INS_SINT           (ushort)0x6200
798 #define INS_RFLAG_WTM      (ushort)0x7380
799 #define ASC_MC_SAVE_CODE_WSIZE  0x500
800 #define ASC_MC_SAVE_DATA_WSIZE  0x40
801 
802 typedef struct asc_mc_saved {
803 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
804 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
805 } ASC_MC_SAVED;
806 
807 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
808 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
809 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
810 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
811 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
812 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
813 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
814 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
815 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
816 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
817 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
818 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
819 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
820 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
821 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
822 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
823 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
824 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
825 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
826 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
827 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
828 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
829 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
830 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
831 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
832 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
833 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
834 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
835 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
836 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
837 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
838 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
839 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
840 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
841 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
842 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
843 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
844 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
845 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
846 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
847 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
848 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
849 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
850 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
851 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
852 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
853 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
854 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
855 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
856 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
857 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
858 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
859 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
860 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
861 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
862 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
863 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
864 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
865 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
866 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
867 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
868 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
869 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
870 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
871 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
872 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
873 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
874 
875 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
876 
877 /*
878  * Define Adv Library required memory access macros.
879  */
880 #define ADV_MEM_READB(addr) readb(addr)
881 #define ADV_MEM_READW(addr) readw(addr)
882 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
883 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
884 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
885 
886 /*
887  * Define total number of simultaneous maximum element scatter-gather
888  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
889  * maximum number of outstanding commands per wide host adapter. Each
890  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
891  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
892  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
893  * structures or 255 scatter-gather elements.
894  */
895 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
896 
897 /*
898  * Define maximum number of scatter-gather elements per request.
899  */
900 #define ADV_MAX_SG_LIST         255
901 #define NO_OF_SG_PER_BLOCK              15
902 
903 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
904 #define ADV_EEP_DVC_CFG_END             (0x15)
905 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
906 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
907 
908 #define ADV_EEP_DELAY_MS                100
909 
910 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
911 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
912 /*
913  * For the ASC3550 Bit 13 is Termination Polarity control bit.
914  * For later ICs Bit 13 controls whether the CIS (Card Information
915  * Service Section) is loaded from EEPROM.
916  */
917 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
918 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
919 /*
920  * ASC38C1600 Bit 11
921  *
922  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
923  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
924  * Function 0 will specify INT B.
925  *
926  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
927  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
928  * Function 1 will specify INT A.
929  */
930 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
931 
932 typedef struct adveep_3550_config {
933 	/* Word Offset, Description */
934 
935 	ushort cfg_lsw;		/* 00 power up initialization */
936 	/*  bit 13 set - Term Polarity Control */
937 	/*  bit 14 set - BIOS Enable */
938 	/*  bit 15 set - Big Endian Mode */
939 	ushort cfg_msw;		/* 01 unused      */
940 	ushort disc_enable;	/* 02 disconnect enable */
941 	ushort wdtr_able;	/* 03 Wide DTR able */
942 	ushort sdtr_able;	/* 04 Synchronous DTR able */
943 	ushort start_motor;	/* 05 send start up motor */
944 	ushort tagqng_able;	/* 06 tag queuing able */
945 	ushort bios_scan;	/* 07 BIOS device control */
946 	ushort scam_tolerant;	/* 08 no scam */
947 
948 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
949 	uchar bios_boot_delay;	/*    power up wait */
950 
951 	uchar scsi_reset_delay;	/* 10 reset delay */
952 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
953 	/*    high nibble is lun */
954 	/*    low nibble is scsi id */
955 
956 	uchar termination;	/* 11 0 - automatic */
957 	/*    1 - low off / high off */
958 	/*    2 - low off / high on */
959 	/*    3 - low on  / high on */
960 	/*    There is no low on  / high off */
961 
962 	uchar reserved1;	/*    reserved byte (not used) */
963 
964 	ushort bios_ctrl;	/* 12 BIOS control bits */
965 	/*  bit 0  BIOS don't act as initiator. */
966 	/*  bit 1  BIOS > 1 GB support */
967 	/*  bit 2  BIOS > 2 Disk Support */
968 	/*  bit 3  BIOS don't support removables */
969 	/*  bit 4  BIOS support bootable CD */
970 	/*  bit 5  BIOS scan enabled */
971 	/*  bit 6  BIOS support multiple LUNs */
972 	/*  bit 7  BIOS display of message */
973 	/*  bit 8  SCAM disabled */
974 	/*  bit 9  Reset SCSI bus during init. */
975 	/*  bit 10 */
976 	/*  bit 11 No verbose initialization. */
977 	/*  bit 12 SCSI parity enabled */
978 	/*  bit 13 */
979 	/*  bit 14 */
980 	/*  bit 15 */
981 	ushort ultra_able;	/* 13 ULTRA speed able */
982 	ushort reserved2;	/* 14 reserved */
983 	uchar max_host_qng;	/* 15 maximum host queuing */
984 	uchar max_dvc_qng;	/*    maximum per device queuing */
985 	ushort dvc_cntl;	/* 16 control bit for driver */
986 	ushort bug_fix;		/* 17 control bit for bug fix */
987 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
988 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
989 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
990 	ushort check_sum;	/* 21 EEP check sum */
991 	uchar oem_name[16];	/* 22 OEM name */
992 	ushort dvc_err_code;	/* 30 last device driver error code */
993 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
994 	ushort adv_err_addr;	/* 32 last uc error address */
995 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
996 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
997 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
998 	ushort num_of_err;	/* 36 number of error */
999 } ADVEEP_3550_CONFIG;
1000 
1001 typedef struct adveep_38C0800_config {
1002 	/* Word Offset, Description */
1003 
1004 	ushort cfg_lsw;		/* 00 power up initialization */
1005 	/*  bit 13 set - Load CIS */
1006 	/*  bit 14 set - BIOS Enable */
1007 	/*  bit 15 set - Big Endian Mode */
1008 	ushort cfg_msw;		/* 01 unused      */
1009 	ushort disc_enable;	/* 02 disconnect enable */
1010 	ushort wdtr_able;	/* 03 Wide DTR able */
1011 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1012 	ushort start_motor;	/* 05 send start up motor */
1013 	ushort tagqng_able;	/* 06 tag queuing able */
1014 	ushort bios_scan;	/* 07 BIOS device control */
1015 	ushort scam_tolerant;	/* 08 no scam */
1016 
1017 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1018 	uchar bios_boot_delay;	/*    power up wait */
1019 
1020 	uchar scsi_reset_delay;	/* 10 reset delay */
1021 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1022 	/*    high nibble is lun */
1023 	/*    low nibble is scsi id */
1024 
1025 	uchar termination_se;	/* 11 0 - automatic */
1026 	/*    1 - low off / high off */
1027 	/*    2 - low off / high on */
1028 	/*    3 - low on  / high on */
1029 	/*    There is no low on  / high off */
1030 
1031 	uchar termination_lvd;	/* 11 0 - automatic */
1032 	/*    1 - low off / high off */
1033 	/*    2 - low off / high on */
1034 	/*    3 - low on  / high on */
1035 	/*    There is no low on  / high off */
1036 
1037 	ushort bios_ctrl;	/* 12 BIOS control bits */
1038 	/*  bit 0  BIOS don't act as initiator. */
1039 	/*  bit 1  BIOS > 1 GB support */
1040 	/*  bit 2  BIOS > 2 Disk Support */
1041 	/*  bit 3  BIOS don't support removables */
1042 	/*  bit 4  BIOS support bootable CD */
1043 	/*  bit 5  BIOS scan enabled */
1044 	/*  bit 6  BIOS support multiple LUNs */
1045 	/*  bit 7  BIOS display of message */
1046 	/*  bit 8  SCAM disabled */
1047 	/*  bit 9  Reset SCSI bus during init. */
1048 	/*  bit 10 */
1049 	/*  bit 11 No verbose initialization. */
1050 	/*  bit 12 SCSI parity enabled */
1051 	/*  bit 13 */
1052 	/*  bit 14 */
1053 	/*  bit 15 */
1054 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1055 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1056 	uchar max_host_qng;	/* 15 maximum host queueing */
1057 	uchar max_dvc_qng;	/*    maximum per device queuing */
1058 	ushort dvc_cntl;	/* 16 control bit for driver */
1059 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1060 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1061 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1062 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1063 	ushort check_sum;	/* 21 EEP check sum */
1064 	uchar oem_name[16];	/* 22 OEM name */
1065 	ushort dvc_err_code;	/* 30 last device driver error code */
1066 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1067 	ushort adv_err_addr;	/* 32 last uc error address */
1068 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1069 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1070 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1071 	ushort reserved36;	/* 36 reserved */
1072 	ushort reserved37;	/* 37 reserved */
1073 	ushort reserved38;	/* 38 reserved */
1074 	ushort reserved39;	/* 39 reserved */
1075 	ushort reserved40;	/* 40 reserved */
1076 	ushort reserved41;	/* 41 reserved */
1077 	ushort reserved42;	/* 42 reserved */
1078 	ushort reserved43;	/* 43 reserved */
1079 	ushort reserved44;	/* 44 reserved */
1080 	ushort reserved45;	/* 45 reserved */
1081 	ushort reserved46;	/* 46 reserved */
1082 	ushort reserved47;	/* 47 reserved */
1083 	ushort reserved48;	/* 48 reserved */
1084 	ushort reserved49;	/* 49 reserved */
1085 	ushort reserved50;	/* 50 reserved */
1086 	ushort reserved51;	/* 51 reserved */
1087 	ushort reserved52;	/* 52 reserved */
1088 	ushort reserved53;	/* 53 reserved */
1089 	ushort reserved54;	/* 54 reserved */
1090 	ushort reserved55;	/* 55 reserved */
1091 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1092 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1093 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1094 	ushort subsysid;	/* 59 SubSystem ID */
1095 	ushort reserved60;	/* 60 reserved */
1096 	ushort reserved61;	/* 61 reserved */
1097 	ushort reserved62;	/* 62 reserved */
1098 	ushort reserved63;	/* 63 reserved */
1099 } ADVEEP_38C0800_CONFIG;
1100 
1101 typedef struct adveep_38C1600_config {
1102 	/* Word Offset, Description */
1103 
1104 	ushort cfg_lsw;		/* 00 power up initialization */
1105 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1106 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1107 	/*  bit 13 set - Load CIS */
1108 	/*  bit 14 set - BIOS Enable */
1109 	/*  bit 15 set - Big Endian Mode */
1110 	ushort cfg_msw;		/* 01 unused */
1111 	ushort disc_enable;	/* 02 disconnect enable */
1112 	ushort wdtr_able;	/* 03 Wide DTR able */
1113 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1114 	ushort start_motor;	/* 05 send start up motor */
1115 	ushort tagqng_able;	/* 06 tag queuing able */
1116 	ushort bios_scan;	/* 07 BIOS device control */
1117 	ushort scam_tolerant;	/* 08 no scam */
1118 
1119 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1120 	uchar bios_boot_delay;	/*    power up wait */
1121 
1122 	uchar scsi_reset_delay;	/* 10 reset delay */
1123 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1124 	/*    high nibble is lun */
1125 	/*    low nibble is scsi id */
1126 
1127 	uchar termination_se;	/* 11 0 - automatic */
1128 	/*    1 - low off / high off */
1129 	/*    2 - low off / high on */
1130 	/*    3 - low on  / high on */
1131 	/*    There is no low on  / high off */
1132 
1133 	uchar termination_lvd;	/* 11 0 - automatic */
1134 	/*    1 - low off / high off */
1135 	/*    2 - low off / high on */
1136 	/*    3 - low on  / high on */
1137 	/*    There is no low on  / high off */
1138 
1139 	ushort bios_ctrl;	/* 12 BIOS control bits */
1140 	/*  bit 0  BIOS don't act as initiator. */
1141 	/*  bit 1  BIOS > 1 GB support */
1142 	/*  bit 2  BIOS > 2 Disk Support */
1143 	/*  bit 3  BIOS don't support removables */
1144 	/*  bit 4  BIOS support bootable CD */
1145 	/*  bit 5  BIOS scan enabled */
1146 	/*  bit 6  BIOS support multiple LUNs */
1147 	/*  bit 7  BIOS display of message */
1148 	/*  bit 8  SCAM disabled */
1149 	/*  bit 9  Reset SCSI bus during init. */
1150 	/*  bit 10 Basic Integrity Checking disabled */
1151 	/*  bit 11 No verbose initialization. */
1152 	/*  bit 12 SCSI parity enabled */
1153 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1154 	/*  bit 14 */
1155 	/*  bit 15 */
1156 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1157 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1158 	uchar max_host_qng;	/* 15 maximum host queueing */
1159 	uchar max_dvc_qng;	/*    maximum per device queuing */
1160 	ushort dvc_cntl;	/* 16 control bit for driver */
1161 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1162 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1163 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1164 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1165 	ushort check_sum;	/* 21 EEP check sum */
1166 	uchar oem_name[16];	/* 22 OEM name */
1167 	ushort dvc_err_code;	/* 30 last device driver error code */
1168 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1169 	ushort adv_err_addr;	/* 32 last uc error address */
1170 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1171 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1172 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1173 	ushort reserved36;	/* 36 reserved */
1174 	ushort reserved37;	/* 37 reserved */
1175 	ushort reserved38;	/* 38 reserved */
1176 	ushort reserved39;	/* 39 reserved */
1177 	ushort reserved40;	/* 40 reserved */
1178 	ushort reserved41;	/* 41 reserved */
1179 	ushort reserved42;	/* 42 reserved */
1180 	ushort reserved43;	/* 43 reserved */
1181 	ushort reserved44;	/* 44 reserved */
1182 	ushort reserved45;	/* 45 reserved */
1183 	ushort reserved46;	/* 46 reserved */
1184 	ushort reserved47;	/* 47 reserved */
1185 	ushort reserved48;	/* 48 reserved */
1186 	ushort reserved49;	/* 49 reserved */
1187 	ushort reserved50;	/* 50 reserved */
1188 	ushort reserved51;	/* 51 reserved */
1189 	ushort reserved52;	/* 52 reserved */
1190 	ushort reserved53;	/* 53 reserved */
1191 	ushort reserved54;	/* 54 reserved */
1192 	ushort reserved55;	/* 55 reserved */
1193 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1194 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1195 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1196 	ushort subsysid;	/* 59 SubSystem ID */
1197 	ushort reserved60;	/* 60 reserved */
1198 	ushort reserved61;	/* 61 reserved */
1199 	ushort reserved62;	/* 62 reserved */
1200 	ushort reserved63;	/* 63 reserved */
1201 } ADVEEP_38C1600_CONFIG;
1202 
1203 /*
1204  * EEPROM Commands
1205  */
1206 #define ASC_EEP_CMD_DONE             0x0200
1207 
1208 /* bios_ctrl */
1209 #define BIOS_CTRL_BIOS               0x0001
1210 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1211 #define BIOS_CTRL_GT_2_DISK          0x0004
1212 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1213 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1214 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1215 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1216 #define BIOS_CTRL_NO_SCAM            0x0100
1217 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1218 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1219 #define BIOS_CTRL_SCSI_PARITY        0x1000
1220 #define BIOS_CTRL_AIPP_DIS           0x2000
1221 
1222 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1223 
1224 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1225 
1226 /*
1227  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1228  * a special 16K Adv Library and Microcode version. After the issue is
1229  * resolved, should restore 32K support.
1230  *
1231  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1232  */
1233 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1234 
1235 /*
1236  * Byte I/O register address from base of 'iop_base'.
1237  */
1238 #define IOPB_INTR_STATUS_REG    0x00
1239 #define IOPB_CHIP_ID_1          0x01
1240 #define IOPB_INTR_ENABLES       0x02
1241 #define IOPB_CHIP_TYPE_REV      0x03
1242 #define IOPB_RES_ADDR_4         0x04
1243 #define IOPB_RES_ADDR_5         0x05
1244 #define IOPB_RAM_DATA           0x06
1245 #define IOPB_RES_ADDR_7         0x07
1246 #define IOPB_FLAG_REG           0x08
1247 #define IOPB_RES_ADDR_9         0x09
1248 #define IOPB_RISC_CSR           0x0A
1249 #define IOPB_RES_ADDR_B         0x0B
1250 #define IOPB_RES_ADDR_C         0x0C
1251 #define IOPB_RES_ADDR_D         0x0D
1252 #define IOPB_SOFT_OVER_WR       0x0E
1253 #define IOPB_RES_ADDR_F         0x0F
1254 #define IOPB_MEM_CFG            0x10
1255 #define IOPB_RES_ADDR_11        0x11
1256 #define IOPB_GPIO_DATA          0x12
1257 #define IOPB_RES_ADDR_13        0x13
1258 #define IOPB_FLASH_PAGE         0x14
1259 #define IOPB_RES_ADDR_15        0x15
1260 #define IOPB_GPIO_CNTL          0x16
1261 #define IOPB_RES_ADDR_17        0x17
1262 #define IOPB_FLASH_DATA         0x18
1263 #define IOPB_RES_ADDR_19        0x19
1264 #define IOPB_RES_ADDR_1A        0x1A
1265 #define IOPB_RES_ADDR_1B        0x1B
1266 #define IOPB_RES_ADDR_1C        0x1C
1267 #define IOPB_RES_ADDR_1D        0x1D
1268 #define IOPB_RES_ADDR_1E        0x1E
1269 #define IOPB_RES_ADDR_1F        0x1F
1270 #define IOPB_DMA_CFG0           0x20
1271 #define IOPB_DMA_CFG1           0x21
1272 #define IOPB_TICKLE             0x22
1273 #define IOPB_DMA_REG_WR         0x23
1274 #define IOPB_SDMA_STATUS        0x24
1275 #define IOPB_SCSI_BYTE_CNT      0x25
1276 #define IOPB_HOST_BYTE_CNT      0x26
1277 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1278 #define IOPB_BYTE_TO_XFER_0     0x28
1279 #define IOPB_BYTE_TO_XFER_1     0x29
1280 #define IOPB_BYTE_TO_XFER_2     0x2A
1281 #define IOPB_BYTE_TO_XFER_3     0x2B
1282 #define IOPB_ACC_GRP            0x2C
1283 #define IOPB_RES_ADDR_2D        0x2D
1284 #define IOPB_DEV_ID             0x2E
1285 #define IOPB_RES_ADDR_2F        0x2F
1286 #define IOPB_SCSI_DATA          0x30
1287 #define IOPB_RES_ADDR_31        0x31
1288 #define IOPB_RES_ADDR_32        0x32
1289 #define IOPB_SCSI_DATA_HSHK     0x33
1290 #define IOPB_SCSI_CTRL          0x34
1291 #define IOPB_RES_ADDR_35        0x35
1292 #define IOPB_RES_ADDR_36        0x36
1293 #define IOPB_RES_ADDR_37        0x37
1294 #define IOPB_RAM_BIST           0x38
1295 #define IOPB_PLL_TEST           0x39
1296 #define IOPB_PCI_INT_CFG        0x3A
1297 #define IOPB_RES_ADDR_3B        0x3B
1298 #define IOPB_RFIFO_CNT          0x3C
1299 #define IOPB_RES_ADDR_3D        0x3D
1300 #define IOPB_RES_ADDR_3E        0x3E
1301 #define IOPB_RES_ADDR_3F        0x3F
1302 
1303 /*
1304  * Word I/O register address from base of 'iop_base'.
1305  */
1306 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1307 #define IOPW_CTRL_REG           0x02	/* CC    */
1308 #define IOPW_RAM_ADDR           0x04	/* LA    */
1309 #define IOPW_RAM_DATA           0x06	/* LD    */
1310 #define IOPW_RES_ADDR_08        0x08
1311 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1312 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1313 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1314 #define IOPW_RES_ADDR_10        0x10
1315 #define IOPW_SEL_MASK           0x12	/* SM    */
1316 #define IOPW_RES_ADDR_14        0x14
1317 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1318 #define IOPW_RES_ADDR_18        0x18
1319 #define IOPW_EE_CMD             0x1A	/* EC    */
1320 #define IOPW_EE_DATA            0x1C	/* ED    */
1321 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1322 #define IOPW_RES_ADDR_20        0x20
1323 #define IOPW_Q_BASE             0x22	/* QB    */
1324 #define IOPW_QP                 0x24	/* QP    */
1325 #define IOPW_IX                 0x26	/* IX    */
1326 #define IOPW_SP                 0x28	/* SP    */
1327 #define IOPW_PC                 0x2A	/* PC    */
1328 #define IOPW_RES_ADDR_2C        0x2C
1329 #define IOPW_RES_ADDR_2E        0x2E
1330 #define IOPW_SCSI_DATA          0x30	/* SD    */
1331 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1332 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1333 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1334 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1335 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1336 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1337 #define IOPW_RES_ADDR_3C        0x3C
1338 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1339 
1340 /*
1341  * Doubleword I/O register address from base of 'iop_base'.
1342  */
1343 #define IOPDW_RES_ADDR_0         0x00
1344 #define IOPDW_RAM_DATA           0x04
1345 #define IOPDW_RES_ADDR_8         0x08
1346 #define IOPDW_RES_ADDR_C         0x0C
1347 #define IOPDW_RES_ADDR_10        0x10
1348 #define IOPDW_COMMA              0x14
1349 #define IOPDW_COMMB              0x18
1350 #define IOPDW_RES_ADDR_1C        0x1C
1351 #define IOPDW_SDMA_ADDR0         0x20
1352 #define IOPDW_SDMA_ADDR1         0x24
1353 #define IOPDW_SDMA_COUNT         0x28
1354 #define IOPDW_SDMA_ERROR         0x2C
1355 #define IOPDW_RDMA_ADDR0         0x30
1356 #define IOPDW_RDMA_ADDR1         0x34
1357 #define IOPDW_RDMA_COUNT         0x38
1358 #define IOPDW_RDMA_ERROR         0x3C
1359 
1360 #define ADV_CHIP_ID_BYTE         0x25
1361 #define ADV_CHIP_ID_WORD         0x04C1
1362 
1363 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1364 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1365 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1366 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1367 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1368 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1369 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1370 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1371 
1372 #define ADV_INTR_STATUS_INTRA            0x01
1373 #define ADV_INTR_STATUS_INTRB            0x02
1374 #define ADV_INTR_STATUS_INTRC            0x04
1375 
1376 #define ADV_RISC_CSR_STOP           (0x0000)
1377 #define ADV_RISC_TEST_COND          (0x2000)
1378 #define ADV_RISC_CSR_RUN            (0x4000)
1379 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1380 
1381 #define ADV_CTRL_REG_HOST_INTR      0x0100
1382 #define ADV_CTRL_REG_SEL_INTR       0x0200
1383 #define ADV_CTRL_REG_DPR_INTR       0x0400
1384 #define ADV_CTRL_REG_RTA_INTR       0x0800
1385 #define ADV_CTRL_REG_RMA_INTR       0x1000
1386 #define ADV_CTRL_REG_RES_BIT14      0x2000
1387 #define ADV_CTRL_REG_DPE_INTR       0x4000
1388 #define ADV_CTRL_REG_POWER_DONE     0x8000
1389 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1390 
1391 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1392 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1393 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1394 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1395 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1396 
1397 #define ADV_TICKLE_NOP                      0x00
1398 #define ADV_TICKLE_A                        0x01
1399 #define ADV_TICKLE_B                        0x02
1400 #define ADV_TICKLE_C                        0x03
1401 
1402 #define AdvIsIntPending(port) \
1403     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1404 
1405 /*
1406  * SCSI_CFG0 Register bit definitions
1407  */
1408 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1409 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1410 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1411 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1412 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1413 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1414 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1415 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1416 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1417 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1418 #define OUR_ID          0x000F	/* SCSI ID */
1419 
1420 /*
1421  * SCSI_CFG1 Register bit definitions
1422  */
1423 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1424 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1425 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1426 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1427 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1428 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1429 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1430 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1431 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1432 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1433 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1434 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1435 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1436 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1437 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1438 
1439 /*
1440  * Addendum for ASC-38C0800 Chip
1441  *
1442  * The ASC-38C1600 Chip uses the same definitions except that the
1443  * bus mode override bits [12:10] have been moved to byte register
1444  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1445  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1446  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1447  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1448  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1449  */
1450 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1451 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1452 #define  HVD             0x1000	/* HVD Device Detect */
1453 #define  LVD             0x0800	/* LVD Device Detect */
1454 #define  SE              0x0400	/* SE Device Detect */
1455 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1456 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1457 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1458 #define TERM_SE         0x0030	/* SE Termination Bits */
1459 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1460 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1461 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1462 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1463 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1464 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1465 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1466 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1467 
1468 #define CABLE_ILLEGAL_A 0x7
1469     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1470 
1471 #define CABLE_ILLEGAL_B 0xB
1472     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1473 
1474 /*
1475  * MEM_CFG Register bit definitions
1476  */
1477 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1478 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1479 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1480 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1481 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1482 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1483 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1484 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1485 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1486 
1487 /*
1488  * DMA_CFG0 Register bit definitions
1489  *
1490  * This register is only accessible to the host.
1491  */
1492 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1493 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1494 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1495 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1496 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1497 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1498 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1499 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1500 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1501 #define START_CTL       0x0C	/* DMA start conditions */
1502 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1503 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1504 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1505 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1506 #define READ_CMD        0x03	/* Memory Read Method */
1507 #define  READ_CMD_MR     0x00	/* Memory Read */
1508 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1509 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1510 
1511 /*
1512  * ASC-38C0800 RAM BIST Register bit definitions
1513  */
1514 #define RAM_TEST_MODE         0x80
1515 #define PRE_TEST_MODE         0x40
1516 #define NORMAL_MODE           0x00
1517 #define RAM_TEST_DONE         0x10
1518 #define RAM_TEST_STATUS       0x0F
1519 #define  RAM_TEST_HOST_ERROR   0x08
1520 #define  RAM_TEST_INTRAM_ERROR 0x04
1521 #define  RAM_TEST_RISC_ERROR   0x02
1522 #define  RAM_TEST_SCSI_ERROR   0x01
1523 #define  RAM_TEST_SUCCESS      0x00
1524 #define PRE_TEST_VALUE        0x05
1525 #define NORMAL_VALUE          0x00
1526 
1527 /*
1528  * ASC38C1600 Definitions
1529  *
1530  * IOPB_PCI_INT_CFG Bit Field Definitions
1531  */
1532 
1533 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1534 
1535 /*
1536  * Bit 1 can be set to change the interrupt for the Function to operate in
1537  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1538  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1539  * mode, otherwise the operating mode is undefined.
1540  */
1541 #define TOTEMPOLE       0x02
1542 
1543 /*
1544  * Bit 0 can be used to change the Int Pin for the Function. The value is
1545  * 0 by default for both Functions with Function 0 using INT A and Function
1546  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1547  * INT A is used.
1548  *
1549  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1550  * value specified in the PCI Configuration Space.
1551  */
1552 #define INTAB           0x01
1553 
1554 /*
1555  * Adv Library Status Definitions
1556  */
1557 #define ADV_TRUE        1
1558 #define ADV_FALSE       0
1559 #define ADV_SUCCESS     1
1560 #define ADV_BUSY        0
1561 #define ADV_ERROR       (-1)
1562 
1563 /*
1564  * ADV_DVC_VAR 'warn_code' values
1565  */
1566 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1567 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1568 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1569 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1570 
1571 #define ADV_MAX_TID                     15	/* max. target identifier */
1572 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1573 
1574 /*
1575  * Fixed locations of microcode operating variables.
1576  */
1577 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1578 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1579 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1580 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1581 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1582 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1583 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1584 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1585 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1586 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1587 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1588 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1589 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1590 #define ASC_MC_CHIP_TYPE                0x009A
1591 #define ASC_MC_INTRB_CODE               0x009B
1592 #define ASC_MC_WDTR_ABLE                0x009C
1593 #define ASC_MC_SDTR_ABLE                0x009E
1594 #define ASC_MC_TAGQNG_ABLE              0x00A0
1595 #define ASC_MC_DISC_ENABLE              0x00A2
1596 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1597 #define ASC_MC_IDLE_CMD                 0x00A6
1598 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1599 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1600 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1601 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1602 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1603 #define ASC_MC_SDTR_DONE                0x00B6
1604 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1605 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1606 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1607 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1608 #define ASC_MC_WDTR_DONE                0x0124
1609 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1610 #define ASC_MC_ICQ                      0x0160
1611 #define ASC_MC_IRQ                      0x0164
1612 #define ASC_MC_PPR_ABLE                 0x017A
1613 
1614 /*
1615  * BIOS LRAM variable absolute offsets.
1616  */
1617 #define BIOS_CODESEG    0x54
1618 #define BIOS_CODELEN    0x56
1619 #define BIOS_SIGNATURE  0x58
1620 #define BIOS_VERSION    0x5A
1621 
1622 /*
1623  * Microcode Control Flags
1624  *
1625  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1626  * and handled by the microcode.
1627  */
1628 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1629 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1630 
1631 /*
1632  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1633  */
1634 #define HSHK_CFG_WIDE_XFR       0x8000
1635 #define HSHK_CFG_RATE           0x0F00
1636 #define HSHK_CFG_OFFSET         0x001F
1637 
1638 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1639 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1640 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1641 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1642 
1643 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1644 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1645 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1646 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1647 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1648 
1649 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1650 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1651 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1652 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1653 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1654 /*
1655  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1656  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1657  */
1658 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1659 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1660 
1661 /*
1662  * All fields here are accessed by the board microcode and need to be
1663  * little-endian.
1664  */
1665 typedef struct adv_carr_t {
1666 	__le32 carr_va;	/* Carrier Virtual Address */
1667 	__le32 carr_pa;	/* Carrier Physical Address */
1668 	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1669 	/*
1670 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1671 	 *
1672 	 * next_vpa [3:1]             Reserved Bits
1673 	 * next_vpa [0]               Done Flag set in Response Queue.
1674 	 */
1675 	__le32 next_vpa;
1676 } ADV_CARR_T;
1677 
1678 /*
1679  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1680  */
1681 #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1682 
1683 #define ADV_RQ_DONE             0x00000001
1684 #define ADV_RQ_GOOD             0x00000002
1685 #define ADV_CQ_STOPPER          0x00000000
1686 
1687 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1688 
1689 /*
1690  * Each carrier is 64 bytes, and we need three additional
1691  * carrier for icq, irq, and the termination carrier.
1692  */
1693 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1694 
1695 #define ADV_CARRIER_BUFSIZE \
1696 	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1697 
1698 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1699 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1700 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1701 
1702 /*
1703  * Adapter temporary configuration structure
1704  *
1705  * This structure can be discarded after initialization. Don't add
1706  * fields here needed after initialization.
1707  *
1708  * Field naming convention:
1709  *
1710  *  *_enable indicates the field enables or disables a feature. The
1711  *  value of the field is never reset.
1712  */
1713 typedef struct adv_dvc_cfg {
1714 	ushort disc_enable;	/* enable disconnection */
1715 	uchar chip_version;	/* chip version */
1716 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1717 	ushort control_flag;	/* Microcode Control Flag */
1718 	ushort mcode_date;	/* Microcode date */
1719 	ushort mcode_version;	/* Microcode version */
1720 	ushort serial1;		/* EEPROM serial number word 1 */
1721 	ushort serial2;		/* EEPROM serial number word 2 */
1722 	ushort serial3;		/* EEPROM serial number word 3 */
1723 } ADV_DVC_CFG;
1724 
1725 struct adv_dvc_var;
1726 struct adv_scsi_req_q;
1727 
1728 typedef struct adv_sg_block {
1729 	uchar reserved1;
1730 	uchar reserved2;
1731 	uchar reserved3;
1732 	uchar sg_cnt;		/* Valid entries in block. */
1733 	__le32 sg_ptr;	/* Pointer to next sg block. */
1734 	struct {
1735 		__le32 sg_addr;	/* SG element address. */
1736 		__le32 sg_count;	/* SG element count. */
1737 	} sg_list[NO_OF_SG_PER_BLOCK];
1738 } ADV_SG_BLOCK;
1739 
1740 /*
1741  * ADV_SCSI_REQ_Q - microcode request structure
1742  *
1743  * All fields in this structure up to byte 60 are used by the microcode.
1744  * The microcode makes assumptions about the size and ordering of fields
1745  * in this structure. Do not change the structure definition here without
1746  * coordinating the change with the microcode.
1747  *
1748  * All fields accessed by microcode must be maintained in little_endian
1749  * order.
1750  */
1751 typedef struct adv_scsi_req_q {
1752 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1753 	uchar target_cmd;
1754 	uchar target_id;	/* Device target identifier. */
1755 	uchar target_lun;	/* Device target logical unit number. */
1756 	__le32 data_addr;	/* Data buffer physical address. */
1757 	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1758 	__le32 sense_addr;
1759 	__le32 carr_pa;
1760 	uchar mflag;
1761 	uchar sense_len;
1762 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1763 	uchar scsi_cntl;
1764 	uchar done_status;	/* Completion status. */
1765 	uchar scsi_status;	/* SCSI status byte. */
1766 	uchar host_status;	/* Ucode host status. */
1767 	uchar sg_working_ix;
1768 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1769 	__le32 sg_real_addr;	/* SG list physical address. */
1770 	__le32 scsiq_rptr;
1771 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1772 	__le32 scsiq_ptr;
1773 	__le32 carr_va;
1774 	/*
1775 	 * End of microcode structure - 60 bytes. The rest of the structure
1776 	 * is used by the Adv Library and ignored by the microcode.
1777 	 */
1778 	u32 srb_tag;
1779 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1780 } ADV_SCSI_REQ_Q;
1781 
1782 /*
1783  * The following two structures are used to process Wide Board requests.
1784  *
1785  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1786  * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1787  * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1788  * to the Mid-Level SCSI request structure.
1789  *
1790  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1791  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1792  * up to 255 scatter-gather elements may be used per request or
1793  * ADV_SCSI_REQ_Q.
1794  *
1795  * Both structures must be 32 byte aligned.
1796  */
1797 typedef struct adv_sgblk {
1798 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1799 	dma_addr_t sg_addr;	/* Physical address */
1800 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1801 } adv_sgblk_t;
1802 
1803 typedef struct adv_req {
1804 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1805 	uchar align[24];	/* Request structure padding. */
1806 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1807 	dma_addr_t req_addr;
1808 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1809 } adv_req_t __aligned(32);
1810 
1811 /*
1812  * Adapter operation variable structure.
1813  *
1814  * One structure is required per host adapter.
1815  *
1816  * Field naming convention:
1817  *
1818  *  *_able indicates both whether a feature should be enabled or disabled
1819  *  and whether a device isi capable of the feature. At initialization
1820  *  this field may be set, but later if a device is found to be incapable
1821  *  of the feature, the field is cleared.
1822  */
1823 typedef struct adv_dvc_var {
1824 	AdvPortAddr iop_base;	/* I/O port address */
1825 	ushort err_code;	/* fatal error code */
1826 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1827 	ushort wdtr_able;	/* try WDTR for a device */
1828 	ushort sdtr_able;	/* try SDTR for a device */
1829 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1830 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1831 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1832 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1833 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1834 	ushort tagqng_able;	/* try tagged queuing with a device */
1835 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1836 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1837 	ushort start_motor;	/* start motor command allowed */
1838 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1839 	uchar chip_no;		/* should be assigned by caller */
1840 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1841 	ushort no_scam;		/* scam_tolerant of EEPROM */
1842 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1843 	uchar chip_scsi_id;	/* chip SCSI target ID */
1844 	uchar chip_type;
1845 	uchar bist_err_code;
1846 	ADV_CARR_T *carrier;
1847 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1848 	dma_addr_t carrier_addr;
1849 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1850 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1851 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1852 	/*
1853 	 * Note: The following fields will not be used after initialization. The
1854 	 * driver may discard the buffer after initialization is done.
1855 	 */
1856 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1857 } ADV_DVC_VAR;
1858 
1859 /*
1860  * Microcode idle loop commands
1861  */
1862 #define IDLE_CMD_COMPLETED           0
1863 #define IDLE_CMD_STOP_CHIP           0x0001
1864 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1865 #define IDLE_CMD_SEND_INT            0x0004
1866 #define IDLE_CMD_ABORT               0x0008
1867 #define IDLE_CMD_DEVICE_RESET        0x0010
1868 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1869 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1870 #define IDLE_CMD_SCSIREQ             0x0080
1871 
1872 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1873 #define IDLE_CMD_STATUS_FAILURE      0x0002
1874 
1875 /*
1876  * AdvSendIdleCmd() flag definitions.
1877  */
1878 #define ADV_NOWAIT     0x01
1879 
1880 /*
1881  * Wait loop time out values.
1882  */
1883 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1884 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1885 #define SCSI_MAX_RETRY               10	/* retry count */
1886 
1887 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1888 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1889 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1890 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1891 
1892 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1893 
1894 /* Read byte from a register. */
1895 #define AdvReadByteRegister(iop_base, reg_off) \
1896      (ADV_MEM_READB((iop_base) + (reg_off)))
1897 
1898 /* Write byte to a register. */
1899 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1900      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1901 
1902 /* Read word (2 bytes) from a register. */
1903 #define AdvReadWordRegister(iop_base, reg_off) \
1904      (ADV_MEM_READW((iop_base) + (reg_off)))
1905 
1906 /* Write word (2 bytes) to a register. */
1907 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1908      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1909 
1910 /* Write dword (4 bytes) to a register. */
1911 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1912      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1913 
1914 /* Read byte from LRAM. */
1915 #define AdvReadByteLram(iop_base, addr, byte) \
1916 do { \
1917     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1918     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1919 } while (0)
1920 
1921 /* Write byte to LRAM. */
1922 #define AdvWriteByteLram(iop_base, addr, byte) \
1923     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1924      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1925 
1926 /* Read word (2 bytes) from LRAM. */
1927 #define AdvReadWordLram(iop_base, addr, word) \
1928 do { \
1929     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1930     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1931 } while (0)
1932 
1933 /* Write word (2 bytes) to LRAM. */
1934 #define AdvWriteWordLram(iop_base, addr, word) \
1935     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1936      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1937 
1938 /* Write little-endian double word (4 bytes) to LRAM */
1939 /* Because of unspecified C language ordering don't use auto-increment. */
1940 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1941     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1942       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1943                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1944      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1945       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1946                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1947 
1948 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1949 #define AdvReadWordAutoIncLram(iop_base) \
1950      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1951 
1952 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1953 #define AdvWriteWordAutoIncLram(iop_base, word) \
1954      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1955 
1956 /*
1957  * Define macro to check for Condor signature.
1958  *
1959  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1960  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1961  */
1962 #define AdvFindSignature(iop_base) \
1963     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1964     ADV_CHIP_ID_BYTE) && \
1965      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1966     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1967 
1968 /*
1969  * Define macro to Return the version number of the chip at 'iop_base'.
1970  *
1971  * The second parameter 'bus_type' is currently unused.
1972  */
1973 #define AdvGetChipVersion(iop_base, bus_type) \
1974     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1975 
1976 /*
1977  * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1978  * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1979  *
1980  * If the request has not yet been sent to the device it will simply be
1981  * aborted from RISC memory. If the request is disconnected it will be
1982  * aborted on reselection by sending an Abort Message to the target ID.
1983  *
1984  * Return value:
1985  *      ADV_TRUE(1) - Queue was successfully aborted.
1986  *      ADV_FALSE(0) - Queue was not found on the active queue list.
1987  */
1988 #define AdvAbortQueue(asc_dvc, srb_tag) \
1989      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1990 		    (ADV_DCNT) (srb_tag))
1991 
1992 /*
1993  * Send a Bus Device Reset Message to the specified target ID.
1994  *
1995  * All outstanding commands will be purged if sending the
1996  * Bus Device Reset Message is successful.
1997  *
1998  * Return Value:
1999  *      ADV_TRUE(1) - All requests on the target are purged.
2000  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2001  *                     are not purged.
2002  */
2003 #define AdvResetDevice(asc_dvc, target_id) \
2004      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
2005 		    (ADV_DCNT) (target_id))
2006 
2007 /*
2008  * SCSI Wide Type definition.
2009  */
2010 #define ADV_SCSI_BIT_ID_TYPE   ushort
2011 
2012 /*
2013  * AdvInitScsiTarget() 'cntl_flag' options.
2014  */
2015 #define ADV_SCAN_LUN           0x01
2016 #define ADV_CAPINFO_NOLUN      0x02
2017 
2018 /*
2019  * Convert target id to target id bit mask.
2020  */
2021 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2022 
2023 /*
2024  * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2025  */
2026 
2027 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2028 #define QD_NO_ERROR          0x01
2029 #define QD_ABORTED_BY_HOST   0x02
2030 #define QD_WITH_ERROR        0x04
2031 
2032 #define QHSTA_NO_ERROR              0x00
2033 #define QHSTA_M_SEL_TIMEOUT         0x11
2034 #define QHSTA_M_DATA_OVER_RUN       0x12
2035 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2036 #define QHSTA_M_QUEUE_ABORTED       0x15
2037 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2038 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2039 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2040 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2041 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2042 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2043 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2044 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2045 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2046 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2047 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2048 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2049 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2050 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2051 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2052 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2053 #define QHSTA_M_WTM_TIMEOUT         0x41
2054 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2055 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2056 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2057 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2058 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2059 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2060 
2061 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2062 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2063 
2064 /*
2065  * Total contiguous memory needed for driver SG blocks.
2066  *
2067  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2068  * number of scatter-gather elements the driver supports in a
2069  * single request.
2070  */
2071 
2072 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2073          (sizeof(ADV_SG_BLOCK) * \
2074           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2075 
2076 /* struct asc_board flags */
2077 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2078 
2079 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2080 
2081 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2082 
2083 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2084 
2085 /* Asc Library return codes */
2086 #define ASC_TRUE        1
2087 #define ASC_FALSE       0
2088 #define ASC_NOERROR     1
2089 #define ASC_BUSY        0
2090 #define ASC_ERROR       (-1)
2091 
2092 /* struct scsi_cmnd function return codes */
2093 #define STATUS_BYTE(byte)   (byte)
2094 #define MSG_BYTE(byte)      ((byte) << 8)
2095 #define HOST_BYTE(byte)     ((byte) << 16)
2096 #define DRIVER_BYTE(byte)   ((byte) << 24)
2097 
2098 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2099 #ifndef ADVANSYS_STATS
2100 #define ASC_STATS_ADD(shost, counter, count)
2101 #else /* ADVANSYS_STATS */
2102 #define ASC_STATS_ADD(shost, counter, count) \
2103 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2104 #endif /* ADVANSYS_STATS */
2105 
2106 /* If the result wraps when calculating tenths, return 0. */
2107 #define ASC_TENTHS(num, den) \
2108     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2109     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2110 
2111 /*
2112  * Display a message to the console.
2113  */
2114 #define ASC_PRINT(s) \
2115     { \
2116         printk("advansys: "); \
2117         printk(s); \
2118     }
2119 
2120 #define ASC_PRINT1(s, a1) \
2121     { \
2122         printk("advansys: "); \
2123         printk((s), (a1)); \
2124     }
2125 
2126 #define ASC_PRINT2(s, a1, a2) \
2127     { \
2128         printk("advansys: "); \
2129         printk((s), (a1), (a2)); \
2130     }
2131 
2132 #define ASC_PRINT3(s, a1, a2, a3) \
2133     { \
2134         printk("advansys: "); \
2135         printk((s), (a1), (a2), (a3)); \
2136     }
2137 
2138 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2139     { \
2140         printk("advansys: "); \
2141         printk((s), (a1), (a2), (a3), (a4)); \
2142     }
2143 
2144 #ifndef ADVANSYS_DEBUG
2145 
2146 #define ASC_DBG(lvl, s...)
2147 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2148 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2149 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2150 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2151 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2152 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2153 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2154 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2155 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2156 
2157 #else /* ADVANSYS_DEBUG */
2158 
2159 /*
2160  * Debugging Message Levels:
2161  * 0: Errors Only
2162  * 1: High-Level Tracing
2163  * 2-N: Verbose Tracing
2164  */
2165 
2166 #define ASC_DBG(lvl, format, arg...) {					\
2167 	if (asc_dbglvl >= (lvl))					\
2168 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2169 			__func__ , ## arg);				\
2170 }
2171 
2172 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2173     { \
2174         if (asc_dbglvl >= (lvl)) { \
2175             asc_prt_scsi_host(s); \
2176         } \
2177     }
2178 
2179 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2180     { \
2181         if (asc_dbglvl >= (lvl)) { \
2182             asc_prt_asc_scsi_q(scsiqp); \
2183         } \
2184     }
2185 
2186 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2187     { \
2188         if (asc_dbglvl >= (lvl)) { \
2189             asc_prt_asc_qdone_info(qdone); \
2190         } \
2191     }
2192 
2193 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2194     { \
2195         if (asc_dbglvl >= (lvl)) { \
2196             asc_prt_adv_scsi_req_q(scsiqp); \
2197         } \
2198     }
2199 
2200 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2201     { \
2202         if (asc_dbglvl >= (lvl)) { \
2203             asc_prt_hex((name), (start), (length)); \
2204         } \
2205     }
2206 
2207 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2208         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2209 
2210 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2211         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2212 
2213 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2214         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2215 #endif /* ADVANSYS_DEBUG */
2216 
2217 #ifdef ADVANSYS_STATS
2218 
2219 /* Per board statistics structure */
2220 struct asc_stats {
2221 	/* Driver Entrypoint Statistics */
2222 	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2223 	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2224 	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2225 	unsigned int interrupt;	/* # advansys_interrupt() calls */
2226 	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2227 	unsigned int done;		/* # calls to request's scsi_done function */
2228 	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2229 	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2230 	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2231 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2232 	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2233 	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2234 	unsigned int exe_error;	/* # ASC_ERROR returns. */
2235 	unsigned int exe_unknown;	/* # unknown returns. */
2236 	/* Data Transfer Statistics */
2237 	unsigned int xfer_cnt;	/* # I/O requests received */
2238 	unsigned int xfer_elem;	/* # scatter-gather elements */
2239 	unsigned int xfer_sect;	/* # 512-byte blocks */
2240 };
2241 #endif /* ADVANSYS_STATS */
2242 
2243 /*
2244  * Structure allocated for each board.
2245  *
2246  * This structure is allocated by scsi_host_alloc() at the end
2247  * of the 'Scsi_Host' structure starting at the 'hostdata'
2248  * field. It is guaranteed to be allocated from DMA-able memory.
2249  */
2250 struct asc_board {
2251 	struct device *dev;
2252 	struct Scsi_Host *shost;
2253 	uint flags;		/* Board flags */
2254 	unsigned int irq;
2255 	union {
2256 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2257 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2258 	} dvc_var;
2259 	union {
2260 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2261 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2262 	} dvc_cfg;
2263 	ushort asc_n_io_port;	/* Number I/O ports. */
2264 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2265 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2266 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2267 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2268 	union {
2269 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2270 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2271 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2272 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2273 	} eep_config;
2274 	/* /proc/scsi/advansys/[0...] */
2275 #ifdef ADVANSYS_STATS
2276 	struct asc_stats asc_stats;	/* Board statistics */
2277 #endif				/* ADVANSYS_STATS */
2278 	/*
2279 	 * The following fields are used only for Narrow Boards.
2280 	 */
2281 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2282 	/*
2283 	 * The following fields are used only for Wide Boards.
2284 	 */
2285 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2286 	ushort ioport;		/* I/O Port address. */
2287 	adv_req_t *adv_reqp;	/* Request structures. */
2288 	dma_addr_t adv_reqp_addr;
2289 	size_t adv_reqp_size;
2290 	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2291 	ushort bios_signature;	/* BIOS Signature. */
2292 	ushort bios_version;	/* BIOS Version. */
2293 	ushort bios_codeseg;	/* BIOS Code Segment. */
2294 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2295 };
2296 
2297 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2298 							dvc_var.asc_dvc_var)
2299 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2300 							dvc_var.adv_dvc_var)
2301 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2302 
2303 #ifdef ADVANSYS_DEBUG
2304 static int asc_dbglvl = 3;
2305 
2306 /*
2307  * asc_prt_asc_dvc_var()
2308  */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2309 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2310 {
2311 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2312 
2313 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2314 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2315 
2316 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2317 		(unsigned)h->init_sdtr);
2318 
2319 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2320 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2321 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2322 	       (unsigned)h->chip_no);
2323 
2324 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2325 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2326 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2327 
2328 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2329 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2330 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2331 	       (unsigned)h->in_critical_cnt);
2332 
2333 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2334 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2335 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2336 	       (unsigned)h->pci_fix_asyn_xfer);
2337 
2338 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2339 }
2340 
2341 /*
2342  * asc_prt_asc_dvc_cfg()
2343  */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2344 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2345 {
2346 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2347 
2348 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2349 	       h->can_tagged_qng, h->cmd_qng_enabled);
2350 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2351 	       h->disc_enable, h->sdtr_enable);
2352 
2353 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2354 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2355 		h->isa_dma_channel, h->chip_version);
2356 
2357 	printk(" mcode_date 0x%x, mcode_version %d\n",
2358 		h->mcode_date, h->mcode_version);
2359 }
2360 
2361 /*
2362  * asc_prt_adv_dvc_var()
2363  *
2364  * Display an ADV_DVC_VAR structure.
2365  */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2366 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2367 {
2368 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2369 
2370 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2371 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2372 
2373 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2374 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2375 
2376 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2377 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2378 
2379 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2380 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2381 	       h->carr_freelist);
2382 
2383 	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2384 
2385 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2386 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2387 
2388 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2389 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2390 }
2391 
2392 /*
2393  * asc_prt_adv_dvc_cfg()
2394  *
2395  * Display an ADV_DVC_CFG structure.
2396  */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2397 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2398 {
2399 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2400 
2401 	printk("  disc_enable 0x%x, termination 0x%x\n",
2402 	       h->disc_enable, h->termination);
2403 
2404 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2405 	       h->chip_version, h->mcode_date);
2406 
2407 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2408 	       h->mcode_version, h->control_flag);
2409 }
2410 
2411 /*
2412  * asc_prt_scsi_host()
2413  */
asc_prt_scsi_host(struct Scsi_Host * s)2414 static void asc_prt_scsi_host(struct Scsi_Host *s)
2415 {
2416 	struct asc_board *boardp = shost_priv(s);
2417 
2418 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2419 	printk(" host_busy %d, host_no %d,\n",
2420 	       scsi_host_busy(s), s->host_no);
2421 
2422 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2423 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2424 
2425 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2426 	       s->dma_channel, s->this_id, s->can_queue);
2427 
2428 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2429 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2430 
2431 	if (ASC_NARROW_BOARD(boardp)) {
2432 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2433 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2434 	} else {
2435 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2436 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2437 	}
2438 }
2439 
2440 /*
2441  * asc_prt_hex()
2442  *
2443  * Print hexadecimal output in 4 byte groupings 32 bytes
2444  * or 8 double-words per line.
2445  */
asc_prt_hex(char * f,uchar * s,int l)2446 static void asc_prt_hex(char *f, uchar *s, int l)
2447 {
2448 	int i;
2449 	int j;
2450 	int k;
2451 	int m;
2452 
2453 	printk("%s: (%d bytes)\n", f, l);
2454 
2455 	for (i = 0; i < l; i += 32) {
2456 
2457 		/* Display a maximum of 8 double-words per line. */
2458 		if ((k = (l - i) / 4) >= 8) {
2459 			k = 8;
2460 			m = 0;
2461 		} else {
2462 			m = (l - i) % 4;
2463 		}
2464 
2465 		for (j = 0; j < k; j++) {
2466 			printk(" %2.2X%2.2X%2.2X%2.2X",
2467 			       (unsigned)s[i + (j * 4)],
2468 			       (unsigned)s[i + (j * 4) + 1],
2469 			       (unsigned)s[i + (j * 4) + 2],
2470 			       (unsigned)s[i + (j * 4) + 3]);
2471 		}
2472 
2473 		switch (m) {
2474 		case 0:
2475 		default:
2476 			break;
2477 		case 1:
2478 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2479 			break;
2480 		case 2:
2481 			printk(" %2.2X%2.2X",
2482 			       (unsigned)s[i + (j * 4)],
2483 			       (unsigned)s[i + (j * 4) + 1]);
2484 			break;
2485 		case 3:
2486 			printk(" %2.2X%2.2X%2.2X",
2487 			       (unsigned)s[i + (j * 4) + 1],
2488 			       (unsigned)s[i + (j * 4) + 2],
2489 			       (unsigned)s[i + (j * 4) + 3]);
2490 			break;
2491 		}
2492 
2493 		printk("\n");
2494 	}
2495 }
2496 
2497 /*
2498  * asc_prt_asc_scsi_q()
2499  */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2500 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2501 {
2502 	ASC_SG_HEAD *sgp;
2503 	int i;
2504 
2505 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2506 
2507 	printk
2508 	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2509 	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2510 	     q->q2.tag_code);
2511 
2512 	printk
2513 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2514 	     (ulong)le32_to_cpu(q->q1.data_addr),
2515 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2516 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2517 
2518 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2519 	       (ulong)q->cdbptr, q->q2.cdb_len,
2520 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2521 
2522 	if (q->sg_head) {
2523 		sgp = q->sg_head;
2524 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2525 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2526 		       sgp->queue_cnt);
2527 		for (i = 0; i < sgp->entry_cnt; i++) {
2528 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2529 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2530 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2531 		}
2532 
2533 	}
2534 }
2535 
2536 /*
2537  * asc_prt_asc_qdone_info()
2538  */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2539 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2540 {
2541 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2542 	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2543 	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2544 	       q->d2.tag_code);
2545 	printk
2546 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2547 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2548 }
2549 
2550 /*
2551  * asc_prt_adv_sgblock()
2552  *
2553  * Display an ADV_SG_BLOCK structure.
2554  */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2555 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2556 {
2557 	int i;
2558 
2559 	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2560 	       (ulong)b, sgblockno);
2561 	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2562 	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2563 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2564 	if (b->sg_ptr != 0)
2565 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2566 	for (i = 0; i < b->sg_cnt; i++) {
2567 		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2568 		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2569 		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2570 	}
2571 }
2572 
2573 /*
2574  * asc_prt_adv_scsi_req_q()
2575  *
2576  * Display an ADV_SCSI_REQ_Q structure.
2577  */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2578 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2579 {
2580 	int sg_blk_cnt;
2581 	struct adv_sg_block *sg_ptr;
2582 	adv_sgblk_t *sgblkp;
2583 
2584 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2585 
2586 	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2587 	       q->target_id, q->target_lun, q->srb_tag);
2588 
2589 	printk("  cntl 0x%x, data_addr 0x%lx\n",
2590 	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2591 
2592 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2593 	       (ulong)le32_to_cpu(q->data_cnt),
2594 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2595 
2596 	printk
2597 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2598 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2599 
2600 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2601 	       q->sg_working_ix, q->target_cmd);
2602 
2603 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2604 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2605 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2606 
2607 	/* Display the request's ADV_SG_BLOCK structures. */
2608 	if (q->sg_list_ptr != NULL) {
2609 		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2610 		sg_blk_cnt = 0;
2611 		while (sgblkp) {
2612 			sg_ptr = &sgblkp->sg_block;
2613 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2614 			if (sg_ptr->sg_ptr == 0) {
2615 				break;
2616 			}
2617 			sgblkp = sgblkp->next_sgblkp;
2618 			sg_blk_cnt++;
2619 		}
2620 	}
2621 }
2622 #endif /* ADVANSYS_DEBUG */
2623 
2624 /*
2625  * advansys_info()
2626  *
2627  * Return suitable for printing on the console with the argument
2628  * adapter's configuration information.
2629  *
2630  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2631  * otherwise the static 'info' array will be overrun.
2632  */
advansys_info(struct Scsi_Host * shost)2633 static const char *advansys_info(struct Scsi_Host *shost)
2634 {
2635 	static char info[ASC_INFO_SIZE];
2636 	struct asc_board *boardp = shost_priv(shost);
2637 	ASC_DVC_VAR *asc_dvc_varp;
2638 	ADV_DVC_VAR *adv_dvc_varp;
2639 	char *busname;
2640 	char *widename = NULL;
2641 
2642 	if (ASC_NARROW_BOARD(boardp)) {
2643 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2644 		ASC_DBG(1, "begin\n");
2645 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2646 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2647 			    ASC_IS_ISAPNP) {
2648 				busname = "ISA PnP";
2649 			} else {
2650 				busname = "ISA";
2651 			}
2652 			sprintf(info,
2653 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2654 				ASC_VERSION, busname,
2655 				(ulong)shost->io_port,
2656 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2657 				boardp->irq, shost->dma_channel);
2658 		} else {
2659 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2660 				busname = "VL";
2661 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2662 				busname = "EISA";
2663 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2664 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2665 				    == ASC_IS_PCI_ULTRA) {
2666 					busname = "PCI Ultra";
2667 				} else {
2668 					busname = "PCI";
2669 				}
2670 			} else {
2671 				busname = "?";
2672 				shost_printk(KERN_ERR, shost, "unknown bus "
2673 					"type %d\n", asc_dvc_varp->bus_type);
2674 			}
2675 			sprintf(info,
2676 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2677 				ASC_VERSION, busname, (ulong)shost->io_port,
2678 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2679 				boardp->irq);
2680 		}
2681 	} else {
2682 		/*
2683 		 * Wide Adapter Information
2684 		 *
2685 		 * Memory-mapped I/O is used instead of I/O space to access
2686 		 * the adapter, but display the I/O Port range. The Memory
2687 		 * I/O address is displayed through the driver /proc file.
2688 		 */
2689 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2690 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2691 			widename = "Ultra-Wide";
2692 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2693 			widename = "Ultra2-Wide";
2694 		} else {
2695 			widename = "Ultra3-Wide";
2696 		}
2697 		sprintf(info,
2698 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2699 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2700 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2701 	}
2702 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2703 	ASC_DBG(1, "end\n");
2704 	return info;
2705 }
2706 
2707 #ifdef CONFIG_PROC_FS
2708 
2709 /*
2710  * asc_prt_board_devices()
2711  *
2712  * Print driver information for devices attached to the board.
2713  */
asc_prt_board_devices(struct seq_file * m,struct Scsi_Host * shost)2714 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2715 {
2716 	struct asc_board *boardp = shost_priv(shost);
2717 	int chip_scsi_id;
2718 	int i;
2719 
2720 	seq_printf(m,
2721 		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2722 		   shost->host_no);
2723 
2724 	if (ASC_NARROW_BOARD(boardp)) {
2725 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2726 	} else {
2727 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2728 	}
2729 
2730 	seq_puts(m, "Target IDs Detected:");
2731 	for (i = 0; i <= ADV_MAX_TID; i++) {
2732 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2733 			seq_printf(m, " %X,", i);
2734 	}
2735 	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2736 }
2737 
2738 /*
2739  * Display Wide Board BIOS Information.
2740  */
asc_prt_adv_bios(struct seq_file * m,struct Scsi_Host * shost)2741 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2742 {
2743 	struct asc_board *boardp = shost_priv(shost);
2744 	ushort major, minor, letter;
2745 
2746 	seq_puts(m, "\nROM BIOS Version: ");
2747 
2748 	/*
2749 	 * If the BIOS saved a valid signature, then fill in
2750 	 * the BIOS code segment base address.
2751 	 */
2752 	if (boardp->bios_signature != 0x55AA) {
2753 		seq_puts(m, "Disabled or Pre-3.1\n"
2754 			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2755 			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2756 	} else {
2757 		major = (boardp->bios_version >> 12) & 0xF;
2758 		minor = (boardp->bios_version >> 8) & 0xF;
2759 		letter = (boardp->bios_version & 0xFF);
2760 
2761 		seq_printf(m, "%d.%d%c\n",
2762 				   major, minor,
2763 				   letter >= 26 ? '?' : letter + 'A');
2764 		/*
2765 		 * Current available ROM BIOS release is 3.1I for UW
2766 		 * and 3.2I for U2W. This code doesn't differentiate
2767 		 * UW and U2W boards.
2768 		 */
2769 		if (major < 3 || (major <= 3 && minor < 1) ||
2770 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2771 			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2772 				"ftp://ftp.connectcom.net/pub\n");
2773 		}
2774 	}
2775 }
2776 
2777 /*
2778  * Add serial number to information bar if signature AAh
2779  * is found in at bit 15-9 (7 bits) of word 1.
2780  *
2781  * Serial Number consists fo 12 alpha-numeric digits.
2782  *
2783  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2784  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2785  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2786  *       5 - Product revision (A-J)    Word0:  "         "
2787  *
2788  *           Signature                 Word1: 15-9 (7 bits)
2789  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2790  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2791  *
2792  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2793  *
2794  * Note 1: Only production cards will have a serial number.
2795  *
2796  * Note 2: Signature is most significant 7 bits (0xFE).
2797  *
2798  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2799  */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)2800 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2801 {
2802 	ushort w, num;
2803 
2804 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2805 		return ASC_FALSE;
2806 	} else {
2807 		/*
2808 		 * First word - 6 digits.
2809 		 */
2810 		w = serialnum[0];
2811 
2812 		/* Product type - 1st digit. */
2813 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2814 			/* Product type is P=Prototype */
2815 			*cp += 0x8;
2816 		}
2817 		cp++;
2818 
2819 		/* Manufacturing location - 2nd digit. */
2820 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2821 
2822 		/* Product ID - 3rd, 4th digits. */
2823 		num = w & 0x3FF;
2824 		*cp++ = '0' + (num / 100);
2825 		num %= 100;
2826 		*cp++ = '0' + (num / 10);
2827 
2828 		/* Product revision - 5th digit. */
2829 		*cp++ = 'A' + (num % 10);
2830 
2831 		/*
2832 		 * Second word
2833 		 */
2834 		w = serialnum[1];
2835 
2836 		/*
2837 		 * Year - 6th digit.
2838 		 *
2839 		 * If bit 15 of third word is set, then the
2840 		 * last digit of the year is greater than 7.
2841 		 */
2842 		if (serialnum[2] & 0x8000) {
2843 			*cp++ = '8' + ((w & 0x1C0) >> 6);
2844 		} else {
2845 			*cp++ = '0' + ((w & 0x1C0) >> 6);
2846 		}
2847 
2848 		/* Week of year - 7th, 8th digits. */
2849 		num = w & 0x003F;
2850 		*cp++ = '0' + num / 10;
2851 		num %= 10;
2852 		*cp++ = '0' + num;
2853 
2854 		/*
2855 		 * Third word
2856 		 */
2857 		w = serialnum[2] & 0x7FFF;
2858 
2859 		/* Serial number - 9th digit. */
2860 		*cp++ = 'A' + (w / 1000);
2861 
2862 		/* 10th, 11th, 12th digits. */
2863 		num = w % 1000;
2864 		*cp++ = '0' + num / 100;
2865 		num %= 100;
2866 		*cp++ = '0' + num / 10;
2867 		num %= 10;
2868 		*cp++ = '0' + num;
2869 
2870 		*cp = '\0';	/* Null Terminate the string. */
2871 		return ASC_TRUE;
2872 	}
2873 }
2874 
2875 /*
2876  * asc_prt_asc_board_eeprom()
2877  *
2878  * Print board EEPROM configuration.
2879  */
asc_prt_asc_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2880 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2881 {
2882 	struct asc_board *boardp = shost_priv(shost);
2883 	ASC_DVC_VAR *asc_dvc_varp;
2884 	ASCEEP_CONFIG *ep;
2885 	int i;
2886 #ifdef CONFIG_ISA
2887 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2888 #endif /* CONFIG_ISA */
2889 	uchar serialstr[13];
2890 
2891 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2892 	ep = &boardp->eep_config.asc_eep;
2893 
2894 	seq_printf(m,
2895 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2896 		   shost->host_no);
2897 
2898 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2899 	    == ASC_TRUE)
2900 		seq_printf(m, " Serial Number: %s\n", serialstr);
2901 	else if (ep->adapter_info[5] == 0xBB)
2902 		seq_puts(m,
2903 			 " Default Settings Used for EEPROM-less Adapter.\n");
2904 	else
2905 		seq_puts(m, " Serial Number Signature Not Present.\n");
2906 
2907 	seq_printf(m,
2908 		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2909 		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2910 		   ep->max_tag_qng);
2911 
2912 	seq_printf(m,
2913 		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2914 
2915 	seq_puts(m, " Target ID:           ");
2916 	for (i = 0; i <= ASC_MAX_TID; i++)
2917 		seq_printf(m, " %d", i);
2918 
2919 	seq_puts(m, "\n Disconnects:         ");
2920 	for (i = 0; i <= ASC_MAX_TID; i++)
2921 		seq_printf(m, " %c",
2922 			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2923 
2924 	seq_puts(m, "\n Command Queuing:     ");
2925 	for (i = 0; i <= ASC_MAX_TID; i++)
2926 		seq_printf(m, " %c",
2927 			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2928 
2929 	seq_puts(m, "\n Start Motor:         ");
2930 	for (i = 0; i <= ASC_MAX_TID; i++)
2931 		seq_printf(m, " %c",
2932 			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2933 
2934 	seq_puts(m, "\n Synchronous Transfer:");
2935 	for (i = 0; i <= ASC_MAX_TID; i++)
2936 		seq_printf(m, " %c",
2937 			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2938 	seq_putc(m, '\n');
2939 
2940 #ifdef CONFIG_ISA
2941 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2942 		seq_printf(m,
2943 			   " Host ISA DMA speed:   %d MB/S\n",
2944 			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2945 	}
2946 #endif /* CONFIG_ISA */
2947 }
2948 
2949 /*
2950  * asc_prt_adv_board_eeprom()
2951  *
2952  * Print board EEPROM configuration.
2953  */
asc_prt_adv_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2954 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2955 {
2956 	struct asc_board *boardp = shost_priv(shost);
2957 	ADV_DVC_VAR *adv_dvc_varp;
2958 	int i;
2959 	char *termstr;
2960 	uchar serialstr[13];
2961 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2962 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2963 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2964 	ushort word;
2965 	ushort *wordp;
2966 	ushort sdtr_speed = 0;
2967 
2968 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2969 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970 		ep_3550 = &boardp->eep_config.adv_3550_eep;
2971 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2973 	} else {
2974 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2975 	}
2976 
2977 	seq_printf(m,
2978 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2979 		   shost->host_no);
2980 
2981 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2982 		wordp = &ep_3550->serial_number_word1;
2983 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2984 		wordp = &ep_38C0800->serial_number_word1;
2985 	} else {
2986 		wordp = &ep_38C1600->serial_number_word1;
2987 	}
2988 
2989 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2990 		seq_printf(m, " Serial Number: %s\n", serialstr);
2991 	else
2992 		seq_puts(m, " Serial Number Signature Not Present.\n");
2993 
2994 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2995 		seq_printf(m,
2996 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2997 			   ep_3550->adapter_scsi_id,
2998 			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2999 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3000 		seq_printf(m,
3001 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3002 			   ep_38C0800->adapter_scsi_id,
3003 			   ep_38C0800->max_host_qng,
3004 			   ep_38C0800->max_dvc_qng);
3005 	else
3006 		seq_printf(m,
3007 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3008 			   ep_38C1600->adapter_scsi_id,
3009 			   ep_38C1600->max_host_qng,
3010 			   ep_38C1600->max_dvc_qng);
3011 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3012 		word = ep_3550->termination;
3013 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3014 		word = ep_38C0800->termination_lvd;
3015 	} else {
3016 		word = ep_38C1600->termination_lvd;
3017 	}
3018 	switch (word) {
3019 	case 1:
3020 		termstr = "Low Off/High Off";
3021 		break;
3022 	case 2:
3023 		termstr = "Low Off/High On";
3024 		break;
3025 	case 3:
3026 		termstr = "Low On/High On";
3027 		break;
3028 	default:
3029 	case 0:
3030 		termstr = "Automatic";
3031 		break;
3032 	}
3033 
3034 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3035 		seq_printf(m,
3036 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3037 			   ep_3550->termination, termstr,
3038 			   ep_3550->bios_ctrl);
3039 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3040 		seq_printf(m,
3041 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3042 			   ep_38C0800->termination_lvd, termstr,
3043 			   ep_38C0800->bios_ctrl);
3044 	else
3045 		seq_printf(m,
3046 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3047 			   ep_38C1600->termination_lvd, termstr,
3048 			   ep_38C1600->bios_ctrl);
3049 
3050 	seq_puts(m, " Target ID:           ");
3051 	for (i = 0; i <= ADV_MAX_TID; i++)
3052 		seq_printf(m, " %X", i);
3053 	seq_putc(m, '\n');
3054 
3055 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3056 		word = ep_3550->disc_enable;
3057 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3058 		word = ep_38C0800->disc_enable;
3059 	} else {
3060 		word = ep_38C1600->disc_enable;
3061 	}
3062 	seq_puts(m, " Disconnects:         ");
3063 	for (i = 0; i <= ADV_MAX_TID; i++)
3064 		seq_printf(m, " %c",
3065 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3066 	seq_putc(m, '\n');
3067 
3068 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3069 		word = ep_3550->tagqng_able;
3070 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3071 		word = ep_38C0800->tagqng_able;
3072 	} else {
3073 		word = ep_38C1600->tagqng_able;
3074 	}
3075 	seq_puts(m, " Command Queuing:     ");
3076 	for (i = 0; i <= ADV_MAX_TID; i++)
3077 		seq_printf(m, " %c",
3078 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3079 	seq_putc(m, '\n');
3080 
3081 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3082 		word = ep_3550->start_motor;
3083 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3084 		word = ep_38C0800->start_motor;
3085 	} else {
3086 		word = ep_38C1600->start_motor;
3087 	}
3088 	seq_puts(m, " Start Motor:         ");
3089 	for (i = 0; i <= ADV_MAX_TID; i++)
3090 		seq_printf(m, " %c",
3091 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3092 	seq_putc(m, '\n');
3093 
3094 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3095 		seq_puts(m, " Synchronous Transfer:");
3096 		for (i = 0; i <= ADV_MAX_TID; i++)
3097 			seq_printf(m, " %c",
3098 				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3099 				   'Y' : 'N');
3100 		seq_putc(m, '\n');
3101 	}
3102 
3103 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3104 		seq_puts(m, " Ultra Transfer:      ");
3105 		for (i = 0; i <= ADV_MAX_TID; i++)
3106 			seq_printf(m, " %c",
3107 				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3108 				   ? 'Y' : 'N');
3109 		seq_putc(m, '\n');
3110 	}
3111 
3112 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3113 		word = ep_3550->wdtr_able;
3114 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3115 		word = ep_38C0800->wdtr_able;
3116 	} else {
3117 		word = ep_38C1600->wdtr_able;
3118 	}
3119 	seq_puts(m, " Wide Transfer:       ");
3120 	for (i = 0; i <= ADV_MAX_TID; i++)
3121 		seq_printf(m, " %c",
3122 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3123 	seq_putc(m, '\n');
3124 
3125 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3126 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3127 		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3128 		for (i = 0; i <= ADV_MAX_TID; i++) {
3129 			char *speed_str;
3130 
3131 			if (i == 0) {
3132 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3133 			} else if (i == 4) {
3134 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3135 			} else if (i == 8) {
3136 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3137 			} else if (i == 12) {
3138 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3139 			}
3140 			switch (sdtr_speed & ADV_MAX_TID) {
3141 			case 0:
3142 				speed_str = "Off";
3143 				break;
3144 			case 1:
3145 				speed_str = "  5";
3146 				break;
3147 			case 2:
3148 				speed_str = " 10";
3149 				break;
3150 			case 3:
3151 				speed_str = " 20";
3152 				break;
3153 			case 4:
3154 				speed_str = " 40";
3155 				break;
3156 			case 5:
3157 				speed_str = " 80";
3158 				break;
3159 			default:
3160 				speed_str = "Unk";
3161 				break;
3162 			}
3163 			seq_printf(m, "%X:%s ", i, speed_str);
3164 			if (i == 7)
3165 				seq_puts(m, "\n  ");
3166 			sdtr_speed >>= 4;
3167 		}
3168 		seq_putc(m, '\n');
3169 	}
3170 }
3171 
3172 /*
3173  * asc_prt_driver_conf()
3174  */
asc_prt_driver_conf(struct seq_file * m,struct Scsi_Host * shost)3175 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3176 {
3177 	struct asc_board *boardp = shost_priv(shost);
3178 	int chip_scsi_id;
3179 
3180 	seq_printf(m,
3181 		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3182 		shost->host_no);
3183 
3184 	seq_printf(m,
3185 		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3186 		   scsi_host_busy(shost), shost->max_id,
3187 		   shost->max_lun, shost->max_channel);
3188 
3189 	seq_printf(m,
3190 		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3191 		   shost->unique_id, shost->can_queue, shost->this_id,
3192 		   shost->sg_tablesize, shost->cmd_per_lun);
3193 
3194 	seq_printf(m,
3195 		   " unchecked_isa_dma %d, use_clustering %d\n",
3196 		   shost->unchecked_isa_dma, shost->use_clustering);
3197 
3198 	seq_printf(m,
3199 		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3200 		   boardp->flags, shost->last_reset, jiffies,
3201 		   boardp->asc_n_io_port);
3202 
3203 	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3204 
3205 	if (ASC_NARROW_BOARD(boardp)) {
3206 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3207 	} else {
3208 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3209 	}
3210 }
3211 
3212 /*
3213  * asc_prt_asc_board_info()
3214  *
3215  * Print dynamic board configuration information.
3216  */
asc_prt_asc_board_info(struct seq_file * m,struct Scsi_Host * shost)3217 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3218 {
3219 	struct asc_board *boardp = shost_priv(shost);
3220 	int chip_scsi_id;
3221 	ASC_DVC_VAR *v;
3222 	ASC_DVC_CFG *c;
3223 	int i;
3224 	int renegotiate = 0;
3225 
3226 	v = &boardp->dvc_var.asc_dvc_var;
3227 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3228 	chip_scsi_id = c->chip_scsi_id;
3229 
3230 	seq_printf(m,
3231 		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3232 		   shost->host_no);
3233 
3234 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3235 		   "mcode_version 0x%x, err_code %u\n",
3236 		   c->chip_version, c->mcode_date, c->mcode_version,
3237 		   v->err_code);
3238 
3239 	/* Current number of commands waiting for the host. */
3240 	seq_printf(m,
3241 		   " Total Command Pending: %d\n", v->cur_total_qng);
3242 
3243 	seq_puts(m, " Command Queuing:");
3244 	for (i = 0; i <= ASC_MAX_TID; i++) {
3245 		if ((chip_scsi_id == i) ||
3246 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3247 			continue;
3248 		}
3249 		seq_printf(m, " %X:%c",
3250 			   i,
3251 			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3252 	}
3253 
3254 	/* Current number of commands waiting for a device. */
3255 	seq_puts(m, "\n Command Queue Pending:");
3256 	for (i = 0; i <= ASC_MAX_TID; i++) {
3257 		if ((chip_scsi_id == i) ||
3258 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3259 			continue;
3260 		}
3261 		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3262 	}
3263 
3264 	/* Current limit on number of commands that can be sent to a device. */
3265 	seq_puts(m, "\n Command Queue Limit:");
3266 	for (i = 0; i <= ASC_MAX_TID; i++) {
3267 		if ((chip_scsi_id == i) ||
3268 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3269 			continue;
3270 		}
3271 		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3272 	}
3273 
3274 	/* Indicate whether the device has returned queue full status. */
3275 	seq_puts(m, "\n Command Queue Full:");
3276 	for (i = 0; i <= ASC_MAX_TID; i++) {
3277 		if ((chip_scsi_id == i) ||
3278 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3279 			continue;
3280 		}
3281 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3282 			seq_printf(m, " %X:Y-%d",
3283 				   i, boardp->queue_full_cnt[i]);
3284 		else
3285 			seq_printf(m, " %X:N", i);
3286 	}
3287 
3288 	seq_puts(m, "\n Synchronous Transfer:");
3289 	for (i = 0; i <= ASC_MAX_TID; i++) {
3290 		if ((chip_scsi_id == i) ||
3291 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3292 			continue;
3293 		}
3294 		seq_printf(m, " %X:%c",
3295 			   i,
3296 			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3297 	}
3298 	seq_putc(m, '\n');
3299 
3300 	for (i = 0; i <= ASC_MAX_TID; i++) {
3301 		uchar syn_period_ix;
3302 
3303 		if ((chip_scsi_id == i) ||
3304 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3305 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3306 			continue;
3307 		}
3308 
3309 		seq_printf(m, "  %X:", i);
3310 
3311 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3312 			seq_puts(m, " Asynchronous");
3313 		} else {
3314 			syn_period_ix =
3315 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3316 							   1);
3317 
3318 			seq_printf(m,
3319 				   " Transfer Period Factor: %d (%d.%d Mhz),",
3320 				   v->sdtr_period_tbl[syn_period_ix],
3321 				   250 / v->sdtr_period_tbl[syn_period_ix],
3322 				   ASC_TENTHS(250,
3323 					      v->sdtr_period_tbl[syn_period_ix]));
3324 
3325 			seq_printf(m, " REQ/ACK Offset: %d",
3326 				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3327 		}
3328 
3329 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3330 			seq_puts(m, "*\n");
3331 			renegotiate = 1;
3332 		} else {
3333 			seq_putc(m, '\n');
3334 		}
3335 	}
3336 
3337 	if (renegotiate) {
3338 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3339 	}
3340 }
3341 
3342 /*
3343  * asc_prt_adv_board_info()
3344  *
3345  * Print dynamic board configuration information.
3346  */
asc_prt_adv_board_info(struct seq_file * m,struct Scsi_Host * shost)3347 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3348 {
3349 	struct asc_board *boardp = shost_priv(shost);
3350 	int i;
3351 	ADV_DVC_VAR *v;
3352 	ADV_DVC_CFG *c;
3353 	AdvPortAddr iop_base;
3354 	ushort chip_scsi_id;
3355 	ushort lramword;
3356 	uchar lrambyte;
3357 	ushort tagqng_able;
3358 	ushort sdtr_able, wdtr_able;
3359 	ushort wdtr_done, sdtr_done;
3360 	ushort period = 0;
3361 	int renegotiate = 0;
3362 
3363 	v = &boardp->dvc_var.adv_dvc_var;
3364 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3365 	iop_base = v->iop_base;
3366 	chip_scsi_id = v->chip_scsi_id;
3367 
3368 	seq_printf(m,
3369 		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3370 		   shost->host_no);
3371 
3372 	seq_printf(m,
3373 		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3374 		   (unsigned long)v->iop_base,
3375 		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3376 		   v->err_code);
3377 
3378 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3379 		   "mcode_version 0x%x\n", c->chip_version,
3380 		   c->mcode_date, c->mcode_version);
3381 
3382 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3383 	seq_puts(m, " Queuing Enabled:");
3384 	for (i = 0; i <= ADV_MAX_TID; i++) {
3385 		if ((chip_scsi_id == i) ||
3386 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3387 			continue;
3388 		}
3389 
3390 		seq_printf(m, " %X:%c",
3391 			   i,
3392 			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3393 	}
3394 
3395 	seq_puts(m, "\n Queue Limit:");
3396 	for (i = 0; i <= ADV_MAX_TID; i++) {
3397 		if ((chip_scsi_id == i) ||
3398 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3399 			continue;
3400 		}
3401 
3402 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3403 				lrambyte);
3404 
3405 		seq_printf(m, " %X:%d", i, lrambyte);
3406 	}
3407 
3408 	seq_puts(m, "\n Command Pending:");
3409 	for (i = 0; i <= ADV_MAX_TID; i++) {
3410 		if ((chip_scsi_id == i) ||
3411 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412 			continue;
3413 		}
3414 
3415 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3416 				lrambyte);
3417 
3418 		seq_printf(m, " %X:%d", i, lrambyte);
3419 	}
3420 	seq_putc(m, '\n');
3421 
3422 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3423 	seq_puts(m, " Wide Enabled:");
3424 	for (i = 0; i <= ADV_MAX_TID; i++) {
3425 		if ((chip_scsi_id == i) ||
3426 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3427 			continue;
3428 		}
3429 
3430 		seq_printf(m, " %X:%c",
3431 			   i,
3432 			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3433 	}
3434 	seq_putc(m, '\n');
3435 
3436 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3437 	seq_puts(m, " Transfer Bit Width:");
3438 	for (i = 0; i <= ADV_MAX_TID; i++) {
3439 		if ((chip_scsi_id == i) ||
3440 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3441 			continue;
3442 		}
3443 
3444 		AdvReadWordLram(iop_base,
3445 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3446 				lramword);
3447 
3448 		seq_printf(m, " %X:%d",
3449 			   i, (lramword & 0x8000) ? 16 : 8);
3450 
3451 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3452 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3453 			seq_putc(m, '*');
3454 			renegotiate = 1;
3455 		}
3456 	}
3457 	seq_putc(m, '\n');
3458 
3459 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3460 	seq_puts(m, " Synchronous Enabled:");
3461 	for (i = 0; i <= ADV_MAX_TID; i++) {
3462 		if ((chip_scsi_id == i) ||
3463 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3464 			continue;
3465 		}
3466 
3467 		seq_printf(m, " %X:%c",
3468 			   i,
3469 			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3470 	}
3471 	seq_putc(m, '\n');
3472 
3473 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3474 	for (i = 0; i <= ADV_MAX_TID; i++) {
3475 
3476 		AdvReadWordLram(iop_base,
3477 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3478 				lramword);
3479 		lramword &= ~0x8000;
3480 
3481 		if ((chip_scsi_id == i) ||
3482 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3483 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3484 			continue;
3485 		}
3486 
3487 		seq_printf(m, "  %X:", i);
3488 
3489 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3490 			seq_puts(m, " Asynchronous");
3491 		} else {
3492 			seq_puts(m, " Transfer Period Factor: ");
3493 
3494 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3495 				seq_puts(m, "9 (80.0 Mhz),");
3496 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3497 				seq_puts(m, "10 (40.0 Mhz),");
3498 			} else {	/* 20 Mhz or below. */
3499 
3500 				period = (((lramword >> 8) * 25) + 50) / 4;
3501 
3502 				if (period == 0) {	/* Should never happen. */
3503 					seq_printf(m, "%d (? Mhz), ", period);
3504 				} else {
3505 					seq_printf(m,
3506 						   "%d (%d.%d Mhz),",
3507 						   period, 250 / period,
3508 						   ASC_TENTHS(250, period));
3509 				}
3510 			}
3511 
3512 			seq_printf(m, " REQ/ACK Offset: %d",
3513 				   lramword & 0x1F);
3514 		}
3515 
3516 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3517 			seq_puts(m, "*\n");
3518 			renegotiate = 1;
3519 		} else {
3520 			seq_putc(m, '\n');
3521 		}
3522 	}
3523 
3524 	if (renegotiate) {
3525 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3526 	}
3527 }
3528 
3529 #ifdef ADVANSYS_STATS
3530 /*
3531  * asc_prt_board_stats()
3532  */
asc_prt_board_stats(struct seq_file * m,struct Scsi_Host * shost)3533 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3534 {
3535 	struct asc_board *boardp = shost_priv(shost);
3536 	struct asc_stats *s = &boardp->asc_stats;
3537 
3538 	seq_printf(m,
3539 		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3540 		   shost->host_no);
3541 
3542 	seq_printf(m,
3543 		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3544 		   s->queuecommand, s->reset, s->biosparam,
3545 		   s->interrupt);
3546 
3547 	seq_printf(m,
3548 		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3549 		   s->callback, s->done, s->build_error,
3550 		   s->adv_build_noreq, s->adv_build_nosg);
3551 
3552 	seq_printf(m,
3553 		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3554 		   s->exe_noerror, s->exe_busy, s->exe_error,
3555 		   s->exe_unknown);
3556 
3557 	/*
3558 	 * Display data transfer statistics.
3559 	 */
3560 	if (s->xfer_cnt > 0) {
3561 		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3562 			   s->xfer_cnt, s->xfer_elem);
3563 
3564 		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3565 			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3566 
3567 		/* Scatter gather transfer statistics */
3568 		seq_printf(m, " avg_num_elem %u.%01u, ",
3569 			   s->xfer_elem / s->xfer_cnt,
3570 			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3571 
3572 		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3573 			   (s->xfer_sect / 2) / s->xfer_elem,
3574 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3575 
3576 		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3577 			   (s->xfer_sect / 2) / s->xfer_cnt,
3578 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3579 	}
3580 }
3581 #endif /* ADVANSYS_STATS */
3582 
3583 /*
3584  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3585  *
3586  * m: seq_file to print into
3587  * shost: Scsi_Host
3588  *
3589  * Return the number of bytes read from or written to a
3590  * /proc/scsi/advansys/[0...] file.
3591  */
3592 static int
advansys_show_info(struct seq_file * m,struct Scsi_Host * shost)3593 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3594 {
3595 	struct asc_board *boardp = shost_priv(shost);
3596 
3597 	ASC_DBG(1, "begin\n");
3598 
3599 	/*
3600 	 * User read of /proc/scsi/advansys/[0...] file.
3601 	 */
3602 
3603 	/*
3604 	 * Get board configuration information.
3605 	 *
3606 	 * advansys_info() returns the board string from its own static buffer.
3607 	 */
3608 	/* Copy board information. */
3609 	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3610 	/*
3611 	 * Display Wide Board BIOS Information.
3612 	 */
3613 	if (!ASC_NARROW_BOARD(boardp))
3614 		asc_prt_adv_bios(m, shost);
3615 
3616 	/*
3617 	 * Display driver information for each device attached to the board.
3618 	 */
3619 	asc_prt_board_devices(m, shost);
3620 
3621 	/*
3622 	 * Display EEPROM configuration for the board.
3623 	 */
3624 	if (ASC_NARROW_BOARD(boardp))
3625 		asc_prt_asc_board_eeprom(m, shost);
3626 	else
3627 		asc_prt_adv_board_eeprom(m, shost);
3628 
3629 	/*
3630 	 * Display driver configuration and information for the board.
3631 	 */
3632 	asc_prt_driver_conf(m, shost);
3633 
3634 #ifdef ADVANSYS_STATS
3635 	/*
3636 	 * Display driver statistics for the board.
3637 	 */
3638 	asc_prt_board_stats(m, shost);
3639 #endif /* ADVANSYS_STATS */
3640 
3641 	/*
3642 	 * Display Asc Library dynamic configuration information
3643 	 * for the board.
3644 	 */
3645 	if (ASC_NARROW_BOARD(boardp))
3646 		asc_prt_asc_board_info(m, shost);
3647 	else
3648 		asc_prt_adv_board_info(m, shost);
3649 	return 0;
3650 }
3651 #endif /* CONFIG_PROC_FS */
3652 
asc_scsi_done(struct scsi_cmnd * scp)3653 static void asc_scsi_done(struct scsi_cmnd *scp)
3654 {
3655 	scsi_dma_unmap(scp);
3656 	ASC_STATS(scp->device->host, done);
3657 	scp->scsi_done(scp);
3658 }
3659 
AscSetBank(PortAddr iop_base,uchar bank)3660 static void AscSetBank(PortAddr iop_base, uchar bank)
3661 {
3662 	uchar val;
3663 
3664 	val = AscGetChipControl(iop_base) &
3665 	    (~
3666 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3667 	      CC_CHIP_RESET));
3668 	if (bank == 1) {
3669 		val |= CC_BANK_ONE;
3670 	} else if (bank == 2) {
3671 		val |= CC_DIAG | CC_BANK_ONE;
3672 	} else {
3673 		val &= ~CC_BANK_ONE;
3674 	}
3675 	AscSetChipControl(iop_base, val);
3676 }
3677 
AscSetChipIH(PortAddr iop_base,ushort ins_code)3678 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3679 {
3680 	AscSetBank(iop_base, 1);
3681 	AscWriteChipIH(iop_base, ins_code);
3682 	AscSetBank(iop_base, 0);
3683 }
3684 
AscStartChip(PortAddr iop_base)3685 static int AscStartChip(PortAddr iop_base)
3686 {
3687 	AscSetChipControl(iop_base, 0);
3688 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3689 		return (0);
3690 	}
3691 	return (1);
3692 }
3693 
AscStopChip(PortAddr iop_base)3694 static bool AscStopChip(PortAddr iop_base)
3695 {
3696 	uchar cc_val;
3697 
3698 	cc_val =
3699 	    AscGetChipControl(iop_base) &
3700 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3701 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3702 	AscSetChipIH(iop_base, INS_HALT);
3703 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3704 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3705 		return false;
3706 	}
3707 	return true;
3708 }
3709 
AscIsChipHalted(PortAddr iop_base)3710 static bool AscIsChipHalted(PortAddr iop_base)
3711 {
3712 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3713 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3714 			return true;
3715 		}
3716 	}
3717 	return false;
3718 }
3719 
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)3720 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3721 {
3722 	PortAddr iop_base;
3723 	int i = 10;
3724 
3725 	iop_base = asc_dvc->iop_base;
3726 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3727 	       && (i-- > 0)) {
3728 		mdelay(100);
3729 	}
3730 	AscStopChip(iop_base);
3731 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3732 	udelay(60);
3733 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3734 	AscSetChipIH(iop_base, INS_HALT);
3735 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3736 	AscSetChipControl(iop_base, CC_HALT);
3737 	mdelay(200);
3738 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3739 	AscSetChipStatus(iop_base, 0);
3740 	return (AscIsChipHalted(iop_base));
3741 }
3742 
AscFindSignature(PortAddr iop_base)3743 static int AscFindSignature(PortAddr iop_base)
3744 {
3745 	ushort sig_word;
3746 
3747 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3748 		 iop_base, AscGetChipSignatureByte(iop_base));
3749 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3750 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3751 			 iop_base, AscGetChipSignatureWord(iop_base));
3752 		sig_word = AscGetChipSignatureWord(iop_base);
3753 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3754 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3755 			return (1);
3756 		}
3757 	}
3758 	return (0);
3759 }
3760 
AscEnableInterrupt(PortAddr iop_base)3761 static void AscEnableInterrupt(PortAddr iop_base)
3762 {
3763 	ushort cfg;
3764 
3765 	cfg = AscGetChipCfgLsw(iop_base);
3766 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3767 }
3768 
AscDisableInterrupt(PortAddr iop_base)3769 static void AscDisableInterrupt(PortAddr iop_base)
3770 {
3771 	ushort cfg;
3772 
3773 	cfg = AscGetChipCfgLsw(iop_base);
3774 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3775 }
3776 
AscReadLramByte(PortAddr iop_base,ushort addr)3777 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3778 {
3779 	unsigned char byte_data;
3780 	unsigned short word_data;
3781 
3782 	if (isodd_word(addr)) {
3783 		AscSetChipLramAddr(iop_base, addr - 1);
3784 		word_data = AscGetChipLramData(iop_base);
3785 		byte_data = (word_data >> 8) & 0xFF;
3786 	} else {
3787 		AscSetChipLramAddr(iop_base, addr);
3788 		word_data = AscGetChipLramData(iop_base);
3789 		byte_data = word_data & 0xFF;
3790 	}
3791 	return byte_data;
3792 }
3793 
AscReadLramWord(PortAddr iop_base,ushort addr)3794 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3795 {
3796 	ushort word_data;
3797 
3798 	AscSetChipLramAddr(iop_base, addr);
3799 	word_data = AscGetChipLramData(iop_base);
3800 	return (word_data);
3801 }
3802 
3803 static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)3804 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3805 {
3806 	int i;
3807 
3808 	AscSetChipLramAddr(iop_base, s_addr);
3809 	for (i = 0; i < words; i++) {
3810 		AscSetChipLramData(iop_base, set_wval);
3811 	}
3812 }
3813 
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)3814 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3815 {
3816 	AscSetChipLramAddr(iop_base, addr);
3817 	AscSetChipLramData(iop_base, word_val);
3818 }
3819 
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)3820 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3821 {
3822 	ushort word_data;
3823 
3824 	if (isodd_word(addr)) {
3825 		addr--;
3826 		word_data = AscReadLramWord(iop_base, addr);
3827 		word_data &= 0x00FF;
3828 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3829 	} else {
3830 		word_data = AscReadLramWord(iop_base, addr);
3831 		word_data &= 0xFF00;
3832 		word_data |= ((ushort)byte_val & 0x00FF);
3833 	}
3834 	AscWriteLramWord(iop_base, addr, word_data);
3835 }
3836 
3837 /*
3838  * Copy 2 bytes to LRAM.
3839  *
3840  * The source data is assumed to be in little-endian order in memory
3841  * and is maintained in little-endian order when written to LRAM.
3842  */
3843 static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)3844 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3845 			const uchar *s_buffer, int words)
3846 {
3847 	int i;
3848 
3849 	AscSetChipLramAddr(iop_base, s_addr);
3850 	for (i = 0; i < 2 * words; i += 2) {
3851 		/*
3852 		 * On a little-endian system the second argument below
3853 		 * produces a little-endian ushort which is written to
3854 		 * LRAM in little-endian order. On a big-endian system
3855 		 * the second argument produces a big-endian ushort which
3856 		 * is "transparently" byte-swapped by outpw() and written
3857 		 * in little-endian order to LRAM.
3858 		 */
3859 		outpw(iop_base + IOP_RAM_DATA,
3860 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3861 	}
3862 }
3863 
3864 /*
3865  * Copy 4 bytes to LRAM.
3866  *
3867  * The source data is assumed to be in little-endian order in memory
3868  * and is maintained in little-endian order when written to LRAM.
3869  */
3870 static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)3871 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3872 			 ushort s_addr, uchar *s_buffer, int dwords)
3873 {
3874 	int i;
3875 
3876 	AscSetChipLramAddr(iop_base, s_addr);
3877 	for (i = 0; i < 4 * dwords; i += 4) {
3878 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3879 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3880 	}
3881 }
3882 
3883 /*
3884  * Copy 2 bytes from LRAM.
3885  *
3886  * The source data is assumed to be in little-endian order in LRAM
3887  * and is maintained in little-endian order when written to memory.
3888  */
3889 static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)3890 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3891 			  ushort s_addr, uchar *d_buffer, int words)
3892 {
3893 	int i;
3894 	ushort word;
3895 
3896 	AscSetChipLramAddr(iop_base, s_addr);
3897 	for (i = 0; i < 2 * words; i += 2) {
3898 		word = inpw(iop_base + IOP_RAM_DATA);
3899 		d_buffer[i] = word & 0xff;
3900 		d_buffer[i + 1] = (word >> 8) & 0xff;
3901 	}
3902 }
3903 
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)3904 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3905 {
3906 	u32 sum = 0;
3907 	int i;
3908 
3909 	for (i = 0; i < words; i++, s_addr += 2) {
3910 		sum += AscReadLramWord(iop_base, s_addr);
3911 	}
3912 	return (sum);
3913 }
3914 
AscInitLram(ASC_DVC_VAR * asc_dvc)3915 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3916 {
3917 	uchar i;
3918 	ushort s_addr;
3919 	PortAddr iop_base;
3920 
3921 	iop_base = asc_dvc->iop_base;
3922 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3923 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3924 				    64) >> 1));
3925 	i = ASC_MIN_ACTIVE_QNO;
3926 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3927 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3928 			 (uchar)(i + 1));
3929 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3930 			 (uchar)(asc_dvc->max_total_qng));
3931 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3932 			 (uchar)i);
3933 	i++;
3934 	s_addr += ASC_QBLK_SIZE;
3935 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3936 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3937 				 (uchar)(i + 1));
3938 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3939 				 (uchar)(i - 1));
3940 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3941 				 (uchar)i);
3942 	}
3943 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3944 			 (uchar)ASC_QLINK_END);
3945 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3946 			 (uchar)(asc_dvc->max_total_qng - 1));
3947 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3948 			 (uchar)asc_dvc->max_total_qng);
3949 	i++;
3950 	s_addr += ASC_QBLK_SIZE;
3951 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3952 	     i++, s_addr += ASC_QBLK_SIZE) {
3953 		AscWriteLramByte(iop_base,
3954 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3955 		AscWriteLramByte(iop_base,
3956 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3957 		AscWriteLramByte(iop_base,
3958 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3959 	}
3960 }
3961 
3962 static u32
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)3963 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3964 		 const uchar *mcode_buf, ushort mcode_size)
3965 {
3966 	u32 chksum;
3967 	ushort mcode_word_size;
3968 	ushort mcode_chksum;
3969 
3970 	/* Write the microcode buffer starting at LRAM address 0. */
3971 	mcode_word_size = (ushort)(mcode_size >> 1);
3972 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3973 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3974 
3975 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3976 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3977 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3978 						 (ushort)ASC_CODE_SEC_BEG,
3979 						 (ushort)((mcode_size -
3980 							   s_addr - (ushort)
3981 							   ASC_CODE_SEC_BEG) /
3982 							  2));
3983 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3984 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3985 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3986 	return chksum;
3987 }
3988 
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)3989 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3990 {
3991 	PortAddr iop_base;
3992 	int i;
3993 	ushort lram_addr;
3994 
3995 	iop_base = asc_dvc->iop_base;
3996 	AscPutRiscVarFreeQHead(iop_base, 1);
3997 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3998 	AscPutVarFreeQHead(iop_base, 1);
3999 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4000 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4001 			 (uchar)((int)asc_dvc->max_total_qng + 1));
4002 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4003 			 (uchar)((int)asc_dvc->max_total_qng + 2));
4004 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4005 			 asc_dvc->max_total_qng);
4006 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4007 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4008 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4009 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4010 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4011 	AscPutQDoneInProgress(iop_base, 0);
4012 	lram_addr = ASC_QADR_BEG;
4013 	for (i = 0; i < 32; i++, lram_addr += 2) {
4014 		AscWriteLramWord(iop_base, lram_addr, 0);
4015 	}
4016 }
4017 
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)4018 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4019 {
4020 	int i;
4021 	int warn_code;
4022 	PortAddr iop_base;
4023 	__le32 phy_addr;
4024 	__le32 phy_size;
4025 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4026 
4027 	iop_base = asc_dvc->iop_base;
4028 	warn_code = 0;
4029 	for (i = 0; i <= ASC_MAX_TID; i++) {
4030 		AscPutMCodeInitSDTRAtID(iop_base, i,
4031 					asc_dvc->cfg->sdtr_period_offset[i]);
4032 	}
4033 
4034 	AscInitQLinkVar(asc_dvc);
4035 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4036 			 asc_dvc->cfg->disc_enable);
4037 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4038 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4039 
4040 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4041 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4042 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4043 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4044 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4045 		warn_code = -ENOMEM;
4046 		goto err_dma_map;
4047 	}
4048 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4049 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4050 				 (uchar *)&phy_addr, 1);
4051 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4052 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4053 				 (uchar *)&phy_size, 1);
4054 
4055 	asc_dvc->cfg->mcode_date =
4056 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4057 	asc_dvc->cfg->mcode_version =
4058 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4059 
4060 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4061 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4062 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4063 		warn_code = -EINVAL;
4064 		goto err_mcode_start;
4065 	}
4066 	if (AscStartChip(iop_base) != 1) {
4067 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4068 		warn_code = -EIO;
4069 		goto err_mcode_start;
4070 	}
4071 
4072 	return warn_code;
4073 
4074 err_mcode_start:
4075 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4076 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4077 err_dma_map:
4078 	asc_dvc->overrun_dma = 0;
4079 	return warn_code;
4080 }
4081 
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4082 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4083 {
4084 	const struct firmware *fw;
4085 	const char fwname[] = "advansys/mcode.bin";
4086 	int err;
4087 	unsigned long chksum;
4088 	int warn_code;
4089 	PortAddr iop_base;
4090 
4091 	iop_base = asc_dvc->iop_base;
4092 	warn_code = 0;
4093 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4094 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4095 		AscResetChipAndScsiBus(asc_dvc);
4096 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4097 	}
4098 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4099 	if (asc_dvc->err_code != 0)
4100 		return ASC_ERROR;
4101 	if (!AscFindSignature(asc_dvc->iop_base)) {
4102 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4103 		return warn_code;
4104 	}
4105 	AscDisableInterrupt(iop_base);
4106 	AscInitLram(asc_dvc);
4107 
4108 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4109 	if (err) {
4110 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4111 		       fwname, err);
4112 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4113 		return err;
4114 	}
4115 	if (fw->size < 4) {
4116 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4117 		       fw->size, fwname);
4118 		release_firmware(fw);
4119 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4120 		return -EINVAL;
4121 	}
4122 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4123 		 (fw->data[1] << 8) | fw->data[0];
4124 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4125 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4126 			     fw->size - 4) != chksum) {
4127 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4128 		release_firmware(fw);
4129 		return warn_code;
4130 	}
4131 	release_firmware(fw);
4132 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4133 	if (!asc_dvc->overrun_dma)
4134 		return warn_code;
4135 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4136 	AscEnableInterrupt(iop_base);
4137 	return warn_code;
4138 }
4139 
4140 /*
4141  * Load the Microcode
4142  *
4143  * Write the microcode image to RISC memory starting at address 0.
4144  *
4145  * The microcode is stored compressed in the following format:
4146  *
4147  *  254 word (508 byte) table indexed by byte code followed
4148  *  by the following byte codes:
4149  *
4150  *    1-Byte Code:
4151  *      00: Emit word 0 in table.
4152  *      01: Emit word 1 in table.
4153  *      .
4154  *      FD: Emit word 253 in table.
4155  *
4156  *    Multi-Byte Code:
4157  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4158  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4159  *
4160  * Returns 0 or an error if the checksum doesn't match
4161  */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4162 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4163 			    int size, int memsize, int chksum)
4164 {
4165 	int i, j, end, len = 0;
4166 	u32 sum;
4167 
4168 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4169 
4170 	for (i = 253 * 2; i < size; i++) {
4171 		if (buf[i] == 0xff) {
4172 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4173 			for (j = 0; j < buf[i + 1]; j++) {
4174 				AdvWriteWordAutoIncLram(iop_base, word);
4175 				len += 2;
4176 			}
4177 			i += 3;
4178 		} else if (buf[i] == 0xfe) {
4179 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4180 			AdvWriteWordAutoIncLram(iop_base, word);
4181 			i += 2;
4182 			len += 2;
4183 		} else {
4184 			unsigned int off = buf[i] * 2;
4185 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4186 			AdvWriteWordAutoIncLram(iop_base, word);
4187 			len += 2;
4188 		}
4189 	}
4190 
4191 	end = len;
4192 
4193 	while (len < memsize) {
4194 		AdvWriteWordAutoIncLram(iop_base, 0);
4195 		len += 2;
4196 	}
4197 
4198 	/* Verify the microcode checksum. */
4199 	sum = 0;
4200 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4201 
4202 	for (len = 0; len < end; len += 2) {
4203 		sum += AdvReadWordAutoIncLram(iop_base);
4204 	}
4205 
4206 	if (sum != chksum)
4207 		return ASC_IERR_MCODE_CHKSUM;
4208 
4209 	return 0;
4210 }
4211 
AdvBuildCarrierFreelist(struct adv_dvc_var * adv_dvc)4212 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4213 {
4214 	off_t carr_offset = 0, next_offset;
4215 	dma_addr_t carr_paddr;
4216 	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4217 
4218 	for (i = 0; i < carr_num; i++) {
4219 		carr_offset = i * sizeof(ADV_CARR_T);
4220 		/* Get physical address of the carrier 'carrp'. */
4221 		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4222 
4223 		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4224 		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4225 		adv_dvc->carrier[i].areq_vpa = 0;
4226 		next_offset = carr_offset + sizeof(ADV_CARR_T);
4227 		if (i == carr_num)
4228 			next_offset = ~0;
4229 		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4230 	}
4231 	/*
4232 	 * We cannot have a carrier with 'carr_va' of '0', as
4233 	 * a reference to this carrier would be interpreted as
4234 	 * list termination.
4235 	 * So start at carrier 1 with the freelist.
4236 	 */
4237 	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4238 }
4239 
adv_get_carrier(struct adv_dvc_var * adv_dvc,u32 offset)4240 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4241 {
4242 	int index;
4243 
4244 	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4245 
4246 	index = offset / sizeof(ADV_CARR_T);
4247 	return &adv_dvc->carrier[index];
4248 }
4249 
adv_get_next_carrier(struct adv_dvc_var * adv_dvc)4250 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4251 {
4252 	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4253 	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4254 
4255 	if (next_vpa == 0 || next_vpa == ~0) {
4256 		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4257 		return NULL;
4258 	}
4259 
4260 	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4261 	/*
4262 	 * insert stopper carrier to terminate list
4263 	 */
4264 	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4265 
4266 	return carrp;
4267 }
4268 
4269 /*
4270  * 'offset' is the index in the request pointer array
4271  */
adv_get_reqp(struct adv_dvc_var * adv_dvc,u32 offset)4272 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4273 {
4274 	struct asc_board *boardp = adv_dvc->drv_ptr;
4275 
4276 	BUG_ON(offset > adv_dvc->max_host_qng);
4277 	return &boardp->adv_reqp[offset];
4278 }
4279 
4280 /*
4281  * Send an idle command to the chip and wait for completion.
4282  *
4283  * Command completion is polled for once per microsecond.
4284  *
4285  * The function can be called from anywhere including an interrupt handler.
4286  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4287  * functions to prevent reentrancy.
4288  *
4289  * Return Values:
4290  *   ADV_TRUE - command completed successfully
4291  *   ADV_FALSE - command failed
4292  *   ADV_ERROR - command timed out
4293  */
4294 static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,u32 idle_cmd_parameter)4295 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4296 	       ushort idle_cmd, u32 idle_cmd_parameter)
4297 {
4298 	int result, i, j;
4299 	AdvPortAddr iop_base;
4300 
4301 	iop_base = asc_dvc->iop_base;
4302 
4303 	/*
4304 	 * Clear the idle command status which is set by the microcode
4305 	 * to a non-zero value to indicate when the command is completed.
4306 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4307 	 */
4308 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4309 
4310 	/*
4311 	 * Write the idle command value after the idle command parameter
4312 	 * has been written to avoid a race condition. If the order is not
4313 	 * followed, the microcode may process the idle command before the
4314 	 * parameters have been written to LRAM.
4315 	 */
4316 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4317 				cpu_to_le32(idle_cmd_parameter));
4318 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4319 
4320 	/*
4321 	 * Tickle the RISC to tell it to process the idle command.
4322 	 */
4323 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4324 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4325 		/*
4326 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4327 		 * command 'clr_tickle_b' does not work unless the host
4328 		 * value is cleared.
4329 		 */
4330 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4331 	}
4332 
4333 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4334 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4335 		/* Poll once each microsecond for command completion. */
4336 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4337 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4338 					result);
4339 			if (result != 0)
4340 				return result;
4341 			udelay(1);
4342 		}
4343 	}
4344 
4345 	BUG();		/* The idle command should never timeout. */
4346 	return ADV_ERROR;
4347 }
4348 
4349 /*
4350  * Reset SCSI Bus and purge all outstanding requests.
4351  *
4352  * Return Value:
4353  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4354  *      ADV_FALSE(0) -  Microcode command failed.
4355  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4356  *                      may be hung which requires driver recovery.
4357  */
AdvResetSB(ADV_DVC_VAR * asc_dvc)4358 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4359 {
4360 	int status;
4361 
4362 	/*
4363 	 * Send the SCSI Bus Reset idle start idle command which asserts
4364 	 * the SCSI Bus Reset signal.
4365 	 */
4366 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4367 	if (status != ADV_TRUE) {
4368 		return status;
4369 	}
4370 
4371 	/*
4372 	 * Delay for the specified SCSI Bus Reset hold time.
4373 	 *
4374 	 * The hold time delay is done on the host because the RISC has no
4375 	 * microsecond accurate timer.
4376 	 */
4377 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4378 
4379 	/*
4380 	 * Send the SCSI Bus Reset end idle command which de-asserts
4381 	 * the SCSI Bus Reset signal and purges any pending requests.
4382 	 */
4383 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4384 	if (status != ADV_TRUE) {
4385 		return status;
4386 	}
4387 
4388 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4389 
4390 	return status;
4391 }
4392 
4393 /*
4394  * Initialize the ASC-3550.
4395  *
4396  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4397  *
4398  * For a non-fatal error return a warning code. If there are no warnings
4399  * then 0 is returned.
4400  *
4401  * Needed after initialization for error recovery.
4402  */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)4403 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4404 {
4405 	const struct firmware *fw;
4406 	const char fwname[] = "advansys/3550.bin";
4407 	AdvPortAddr iop_base;
4408 	ushort warn_code;
4409 	int begin_addr;
4410 	int end_addr;
4411 	ushort code_sum;
4412 	int word;
4413 	int i;
4414 	int err;
4415 	unsigned long chksum;
4416 	ushort scsi_cfg1;
4417 	uchar tid;
4418 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4419 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4420 	uchar max_cmd[ADV_MAX_TID + 1];
4421 
4422 	/* If there is already an error, don't continue. */
4423 	if (asc_dvc->err_code != 0)
4424 		return ADV_ERROR;
4425 
4426 	/*
4427 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4428 	 */
4429 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4430 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4431 		return ADV_ERROR;
4432 	}
4433 
4434 	warn_code = 0;
4435 	iop_base = asc_dvc->iop_base;
4436 
4437 	/*
4438 	 * Save the RISC memory BIOS region before writing the microcode.
4439 	 * The BIOS may already be loaded and using its RISC LRAM region
4440 	 * so its region must be saved and restored.
4441 	 *
4442 	 * Note: This code makes the assumption, which is currently true,
4443 	 * that a chip reset does not clear RISC LRAM.
4444 	 */
4445 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4446 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4447 				bios_mem[i]);
4448 	}
4449 
4450 	/*
4451 	 * Save current per TID negotiated values.
4452 	 */
4453 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4454 		ushort bios_version, major, minor;
4455 
4456 		bios_version =
4457 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4458 		major = (bios_version >> 12) & 0xF;
4459 		minor = (bios_version >> 8) & 0xF;
4460 		if (major < 3 || (major == 3 && minor == 1)) {
4461 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4462 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4463 		} else {
4464 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4465 		}
4466 	}
4467 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4468 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4469 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4470 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4471 				max_cmd[tid]);
4472 	}
4473 
4474 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4475 	if (err) {
4476 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4477 		       fwname, err);
4478 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4479 		return err;
4480 	}
4481 	if (fw->size < 4) {
4482 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4483 		       fw->size, fwname);
4484 		release_firmware(fw);
4485 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4486 		return -EINVAL;
4487 	}
4488 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4489 		 (fw->data[1] << 8) | fw->data[0];
4490 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4491 					     fw->size - 4, ADV_3550_MEMSIZE,
4492 					     chksum);
4493 	release_firmware(fw);
4494 	if (asc_dvc->err_code)
4495 		return ADV_ERROR;
4496 
4497 	/*
4498 	 * Restore the RISC memory BIOS region.
4499 	 */
4500 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4501 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4502 				 bios_mem[i]);
4503 	}
4504 
4505 	/*
4506 	 * Calculate and write the microcode code checksum to the microcode
4507 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4508 	 */
4509 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4510 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4511 	code_sum = 0;
4512 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4513 	for (word = begin_addr; word < end_addr; word += 2) {
4514 		code_sum += AdvReadWordAutoIncLram(iop_base);
4515 	}
4516 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4517 
4518 	/*
4519 	 * Read and save microcode version and date.
4520 	 */
4521 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4522 			asc_dvc->cfg->mcode_date);
4523 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4524 			asc_dvc->cfg->mcode_version);
4525 
4526 	/*
4527 	 * Set the chip type to indicate the ASC3550.
4528 	 */
4529 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4530 
4531 	/*
4532 	 * If the PCI Configuration Command Register "Parity Error Response
4533 	 * Control" Bit was clear (0), then set the microcode variable
4534 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4535 	 * to ignore DMA parity errors.
4536 	 */
4537 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4538 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4539 		word |= CONTROL_FLAG_IGNORE_PERR;
4540 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4541 	}
4542 
4543 	/*
4544 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4545 	 * threshold of 128 bytes. This register is only accessible to the host.
4546 	 */
4547 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4548 			     START_CTL_EMFU | READ_CMD_MRM);
4549 
4550 	/*
4551 	 * Microcode operating variables for WDTR, SDTR, and command tag
4552 	 * queuing will be set in slave_configure() based on what a
4553 	 * device reports it is capable of in Inquiry byte 7.
4554 	 *
4555 	 * If SCSI Bus Resets have been disabled, then directly set
4556 	 * SDTR and WDTR from the EEPROM configuration. This will allow
4557 	 * the BIOS and warm boot to work without a SCSI bus hang on
4558 	 * the Inquiry caused by host and target mismatched DTR values.
4559 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4560 	 * be assumed to be in Asynchronous, Narrow mode.
4561 	 */
4562 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4563 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4564 				 asc_dvc->wdtr_able);
4565 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4566 				 asc_dvc->sdtr_able);
4567 	}
4568 
4569 	/*
4570 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4571 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4572 	 * bitmask. These values determine the maximum SDTR speed negotiated
4573 	 * with a device.
4574 	 *
4575 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4576 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4577 	 * without determining here whether the device supports SDTR.
4578 	 *
4579 	 * 4-bit speed  SDTR speed name
4580 	 * ===========  ===============
4581 	 * 0000b (0x0)  SDTR disabled
4582 	 * 0001b (0x1)  5 Mhz
4583 	 * 0010b (0x2)  10 Mhz
4584 	 * 0011b (0x3)  20 Mhz (Ultra)
4585 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4586 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4587 	 * 0110b (0x6)  Undefined
4588 	 * .
4589 	 * 1111b (0xF)  Undefined
4590 	 */
4591 	word = 0;
4592 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4593 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4594 			/* Set Ultra speed for TID 'tid'. */
4595 			word |= (0x3 << (4 * (tid % 4)));
4596 		} else {
4597 			/* Set Fast speed for TID 'tid'. */
4598 			word |= (0x2 << (4 * (tid % 4)));
4599 		}
4600 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4601 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4602 			word = 0;
4603 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4604 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4605 			word = 0;
4606 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4607 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4608 			word = 0;
4609 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4610 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4611 			/* End of loop. */
4612 		}
4613 	}
4614 
4615 	/*
4616 	 * Set microcode operating variable for the disconnect per TID bitmask.
4617 	 */
4618 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4619 			 asc_dvc->cfg->disc_enable);
4620 
4621 	/*
4622 	 * Set SCSI_CFG0 Microcode Default Value.
4623 	 *
4624 	 * The microcode will set the SCSI_CFG0 register using this value
4625 	 * after it is started below.
4626 	 */
4627 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4628 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4629 			 asc_dvc->chip_scsi_id);
4630 
4631 	/*
4632 	 * Determine SCSI_CFG1 Microcode Default Value.
4633 	 *
4634 	 * The microcode will set the SCSI_CFG1 register using this value
4635 	 * after it is started below.
4636 	 */
4637 
4638 	/* Read current SCSI_CFG1 Register value. */
4639 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4640 
4641 	/*
4642 	 * If all three connectors are in use, return an error.
4643 	 */
4644 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4645 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4646 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4647 		return ADV_ERROR;
4648 	}
4649 
4650 	/*
4651 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4652 	 * register signals will be set. Check for and return an error if
4653 	 * this condition is found.
4654 	 */
4655 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4656 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4657 		return ADV_ERROR;
4658 	}
4659 
4660 	/*
4661 	 * If this is a differential board and a single-ended device
4662 	 * is attached to one of the connectors, return an error.
4663 	 */
4664 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4665 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4666 		return ADV_ERROR;
4667 	}
4668 
4669 	/*
4670 	 * If automatic termination control is enabled, then set the
4671 	 * termination value based on a table listed in a_condor.h.
4672 	 *
4673 	 * If manual termination was specified with an EEPROM setting
4674 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4675 	 * is ready to be 'ored' into SCSI_CFG1.
4676 	 */
4677 	if (asc_dvc->cfg->termination == 0) {
4678 		/*
4679 		 * The software always controls termination by setting TERM_CTL_SEL.
4680 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4681 		 */
4682 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4683 
4684 		switch (scsi_cfg1 & CABLE_DETECT) {
4685 			/* TERM_CTL_H: on, TERM_CTL_L: on */
4686 		case 0x3:
4687 		case 0x7:
4688 		case 0xB:
4689 		case 0xD:
4690 		case 0xE:
4691 		case 0xF:
4692 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4693 			break;
4694 
4695 			/* TERM_CTL_H: on, TERM_CTL_L: off */
4696 		case 0x1:
4697 		case 0x5:
4698 		case 0x9:
4699 		case 0xA:
4700 		case 0xC:
4701 			asc_dvc->cfg->termination |= TERM_CTL_H;
4702 			break;
4703 
4704 			/* TERM_CTL_H: off, TERM_CTL_L: off */
4705 		case 0x2:
4706 		case 0x6:
4707 			break;
4708 		}
4709 	}
4710 
4711 	/*
4712 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4713 	 */
4714 	scsi_cfg1 &= ~TERM_CTL;
4715 
4716 	/*
4717 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4718 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4719 	 * referenced, because the hardware internally inverts
4720 	 * the Termination High and Low bits if TERM_POL is set.
4721 	 */
4722 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4723 
4724 	/*
4725 	 * Set SCSI_CFG1 Microcode Default Value
4726 	 *
4727 	 * Set filter value and possibly modified termination control
4728 	 * bits in the Microcode SCSI_CFG1 Register Value.
4729 	 *
4730 	 * The microcode will set the SCSI_CFG1 register using this value
4731 	 * after it is started below.
4732 	 */
4733 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4734 			 FLTR_DISABLE | scsi_cfg1);
4735 
4736 	/*
4737 	 * Set MEM_CFG Microcode Default Value
4738 	 *
4739 	 * The microcode will set the MEM_CFG register using this value
4740 	 * after it is started below.
4741 	 *
4742 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4743 	 * are defined.
4744 	 *
4745 	 * ASC-3550 has 8KB internal memory.
4746 	 */
4747 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4748 			 BIOS_EN | RAM_SZ_8KB);
4749 
4750 	/*
4751 	 * Set SEL_MASK Microcode Default Value
4752 	 *
4753 	 * The microcode will set the SEL_MASK register using this value
4754 	 * after it is started below.
4755 	 */
4756 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4757 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4758 
4759 	AdvBuildCarrierFreelist(asc_dvc);
4760 
4761 	/*
4762 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4763 	 */
4764 
4765 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4766 	if (!asc_dvc->icq_sp) {
4767 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4768 		return ADV_ERROR;
4769 	}
4770 
4771 	/*
4772 	 * Set RISC ICQ physical address start value.
4773 	 */
4774 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4775 
4776 	/*
4777 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4778 	 */
4779 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4780 	if (!asc_dvc->irq_sp) {
4781 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4782 		return ADV_ERROR;
4783 	}
4784 
4785 	/*
4786 	 * Set RISC IRQ physical address start value.
4787 	 */
4788 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4789 	asc_dvc->carr_pending_cnt = 0;
4790 
4791 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4792 			     (ADV_INTR_ENABLE_HOST_INTR |
4793 			      ADV_INTR_ENABLE_GLOBAL_INTR));
4794 
4795 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4796 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4797 
4798 	/* finally, finally, gentlemen, start your engine */
4799 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4800 
4801 	/*
4802 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4803 	 * Resets should be performed. The RISC has to be running
4804 	 * to issue a SCSI Bus Reset.
4805 	 */
4806 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4807 		/*
4808 		 * If the BIOS Signature is present in memory, restore the
4809 		 * BIOS Handshake Configuration Table and do not perform
4810 		 * a SCSI Bus Reset.
4811 		 */
4812 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4813 		    0x55AA) {
4814 			/*
4815 			 * Restore per TID negotiated values.
4816 			 */
4817 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4818 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4819 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4820 					 tagqng_able);
4821 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4822 				AdvWriteByteLram(iop_base,
4823 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4824 						 max_cmd[tid]);
4825 			}
4826 		} else {
4827 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4828 				warn_code = ASC_WARN_BUSRESET_ERROR;
4829 			}
4830 		}
4831 	}
4832 
4833 	return warn_code;
4834 }
4835 
4836 /*
4837  * Initialize the ASC-38C0800.
4838  *
4839  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4840  *
4841  * For a non-fatal error return a warning code. If there are no warnings
4842  * then 0 is returned.
4843  *
4844  * Needed after initialization for error recovery.
4845  */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)4846 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4847 {
4848 	const struct firmware *fw;
4849 	const char fwname[] = "advansys/38C0800.bin";
4850 	AdvPortAddr iop_base;
4851 	ushort warn_code;
4852 	int begin_addr;
4853 	int end_addr;
4854 	ushort code_sum;
4855 	int word;
4856 	int i;
4857 	int err;
4858 	unsigned long chksum;
4859 	ushort scsi_cfg1;
4860 	uchar byte;
4861 	uchar tid;
4862 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4863 	ushort wdtr_able, sdtr_able, tagqng_able;
4864 	uchar max_cmd[ADV_MAX_TID + 1];
4865 
4866 	/* If there is already an error, don't continue. */
4867 	if (asc_dvc->err_code != 0)
4868 		return ADV_ERROR;
4869 
4870 	/*
4871 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4872 	 */
4873 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4874 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4875 		return ADV_ERROR;
4876 	}
4877 
4878 	warn_code = 0;
4879 	iop_base = asc_dvc->iop_base;
4880 
4881 	/*
4882 	 * Save the RISC memory BIOS region before writing the microcode.
4883 	 * The BIOS may already be loaded and using its RISC LRAM region
4884 	 * so its region must be saved and restored.
4885 	 *
4886 	 * Note: This code makes the assumption, which is currently true,
4887 	 * that a chip reset does not clear RISC LRAM.
4888 	 */
4889 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4890 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4891 				bios_mem[i]);
4892 	}
4893 
4894 	/*
4895 	 * Save current per TID negotiated values.
4896 	 */
4897 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4898 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4899 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4900 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4901 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4902 				max_cmd[tid]);
4903 	}
4904 
4905 	/*
4906 	 * RAM BIST (RAM Built-In Self Test)
4907 	 *
4908 	 * Address : I/O base + offset 0x38h register (byte).
4909 	 * Function: Bit 7-6(RW) : RAM mode
4910 	 *                          Normal Mode   : 0x00
4911 	 *                          Pre-test Mode : 0x40
4912 	 *                          RAM Test Mode : 0x80
4913 	 *           Bit 5       : unused
4914 	 *           Bit 4(RO)   : Done bit
4915 	 *           Bit 3-0(RO) : Status
4916 	 *                          Host Error    : 0x08
4917 	 *                          Int_RAM Error : 0x04
4918 	 *                          RISC Error    : 0x02
4919 	 *                          SCSI Error    : 0x01
4920 	 *                          No Error      : 0x00
4921 	 *
4922 	 * Note: RAM BIST code should be put right here, before loading the
4923 	 * microcode and after saving the RISC memory BIOS region.
4924 	 */
4925 
4926 	/*
4927 	 * LRAM Pre-test
4928 	 *
4929 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4930 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4931 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4932 	 * to NORMAL_MODE, return an error too.
4933 	 */
4934 	for (i = 0; i < 2; i++) {
4935 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4936 		mdelay(10);	/* Wait for 10ms before reading back. */
4937 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4938 		if ((byte & RAM_TEST_DONE) == 0
4939 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4940 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4941 			return ADV_ERROR;
4942 		}
4943 
4944 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4945 		mdelay(10);	/* Wait for 10ms before reading back. */
4946 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4947 		    != NORMAL_VALUE) {
4948 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4949 			return ADV_ERROR;
4950 		}
4951 	}
4952 
4953 	/*
4954 	 * LRAM Test - It takes about 1.5 ms to run through the test.
4955 	 *
4956 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4957 	 * If Done bit not set or Status not 0, save register byte, set the
4958 	 * err_code, and return an error.
4959 	 */
4960 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4961 	mdelay(10);	/* Wait for 10ms before checking status. */
4962 
4963 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4964 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4965 		/* Get here if Done bit not set or Status not 0. */
4966 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4967 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4968 		return ADV_ERROR;
4969 	}
4970 
4971 	/* We need to reset back to normal mode after LRAM test passes. */
4972 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4973 
4974 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4975 	if (err) {
4976 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4977 		       fwname, err);
4978 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4979 		return err;
4980 	}
4981 	if (fw->size < 4) {
4982 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4983 		       fw->size, fwname);
4984 		release_firmware(fw);
4985 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4986 		return -EINVAL;
4987 	}
4988 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4989 		 (fw->data[1] << 8) | fw->data[0];
4990 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4991 					     fw->size - 4, ADV_38C0800_MEMSIZE,
4992 					     chksum);
4993 	release_firmware(fw);
4994 	if (asc_dvc->err_code)
4995 		return ADV_ERROR;
4996 
4997 	/*
4998 	 * Restore the RISC memory BIOS region.
4999 	 */
5000 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5001 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5002 				 bios_mem[i]);
5003 	}
5004 
5005 	/*
5006 	 * Calculate and write the microcode code checksum to the microcode
5007 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5008 	 */
5009 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5010 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5011 	code_sum = 0;
5012 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5013 	for (word = begin_addr; word < end_addr; word += 2) {
5014 		code_sum += AdvReadWordAutoIncLram(iop_base);
5015 	}
5016 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5017 
5018 	/*
5019 	 * Read microcode version and date.
5020 	 */
5021 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5022 			asc_dvc->cfg->mcode_date);
5023 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5024 			asc_dvc->cfg->mcode_version);
5025 
5026 	/*
5027 	 * Set the chip type to indicate the ASC38C0800.
5028 	 */
5029 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5030 
5031 	/*
5032 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5033 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5034 	 * cable detection and then we are able to read C_DET[3:0].
5035 	 *
5036 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5037 	 * Microcode Default Value' section below.
5038 	 */
5039 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5040 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5041 			     scsi_cfg1 | DIS_TERM_DRV);
5042 
5043 	/*
5044 	 * If the PCI Configuration Command Register "Parity Error Response
5045 	 * Control" Bit was clear (0), then set the microcode variable
5046 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5047 	 * to ignore DMA parity errors.
5048 	 */
5049 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5050 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5051 		word |= CONTROL_FLAG_IGNORE_PERR;
5052 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5053 	}
5054 
5055 	/*
5056 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5057 	 * bits for the default FIFO threshold.
5058 	 *
5059 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5060 	 *
5061 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5062 	 */
5063 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5064 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5065 			     READ_CMD_MRM);
5066 
5067 	/*
5068 	 * Microcode operating variables for WDTR, SDTR, and command tag
5069 	 * queuing will be set in slave_configure() based on what a
5070 	 * device reports it is capable of in Inquiry byte 7.
5071 	 *
5072 	 * If SCSI Bus Resets have been disabled, then directly set
5073 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5074 	 * the BIOS and warm boot to work without a SCSI bus hang on
5075 	 * the Inquiry caused by host and target mismatched DTR values.
5076 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5077 	 * be assumed to be in Asynchronous, Narrow mode.
5078 	 */
5079 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5080 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5081 				 asc_dvc->wdtr_able);
5082 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5083 				 asc_dvc->sdtr_able);
5084 	}
5085 
5086 	/*
5087 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5088 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5089 	 * configuration values.
5090 	 *
5091 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5092 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5093 	 * without determining here whether the device supports SDTR.
5094 	 */
5095 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5096 			 asc_dvc->cfg->disc_enable);
5097 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5098 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5099 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5100 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5101 
5102 	/*
5103 	 * Set SCSI_CFG0 Microcode Default Value.
5104 	 *
5105 	 * The microcode will set the SCSI_CFG0 register using this value
5106 	 * after it is started below.
5107 	 */
5108 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5109 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5110 			 asc_dvc->chip_scsi_id);
5111 
5112 	/*
5113 	 * Determine SCSI_CFG1 Microcode Default Value.
5114 	 *
5115 	 * The microcode will set the SCSI_CFG1 register using this value
5116 	 * after it is started below.
5117 	 */
5118 
5119 	/* Read current SCSI_CFG1 Register value. */
5120 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5121 
5122 	/*
5123 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5124 	 * register signals will be set. Check for and return an error if
5125 	 * this condition is found.
5126 	 */
5127 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5128 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5129 		return ADV_ERROR;
5130 	}
5131 
5132 	/*
5133 	 * All kind of combinations of devices attached to one of four
5134 	 * connectors are acceptable except HVD device attached. For example,
5135 	 * LVD device can be attached to SE connector while SE device attached
5136 	 * to LVD connector.  If LVD device attached to SE connector, it only
5137 	 * runs up to Ultra speed.
5138 	 *
5139 	 * If an HVD device is attached to one of LVD connectors, return an
5140 	 * error.  However, there is no way to detect HVD device attached to
5141 	 * SE connectors.
5142 	 */
5143 	if (scsi_cfg1 & HVD) {
5144 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5145 		return ADV_ERROR;
5146 	}
5147 
5148 	/*
5149 	 * If either SE or LVD automatic termination control is enabled, then
5150 	 * set the termination value based on a table listed in a_condor.h.
5151 	 *
5152 	 * If manual termination was specified with an EEPROM setting then
5153 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5154 	 * to be 'ored' into SCSI_CFG1.
5155 	 */
5156 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5157 		/* SE automatic termination control is enabled. */
5158 		switch (scsi_cfg1 & C_DET_SE) {
5159 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5160 		case 0x1:
5161 		case 0x2:
5162 		case 0x3:
5163 			asc_dvc->cfg->termination |= TERM_SE;
5164 			break;
5165 
5166 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5167 		case 0x0:
5168 			asc_dvc->cfg->termination |= TERM_SE_HI;
5169 			break;
5170 		}
5171 	}
5172 
5173 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5174 		/* LVD automatic termination control is enabled. */
5175 		switch (scsi_cfg1 & C_DET_LVD) {
5176 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5177 		case 0x4:
5178 		case 0x8:
5179 		case 0xC:
5180 			asc_dvc->cfg->termination |= TERM_LVD;
5181 			break;
5182 
5183 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5184 		case 0x0:
5185 			break;
5186 		}
5187 	}
5188 
5189 	/*
5190 	 * Clear any set TERM_SE and TERM_LVD bits.
5191 	 */
5192 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5193 
5194 	/*
5195 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5196 	 */
5197 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5198 
5199 	/*
5200 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5201 	 * bits and set possibly modified termination control bits in the
5202 	 * Microcode SCSI_CFG1 Register Value.
5203 	 */
5204 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5205 
5206 	/*
5207 	 * Set SCSI_CFG1 Microcode Default Value
5208 	 *
5209 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5210 	 * bits in the Microcode SCSI_CFG1 Register Value.
5211 	 *
5212 	 * The microcode will set the SCSI_CFG1 register using this value
5213 	 * after it is started below.
5214 	 */
5215 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5216 
5217 	/*
5218 	 * Set MEM_CFG Microcode Default Value
5219 	 *
5220 	 * The microcode will set the MEM_CFG register using this value
5221 	 * after it is started below.
5222 	 *
5223 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5224 	 * are defined.
5225 	 *
5226 	 * ASC-38C0800 has 16KB internal memory.
5227 	 */
5228 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5229 			 BIOS_EN | RAM_SZ_16KB);
5230 
5231 	/*
5232 	 * Set SEL_MASK Microcode Default Value
5233 	 *
5234 	 * The microcode will set the SEL_MASK register using this value
5235 	 * after it is started below.
5236 	 */
5237 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5238 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5239 
5240 	AdvBuildCarrierFreelist(asc_dvc);
5241 
5242 	/*
5243 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5244 	 */
5245 
5246 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5247 	if (!asc_dvc->icq_sp) {
5248 		ASC_DBG(0, "Failed to get ICQ carrier\n");
5249 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5250 		return ADV_ERROR;
5251 	}
5252 
5253 	/*
5254 	 * Set RISC ICQ physical address start value.
5255 	 * carr_pa is LE, must be native before write
5256 	 */
5257 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5258 
5259 	/*
5260 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5261 	 */
5262 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5263 	if (!asc_dvc->irq_sp) {
5264 		ASC_DBG(0, "Failed to get IRQ carrier\n");
5265 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5266 		return ADV_ERROR;
5267 	}
5268 
5269 	/*
5270 	 * Set RISC IRQ physical address start value.
5271 	 *
5272 	 * carr_pa is LE, must be native before write *
5273 	 */
5274 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5275 	asc_dvc->carr_pending_cnt = 0;
5276 
5277 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5278 			     (ADV_INTR_ENABLE_HOST_INTR |
5279 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5280 
5281 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5282 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5283 
5284 	/* finally, finally, gentlemen, start your engine */
5285 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5286 
5287 	/*
5288 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5289 	 * Resets should be performed. The RISC has to be running
5290 	 * to issue a SCSI Bus Reset.
5291 	 */
5292 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5293 		/*
5294 		 * If the BIOS Signature is present in memory, restore the
5295 		 * BIOS Handshake Configuration Table and do not perform
5296 		 * a SCSI Bus Reset.
5297 		 */
5298 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5299 		    0x55AA) {
5300 			/*
5301 			 * Restore per TID negotiated values.
5302 			 */
5303 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5304 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5305 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5306 					 tagqng_able);
5307 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5308 				AdvWriteByteLram(iop_base,
5309 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5310 						 max_cmd[tid]);
5311 			}
5312 		} else {
5313 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5314 				warn_code = ASC_WARN_BUSRESET_ERROR;
5315 			}
5316 		}
5317 	}
5318 
5319 	return warn_code;
5320 }
5321 
5322 /*
5323  * Initialize the ASC-38C1600.
5324  *
5325  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5326  *
5327  * For a non-fatal error return a warning code. If there are no warnings
5328  * then 0 is returned.
5329  *
5330  * Needed after initialization for error recovery.
5331  */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)5332 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5333 {
5334 	const struct firmware *fw;
5335 	const char fwname[] = "advansys/38C1600.bin";
5336 	AdvPortAddr iop_base;
5337 	ushort warn_code;
5338 	int begin_addr;
5339 	int end_addr;
5340 	ushort code_sum;
5341 	long word;
5342 	int i;
5343 	int err;
5344 	unsigned long chksum;
5345 	ushort scsi_cfg1;
5346 	uchar byte;
5347 	uchar tid;
5348 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5349 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5350 	uchar max_cmd[ASC_MAX_TID + 1];
5351 
5352 	/* If there is already an error, don't continue. */
5353 	if (asc_dvc->err_code != 0) {
5354 		return ADV_ERROR;
5355 	}
5356 
5357 	/*
5358 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5359 	 */
5360 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5361 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5362 		return ADV_ERROR;
5363 	}
5364 
5365 	warn_code = 0;
5366 	iop_base = asc_dvc->iop_base;
5367 
5368 	/*
5369 	 * Save the RISC memory BIOS region before writing the microcode.
5370 	 * The BIOS may already be loaded and using its RISC LRAM region
5371 	 * so its region must be saved and restored.
5372 	 *
5373 	 * Note: This code makes the assumption, which is currently true,
5374 	 * that a chip reset does not clear RISC LRAM.
5375 	 */
5376 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5377 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5378 				bios_mem[i]);
5379 	}
5380 
5381 	/*
5382 	 * Save current per TID negotiated values.
5383 	 */
5384 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5385 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5386 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5387 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5388 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5389 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5390 				max_cmd[tid]);
5391 	}
5392 
5393 	/*
5394 	 * RAM BIST (Built-In Self Test)
5395 	 *
5396 	 * Address : I/O base + offset 0x38h register (byte).
5397 	 * Function: Bit 7-6(RW) : RAM mode
5398 	 *                          Normal Mode   : 0x00
5399 	 *                          Pre-test Mode : 0x40
5400 	 *                          RAM Test Mode : 0x80
5401 	 *           Bit 5       : unused
5402 	 *           Bit 4(RO)   : Done bit
5403 	 *           Bit 3-0(RO) : Status
5404 	 *                          Host Error    : 0x08
5405 	 *                          Int_RAM Error : 0x04
5406 	 *                          RISC Error    : 0x02
5407 	 *                          SCSI Error    : 0x01
5408 	 *                          No Error      : 0x00
5409 	 *
5410 	 * Note: RAM BIST code should be put right here, before loading the
5411 	 * microcode and after saving the RISC memory BIOS region.
5412 	 */
5413 
5414 	/*
5415 	 * LRAM Pre-test
5416 	 *
5417 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5418 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5419 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5420 	 * to NORMAL_MODE, return an error too.
5421 	 */
5422 	for (i = 0; i < 2; i++) {
5423 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5424 		mdelay(10);	/* Wait for 10ms before reading back. */
5425 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5426 		if ((byte & RAM_TEST_DONE) == 0
5427 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5428 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5429 			return ADV_ERROR;
5430 		}
5431 
5432 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5433 		mdelay(10);	/* Wait for 10ms before reading back. */
5434 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5435 		    != NORMAL_VALUE) {
5436 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5437 			return ADV_ERROR;
5438 		}
5439 	}
5440 
5441 	/*
5442 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5443 	 *
5444 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5445 	 * If Done bit not set or Status not 0, save register byte, set the
5446 	 * err_code, and return an error.
5447 	 */
5448 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5449 	mdelay(10);	/* Wait for 10ms before checking status. */
5450 
5451 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5452 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5453 		/* Get here if Done bit not set or Status not 0. */
5454 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5455 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5456 		return ADV_ERROR;
5457 	}
5458 
5459 	/* We need to reset back to normal mode after LRAM test passes. */
5460 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5461 
5462 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5463 	if (err) {
5464 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5465 		       fwname, err);
5466 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5467 		return err;
5468 	}
5469 	if (fw->size < 4) {
5470 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5471 		       fw->size, fwname);
5472 		release_firmware(fw);
5473 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5474 		return -EINVAL;
5475 	}
5476 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5477 		 (fw->data[1] << 8) | fw->data[0];
5478 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5479 					     fw->size - 4, ADV_38C1600_MEMSIZE,
5480 					     chksum);
5481 	release_firmware(fw);
5482 	if (asc_dvc->err_code)
5483 		return ADV_ERROR;
5484 
5485 	/*
5486 	 * Restore the RISC memory BIOS region.
5487 	 */
5488 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5489 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5490 				 bios_mem[i]);
5491 	}
5492 
5493 	/*
5494 	 * Calculate and write the microcode code checksum to the microcode
5495 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5496 	 */
5497 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5498 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5499 	code_sum = 0;
5500 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5501 	for (word = begin_addr; word < end_addr; word += 2) {
5502 		code_sum += AdvReadWordAutoIncLram(iop_base);
5503 	}
5504 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5505 
5506 	/*
5507 	 * Read microcode version and date.
5508 	 */
5509 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5510 			asc_dvc->cfg->mcode_date);
5511 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5512 			asc_dvc->cfg->mcode_version);
5513 
5514 	/*
5515 	 * Set the chip type to indicate the ASC38C1600.
5516 	 */
5517 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5518 
5519 	/*
5520 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5521 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5522 	 * cable detection and then we are able to read C_DET[3:0].
5523 	 *
5524 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5525 	 * Microcode Default Value' section below.
5526 	 */
5527 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5528 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5529 			     scsi_cfg1 | DIS_TERM_DRV);
5530 
5531 	/*
5532 	 * If the PCI Configuration Command Register "Parity Error Response
5533 	 * Control" Bit was clear (0), then set the microcode variable
5534 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5535 	 * to ignore DMA parity errors.
5536 	 */
5537 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5538 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5539 		word |= CONTROL_FLAG_IGNORE_PERR;
5540 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5541 	}
5542 
5543 	/*
5544 	 * If the BIOS control flag AIPP (Asynchronous Information
5545 	 * Phase Protection) disable bit is not set, then set the firmware
5546 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5547 	 * AIPP checking and encoding.
5548 	 */
5549 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5550 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5551 		word |= CONTROL_FLAG_ENABLE_AIPP;
5552 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5553 	}
5554 
5555 	/*
5556 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5557 	 * and START_CTL_TH [3:2].
5558 	 */
5559 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5560 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5561 
5562 	/*
5563 	 * Microcode operating variables for WDTR, SDTR, and command tag
5564 	 * queuing will be set in slave_configure() based on what a
5565 	 * device reports it is capable of in Inquiry byte 7.
5566 	 *
5567 	 * If SCSI Bus Resets have been disabled, then directly set
5568 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5569 	 * the BIOS and warm boot to work without a SCSI bus hang on
5570 	 * the Inquiry caused by host and target mismatched DTR values.
5571 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5572 	 * be assumed to be in Asynchronous, Narrow mode.
5573 	 */
5574 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5575 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5576 				 asc_dvc->wdtr_able);
5577 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5578 				 asc_dvc->sdtr_able);
5579 	}
5580 
5581 	/*
5582 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5583 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5584 	 * configuration values.
5585 	 *
5586 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5587 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5588 	 * without determining here whether the device supports SDTR.
5589 	 */
5590 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5591 			 asc_dvc->cfg->disc_enable);
5592 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5593 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5594 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5595 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5596 
5597 	/*
5598 	 * Set SCSI_CFG0 Microcode Default Value.
5599 	 *
5600 	 * The microcode will set the SCSI_CFG0 register using this value
5601 	 * after it is started below.
5602 	 */
5603 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5604 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5605 			 asc_dvc->chip_scsi_id);
5606 
5607 	/*
5608 	 * Calculate SCSI_CFG1 Microcode Default Value.
5609 	 *
5610 	 * The microcode will set the SCSI_CFG1 register using this value
5611 	 * after it is started below.
5612 	 *
5613 	 * Each ASC-38C1600 function has only two cable detect bits.
5614 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5615 	 */
5616 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5617 
5618 	/*
5619 	 * If the cable is reversed all of the SCSI_CTRL register signals
5620 	 * will be set. Check for and return an error if this condition is
5621 	 * found.
5622 	 */
5623 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5624 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5625 		return ADV_ERROR;
5626 	}
5627 
5628 	/*
5629 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5630 	 * can not be connected to either connector. An LVD device or SE device
5631 	 * may be connected to either connecor. If an SE device is connected,
5632 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5633 	 *
5634 	 * If an HVD device is attached, return an error.
5635 	 */
5636 	if (scsi_cfg1 & HVD) {
5637 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5638 		return ADV_ERROR;
5639 	}
5640 
5641 	/*
5642 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5643 	 * termination because there are two connectors for each function. Each
5644 	 * function may use either LVD or SE mode. Corresponding the SE automatic
5645 	 * termination control EEPROM bits are used for each function. Each
5646 	 * function has its own EEPROM. If SE automatic control is enabled for
5647 	 * the function, then set the termination value based on a table listed
5648 	 * in a_condor.h.
5649 	 *
5650 	 * If manual termination is specified in the EEPROM for the function,
5651 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5652 	 * ready to be 'ored' into SCSI_CFG1.
5653 	 */
5654 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5655 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5656 		/* SE automatic termination control is enabled. */
5657 		switch (scsi_cfg1 & C_DET_SE) {
5658 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5659 		case 0x1:
5660 		case 0x2:
5661 		case 0x3:
5662 			asc_dvc->cfg->termination |= TERM_SE;
5663 			break;
5664 
5665 		case 0x0:
5666 			if (PCI_FUNC(pdev->devfn) == 0) {
5667 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5668 			} else {
5669 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5670 				asc_dvc->cfg->termination |= TERM_SE_HI;
5671 			}
5672 			break;
5673 		}
5674 	}
5675 
5676 	/*
5677 	 * Clear any set TERM_SE bits.
5678 	 */
5679 	scsi_cfg1 &= ~TERM_SE;
5680 
5681 	/*
5682 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5683 	 */
5684 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5685 
5686 	/*
5687 	 * Clear Big Endian and Terminator Polarity bits and set possibly
5688 	 * modified termination control bits in the Microcode SCSI_CFG1
5689 	 * Register Value.
5690 	 *
5691 	 * Big Endian bit is not used even on big endian machines.
5692 	 */
5693 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5694 
5695 	/*
5696 	 * Set SCSI_CFG1 Microcode Default Value
5697 	 *
5698 	 * Set possibly modified termination control bits in the Microcode
5699 	 * SCSI_CFG1 Register Value.
5700 	 *
5701 	 * The microcode will set the SCSI_CFG1 register using this value
5702 	 * after it is started below.
5703 	 */
5704 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5705 
5706 	/*
5707 	 * Set MEM_CFG Microcode Default Value
5708 	 *
5709 	 * The microcode will set the MEM_CFG register using this value
5710 	 * after it is started below.
5711 	 *
5712 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5713 	 * are defined.
5714 	 *
5715 	 * ASC-38C1600 has 32KB internal memory.
5716 	 *
5717 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5718 	 * out a special 16K Adv Library and Microcode version. After the issue
5719 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5720 	 * mcode.sas files also need to be updated.
5721 	 *
5722 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5723 	 *  BIOS_EN | RAM_SZ_32KB);
5724 	 */
5725 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5726 			 BIOS_EN | RAM_SZ_16KB);
5727 
5728 	/*
5729 	 * Set SEL_MASK Microcode Default Value
5730 	 *
5731 	 * The microcode will set the SEL_MASK register using this value
5732 	 * after it is started below.
5733 	 */
5734 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5735 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5736 
5737 	AdvBuildCarrierFreelist(asc_dvc);
5738 
5739 	/*
5740 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5741 	 */
5742 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5743 	if (!asc_dvc->icq_sp) {
5744 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5745 		return ADV_ERROR;
5746 	}
5747 
5748 	/*
5749 	 * Set RISC ICQ physical address start value. Initialize the
5750 	 * COMMA register to the same value otherwise the RISC will
5751 	 * prematurely detect a command is available.
5752 	 */
5753 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5754 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5755 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5756 
5757 	/*
5758 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5759 	 */
5760 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5761 	if (!asc_dvc->irq_sp) {
5762 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5763 		return ADV_ERROR;
5764 	}
5765 
5766 	/*
5767 	 * Set RISC IRQ physical address start value.
5768 	 */
5769 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5770 	asc_dvc->carr_pending_cnt = 0;
5771 
5772 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5773 			     (ADV_INTR_ENABLE_HOST_INTR |
5774 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5775 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5776 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5777 
5778 	/* finally, finally, gentlemen, start your engine */
5779 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5780 
5781 	/*
5782 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5783 	 * Resets should be performed. The RISC has to be running
5784 	 * to issue a SCSI Bus Reset.
5785 	 */
5786 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5787 		/*
5788 		 * If the BIOS Signature is present in memory, restore the
5789 		 * per TID microcode operating variables.
5790 		 */
5791 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5792 		    0x55AA) {
5793 			/*
5794 			 * Restore per TID negotiated values.
5795 			 */
5796 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5797 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5798 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5799 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5800 					 tagqng_able);
5801 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5802 				AdvWriteByteLram(iop_base,
5803 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5804 						 max_cmd[tid]);
5805 			}
5806 		} else {
5807 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5808 				warn_code = ASC_WARN_BUSRESET_ERROR;
5809 			}
5810 		}
5811 	}
5812 
5813 	return warn_code;
5814 }
5815 
5816 /*
5817  * Reset chip and SCSI Bus.
5818  *
5819  * Return Value:
5820  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5821  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5822  */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)5823 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5824 {
5825 	int status;
5826 	ushort wdtr_able, sdtr_able, tagqng_able;
5827 	ushort ppr_able = 0;
5828 	uchar tid, max_cmd[ADV_MAX_TID + 1];
5829 	AdvPortAddr iop_base;
5830 	ushort bios_sig;
5831 
5832 	iop_base = asc_dvc->iop_base;
5833 
5834 	/*
5835 	 * Save current per TID negotiated values.
5836 	 */
5837 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5838 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5839 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5840 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5841 	}
5842 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5843 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5844 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5845 				max_cmd[tid]);
5846 	}
5847 
5848 	/*
5849 	 * Force the AdvInitAsc3550/38C0800Driver() function to
5850 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5851 	 * The initialization functions assumes a SCSI Bus Reset is not
5852 	 * needed if the BIOS signature word is present.
5853 	 */
5854 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5855 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5856 
5857 	/*
5858 	 * Stop chip and reset it.
5859 	 */
5860 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5861 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5862 	mdelay(100);
5863 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5864 			     ADV_CTRL_REG_CMD_WR_IO_REG);
5865 
5866 	/*
5867 	 * Reset Adv Library error code, if any, and try
5868 	 * re-initializing the chip.
5869 	 */
5870 	asc_dvc->err_code = 0;
5871 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5872 		status = AdvInitAsc38C1600Driver(asc_dvc);
5873 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5874 		status = AdvInitAsc38C0800Driver(asc_dvc);
5875 	} else {
5876 		status = AdvInitAsc3550Driver(asc_dvc);
5877 	}
5878 
5879 	/* Translate initialization return value to status value. */
5880 	if (status == 0) {
5881 		status = ADV_TRUE;
5882 	} else {
5883 		status = ADV_FALSE;
5884 	}
5885 
5886 	/*
5887 	 * Restore the BIOS signature word.
5888 	 */
5889 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5890 
5891 	/*
5892 	 * Restore per TID negotiated values.
5893 	 */
5894 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5895 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5896 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5897 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5898 	}
5899 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5900 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5901 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5902 				 max_cmd[tid]);
5903 	}
5904 
5905 	return status;
5906 }
5907 
5908 /*
5909  * adv_async_callback() - Adv Library asynchronous event callback function.
5910  */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)5911 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5912 {
5913 	switch (code) {
5914 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5915 		/*
5916 		 * The firmware detected a SCSI Bus reset.
5917 		 */
5918 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5919 		break;
5920 
5921 	case ADV_ASYNC_RDMA_FAILURE:
5922 		/*
5923 		 * Handle RDMA failure by resetting the SCSI Bus and
5924 		 * possibly the chip if it is unresponsive. Log the error
5925 		 * with a unique code.
5926 		 */
5927 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5928 		AdvResetChipAndSB(adv_dvc_varp);
5929 		break;
5930 
5931 	case ADV_HOST_SCSI_BUS_RESET:
5932 		/*
5933 		 * Host generated SCSI bus reset occurred.
5934 		 */
5935 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5936 		break;
5937 
5938 	default:
5939 		ASC_DBG(0, "unknown code 0x%x\n", code);
5940 		break;
5941 	}
5942 }
5943 
5944 /*
5945  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5946  *
5947  * Callback function for the Wide SCSI Adv Library.
5948  */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)5949 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5950 {
5951 	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5952 	u32 srb_tag;
5953 	adv_req_t *reqp;
5954 	adv_sgblk_t *sgblkp;
5955 	struct scsi_cmnd *scp;
5956 	u32 resid_cnt;
5957 	dma_addr_t sense_addr;
5958 
5959 	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5960 		adv_dvc_varp, scsiqp);
5961 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5962 
5963 	/*
5964 	 * Get the adv_req_t structure for the command that has been
5965 	 * completed. The adv_req_t structure actually contains the
5966 	 * completed ADV_SCSI_REQ_Q structure.
5967 	 */
5968 	srb_tag = le32_to_cpu(scsiqp->srb_tag);
5969 	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5970 
5971 	ASC_DBG(1, "scp 0x%p\n", scp);
5972 	if (scp == NULL) {
5973 		ASC_PRINT
5974 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5975 		return;
5976 	}
5977 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5978 
5979 	reqp = (adv_req_t *)scp->host_scribble;
5980 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5981 	if (reqp == NULL) {
5982 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5983 		return;
5984 	}
5985 	/*
5986 	 * Remove backreferences to avoid duplicate
5987 	 * command completions.
5988 	 */
5989 	scp->host_scribble = NULL;
5990 	reqp->cmndp = NULL;
5991 
5992 	ASC_STATS(boardp->shost, callback);
5993 	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5994 
5995 	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5996 	dma_unmap_single(boardp->dev, sense_addr,
5997 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5998 
5999 	/*
6000 	 * 'done_status' contains the command's ending status.
6001 	 */
6002 	switch (scsiqp->done_status) {
6003 	case QD_NO_ERROR:
6004 		ASC_DBG(2, "QD_NO_ERROR\n");
6005 		scp->result = 0;
6006 
6007 		/*
6008 		 * Check for an underrun condition.
6009 		 *
6010 		 * If there was no error and an underrun condition, then
6011 		 * then return the number of underrun bytes.
6012 		 */
6013 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6014 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6015 		    resid_cnt <= scsi_bufflen(scp)) {
6016 			ASC_DBG(1, "underrun condition %lu bytes\n",
6017 				 (ulong)resid_cnt);
6018 			scsi_set_resid(scp, resid_cnt);
6019 		}
6020 		break;
6021 
6022 	case QD_WITH_ERROR:
6023 		ASC_DBG(2, "QD_WITH_ERROR\n");
6024 		switch (scsiqp->host_status) {
6025 		case QHSTA_NO_ERROR:
6026 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6027 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6028 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6029 						  SCSI_SENSE_BUFFERSIZE);
6030 				/*
6031 				 * Note: The 'status_byte()' macro used by
6032 				 * target drivers defined in scsi.h shifts the
6033 				 * status byte returned by host drivers right
6034 				 * by 1 bit.  This is why target drivers also
6035 				 * use right shifted status byte definitions.
6036 				 * For instance target drivers use
6037 				 * CHECK_CONDITION, defined to 0x1, instead of
6038 				 * the SCSI defined check condition value of
6039 				 * 0x2. Host drivers are supposed to return
6040 				 * the status byte as it is defined by SCSI.
6041 				 */
6042 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6043 				    STATUS_BYTE(scsiqp->scsi_status);
6044 			} else {
6045 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6046 			}
6047 			break;
6048 
6049 		default:
6050 			/* Some other QHSTA error occurred. */
6051 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6052 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6053 			break;
6054 		}
6055 		break;
6056 
6057 	case QD_ABORTED_BY_HOST:
6058 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6059 		scp->result =
6060 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6061 		break;
6062 
6063 	default:
6064 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6065 		scp->result =
6066 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6067 		break;
6068 	}
6069 
6070 	/*
6071 	 * If the 'init_tidmask' bit isn't already set for the target and the
6072 	 * current request finished normally, then set the bit for the target
6073 	 * to indicate that a device is present.
6074 	 */
6075 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6076 	    scsiqp->done_status == QD_NO_ERROR &&
6077 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6078 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6079 	}
6080 
6081 	asc_scsi_done(scp);
6082 
6083 	/*
6084 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6085 	 */
6086 	while ((sgblkp = reqp->sgblkp) != NULL) {
6087 		/* Remove 'sgblkp' from the request list. */
6088 		reqp->sgblkp = sgblkp->next_sgblkp;
6089 
6090 		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6091 			      sgblkp->sg_addr);
6092 	}
6093 
6094 	ASC_DBG(1, "done\n");
6095 }
6096 
6097 /*
6098  * Adv Library Interrupt Service Routine
6099  *
6100  *  This function is called by a driver's interrupt service routine.
6101  *  The function disables and re-enables interrupts.
6102  *
6103  *  When a microcode idle command is completed, the ADV_DVC_VAR
6104  *  'idle_cmd_done' field is set to ADV_TRUE.
6105  *
6106  *  Note: AdvISR() can be called when interrupts are disabled or even
6107  *  when there is no hardware interrupt condition present. It will
6108  *  always check for completed idle commands and microcode requests.
6109  *  This is an important feature that shouldn't be changed because it
6110  *  allows commands to be completed from polling mode loops.
6111  *
6112  * Return:
6113  *   ADV_TRUE(1) - interrupt was pending
6114  *   ADV_FALSE(0) - no interrupt was pending
6115  */
AdvISR(ADV_DVC_VAR * asc_dvc)6116 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6117 {
6118 	AdvPortAddr iop_base;
6119 	uchar int_stat;
6120 	ushort target_bit;
6121 	ADV_CARR_T *free_carrp;
6122 	__le32 irq_next_vpa;
6123 	ADV_SCSI_REQ_Q *scsiq;
6124 	adv_req_t *reqp;
6125 
6126 	iop_base = asc_dvc->iop_base;
6127 
6128 	/* Reading the register clears the interrupt. */
6129 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6130 
6131 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6132 			 ADV_INTR_STATUS_INTRC)) == 0) {
6133 		return ADV_FALSE;
6134 	}
6135 
6136 	/*
6137 	 * Notify the driver of an asynchronous microcode condition by
6138 	 * calling the adv_async_callback function. The function
6139 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6140 	 */
6141 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6142 		uchar intrb_code;
6143 
6144 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6145 
6146 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6147 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6148 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6149 			    asc_dvc->carr_pending_cnt != 0) {
6150 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6151 						     ADV_TICKLE_A);
6152 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6153 					AdvWriteByteRegister(iop_base,
6154 							     IOPB_TICKLE,
6155 							     ADV_TICKLE_NOP);
6156 				}
6157 			}
6158 		}
6159 
6160 		adv_async_callback(asc_dvc, intrb_code);
6161 	}
6162 
6163 	/*
6164 	 * Check if the IRQ stopper carrier contains a completed request.
6165 	 */
6166 	while (((irq_next_vpa =
6167 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6168 		/*
6169 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6170 		 * The RISC will have set 'areq_vpa' to a virtual address.
6171 		 *
6172 		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6173 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6174 		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6175 		 * in AdvExeScsiQueue().
6176 		 */
6177 		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6178 		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6179 			asc_dvc->irq_sp, pa_offset);
6180 		reqp = adv_get_reqp(asc_dvc, pa_offset);
6181 		scsiq = &reqp->scsi_req_q;
6182 
6183 		/*
6184 		 * Request finished with good status and the queue was not
6185 		 * DMAed to host memory by the firmware. Set all status fields
6186 		 * to indicate good status.
6187 		 */
6188 		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6189 			scsiq->done_status = QD_NO_ERROR;
6190 			scsiq->host_status = scsiq->scsi_status = 0;
6191 			scsiq->data_cnt = 0L;
6192 		}
6193 
6194 		/*
6195 		 * Advance the stopper pointer to the next carrier
6196 		 * ignoring the lower four bits. Free the previous
6197 		 * stopper carrier.
6198 		 */
6199 		free_carrp = asc_dvc->irq_sp;
6200 		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6201 						  ADV_GET_CARRP(irq_next_vpa));
6202 
6203 		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6204 		asc_dvc->carr_freelist = free_carrp;
6205 		asc_dvc->carr_pending_cnt--;
6206 
6207 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6208 
6209 		/*
6210 		 * Clear request microcode control flag.
6211 		 */
6212 		scsiq->cntl = 0;
6213 
6214 		/*
6215 		 * Notify the driver of the completed request by passing
6216 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6217 		 */
6218 		adv_isr_callback(asc_dvc, scsiq);
6219 		/*
6220 		 * Note: After the driver callback function is called, 'scsiq'
6221 		 * can no longer be referenced.
6222 		 *
6223 		 * Fall through and continue processing other completed
6224 		 * requests...
6225 		 */
6226 	}
6227 	return ADV_TRUE;
6228 }
6229 
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6230 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6231 {
6232 	if (asc_dvc->err_code == 0) {
6233 		asc_dvc->err_code = err_code;
6234 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6235 				 err_code);
6236 	}
6237 	return err_code;
6238 }
6239 
AscAckInterrupt(PortAddr iop_base)6240 static void AscAckInterrupt(PortAddr iop_base)
6241 {
6242 	uchar host_flag;
6243 	uchar risc_flag;
6244 	ushort loop;
6245 
6246 	loop = 0;
6247 	do {
6248 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6249 		if (loop++ > 0x7FFF) {
6250 			break;
6251 		}
6252 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6253 	host_flag =
6254 	    AscReadLramByte(iop_base,
6255 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6256 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6257 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6258 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6259 	loop = 0;
6260 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6261 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6262 		if (loop++ > 3) {
6263 			break;
6264 		}
6265 	}
6266 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6267 }
6268 
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6269 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6270 {
6271 	const uchar *period_table;
6272 	int max_index;
6273 	int min_index;
6274 	int i;
6275 
6276 	period_table = asc_dvc->sdtr_period_tbl;
6277 	max_index = (int)asc_dvc->max_sdtr_index;
6278 	min_index = (int)asc_dvc->min_sdtr_index;
6279 	if ((syn_time <= period_table[max_index])) {
6280 		for (i = min_index; i < (max_index - 1); i++) {
6281 			if (syn_time <= period_table[i]) {
6282 				return (uchar)i;
6283 			}
6284 		}
6285 		return (uchar)max_index;
6286 	} else {
6287 		return (uchar)(max_index + 1);
6288 	}
6289 }
6290 
6291 static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6292 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6293 {
6294 	PortAddr iop_base = asc_dvc->iop_base;
6295 	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6296 	EXT_MSG sdtr_buf = {
6297 		.msg_type = EXTENDED_MESSAGE,
6298 		.msg_len = MS_SDTR_LEN,
6299 		.msg_req = EXTENDED_SDTR,
6300 		.xfer_period = sdtr_period,
6301 		.req_ack_offset = sdtr_offset,
6302 	};
6303 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6304 
6305 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6306 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6307 					(uchar *)&sdtr_buf,
6308 					sizeof(EXT_MSG) >> 1);
6309 		return ((sdtr_period_index << 4) | sdtr_offset);
6310 	} else {
6311 		sdtr_buf.req_ack_offset = 0;
6312 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6313 					(uchar *)&sdtr_buf,
6314 					sizeof(EXT_MSG) >> 1);
6315 		return 0;
6316 	}
6317 }
6318 
6319 static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)6320 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6321 {
6322 	uchar byte;
6323 	uchar sdtr_period_ix;
6324 
6325 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6326 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6327 		return 0xFF;
6328 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6329 	return byte;
6330 }
6331 
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)6332 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6333 {
6334 	ASC_SCSI_BIT_ID_TYPE org_id;
6335 	int i;
6336 	bool sta = true;
6337 
6338 	AscSetBank(iop_base, 1);
6339 	org_id = AscReadChipDvcID(iop_base);
6340 	for (i = 0; i <= ASC_MAX_TID; i++) {
6341 		if (org_id == (0x01 << i))
6342 			break;
6343 	}
6344 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6345 	AscWriteChipDvcID(iop_base, id);
6346 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6347 		AscSetBank(iop_base, 0);
6348 		AscSetChipSyn(iop_base, sdtr_data);
6349 		if (AscGetChipSyn(iop_base) != sdtr_data) {
6350 			sta = false;
6351 		}
6352 	} else {
6353 		sta = false;
6354 	}
6355 	AscSetBank(iop_base, 1);
6356 	AscWriteChipDvcID(iop_base, org_id);
6357 	AscSetBank(iop_base, 0);
6358 	return (sta);
6359 }
6360 
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)6361 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6362 {
6363 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6364 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6365 }
6366 
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)6367 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6368 {
6369 	EXT_MSG ext_msg;
6370 	EXT_MSG out_msg;
6371 	ushort halt_q_addr;
6372 	bool sdtr_accept;
6373 	ushort int_halt_code;
6374 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6375 	ASC_SCSI_BIT_ID_TYPE target_id;
6376 	PortAddr iop_base;
6377 	uchar tag_code;
6378 	uchar q_status;
6379 	uchar halt_qp;
6380 	uchar sdtr_data;
6381 	uchar target_ix;
6382 	uchar q_cntl, tid_no;
6383 	uchar cur_dvc_qng;
6384 	uchar asyn_sdtr;
6385 	uchar scsi_status;
6386 	struct asc_board *boardp;
6387 
6388 	BUG_ON(!asc_dvc->drv_ptr);
6389 	boardp = asc_dvc->drv_ptr;
6390 
6391 	iop_base = asc_dvc->iop_base;
6392 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6393 
6394 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6395 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6396 	target_ix = AscReadLramByte(iop_base,
6397 				    (ushort)(halt_q_addr +
6398 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6399 	q_cntl = AscReadLramByte(iop_base,
6400 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6401 	tid_no = ASC_TIX_TO_TID(target_ix);
6402 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6403 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6404 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6405 	} else {
6406 		asyn_sdtr = 0;
6407 	}
6408 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6409 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6410 			AscSetChipSDTR(iop_base, 0, tid_no);
6411 			boardp->sdtr_data[tid_no] = 0;
6412 		}
6413 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6414 		return;
6415 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6416 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6417 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6418 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6419 		}
6420 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6421 		return;
6422 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6423 		AscMemWordCopyPtrFromLram(iop_base,
6424 					  ASCV_MSGIN_BEG,
6425 					  (uchar *)&ext_msg,
6426 					  sizeof(EXT_MSG) >> 1);
6427 
6428 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6429 		    ext_msg.msg_req == EXTENDED_SDTR &&
6430 		    ext_msg.msg_len == MS_SDTR_LEN) {
6431 			sdtr_accept = true;
6432 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6433 
6434 				sdtr_accept = false;
6435 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6436 			}
6437 			if ((ext_msg.xfer_period <
6438 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6439 			    || (ext_msg.xfer_period >
6440 				asc_dvc->sdtr_period_tbl[asc_dvc->
6441 							 max_sdtr_index])) {
6442 				sdtr_accept = false;
6443 				ext_msg.xfer_period =
6444 				    asc_dvc->sdtr_period_tbl[asc_dvc->
6445 							     min_sdtr_index];
6446 			}
6447 			if (sdtr_accept) {
6448 				sdtr_data =
6449 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6450 						   ext_msg.req_ack_offset);
6451 				if ((sdtr_data == 0xFF)) {
6452 
6453 					q_cntl |= QC_MSG_OUT;
6454 					asc_dvc->init_sdtr &= ~target_id;
6455 					asc_dvc->sdtr_done &= ~target_id;
6456 					AscSetChipSDTR(iop_base, asyn_sdtr,
6457 						       tid_no);
6458 					boardp->sdtr_data[tid_no] = asyn_sdtr;
6459 				}
6460 			}
6461 			if (ext_msg.req_ack_offset == 0) {
6462 
6463 				q_cntl &= ~QC_MSG_OUT;
6464 				asc_dvc->init_sdtr &= ~target_id;
6465 				asc_dvc->sdtr_done &= ~target_id;
6466 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6467 			} else {
6468 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6469 					q_cntl &= ~QC_MSG_OUT;
6470 					asc_dvc->sdtr_done |= target_id;
6471 					asc_dvc->init_sdtr |= target_id;
6472 					asc_dvc->pci_fix_asyn_xfer &=
6473 					    ~target_id;
6474 					sdtr_data =
6475 					    AscCalSDTRData(asc_dvc,
6476 							   ext_msg.xfer_period,
6477 							   ext_msg.
6478 							   req_ack_offset);
6479 					AscSetChipSDTR(iop_base, sdtr_data,
6480 						       tid_no);
6481 					boardp->sdtr_data[tid_no] = sdtr_data;
6482 				} else {
6483 					q_cntl |= QC_MSG_OUT;
6484 					AscMsgOutSDTR(asc_dvc,
6485 						      ext_msg.xfer_period,
6486 						      ext_msg.req_ack_offset);
6487 					asc_dvc->pci_fix_asyn_xfer &=
6488 					    ~target_id;
6489 					sdtr_data =
6490 					    AscCalSDTRData(asc_dvc,
6491 							   ext_msg.xfer_period,
6492 							   ext_msg.
6493 							   req_ack_offset);
6494 					AscSetChipSDTR(iop_base, sdtr_data,
6495 						       tid_no);
6496 					boardp->sdtr_data[tid_no] = sdtr_data;
6497 					asc_dvc->sdtr_done |= target_id;
6498 					asc_dvc->init_sdtr |= target_id;
6499 				}
6500 			}
6501 
6502 			AscWriteLramByte(iop_base,
6503 					 (ushort)(halt_q_addr +
6504 						  (ushort)ASC_SCSIQ_B_CNTL),
6505 					 q_cntl);
6506 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6507 			return;
6508 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6509 			   ext_msg.msg_req == EXTENDED_WDTR &&
6510 			   ext_msg.msg_len == MS_WDTR_LEN) {
6511 
6512 			ext_msg.wdtr_width = 0;
6513 			AscMemWordCopyPtrToLram(iop_base,
6514 						ASCV_MSGOUT_BEG,
6515 						(uchar *)&ext_msg,
6516 						sizeof(EXT_MSG) >> 1);
6517 			q_cntl |= QC_MSG_OUT;
6518 			AscWriteLramByte(iop_base,
6519 					 (ushort)(halt_q_addr +
6520 						  (ushort)ASC_SCSIQ_B_CNTL),
6521 					 q_cntl);
6522 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6523 			return;
6524 		} else {
6525 
6526 			ext_msg.msg_type = MESSAGE_REJECT;
6527 			AscMemWordCopyPtrToLram(iop_base,
6528 						ASCV_MSGOUT_BEG,
6529 						(uchar *)&ext_msg,
6530 						sizeof(EXT_MSG) >> 1);
6531 			q_cntl |= QC_MSG_OUT;
6532 			AscWriteLramByte(iop_base,
6533 					 (ushort)(halt_q_addr +
6534 						  (ushort)ASC_SCSIQ_B_CNTL),
6535 					 q_cntl);
6536 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6537 			return;
6538 		}
6539 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6540 
6541 		q_cntl |= QC_REQ_SENSE;
6542 
6543 		if ((asc_dvc->init_sdtr & target_id) != 0) {
6544 
6545 			asc_dvc->sdtr_done &= ~target_id;
6546 
6547 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6548 			q_cntl |= QC_MSG_OUT;
6549 			AscMsgOutSDTR(asc_dvc,
6550 				      asc_dvc->
6551 				      sdtr_period_tbl[(sdtr_data >> 4) &
6552 						      (uchar)(asc_dvc->
6553 							      max_sdtr_index -
6554 							      1)],
6555 				      (uchar)(sdtr_data & (uchar)
6556 					      ASC_SYN_MAX_OFFSET));
6557 		}
6558 
6559 		AscWriteLramByte(iop_base,
6560 				 (ushort)(halt_q_addr +
6561 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6562 
6563 		tag_code = AscReadLramByte(iop_base,
6564 					   (ushort)(halt_q_addr + (ushort)
6565 						    ASC_SCSIQ_B_TAG_CODE));
6566 		tag_code &= 0xDC;
6567 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6568 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6569 		    ) {
6570 
6571 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6572 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6573 
6574 		}
6575 		AscWriteLramByte(iop_base,
6576 				 (ushort)(halt_q_addr +
6577 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6578 				 tag_code);
6579 
6580 		q_status = AscReadLramByte(iop_base,
6581 					   (ushort)(halt_q_addr + (ushort)
6582 						    ASC_SCSIQ_B_STATUS));
6583 		q_status |= (QS_READY | QS_BUSY);
6584 		AscWriteLramByte(iop_base,
6585 				 (ushort)(halt_q_addr +
6586 					  (ushort)ASC_SCSIQ_B_STATUS),
6587 				 q_status);
6588 
6589 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6590 		scsi_busy &= ~target_id;
6591 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6592 
6593 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6594 		return;
6595 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6596 
6597 		AscMemWordCopyPtrFromLram(iop_base,
6598 					  ASCV_MSGOUT_BEG,
6599 					  (uchar *)&out_msg,
6600 					  sizeof(EXT_MSG) >> 1);
6601 
6602 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6603 		    (out_msg.msg_len == MS_SDTR_LEN) &&
6604 		    (out_msg.msg_req == EXTENDED_SDTR)) {
6605 
6606 			asc_dvc->init_sdtr &= ~target_id;
6607 			asc_dvc->sdtr_done &= ~target_id;
6608 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6609 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6610 		}
6611 		q_cntl &= ~QC_MSG_OUT;
6612 		AscWriteLramByte(iop_base,
6613 				 (ushort)(halt_q_addr +
6614 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6615 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6616 		return;
6617 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6618 
6619 		scsi_status = AscReadLramByte(iop_base,
6620 					      (ushort)((ushort)halt_q_addr +
6621 						       (ushort)
6622 						       ASC_SCSIQ_SCSI_STATUS));
6623 		cur_dvc_qng =
6624 		    AscReadLramByte(iop_base,
6625 				    (ushort)((ushort)ASC_QADR_BEG +
6626 					     (ushort)target_ix));
6627 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6628 
6629 			scsi_busy = AscReadLramByte(iop_base,
6630 						    (ushort)ASCV_SCSIBUSY_B);
6631 			scsi_busy |= target_id;
6632 			AscWriteLramByte(iop_base,
6633 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6634 			asc_dvc->queue_full_or_busy |= target_id;
6635 
6636 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6637 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6638 					cur_dvc_qng -= 1;
6639 					asc_dvc->max_dvc_qng[tid_no] =
6640 					    cur_dvc_qng;
6641 
6642 					AscWriteLramByte(iop_base,
6643 							 (ushort)((ushort)
6644 								  ASCV_MAX_DVC_QNG_BEG
6645 								  + (ushort)
6646 								  tid_no),
6647 							 cur_dvc_qng);
6648 
6649 					/*
6650 					 * Set the device queue depth to the
6651 					 * number of active requests when the
6652 					 * QUEUE FULL condition was encountered.
6653 					 */
6654 					boardp->queue_full |= target_id;
6655 					boardp->queue_full_cnt[tid_no] =
6656 					    cur_dvc_qng;
6657 				}
6658 			}
6659 		}
6660 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6661 		return;
6662 	}
6663 	return;
6664 }
6665 
6666 /*
6667  * void
6668  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6669  *
6670  * Calling/Exit State:
6671  *    none
6672  *
6673  * Description:
6674  *     Input an ASC_QDONE_INFO structure from the chip
6675  */
6676 static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)6677 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6678 {
6679 	int i;
6680 	ushort word;
6681 
6682 	AscSetChipLramAddr(iop_base, s_addr);
6683 	for (i = 0; i < 2 * words; i += 2) {
6684 		if (i == 10) {
6685 			continue;
6686 		}
6687 		word = inpw(iop_base + IOP_RAM_DATA);
6688 		inbuf[i] = word & 0xff;
6689 		inbuf[i + 1] = (word >> 8) & 0xff;
6690 	}
6691 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6692 }
6693 
6694 static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,unsigned int max_dma_count)6695 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6696 		      ushort q_addr,
6697 		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6698 {
6699 	ushort _val;
6700 	uchar sg_queue_cnt;
6701 
6702 	DvcGetQinfo(iop_base,
6703 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6704 		    (uchar *)scsiq,
6705 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6706 
6707 	_val = AscReadLramWord(iop_base,
6708 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6709 	scsiq->q_status = (uchar)_val;
6710 	scsiq->q_no = (uchar)(_val >> 8);
6711 	_val = AscReadLramWord(iop_base,
6712 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6713 	scsiq->cntl = (uchar)_val;
6714 	sg_queue_cnt = (uchar)(_val >> 8);
6715 	_val = AscReadLramWord(iop_base,
6716 			       (ushort)(q_addr +
6717 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6718 	scsiq->sense_len = (uchar)_val;
6719 	scsiq->extra_bytes = (uchar)(_val >> 8);
6720 
6721 	/*
6722 	 * Read high word of remain bytes from alternate location.
6723 	 */
6724 	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6725 						     (ushort)(q_addr +
6726 							      (ushort)
6727 							      ASC_SCSIQ_W_ALT_DC1)))
6728 			       << 16);
6729 	/*
6730 	 * Read low word of remain bytes from original location.
6731 	 */
6732 	scsiq->remain_bytes += AscReadLramWord(iop_base,
6733 					       (ushort)(q_addr + (ushort)
6734 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6735 
6736 	scsiq->remain_bytes &= max_dma_count;
6737 	return sg_queue_cnt;
6738 }
6739 
6740 /*
6741  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6742  *
6743  * Interrupt callback function for the Narrow SCSI Asc Library.
6744  */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)6745 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6746 {
6747 	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6748 	u32 srb_tag;
6749 	struct scsi_cmnd *scp;
6750 
6751 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6752 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6753 
6754 	/*
6755 	 * Decrease the srb_tag by 1 to find the SCSI command
6756 	 */
6757 	srb_tag = qdonep->d2.srb_tag - 1;
6758 	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6759 	if (!scp)
6760 		return;
6761 
6762 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6763 
6764 	ASC_STATS(boardp->shost, callback);
6765 
6766 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6767 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6768 	/*
6769 	 * 'qdonep' contains the command's ending status.
6770 	 */
6771 	switch (qdonep->d3.done_stat) {
6772 	case QD_NO_ERROR:
6773 		ASC_DBG(2, "QD_NO_ERROR\n");
6774 		scp->result = 0;
6775 
6776 		/*
6777 		 * Check for an underrun condition.
6778 		 *
6779 		 * If there was no error and an underrun condition, then
6780 		 * return the number of underrun bytes.
6781 		 */
6782 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6783 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6784 			ASC_DBG(1, "underrun condition %u bytes\n",
6785 				 (unsigned)qdonep->remain_bytes);
6786 			scsi_set_resid(scp, qdonep->remain_bytes);
6787 		}
6788 		break;
6789 
6790 	case QD_WITH_ERROR:
6791 		ASC_DBG(2, "QD_WITH_ERROR\n");
6792 		switch (qdonep->d3.host_stat) {
6793 		case QHSTA_NO_ERROR:
6794 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6795 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6796 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6797 						  SCSI_SENSE_BUFFERSIZE);
6798 				/*
6799 				 * Note: The 'status_byte()' macro used by
6800 				 * target drivers defined in scsi.h shifts the
6801 				 * status byte returned by host drivers right
6802 				 * by 1 bit.  This is why target drivers also
6803 				 * use right shifted status byte definitions.
6804 				 * For instance target drivers use
6805 				 * CHECK_CONDITION, defined to 0x1, instead of
6806 				 * the SCSI defined check condition value of
6807 				 * 0x2. Host drivers are supposed to return
6808 				 * the status byte as it is defined by SCSI.
6809 				 */
6810 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6811 				    STATUS_BYTE(qdonep->d3.scsi_stat);
6812 			} else {
6813 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6814 			}
6815 			break;
6816 
6817 		default:
6818 			/* QHSTA error occurred */
6819 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6820 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6821 			break;
6822 		}
6823 		break;
6824 
6825 	case QD_ABORTED_BY_HOST:
6826 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6827 		scp->result =
6828 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6829 						    scsi_msg) |
6830 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6831 		break;
6832 
6833 	default:
6834 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6835 		scp->result =
6836 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6837 						    scsi_msg) |
6838 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6839 		break;
6840 	}
6841 
6842 	/*
6843 	 * If the 'init_tidmask' bit isn't already set for the target and the
6844 	 * current request finished normally, then set the bit for the target
6845 	 * to indicate that a device is present.
6846 	 */
6847 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6848 	    qdonep->d3.done_stat == QD_NO_ERROR &&
6849 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6850 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6851 	}
6852 
6853 	asc_scsi_done(scp);
6854 }
6855 
AscIsrQDone(ASC_DVC_VAR * asc_dvc)6856 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6857 {
6858 	uchar next_qp;
6859 	uchar n_q_used;
6860 	uchar sg_list_qp;
6861 	uchar sg_queue_cnt;
6862 	uchar q_cnt;
6863 	uchar done_q_tail;
6864 	uchar tid_no;
6865 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6866 	ASC_SCSI_BIT_ID_TYPE target_id;
6867 	PortAddr iop_base;
6868 	ushort q_addr;
6869 	ushort sg_q_addr;
6870 	uchar cur_target_qng;
6871 	ASC_QDONE_INFO scsiq_buf;
6872 	ASC_QDONE_INFO *scsiq;
6873 	bool false_overrun;
6874 
6875 	iop_base = asc_dvc->iop_base;
6876 	n_q_used = 1;
6877 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6878 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6879 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6880 	next_qp = AscReadLramByte(iop_base,
6881 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6882 	if (next_qp != ASC_QLINK_END) {
6883 		AscPutVarDoneQTail(iop_base, next_qp);
6884 		q_addr = ASC_QNO_TO_QADDR(next_qp);
6885 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6886 						     asc_dvc->max_dma_count);
6887 		AscWriteLramByte(iop_base,
6888 				 (ushort)(q_addr +
6889 					  (ushort)ASC_SCSIQ_B_STATUS),
6890 				 (uchar)(scsiq->
6891 					 q_status & (uchar)~(QS_READY |
6892 							     QS_ABORTED)));
6893 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6894 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6895 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6896 			sg_q_addr = q_addr;
6897 			sg_list_qp = next_qp;
6898 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6899 				sg_list_qp = AscReadLramByte(iop_base,
6900 							     (ushort)(sg_q_addr
6901 								      + (ushort)
6902 								      ASC_SCSIQ_B_FWD));
6903 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6904 				if (sg_list_qp == ASC_QLINK_END) {
6905 					AscSetLibErrorCode(asc_dvc,
6906 							   ASCQ_ERR_SG_Q_LINKS);
6907 					scsiq->d3.done_stat = QD_WITH_ERROR;
6908 					scsiq->d3.host_stat =
6909 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6910 					goto FATAL_ERR_QDONE;
6911 				}
6912 				AscWriteLramByte(iop_base,
6913 						 (ushort)(sg_q_addr + (ushort)
6914 							  ASC_SCSIQ_B_STATUS),
6915 						 QS_FREE);
6916 			}
6917 			n_q_used = sg_queue_cnt + 1;
6918 			AscPutVarDoneQTail(iop_base, sg_list_qp);
6919 		}
6920 		if (asc_dvc->queue_full_or_busy & target_id) {
6921 			cur_target_qng = AscReadLramByte(iop_base,
6922 							 (ushort)((ushort)
6923 								  ASC_QADR_BEG
6924 								  + (ushort)
6925 								  scsiq->d2.
6926 								  target_ix));
6927 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6928 				scsi_busy = AscReadLramByte(iop_base, (ushort)
6929 							    ASCV_SCSIBUSY_B);
6930 				scsi_busy &= ~target_id;
6931 				AscWriteLramByte(iop_base,
6932 						 (ushort)ASCV_SCSIBUSY_B,
6933 						 scsi_busy);
6934 				asc_dvc->queue_full_or_busy &= ~target_id;
6935 			}
6936 		}
6937 		if (asc_dvc->cur_total_qng >= n_q_used) {
6938 			asc_dvc->cur_total_qng -= n_q_used;
6939 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6940 				asc_dvc->cur_dvc_qng[tid_no]--;
6941 			}
6942 		} else {
6943 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6944 			scsiq->d3.done_stat = QD_WITH_ERROR;
6945 			goto FATAL_ERR_QDONE;
6946 		}
6947 		if ((scsiq->d2.srb_tag == 0UL) ||
6948 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6949 			return (0x11);
6950 		} else if (scsiq->q_status == QS_DONE) {
6951 			/*
6952 			 * This is also curious.
6953 			 * false_overrun will _always_ be set to 'false'
6954 			 */
6955 			false_overrun = false;
6956 			if (scsiq->extra_bytes != 0) {
6957 				scsiq->remain_bytes += scsiq->extra_bytes;
6958 			}
6959 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6960 				if (scsiq->d3.host_stat ==
6961 				    QHSTA_M_DATA_OVER_RUN) {
6962 					if ((scsiq->
6963 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6964 					    == 0) {
6965 						scsiq->d3.done_stat =
6966 						    QD_NO_ERROR;
6967 						scsiq->d3.host_stat =
6968 						    QHSTA_NO_ERROR;
6969 					} else if (false_overrun) {
6970 						scsiq->d3.done_stat =
6971 						    QD_NO_ERROR;
6972 						scsiq->d3.host_stat =
6973 						    QHSTA_NO_ERROR;
6974 					}
6975 				} else if (scsiq->d3.host_stat ==
6976 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6977 					AscStopChip(iop_base);
6978 					AscSetChipControl(iop_base,
6979 							  (uchar)(CC_SCSI_RESET
6980 								  | CC_HALT));
6981 					udelay(60);
6982 					AscSetChipControl(iop_base, CC_HALT);
6983 					AscSetChipStatus(iop_base,
6984 							 CIW_CLR_SCSI_RESET_INT);
6985 					AscSetChipStatus(iop_base, 0);
6986 					AscSetChipControl(iop_base, 0);
6987 				}
6988 			}
6989 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6990 				asc_isr_callback(asc_dvc, scsiq);
6991 			} else {
6992 				if ((AscReadLramByte(iop_base,
6993 						     (ushort)(q_addr + (ushort)
6994 							      ASC_SCSIQ_CDB_BEG))
6995 				     == START_STOP)) {
6996 					asc_dvc->unit_not_ready &= ~target_id;
6997 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6998 						asc_dvc->start_motor &=
6999 						    ~target_id;
7000 					}
7001 				}
7002 			}
7003 			return (1);
7004 		} else {
7005 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7006  FATAL_ERR_QDONE:
7007 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7008 				asc_isr_callback(asc_dvc, scsiq);
7009 			}
7010 			return (0x80);
7011 		}
7012 	}
7013 	return (0);
7014 }
7015 
AscISR(ASC_DVC_VAR * asc_dvc)7016 static int AscISR(ASC_DVC_VAR *asc_dvc)
7017 {
7018 	ASC_CS_TYPE chipstat;
7019 	PortAddr iop_base;
7020 	ushort saved_ram_addr;
7021 	uchar ctrl_reg;
7022 	uchar saved_ctrl_reg;
7023 	int int_pending;
7024 	int status;
7025 	uchar host_flag;
7026 
7027 	iop_base = asc_dvc->iop_base;
7028 	int_pending = ASC_FALSE;
7029 
7030 	if (AscIsIntPending(iop_base) == 0)
7031 		return int_pending;
7032 
7033 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7034 		return ASC_ERROR;
7035 	}
7036 	if (asc_dvc->in_critical_cnt != 0) {
7037 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7038 		return ASC_ERROR;
7039 	}
7040 	if (asc_dvc->is_in_int) {
7041 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7042 		return ASC_ERROR;
7043 	}
7044 	asc_dvc->is_in_int = true;
7045 	ctrl_reg = AscGetChipControl(iop_base);
7046 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7047 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7048 	chipstat = AscGetChipStatus(iop_base);
7049 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7050 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7051 			int i = 10;
7052 			int_pending = ASC_TRUE;
7053 			asc_dvc->sdtr_done = 0;
7054 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7055 			while ((AscGetChipStatus(iop_base) &
7056 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7057 				mdelay(100);
7058 			}
7059 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7060 			AscSetChipControl(iop_base, CC_HALT);
7061 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7062 			AscSetChipStatus(iop_base, 0);
7063 			chipstat = AscGetChipStatus(iop_base);
7064 		}
7065 	}
7066 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7067 	host_flag = AscReadLramByte(iop_base,
7068 				    ASCV_HOST_FLAG_B) &
7069 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7070 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7071 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7072 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7073 		AscAckInterrupt(iop_base);
7074 		int_pending = ASC_TRUE;
7075 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7076 			AscIsrChipHalted(asc_dvc);
7077 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7078 		} else {
7079 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7080 				while (((status =
7081 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7082 				}
7083 			} else {
7084 				do {
7085 					if ((status =
7086 					     AscIsrQDone(asc_dvc)) == 1) {
7087 						break;
7088 					}
7089 				} while (status == 0x11);
7090 			}
7091 			if ((status & 0x80) != 0)
7092 				int_pending = ASC_ERROR;
7093 		}
7094 	}
7095 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7096 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7097 	AscSetChipControl(iop_base, saved_ctrl_reg);
7098 	asc_dvc->is_in_int = false;
7099 	return int_pending;
7100 }
7101 
7102 /*
7103  * advansys_reset()
7104  *
7105  * Reset the host associated with the command 'scp'.
7106  *
7107  * This function runs its own thread. Interrupts must be blocked but
7108  * sleeping is allowed and no locking other than for host structures is
7109  * required. Returns SUCCESS or FAILED.
7110  */
advansys_reset(struct scsi_cmnd * scp)7111 static int advansys_reset(struct scsi_cmnd *scp)
7112 {
7113 	struct Scsi_Host *shost = scp->device->host;
7114 	struct asc_board *boardp = shost_priv(shost);
7115 	unsigned long flags;
7116 	int status;
7117 	int ret = SUCCESS;
7118 
7119 	ASC_DBG(1, "0x%p\n", scp);
7120 
7121 	ASC_STATS(shost, reset);
7122 
7123 	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7124 
7125 	if (ASC_NARROW_BOARD(boardp)) {
7126 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7127 
7128 		/* Reset the chip and SCSI bus. */
7129 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7130 		status = AscInitAsc1000Driver(asc_dvc);
7131 
7132 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7133 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7134 			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7135 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7136 				    status);
7137 			ret = FAILED;
7138 		} else if (status) {
7139 			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7140 				    "0x%x\n", status);
7141 		} else {
7142 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7143 				    "successful\n");
7144 		}
7145 
7146 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7147 	} else {
7148 		/*
7149 		 * If the suggest reset bus flags are set, then reset the bus.
7150 		 * Otherwise only reset the device.
7151 		 */
7152 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7153 
7154 		/*
7155 		 * Reset the chip and SCSI bus.
7156 		 */
7157 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7158 		switch (AdvResetChipAndSB(adv_dvc)) {
7159 		case ASC_TRUE:
7160 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7161 				    "successful\n");
7162 			break;
7163 		case ASC_FALSE:
7164 		default:
7165 			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7166 			ret = FAILED;
7167 			break;
7168 		}
7169 		spin_lock_irqsave(shost->host_lock, flags);
7170 		AdvISR(adv_dvc);
7171 		spin_unlock_irqrestore(shost->host_lock, flags);
7172 	}
7173 
7174 	ASC_DBG(1, "ret %d\n", ret);
7175 
7176 	return ret;
7177 }
7178 
7179 /*
7180  * advansys_biosparam()
7181  *
7182  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7183  * support is enabled for a drive.
7184  *
7185  * ip (information pointer) is an int array with the following definition:
7186  * ip[0]: heads
7187  * ip[1]: sectors
7188  * ip[2]: cylinders
7189  */
7190 static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])7191 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7192 		   sector_t capacity, int ip[])
7193 {
7194 	struct asc_board *boardp = shost_priv(sdev->host);
7195 
7196 	ASC_DBG(1, "begin\n");
7197 	ASC_STATS(sdev->host, biosparam);
7198 	if (ASC_NARROW_BOARD(boardp)) {
7199 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7200 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7201 			ip[0] = 255;
7202 			ip[1] = 63;
7203 		} else {
7204 			ip[0] = 64;
7205 			ip[1] = 32;
7206 		}
7207 	} else {
7208 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7209 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7210 			ip[0] = 255;
7211 			ip[1] = 63;
7212 		} else {
7213 			ip[0] = 64;
7214 			ip[1] = 32;
7215 		}
7216 	}
7217 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7218 	ASC_DBG(1, "end\n");
7219 	return 0;
7220 }
7221 
7222 /*
7223  * First-level interrupt handler.
7224  *
7225  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7226  */
advansys_interrupt(int irq,void * dev_id)7227 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7228 {
7229 	struct Scsi_Host *shost = dev_id;
7230 	struct asc_board *boardp = shost_priv(shost);
7231 	irqreturn_t result = IRQ_NONE;
7232 	unsigned long flags;
7233 
7234 	ASC_DBG(2, "boardp 0x%p\n", boardp);
7235 	spin_lock_irqsave(shost->host_lock, flags);
7236 	if (ASC_NARROW_BOARD(boardp)) {
7237 		if (AscIsIntPending(shost->io_port)) {
7238 			result = IRQ_HANDLED;
7239 			ASC_STATS(shost, interrupt);
7240 			ASC_DBG(1, "before AscISR()\n");
7241 			AscISR(&boardp->dvc_var.asc_dvc_var);
7242 		}
7243 	} else {
7244 		ASC_DBG(1, "before AdvISR()\n");
7245 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7246 			result = IRQ_HANDLED;
7247 			ASC_STATS(shost, interrupt);
7248 		}
7249 	}
7250 	spin_unlock_irqrestore(shost->host_lock, flags);
7251 
7252 	ASC_DBG(1, "end\n");
7253 	return result;
7254 }
7255 
AscHostReqRiscHalt(PortAddr iop_base)7256 static bool AscHostReqRiscHalt(PortAddr iop_base)
7257 {
7258 	int count = 0;
7259 	bool sta = false;
7260 	uchar saved_stop_code;
7261 
7262 	if (AscIsChipHalted(iop_base))
7263 		return true;
7264 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7265 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7266 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7267 	do {
7268 		if (AscIsChipHalted(iop_base)) {
7269 			sta = true;
7270 			break;
7271 		}
7272 		mdelay(100);
7273 	} while (count++ < 20);
7274 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7275 	return sta;
7276 }
7277 
7278 static bool
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)7279 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7280 {
7281 	bool sta = false;
7282 
7283 	if (AscHostReqRiscHalt(iop_base)) {
7284 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7285 		AscStartChip(iop_base);
7286 	}
7287 	return sta;
7288 }
7289 
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)7290 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7291 {
7292 	char type = sdev->type;
7293 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7294 
7295 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7296 		return;
7297 	if (asc_dvc->init_sdtr & tid_bits)
7298 		return;
7299 
7300 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7301 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7302 
7303 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7304 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7305 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7306 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7307 
7308 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7309 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7310 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7311 }
7312 
7313 static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)7314 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7315 {
7316 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7317 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7318 
7319 	if (sdev->lun == 0) {
7320 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7321 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7322 			asc_dvc->init_sdtr |= tid_bit;
7323 		} else {
7324 			asc_dvc->init_sdtr &= ~tid_bit;
7325 		}
7326 
7327 		if (orig_init_sdtr != asc_dvc->init_sdtr)
7328 			AscAsyncFix(asc_dvc, sdev);
7329 	}
7330 
7331 	if (sdev->tagged_supported) {
7332 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7333 			if (sdev->lun == 0) {
7334 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7335 				asc_dvc->use_tagged_qng |= tid_bit;
7336 			}
7337 			scsi_change_queue_depth(sdev,
7338 						asc_dvc->max_dvc_qng[sdev->id]);
7339 		}
7340 	} else {
7341 		if (sdev->lun == 0) {
7342 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7343 			asc_dvc->use_tagged_qng &= ~tid_bit;
7344 		}
7345 	}
7346 
7347 	if ((sdev->lun == 0) &&
7348 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7349 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7350 				 asc_dvc->cfg->disc_enable);
7351 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7352 				 asc_dvc->use_tagged_qng);
7353 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7354 				 asc_dvc->cfg->can_tagged_qng);
7355 
7356 		asc_dvc->max_dvc_qng[sdev->id] =
7357 					asc_dvc->cfg->max_tag_qng[sdev->id];
7358 		AscWriteLramByte(asc_dvc->iop_base,
7359 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7360 				 asc_dvc->max_dvc_qng[sdev->id]);
7361 	}
7362 }
7363 
7364 /*
7365  * Wide Transfers
7366  *
7367  * If the EEPROM enabled WDTR for the device and the device supports wide
7368  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7369  * write the new value to the microcode.
7370  */
7371 static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)7372 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7373 {
7374 	unsigned short cfg_word;
7375 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7376 	if ((cfg_word & tidmask) != 0)
7377 		return;
7378 
7379 	cfg_word |= tidmask;
7380 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7381 
7382 	/*
7383 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7384 	 * the target to cause it to negotiate with the new setting set above.
7385 	 * WDTR when accepted causes the target to enter asynchronous mode, so
7386 	 * SDTR must be negotiated.
7387 	 */
7388 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7389 	cfg_word &= ~tidmask;
7390 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7391 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7392 	cfg_word &= ~tidmask;
7393 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7394 }
7395 
7396 /*
7397  * Synchronous Transfers
7398  *
7399  * If the EEPROM enabled SDTR for the device and the device
7400  * supports synchronous transfers, then turn on the device's
7401  * 'sdtr_able' bit. Write the new value to the microcode.
7402  */
7403 static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)7404 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7405 {
7406 	unsigned short cfg_word;
7407 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7408 	if ((cfg_word & tidmask) != 0)
7409 		return;
7410 
7411 	cfg_word |= tidmask;
7412 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7413 
7414 	/*
7415 	 * Clear the microcode "SDTR negotiation" done indicator for the
7416 	 * target to cause it to negotiate with the new setting set above.
7417 	 */
7418 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7419 	cfg_word &= ~tidmask;
7420 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7421 }
7422 
7423 /*
7424  * PPR (Parallel Protocol Request) Capable
7425  *
7426  * If the device supports DT mode, then it must be PPR capable.
7427  * The PPR message will be used in place of the SDTR and WDTR
7428  * messages to negotiate synchronous speed and offset, transfer
7429  * width, and protocol options.
7430  */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)7431 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7432 				AdvPortAddr iop_base, unsigned short tidmask)
7433 {
7434 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7435 	adv_dvc->ppr_able |= tidmask;
7436 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7437 }
7438 
7439 static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)7440 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7441 {
7442 	AdvPortAddr iop_base = adv_dvc->iop_base;
7443 	unsigned short tidmask = 1 << sdev->id;
7444 
7445 	if (sdev->lun == 0) {
7446 		/*
7447 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7448 		 * is enabled in the EEPROM and the device supports the
7449 		 * feature, then enable it in the microcode.
7450 		 */
7451 
7452 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7453 			advansys_wide_enable_wdtr(iop_base, tidmask);
7454 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7455 			advansys_wide_enable_sdtr(iop_base, tidmask);
7456 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7457 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7458 
7459 		/*
7460 		 * Tag Queuing is disabled for the BIOS which runs in polled
7461 		 * mode and would see no benefit from Tag Queuing. Also by
7462 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7463 		 * bugs will at least work with the BIOS.
7464 		 */
7465 		if ((adv_dvc->tagqng_able & tidmask) &&
7466 		    sdev->tagged_supported) {
7467 			unsigned short cfg_word;
7468 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7469 			cfg_word |= tidmask;
7470 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7471 					 cfg_word);
7472 			AdvWriteByteLram(iop_base,
7473 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7474 					 adv_dvc->max_dvc_qng);
7475 		}
7476 	}
7477 
7478 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7479 		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7480 }
7481 
7482 /*
7483  * Set the number of commands to queue per device for the
7484  * specified host adapter.
7485  */
advansys_slave_configure(struct scsi_device * sdev)7486 static int advansys_slave_configure(struct scsi_device *sdev)
7487 {
7488 	struct asc_board *boardp = shost_priv(sdev->host);
7489 
7490 	if (ASC_NARROW_BOARD(boardp))
7491 		advansys_narrow_slave_configure(sdev,
7492 						&boardp->dvc_var.asc_dvc_var);
7493 	else
7494 		advansys_wide_slave_configure(sdev,
7495 						&boardp->dvc_var.adv_dvc_var);
7496 
7497 	return 0;
7498 }
7499 
asc_get_sense_buffer_dma(struct scsi_cmnd * scp)7500 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7501 {
7502 	struct asc_board *board = shost_priv(scp->device->host);
7503 
7504 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7505 					     SCSI_SENSE_BUFFERSIZE,
7506 					     DMA_FROM_DEVICE);
7507 	if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7508 		ASC_DBG(1, "failed to map sense buffer\n");
7509 		return 0;
7510 	}
7511 	return cpu_to_le32(scp->SCp.dma_handle);
7512 }
7513 
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)7514 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7515 			struct asc_scsi_q *asc_scsi_q)
7516 {
7517 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7518 	int use_sg;
7519 	u32 srb_tag;
7520 
7521 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7522 
7523 	/*
7524 	 * Set the srb_tag to the command tag + 1, as
7525 	 * srb_tag '0' is used internally by the chip.
7526 	 */
7527 	srb_tag = scp->request->tag + 1;
7528 	asc_scsi_q->q2.srb_tag = srb_tag;
7529 
7530 	/*
7531 	 * Build the ASC_SCSI_Q request.
7532 	 */
7533 	asc_scsi_q->cdbptr = &scp->cmnd[0];
7534 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7535 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7536 	asc_scsi_q->q1.target_lun = scp->device->lun;
7537 	asc_scsi_q->q2.target_ix =
7538 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7539 	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7540 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7541 	if (!asc_scsi_q->q1.sense_addr)
7542 		return ASC_BUSY;
7543 
7544 	/*
7545 	 * If there are any outstanding requests for the current target,
7546 	 * then every 255th request send an ORDERED request. This heuristic
7547 	 * tries to retain the benefit of request sorting while preventing
7548 	 * request starvation. 255 is the max number of tags or pending commands
7549 	 * a device may have outstanding.
7550 	 *
7551 	 * The request count is incremented below for every successfully
7552 	 * started request.
7553 	 *
7554 	 */
7555 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7556 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7557 		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7558 	} else {
7559 		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7560 	}
7561 
7562 	/* Build ASC_SCSI_Q */
7563 	use_sg = scsi_dma_map(scp);
7564 	if (use_sg < 0) {
7565 		ASC_DBG(1, "failed to map sglist\n");
7566 		return ASC_BUSY;
7567 	} else if (use_sg > 0) {
7568 		int sgcnt;
7569 		struct scatterlist *slp;
7570 		struct asc_sg_head *asc_sg_head;
7571 
7572 		if (use_sg > scp->device->host->sg_tablesize) {
7573 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7574 				"sg_tablesize %d\n", use_sg,
7575 				scp->device->host->sg_tablesize);
7576 			scsi_dma_unmap(scp);
7577 			scp->result = HOST_BYTE(DID_ERROR);
7578 			return ASC_ERROR;
7579 		}
7580 
7581 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7582 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7583 		if (!asc_sg_head) {
7584 			scsi_dma_unmap(scp);
7585 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7586 			return ASC_ERROR;
7587 		}
7588 
7589 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7590 		asc_scsi_q->sg_head = asc_sg_head;
7591 		asc_scsi_q->q1.data_cnt = 0;
7592 		asc_scsi_q->q1.data_addr = 0;
7593 		/* This is a byte value, otherwise it would need to be swapped. */
7594 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7595 		ASC_STATS_ADD(scp->device->host, xfer_elem,
7596 			      asc_sg_head->entry_cnt);
7597 
7598 		/*
7599 		 * Convert scatter-gather list into ASC_SG_HEAD list.
7600 		 */
7601 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7602 			asc_sg_head->sg_list[sgcnt].addr =
7603 			    cpu_to_le32(sg_dma_address(slp));
7604 			asc_sg_head->sg_list[sgcnt].bytes =
7605 			    cpu_to_le32(sg_dma_len(slp));
7606 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7607 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7608 		}
7609 	}
7610 
7611 	ASC_STATS(scp->device->host, xfer_cnt);
7612 
7613 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7614 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7615 
7616 	return ASC_NOERROR;
7617 }
7618 
7619 /*
7620  * Build scatter-gather list for Adv Library (Wide Board).
7621  *
7622  * Additional ADV_SG_BLOCK structures will need to be allocated
7623  * if the total number of scatter-gather elements exceeds
7624  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7625  * assumed to be physically contiguous.
7626  *
7627  * Return:
7628  *      ADV_SUCCESS(1) - SG List successfully created
7629  *      ADV_ERROR(-1) - SG List creation failed
7630  */
7631 static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,ADV_SCSI_REQ_Q * scsiqp,struct scsi_cmnd * scp,int use_sg)7632 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7633 	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7634 {
7635 	adv_sgblk_t *sgblkp, *prev_sgblkp;
7636 	struct scatterlist *slp;
7637 	int sg_elem_cnt;
7638 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7639 	dma_addr_t sgblk_paddr;
7640 	int i;
7641 
7642 	slp = scsi_sglist(scp);
7643 	sg_elem_cnt = use_sg;
7644 	prev_sgblkp = NULL;
7645 	prev_sg_block = NULL;
7646 	reqp->sgblkp = NULL;
7647 
7648 	for (;;) {
7649 		/*
7650 		 * Allocate a 'adv_sgblk_t' structure from the board free
7651 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7652 		 * (15) scatter-gather elements.
7653 		 */
7654 		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7655 					&sgblk_paddr);
7656 		if (!sgblkp) {
7657 			ASC_DBG(1, "no free adv_sgblk_t\n");
7658 			ASC_STATS(scp->device->host, adv_build_nosg);
7659 
7660 			/*
7661 			 * Allocation failed. Free 'adv_sgblk_t' structures
7662 			 * already allocated for the request.
7663 			 */
7664 			while ((sgblkp = reqp->sgblkp) != NULL) {
7665 				/* Remove 'sgblkp' from the request list. */
7666 				reqp->sgblkp = sgblkp->next_sgblkp;
7667 				sgblkp->next_sgblkp = NULL;
7668 				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7669 					      sgblkp->sg_addr);
7670 			}
7671 			return ASC_BUSY;
7672 		}
7673 		/* Complete 'adv_sgblk_t' board allocation. */
7674 		sgblkp->sg_addr = sgblk_paddr;
7675 		sgblkp->next_sgblkp = NULL;
7676 		sg_block = &sgblkp->sg_block;
7677 
7678 		/*
7679 		 * Check if this is the first 'adv_sgblk_t' for the
7680 		 * request.
7681 		 */
7682 		if (reqp->sgblkp == NULL) {
7683 			/* Request's first scatter-gather block. */
7684 			reqp->sgblkp = sgblkp;
7685 
7686 			/*
7687 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7688 			 * address pointers.
7689 			 */
7690 			scsiqp->sg_list_ptr = sg_block;
7691 			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7692 		} else {
7693 			/* Request's second or later scatter-gather block. */
7694 			prev_sgblkp->next_sgblkp = sgblkp;
7695 
7696 			/*
7697 			 * Point the previous ADV_SG_BLOCK structure to
7698 			 * the newly allocated ADV_SG_BLOCK structure.
7699 			 */
7700 			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7701 		}
7702 
7703 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7704 			sg_block->sg_list[i].sg_addr =
7705 					cpu_to_le32(sg_dma_address(slp));
7706 			sg_block->sg_list[i].sg_count =
7707 					cpu_to_le32(sg_dma_len(slp));
7708 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7709 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7710 
7711 			if (--sg_elem_cnt == 0) {
7712 				/*
7713 				 * Last ADV_SG_BLOCK and scatter-gather entry.
7714 				 */
7715 				sg_block->sg_cnt = i + 1;
7716 				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7717 				return ADV_SUCCESS;
7718 			}
7719 			slp++;
7720 		}
7721 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7722 		prev_sg_block = sg_block;
7723 		prev_sgblkp = sgblkp;
7724 	}
7725 }
7726 
7727 /*
7728  * Build a request structure for the Adv Library (Wide Board).
7729  *
7730  * If an adv_req_t can not be allocated to issue the request,
7731  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7732  *
7733  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7734  * microcode for DMA addresses or math operations are byte swapped
7735  * to little-endian order.
7736  */
7737 static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,adv_req_t ** adv_reqpp)7738 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7739 	      adv_req_t **adv_reqpp)
7740 {
7741 	u32 srb_tag = scp->request->tag;
7742 	adv_req_t *reqp;
7743 	ADV_SCSI_REQ_Q *scsiqp;
7744 	int ret;
7745 	int use_sg;
7746 	dma_addr_t sense_addr;
7747 
7748 	/*
7749 	 * Allocate an adv_req_t structure from the board to execute
7750 	 * the command.
7751 	 */
7752 	reqp = &boardp->adv_reqp[srb_tag];
7753 	if (reqp->cmndp && reqp->cmndp != scp ) {
7754 		ASC_DBG(1, "no free adv_req_t\n");
7755 		ASC_STATS(scp->device->host, adv_build_noreq);
7756 		return ASC_BUSY;
7757 	}
7758 
7759 	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7760 
7761 	scsiqp = &reqp->scsi_req_q;
7762 
7763 	/*
7764 	 * Initialize the structure.
7765 	 */
7766 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7767 
7768 	/*
7769 	 * Set the srb_tag to the command tag.
7770 	 */
7771 	scsiqp->srb_tag = srb_tag;
7772 
7773 	/*
7774 	 * Set 'host_scribble' to point to the adv_req_t structure.
7775 	 */
7776 	reqp->cmndp = scp;
7777 	scp->host_scribble = (void *)reqp;
7778 
7779 	/*
7780 	 * Build the ADV_SCSI_REQ_Q request.
7781 	 */
7782 
7783 	/* Set CDB length and copy it to the request structure.  */
7784 	scsiqp->cdb_len = scp->cmd_len;
7785 	/* Copy first 12 CDB bytes to cdb[]. */
7786 	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7787 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7788 	if (scp->cmd_len > 12) {
7789 		int cdb16_len = scp->cmd_len - 12;
7790 
7791 		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7792 	}
7793 
7794 	scsiqp->target_id = scp->device->id;
7795 	scsiqp->target_lun = scp->device->lun;
7796 
7797 	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7798 				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7799 	if (dma_mapping_error(boardp->dev, sense_addr)) {
7800 		ASC_DBG(1, "failed to map sense buffer\n");
7801 		ASC_STATS(scp->device->host, adv_build_noreq);
7802 		return ASC_BUSY;
7803 	}
7804 	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7805 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7806 
7807 	/* Build ADV_SCSI_REQ_Q */
7808 
7809 	use_sg = scsi_dma_map(scp);
7810 	if (use_sg < 0) {
7811 		ASC_DBG(1, "failed to map SG list\n");
7812 		ASC_STATS(scp->device->host, adv_build_noreq);
7813 		return ASC_BUSY;
7814 	} else if (use_sg == 0) {
7815 		/* Zero-length transfer */
7816 		reqp->sgblkp = NULL;
7817 		scsiqp->data_cnt = 0;
7818 
7819 		scsiqp->data_addr = 0;
7820 		scsiqp->sg_list_ptr = NULL;
7821 		scsiqp->sg_real_addr = 0;
7822 	} else {
7823 		if (use_sg > ADV_MAX_SG_LIST) {
7824 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7825 				   "ADV_MAX_SG_LIST %d\n", use_sg,
7826 				   scp->device->host->sg_tablesize);
7827 			scsi_dma_unmap(scp);
7828 			scp->result = HOST_BYTE(DID_ERROR);
7829 			reqp->cmndp = NULL;
7830 			scp->host_scribble = NULL;
7831 
7832 			return ASC_ERROR;
7833 		}
7834 
7835 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7836 
7837 		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7838 		if (ret != ADV_SUCCESS) {
7839 			scsi_dma_unmap(scp);
7840 			scp->result = HOST_BYTE(DID_ERROR);
7841 			reqp->cmndp = NULL;
7842 			scp->host_scribble = NULL;
7843 
7844 			return ret;
7845 		}
7846 
7847 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7848 	}
7849 
7850 	ASC_STATS(scp->device->host, xfer_cnt);
7851 
7852 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7853 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7854 
7855 	*adv_reqpp = reqp;
7856 
7857 	return ASC_NOERROR;
7858 }
7859 
AscSgListToQueue(int sg_list)7860 static int AscSgListToQueue(int sg_list)
7861 {
7862 	int n_sg_list_qs;
7863 
7864 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7865 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7866 		n_sg_list_qs++;
7867 	return n_sg_list_qs + 1;
7868 }
7869 
7870 static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)7871 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7872 {
7873 	uint cur_used_qs;
7874 	uint cur_free_qs;
7875 	ASC_SCSI_BIT_ID_TYPE target_id;
7876 	uchar tid_no;
7877 
7878 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7879 	tid_no = ASC_TIX_TO_TID(target_ix);
7880 	if ((asc_dvc->unit_not_ready & target_id) ||
7881 	    (asc_dvc->queue_full_or_busy & target_id)) {
7882 		return 0;
7883 	}
7884 	if (n_qs == 1) {
7885 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7886 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7887 	} else {
7888 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7889 		    (uint) ASC_MIN_FREE_Q;
7890 	}
7891 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7892 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7893 		if (asc_dvc->cur_dvc_qng[tid_no] >=
7894 		    asc_dvc->max_dvc_qng[tid_no]) {
7895 			return 0;
7896 		}
7897 		return cur_free_qs;
7898 	}
7899 	if (n_qs > 1) {
7900 		if ((n_qs > asc_dvc->last_q_shortage)
7901 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7902 			asc_dvc->last_q_shortage = n_qs;
7903 		}
7904 	}
7905 	return 0;
7906 }
7907 
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)7908 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7909 {
7910 	ushort q_addr;
7911 	uchar next_qp;
7912 	uchar q_status;
7913 
7914 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7915 	q_status = (uchar)AscReadLramByte(iop_base,
7916 					  (ushort)(q_addr +
7917 						   ASC_SCSIQ_B_STATUS));
7918 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7919 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7920 		return next_qp;
7921 	return ASC_QLINK_END;
7922 }
7923 
7924 static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)7925 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7926 {
7927 	uchar i;
7928 
7929 	for (i = 0; i < n_free_q; i++) {
7930 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7931 		if (free_q_head == ASC_QLINK_END)
7932 			break;
7933 	}
7934 	return free_q_head;
7935 }
7936 
7937 /*
7938  * void
7939  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7940  *
7941  * Calling/Exit State:
7942  *    none
7943  *
7944  * Description:
7945  *     Output an ASC_SCSI_Q structure to the chip
7946  */
7947 static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)7948 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7949 {
7950 	int i;
7951 
7952 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7953 	AscSetChipLramAddr(iop_base, s_addr);
7954 	for (i = 0; i < 2 * words; i += 2) {
7955 		if (i == 4 || i == 20) {
7956 			continue;
7957 		}
7958 		outpw(iop_base + IOP_RAM_DATA,
7959 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7960 	}
7961 }
7962 
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7963 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7964 {
7965 	ushort q_addr;
7966 	uchar tid_no;
7967 	uchar sdtr_data;
7968 	uchar syn_period_ix;
7969 	uchar syn_offset;
7970 	PortAddr iop_base;
7971 
7972 	iop_base = asc_dvc->iop_base;
7973 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7974 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7975 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7976 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7977 		syn_period_ix =
7978 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7979 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7980 		AscMsgOutSDTR(asc_dvc,
7981 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7982 			      syn_offset);
7983 		scsiq->q1.cntl |= QC_MSG_OUT;
7984 	}
7985 	q_addr = ASC_QNO_TO_QADDR(q_no);
7986 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7987 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7988 	}
7989 	scsiq->q1.status = QS_FREE;
7990 	AscMemWordCopyPtrToLram(iop_base,
7991 				q_addr + ASC_SCSIQ_CDB_BEG,
7992 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7993 
7994 	DvcPutScsiQ(iop_base,
7995 		    q_addr + ASC_SCSIQ_CPY_BEG,
7996 		    (uchar *)&scsiq->q1.cntl,
7997 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7998 	AscWriteLramWord(iop_base,
7999 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8000 			 (ushort)(((ushort)scsiq->q1.
8001 				   q_no << 8) | (ushort)QS_READY));
8002 	return 1;
8003 }
8004 
8005 static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8006 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8007 {
8008 	int sta;
8009 	int i;
8010 	ASC_SG_HEAD *sg_head;
8011 	ASC_SG_LIST_Q scsi_sg_q;
8012 	__le32 saved_data_addr;
8013 	__le32 saved_data_cnt;
8014 	PortAddr iop_base;
8015 	ushort sg_list_dwords;
8016 	ushort sg_index;
8017 	ushort sg_entry_cnt;
8018 	ushort q_addr;
8019 	uchar next_qp;
8020 
8021 	iop_base = asc_dvc->iop_base;
8022 	sg_head = scsiq->sg_head;
8023 	saved_data_addr = scsiq->q1.data_addr;
8024 	saved_data_cnt = scsiq->q1.data_cnt;
8025 	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8026 	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8027 	/*
8028 	 * Set sg_entry_cnt to be the number of SG elements that
8029 	 * will fit in the allocated SG queues. It is minus 1, because
8030 	 * the first SG element is handled above.
8031 	 */
8032 	sg_entry_cnt = sg_head->entry_cnt - 1;
8033 
8034 	if (sg_entry_cnt != 0) {
8035 		scsiq->q1.cntl |= QC_SG_HEAD;
8036 		q_addr = ASC_QNO_TO_QADDR(q_no);
8037 		sg_index = 1;
8038 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8039 		scsi_sg_q.sg_head_qp = q_no;
8040 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8041 		for (i = 0; i < sg_head->queue_cnt; i++) {
8042 			scsi_sg_q.seq_no = i + 1;
8043 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8044 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8045 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8046 				if (i == 0) {
8047 					scsi_sg_q.sg_list_cnt =
8048 					    ASC_SG_LIST_PER_Q;
8049 					scsi_sg_q.sg_cur_list_cnt =
8050 					    ASC_SG_LIST_PER_Q;
8051 				} else {
8052 					scsi_sg_q.sg_list_cnt =
8053 					    ASC_SG_LIST_PER_Q - 1;
8054 					scsi_sg_q.sg_cur_list_cnt =
8055 					    ASC_SG_LIST_PER_Q - 1;
8056 				}
8057 			} else {
8058 				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8059 				sg_list_dwords = sg_entry_cnt << 1;
8060 				if (i == 0) {
8061 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8062 					scsi_sg_q.sg_cur_list_cnt =
8063 					    sg_entry_cnt;
8064 				} else {
8065 					scsi_sg_q.sg_list_cnt =
8066 					    sg_entry_cnt - 1;
8067 					scsi_sg_q.sg_cur_list_cnt =
8068 					    sg_entry_cnt - 1;
8069 				}
8070 				sg_entry_cnt = 0;
8071 			}
8072 			next_qp = AscReadLramByte(iop_base,
8073 						  (ushort)(q_addr +
8074 							   ASC_SCSIQ_B_FWD));
8075 			scsi_sg_q.q_no = next_qp;
8076 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8077 			AscMemWordCopyPtrToLram(iop_base,
8078 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8079 						(uchar *)&scsi_sg_q,
8080 						sizeof(ASC_SG_LIST_Q) >> 1);
8081 			AscMemDWordCopyPtrToLram(iop_base,
8082 						 q_addr + ASC_SGQ_LIST_BEG,
8083 						 (uchar *)&sg_head->
8084 						 sg_list[sg_index],
8085 						 sg_list_dwords);
8086 			sg_index += ASC_SG_LIST_PER_Q;
8087 			scsiq->next_sg_index = sg_index;
8088 		}
8089 	} else {
8090 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8091 	}
8092 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8093 	scsiq->q1.data_addr = saved_data_addr;
8094 	scsiq->q1.data_cnt = saved_data_cnt;
8095 	return (sta);
8096 }
8097 
8098 static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)8099 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8100 {
8101 	PortAddr iop_base;
8102 	uchar free_q_head;
8103 	uchar next_qp;
8104 	uchar tid_no;
8105 	uchar target_ix;
8106 	int sta;
8107 
8108 	iop_base = asc_dvc->iop_base;
8109 	target_ix = scsiq->q2.target_ix;
8110 	tid_no = ASC_TIX_TO_TID(target_ix);
8111 	sta = 0;
8112 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8113 	if (n_q_required > 1) {
8114 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8115 						    (uchar)n_q_required);
8116 		if (next_qp != ASC_QLINK_END) {
8117 			asc_dvc->last_q_shortage = 0;
8118 			scsiq->sg_head->queue_cnt = n_q_required - 1;
8119 			scsiq->q1.q_no = free_q_head;
8120 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8121 						     free_q_head);
8122 		}
8123 	} else if (n_q_required == 1) {
8124 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8125 		if (next_qp != ASC_QLINK_END) {
8126 			scsiq->q1.q_no = free_q_head;
8127 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8128 		}
8129 	}
8130 	if (sta == 1) {
8131 		AscPutVarFreeQHead(iop_base, next_qp);
8132 		asc_dvc->cur_total_qng += n_q_required;
8133 		asc_dvc->cur_dvc_qng[tid_no]++;
8134 	}
8135 	return sta;
8136 }
8137 
8138 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8139 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8140 	INQUIRY,
8141 	REQUEST_SENSE,
8142 	READ_CAPACITY,
8143 	READ_TOC,
8144 	MODE_SELECT,
8145 	MODE_SENSE,
8146 	MODE_SELECT_10,
8147 	MODE_SENSE_10,
8148 	0xFF,
8149 	0xFF,
8150 	0xFF,
8151 	0xFF,
8152 	0xFF,
8153 	0xFF,
8154 	0xFF,
8155 	0xFF
8156 };
8157 
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)8158 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8159 {
8160 	PortAddr iop_base;
8161 	int sta;
8162 	int n_q_required;
8163 	bool disable_syn_offset_one_fix;
8164 	int i;
8165 	u32 addr;
8166 	ushort sg_entry_cnt = 0;
8167 	ushort sg_entry_cnt_minus_one = 0;
8168 	uchar target_ix;
8169 	uchar tid_no;
8170 	uchar sdtr_data;
8171 	uchar extra_bytes;
8172 	uchar scsi_cmd;
8173 	uchar disable_cmd;
8174 	ASC_SG_HEAD *sg_head;
8175 	unsigned long data_cnt;
8176 
8177 	iop_base = asc_dvc->iop_base;
8178 	sg_head = scsiq->sg_head;
8179 	if (asc_dvc->err_code != 0)
8180 		return ASC_ERROR;
8181 	scsiq->q1.q_no = 0;
8182 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8183 		scsiq->q1.extra_bytes = 0;
8184 	}
8185 	sta = 0;
8186 	target_ix = scsiq->q2.target_ix;
8187 	tid_no = ASC_TIX_TO_TID(target_ix);
8188 	n_q_required = 1;
8189 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8190 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8191 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8192 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8193 			AscMsgOutSDTR(asc_dvc,
8194 				      asc_dvc->
8195 				      sdtr_period_tbl[(sdtr_data >> 4) &
8196 						      (uchar)(asc_dvc->
8197 							      max_sdtr_index -
8198 							      1)],
8199 				      (uchar)(sdtr_data & (uchar)
8200 					      ASC_SYN_MAX_OFFSET));
8201 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8202 		}
8203 	}
8204 	if (asc_dvc->in_critical_cnt != 0) {
8205 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8206 		return ASC_ERROR;
8207 	}
8208 	asc_dvc->in_critical_cnt++;
8209 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8210 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8211 			asc_dvc->in_critical_cnt--;
8212 			return ASC_ERROR;
8213 		}
8214 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8215 			asc_dvc->in_critical_cnt--;
8216 			return ASC_ERROR;
8217 		}
8218 		if (sg_entry_cnt == 1) {
8219 			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8220 			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8221 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8222 		}
8223 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8224 	}
8225 	scsi_cmd = scsiq->cdbptr[0];
8226 	disable_syn_offset_one_fix = false;
8227 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8228 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8229 		if (scsiq->q1.cntl & QC_SG_HEAD) {
8230 			data_cnt = 0;
8231 			for (i = 0; i < sg_entry_cnt; i++) {
8232 				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8233 							bytes);
8234 			}
8235 		} else {
8236 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8237 		}
8238 		if (data_cnt != 0UL) {
8239 			if (data_cnt < 512UL) {
8240 				disable_syn_offset_one_fix = true;
8241 			} else {
8242 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8243 				     i++) {
8244 					disable_cmd =
8245 					    _syn_offset_one_disable_cmd[i];
8246 					if (disable_cmd == 0xFF) {
8247 						break;
8248 					}
8249 					if (scsi_cmd == disable_cmd) {
8250 						disable_syn_offset_one_fix =
8251 						    true;
8252 						break;
8253 					}
8254 				}
8255 			}
8256 		}
8257 	}
8258 	if (disable_syn_offset_one_fix) {
8259 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8260 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8261 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8262 	} else {
8263 		scsiq->q2.tag_code &= 0x27;
8264 	}
8265 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8266 		if (asc_dvc->bug_fix_cntl) {
8267 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8268 				if ((scsi_cmd == READ_6) ||
8269 				    (scsi_cmd == READ_10)) {
8270 					addr = le32_to_cpu(sg_head->
8271 								   sg_list
8272 								   [sg_entry_cnt_minus_one].
8273 								   addr) +
8274 						le32_to_cpu(sg_head->
8275 								  sg_list
8276 								  [sg_entry_cnt_minus_one].
8277 								  bytes);
8278 					extra_bytes =
8279 					    (uchar)((ushort)addr & 0x0003);
8280 					if ((extra_bytes != 0)
8281 					    &&
8282 					    ((scsiq->q2.
8283 					      tag_code &
8284 					      ASC_TAG_FLAG_EXTRA_BYTES)
8285 					     == 0)) {
8286 						scsiq->q2.tag_code |=
8287 						    ASC_TAG_FLAG_EXTRA_BYTES;
8288 						scsiq->q1.extra_bytes =
8289 						    extra_bytes;
8290 						data_cnt =
8291 						    le32_to_cpu(sg_head->
8292 								sg_list
8293 								[sg_entry_cnt_minus_one].
8294 								bytes);
8295 						data_cnt -= extra_bytes;
8296 						sg_head->
8297 						    sg_list
8298 						    [sg_entry_cnt_minus_one].
8299 						    bytes =
8300 						    cpu_to_le32(data_cnt);
8301 					}
8302 				}
8303 			}
8304 		}
8305 		sg_head->entry_to_copy = sg_head->entry_cnt;
8306 		n_q_required = AscSgListToQueue(sg_entry_cnt);
8307 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8308 		     (uint) n_q_required)
8309 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8310 			if ((sta =
8311 			     AscSendScsiQueue(asc_dvc, scsiq,
8312 					      n_q_required)) == 1) {
8313 				asc_dvc->in_critical_cnt--;
8314 				return (sta);
8315 			}
8316 		}
8317 	} else {
8318 		if (asc_dvc->bug_fix_cntl) {
8319 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8320 				if ((scsi_cmd == READ_6) ||
8321 				    (scsi_cmd == READ_10)) {
8322 					addr =
8323 					    le32_to_cpu(scsiq->q1.data_addr) +
8324 					    le32_to_cpu(scsiq->q1.data_cnt);
8325 					extra_bytes =
8326 					    (uchar)((ushort)addr & 0x0003);
8327 					if ((extra_bytes != 0)
8328 					    &&
8329 					    ((scsiq->q2.
8330 					      tag_code &
8331 					      ASC_TAG_FLAG_EXTRA_BYTES)
8332 					     == 0)) {
8333 						data_cnt =
8334 						    le32_to_cpu(scsiq->q1.
8335 								data_cnt);
8336 						if (((ushort)data_cnt & 0x01FF)
8337 						    == 0) {
8338 							scsiq->q2.tag_code |=
8339 							    ASC_TAG_FLAG_EXTRA_BYTES;
8340 							data_cnt -= extra_bytes;
8341 							scsiq->q1.data_cnt =
8342 							    cpu_to_le32
8343 							    (data_cnt);
8344 							scsiq->q1.extra_bytes =
8345 							    extra_bytes;
8346 						}
8347 					}
8348 				}
8349 			}
8350 		}
8351 		n_q_required = 1;
8352 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8353 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8354 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8355 						    n_q_required)) == 1) {
8356 				asc_dvc->in_critical_cnt--;
8357 				return (sta);
8358 			}
8359 		}
8360 	}
8361 	asc_dvc->in_critical_cnt--;
8362 	return (sta);
8363 }
8364 
8365 /*
8366  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8367  *
8368  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8369  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8370  *   RISC to notify it a new command is ready to be executed.
8371  *
8372  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8373  * set to SCSI_MAX_RETRY.
8374  *
8375  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8376  * for DMA addresses or math operations are byte swapped to little-endian
8377  * order.
8378  *
8379  * Return:
8380  *      ADV_SUCCESS(1) - The request was successfully queued.
8381  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8382  *                       request completes.
8383  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8384  *                       host IC error.
8385  */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,adv_req_t * reqp)8386 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8387 {
8388 	AdvPortAddr iop_base;
8389 	ADV_CARR_T *new_carrp;
8390 	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8391 
8392 	/*
8393 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8394 	 */
8395 	if (scsiq->target_id > ADV_MAX_TID) {
8396 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8397 		scsiq->done_status = QD_WITH_ERROR;
8398 		return ADV_ERROR;
8399 	}
8400 
8401 	iop_base = asc_dvc->iop_base;
8402 
8403 	/*
8404 	 * Allocate a carrier ensuring at least one carrier always
8405 	 * remains on the freelist and initialize fields.
8406 	 */
8407 	new_carrp = adv_get_next_carrier(asc_dvc);
8408 	if (!new_carrp) {
8409 		ASC_DBG(1, "No free carriers\n");
8410 		return ADV_BUSY;
8411 	}
8412 
8413 	asc_dvc->carr_pending_cnt++;
8414 
8415 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8416 	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8417 	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8418 
8419 	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8420 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8421 
8422 	/*
8423 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8424 	 * the microcode. The newly allocated stopper will become the new
8425 	 * stopper.
8426 	 */
8427 	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8428 
8429 	/*
8430 	 * Set the 'next_vpa' pointer for the old stopper to be the
8431 	 * physical address of the new stopper. The RISC can only
8432 	 * follow physical addresses.
8433 	 */
8434 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8435 
8436 	/*
8437 	 * Set the host adapter stopper pointer to point to the new carrier.
8438 	 */
8439 	asc_dvc->icq_sp = new_carrp;
8440 
8441 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8442 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8443 		/*
8444 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8445 		 */
8446 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8447 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8448 			/*
8449 			 * Clear the tickle value. In the ASC-3550 the RISC flag
8450 			 * command 'clr_tickle_a' does not work unless the host
8451 			 * value is cleared.
8452 			 */
8453 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8454 					     ADV_TICKLE_NOP);
8455 		}
8456 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8457 		/*
8458 		 * Notify the RISC a carrier is ready by writing the physical
8459 		 * address of the new carrier stopper to the COMMA register.
8460 		 */
8461 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8462 				      le32_to_cpu(new_carrp->carr_pa));
8463 	}
8464 
8465 	return ADV_SUCCESS;
8466 }
8467 
8468 /*
8469  * Execute a single 'struct scsi_cmnd'.
8470  */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)8471 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8472 {
8473 	int ret, err_code;
8474 	struct asc_board *boardp = shost_priv(scp->device->host);
8475 
8476 	ASC_DBG(1, "scp 0x%p\n", scp);
8477 
8478 	if (ASC_NARROW_BOARD(boardp)) {
8479 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8480 		struct asc_scsi_q asc_scsi_q;
8481 
8482 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8483 		if (ret != ASC_NOERROR) {
8484 			ASC_STATS(scp->device->host, build_error);
8485 			return ret;
8486 		}
8487 
8488 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8489 		kfree(asc_scsi_q.sg_head);
8490 		err_code = asc_dvc->err_code;
8491 	} else {
8492 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8493 		adv_req_t *adv_reqp;
8494 
8495 		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8496 		case ASC_NOERROR:
8497 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8498 			break;
8499 		case ASC_BUSY:
8500 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8501 			/*
8502 			 * The asc_stats fields 'adv_build_noreq' and
8503 			 * 'adv_build_nosg' count wide board busy conditions.
8504 			 * They are updated in adv_build_req and
8505 			 * adv_get_sglist, respectively.
8506 			 */
8507 			return ASC_BUSY;
8508 		case ASC_ERROR:
8509 		default:
8510 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8511 			ASC_STATS(scp->device->host, build_error);
8512 			return ASC_ERROR;
8513 		}
8514 
8515 		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8516 		err_code = adv_dvc->err_code;
8517 	}
8518 
8519 	switch (ret) {
8520 	case ASC_NOERROR:
8521 		ASC_STATS(scp->device->host, exe_noerror);
8522 		/*
8523 		 * Increment monotonically increasing per device
8524 		 * successful request counter. Wrapping doesn't matter.
8525 		 */
8526 		boardp->reqcnt[scp->device->id]++;
8527 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8528 		break;
8529 	case ASC_BUSY:
8530 		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8531 		ASC_STATS(scp->device->host, exe_busy);
8532 		break;
8533 	case ASC_ERROR:
8534 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8535 			"err_code 0x%x\n", err_code);
8536 		ASC_STATS(scp->device->host, exe_error);
8537 		scp->result = HOST_BYTE(DID_ERROR);
8538 		break;
8539 	default:
8540 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8541 			"err_code 0x%x\n", err_code);
8542 		ASC_STATS(scp->device->host, exe_unknown);
8543 		scp->result = HOST_BYTE(DID_ERROR);
8544 		break;
8545 	}
8546 
8547 	ASC_DBG(1, "end\n");
8548 	return ret;
8549 }
8550 
8551 /*
8552  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8553  *
8554  * This function always returns 0. Command return status is saved
8555  * in the 'scp' result field.
8556  */
8557 static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))8558 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8559 {
8560 	struct Scsi_Host *shost = scp->device->host;
8561 	int asc_res, result = 0;
8562 
8563 	ASC_STATS(shost, queuecommand);
8564 	scp->scsi_done = done;
8565 
8566 	asc_res = asc_execute_scsi_cmnd(scp);
8567 
8568 	switch (asc_res) {
8569 	case ASC_NOERROR:
8570 		break;
8571 	case ASC_BUSY:
8572 		result = SCSI_MLQUEUE_HOST_BUSY;
8573 		break;
8574 	case ASC_ERROR:
8575 	default:
8576 		asc_scsi_done(scp);
8577 		break;
8578 	}
8579 
8580 	return result;
8581 }
8582 
DEF_SCSI_QCMD(advansys_queuecommand)8583 static DEF_SCSI_QCMD(advansys_queuecommand)
8584 
8585 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8586 {
8587 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8588 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8589 	return inpw(eisa_cfg_iop);
8590 }
8591 
8592 /*
8593  * Return the BIOS address of the adapter at the specified
8594  * I/O port and with the specified bus type.
8595  */
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)8596 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8597 					    unsigned short bus_type)
8598 {
8599 	unsigned short cfg_lsw;
8600 	unsigned short bios_addr;
8601 
8602 	/*
8603 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8604 	 * of this the driver can not determine where a PCI BIOS is
8605 	 * loaded and executes.
8606 	 */
8607 	if (bus_type & ASC_IS_PCI)
8608 		return 0;
8609 
8610 	if ((bus_type & ASC_IS_EISA) != 0) {
8611 		cfg_lsw = AscGetEisaChipCfg(iop_base);
8612 		cfg_lsw &= 0x000F;
8613 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8614 		return bios_addr;
8615 	}
8616 
8617 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8618 
8619 	/*
8620 	 *  ISA PnP uses the top bit as the 32K BIOS flag
8621 	 */
8622 	if (bus_type == ASC_IS_ISAPNP)
8623 		cfg_lsw &= 0x7FFF;
8624 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8625 	return bios_addr;
8626 }
8627 
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)8628 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8629 {
8630 	ushort cfg_lsw;
8631 
8632 	if (AscGetChipScsiID(iop_base) == new_host_id) {
8633 		return (new_host_id);
8634 	}
8635 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8636 	cfg_lsw &= 0xF8FF;
8637 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8638 	AscSetChipCfgLsw(iop_base, cfg_lsw);
8639 	return (AscGetChipScsiID(iop_base));
8640 }
8641 
AscGetChipScsiCtrl(PortAddr iop_base)8642 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8643 {
8644 	unsigned char sc;
8645 
8646 	AscSetBank(iop_base, 1);
8647 	sc = inp(iop_base + IOP_REG_SC);
8648 	AscSetBank(iop_base, 0);
8649 	return sc;
8650 }
8651 
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)8652 static unsigned char AscGetChipVersion(PortAddr iop_base,
8653 				       unsigned short bus_type)
8654 {
8655 	if (bus_type & ASC_IS_EISA) {
8656 		PortAddr eisa_iop;
8657 		unsigned char revision;
8658 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8659 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8660 		revision = inp(eisa_iop);
8661 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8662 	}
8663 	return AscGetChipVerNo(iop_base);
8664 }
8665 
8666 #ifdef CONFIG_ISA
AscEnableIsaDma(uchar dma_channel)8667 static void AscEnableIsaDma(uchar dma_channel)
8668 {
8669 	if (dma_channel < 4) {
8670 		outp(0x000B, (ushort)(0xC0 | dma_channel));
8671 		outp(0x000A, dma_channel);
8672 	} else if (dma_channel < 8) {
8673 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8674 		outp(0x00D4, (ushort)(dma_channel - 4));
8675 	}
8676 }
8677 #endif /* CONFIG_ISA */
8678 
AscStopQueueExe(PortAddr iop_base)8679 static int AscStopQueueExe(PortAddr iop_base)
8680 {
8681 	int count = 0;
8682 
8683 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8684 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8685 				 ASC_STOP_REQ_RISC_STOP);
8686 		do {
8687 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8688 			    ASC_STOP_ACK_RISC_STOP) {
8689 				return (1);
8690 			}
8691 			mdelay(100);
8692 		} while (count++ < 20);
8693 	}
8694 	return (0);
8695 }
8696 
AscGetMaxDmaCount(ushort bus_type)8697 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8698 {
8699 	if (bus_type & ASC_IS_ISA)
8700 		return ASC_MAX_ISA_DMA_COUNT;
8701 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8702 		return ASC_MAX_VL_DMA_COUNT;
8703 	return ASC_MAX_PCI_DMA_COUNT;
8704 }
8705 
8706 #ifdef CONFIG_ISA
AscGetIsaDmaChannel(PortAddr iop_base)8707 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8708 {
8709 	ushort channel;
8710 
8711 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8712 	if (channel == 0x03)
8713 		return (0);
8714 	else if (channel == 0x00)
8715 		return (7);
8716 	return (channel + 4);
8717 }
8718 
AscSetIsaDmaChannel(PortAddr iop_base,ushort dma_channel)8719 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8720 {
8721 	ushort cfg_lsw;
8722 	uchar value;
8723 
8724 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
8725 		if (dma_channel == 7)
8726 			value = 0x00;
8727 		else
8728 			value = dma_channel - 4;
8729 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8730 		cfg_lsw |= value;
8731 		AscSetChipCfgLsw(iop_base, cfg_lsw);
8732 		return (AscGetIsaDmaChannel(iop_base));
8733 	}
8734 	return 0;
8735 }
8736 
AscGetIsaDmaSpeed(PortAddr iop_base)8737 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8738 {
8739 	uchar speed_value;
8740 
8741 	AscSetBank(iop_base, 1);
8742 	speed_value = AscReadChipDmaSpeed(iop_base);
8743 	speed_value &= 0x07;
8744 	AscSetBank(iop_base, 0);
8745 	return speed_value;
8746 }
8747 
AscSetIsaDmaSpeed(PortAddr iop_base,uchar speed_value)8748 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8749 {
8750 	speed_value &= 0x07;
8751 	AscSetBank(iop_base, 1);
8752 	AscWriteChipDmaSpeed(iop_base, speed_value);
8753 	AscSetBank(iop_base, 0);
8754 	return AscGetIsaDmaSpeed(iop_base);
8755 }
8756 #endif /* CONFIG_ISA */
8757 
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)8758 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8759 {
8760 	int i;
8761 	PortAddr iop_base;
8762 	uchar chip_version;
8763 
8764 	iop_base = asc_dvc->iop_base;
8765 	asc_dvc->err_code = 0;
8766 	if ((asc_dvc->bus_type &
8767 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8768 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8769 	}
8770 	AscSetChipControl(iop_base, CC_HALT);
8771 	AscSetChipStatus(iop_base, 0);
8772 	asc_dvc->bug_fix_cntl = 0;
8773 	asc_dvc->pci_fix_asyn_xfer = 0;
8774 	asc_dvc->pci_fix_asyn_xfer_always = 0;
8775 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8776 	asc_dvc->sdtr_done = 0;
8777 	asc_dvc->cur_total_qng = 0;
8778 	asc_dvc->is_in_int = false;
8779 	asc_dvc->in_critical_cnt = 0;
8780 	asc_dvc->last_q_shortage = 0;
8781 	asc_dvc->use_tagged_qng = 0;
8782 	asc_dvc->no_scam = 0;
8783 	asc_dvc->unit_not_ready = 0;
8784 	asc_dvc->queue_full_or_busy = 0;
8785 	asc_dvc->redo_scam = 0;
8786 	asc_dvc->res2 = 0;
8787 	asc_dvc->min_sdtr_index = 0;
8788 	asc_dvc->cfg->can_tagged_qng = 0;
8789 	asc_dvc->cfg->cmd_qng_enabled = 0;
8790 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8791 	asc_dvc->init_sdtr = 0;
8792 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8793 	asc_dvc->scsi_reset_wait = 3;
8794 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8795 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8796 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8797 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8798 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8799 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8800 	asc_dvc->cfg->chip_version = chip_version;
8801 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8802 	asc_dvc->max_sdtr_index = 7;
8803 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8804 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8805 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8806 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8807 		asc_dvc->max_sdtr_index = 15;
8808 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8809 			AscSetExtraControl(iop_base,
8810 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8811 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8812 			AscSetExtraControl(iop_base,
8813 					   (SEC_ACTIVE_NEGATE |
8814 					    SEC_ENABLE_FILTER));
8815 		}
8816 	}
8817 	if (asc_dvc->bus_type == ASC_IS_PCI) {
8818 		AscSetExtraControl(iop_base,
8819 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8820 	}
8821 
8822 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8823 #ifdef CONFIG_ISA
8824 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8825 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8826 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8827 			asc_dvc->bus_type = ASC_IS_ISAPNP;
8828 		}
8829 		asc_dvc->cfg->isa_dma_channel =
8830 		    (uchar)AscGetIsaDmaChannel(iop_base);
8831 	}
8832 #endif /* CONFIG_ISA */
8833 	for (i = 0; i <= ASC_MAX_TID; i++) {
8834 		asc_dvc->cur_dvc_qng[i] = 0;
8835 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8836 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8837 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8838 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8839 	}
8840 }
8841 
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)8842 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8843 {
8844 	int retry;
8845 
8846 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8847 		unsigned char read_back;
8848 		AscSetChipEEPCmd(iop_base, cmd_reg);
8849 		mdelay(1);
8850 		read_back = AscGetChipEEPCmd(iop_base);
8851 		if (read_back == cmd_reg)
8852 			return 1;
8853 	}
8854 	return 0;
8855 }
8856 
AscWaitEEPRead(void)8857 static void AscWaitEEPRead(void)
8858 {
8859 	mdelay(1);
8860 }
8861 
AscReadEEPWord(PortAddr iop_base,uchar addr)8862 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8863 {
8864 	ushort read_wval;
8865 	uchar cmd_reg;
8866 
8867 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8868 	AscWaitEEPRead();
8869 	cmd_reg = addr | ASC_EEP_CMD_READ;
8870 	AscWriteEEPCmdReg(iop_base, cmd_reg);
8871 	AscWaitEEPRead();
8872 	read_wval = AscGetChipEEPData(iop_base);
8873 	AscWaitEEPRead();
8874 	return read_wval;
8875 }
8876 
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8877 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8878 			      ushort bus_type)
8879 {
8880 	ushort wval;
8881 	ushort sum;
8882 	ushort *wbuf;
8883 	int cfg_beg;
8884 	int cfg_end;
8885 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8886 	int s_addr;
8887 
8888 	wbuf = (ushort *)cfg_buf;
8889 	sum = 0;
8890 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8891 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8892 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8893 		sum += *wbuf;
8894 	}
8895 	if (bus_type & ASC_IS_VL) {
8896 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8897 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8898 	} else {
8899 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8900 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8901 	}
8902 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8903 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8904 		if (s_addr <= uchar_end_in_config) {
8905 			/*
8906 			 * Swap all char fields - must unswap bytes already swapped
8907 			 * by AscReadEEPWord().
8908 			 */
8909 			*wbuf = le16_to_cpu(wval);
8910 		} else {
8911 			/* Don't swap word field at the end - cntl field. */
8912 			*wbuf = wval;
8913 		}
8914 		sum += wval;	/* Checksum treats all EEPROM data as words. */
8915 	}
8916 	/*
8917 	 * Read the checksum word which will be compared against 'sum'
8918 	 * by the caller. Word field already swapped.
8919 	 */
8920 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8921 	return sum;
8922 }
8923 
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)8924 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8925 {
8926 	PortAddr iop_base;
8927 	ushort q_addr;
8928 	ushort saved_word;
8929 	int sta;
8930 
8931 	iop_base = asc_dvc->iop_base;
8932 	sta = 0;
8933 	q_addr = ASC_QNO_TO_QADDR(241);
8934 	saved_word = AscReadLramWord(iop_base, q_addr);
8935 	AscSetChipLramAddr(iop_base, q_addr);
8936 	AscSetChipLramData(iop_base, 0x55AA);
8937 	mdelay(10);
8938 	AscSetChipLramAddr(iop_base, q_addr);
8939 	if (AscGetChipLramData(iop_base) == 0x55AA) {
8940 		sta = 1;
8941 		AscWriteLramWord(iop_base, q_addr, saved_word);
8942 	}
8943 	return (sta);
8944 }
8945 
AscWaitEEPWrite(void)8946 static void AscWaitEEPWrite(void)
8947 {
8948 	mdelay(20);
8949 }
8950 
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)8951 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8952 {
8953 	ushort read_back;
8954 	int retry;
8955 
8956 	retry = 0;
8957 	while (true) {
8958 		AscSetChipEEPData(iop_base, data_reg);
8959 		mdelay(1);
8960 		read_back = AscGetChipEEPData(iop_base);
8961 		if (read_back == data_reg) {
8962 			return (1);
8963 		}
8964 		if (retry++ > ASC_EEP_MAX_RETRY) {
8965 			return (0);
8966 		}
8967 	}
8968 }
8969 
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)8970 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8971 {
8972 	ushort read_wval;
8973 
8974 	read_wval = AscReadEEPWord(iop_base, addr);
8975 	if (read_wval != word_val) {
8976 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8977 		AscWaitEEPRead();
8978 		AscWriteEEPDataReg(iop_base, word_val);
8979 		AscWaitEEPRead();
8980 		AscWriteEEPCmdReg(iop_base,
8981 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8982 		AscWaitEEPWrite();
8983 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8984 		AscWaitEEPRead();
8985 		return (AscReadEEPWord(iop_base, addr));
8986 	}
8987 	return (read_wval);
8988 }
8989 
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8990 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8991 			       ushort bus_type)
8992 {
8993 	int n_error;
8994 	ushort *wbuf;
8995 	ushort word;
8996 	ushort sum;
8997 	int s_addr;
8998 	int cfg_beg;
8999 	int cfg_end;
9000 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9001 
9002 	wbuf = (ushort *)cfg_buf;
9003 	n_error = 0;
9004 	sum = 0;
9005 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9006 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9007 		sum += *wbuf;
9008 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9009 			n_error++;
9010 		}
9011 	}
9012 	if (bus_type & ASC_IS_VL) {
9013 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9014 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9015 	} else {
9016 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9017 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9018 	}
9019 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9020 		if (s_addr <= uchar_end_in_config) {
9021 			/*
9022 			 * This is a char field. Swap char fields before they are
9023 			 * swapped again by AscWriteEEPWord().
9024 			 */
9025 			word = cpu_to_le16(*wbuf);
9026 			if (word !=
9027 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9028 				n_error++;
9029 			}
9030 		} else {
9031 			/* Don't swap word field at the end - cntl field. */
9032 			if (*wbuf !=
9033 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9034 				n_error++;
9035 			}
9036 		}
9037 		sum += *wbuf;	/* Checksum calculated from word values. */
9038 	}
9039 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9040 	*wbuf = sum;
9041 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9042 		n_error++;
9043 	}
9044 
9045 	/* Read EEPROM back again. */
9046 	wbuf = (ushort *)cfg_buf;
9047 	/*
9048 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9049 	 */
9050 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9051 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9052 			n_error++;
9053 		}
9054 	}
9055 	if (bus_type & ASC_IS_VL) {
9056 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9057 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9058 	} else {
9059 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9060 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9061 	}
9062 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9063 		if (s_addr <= uchar_end_in_config) {
9064 			/*
9065 			 * Swap all char fields. Must unswap bytes already swapped
9066 			 * by AscReadEEPWord().
9067 			 */
9068 			word =
9069 			    le16_to_cpu(AscReadEEPWord
9070 					(iop_base, (uchar)s_addr));
9071 		} else {
9072 			/* Don't swap word field at the end - cntl field. */
9073 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9074 		}
9075 		if (*wbuf != word) {
9076 			n_error++;
9077 		}
9078 	}
9079 	/* Read checksum; Byte swapping not needed. */
9080 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9081 		n_error++;
9082 	}
9083 	return n_error;
9084 }
9085 
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9086 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9087 			   ushort bus_type)
9088 {
9089 	int retry;
9090 	int n_error;
9091 
9092 	retry = 0;
9093 	while (true) {
9094 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9095 						   bus_type)) == 0) {
9096 			break;
9097 		}
9098 		if (++retry > ASC_EEP_MAX_RETRY) {
9099 			break;
9100 		}
9101 	}
9102 	return n_error;
9103 }
9104 
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)9105 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9106 {
9107 	ASCEEP_CONFIG eep_config_buf;
9108 	ASCEEP_CONFIG *eep_config;
9109 	PortAddr iop_base;
9110 	ushort chksum;
9111 	ushort warn_code;
9112 	ushort cfg_msw, cfg_lsw;
9113 	int i;
9114 	int write_eep = 0;
9115 
9116 	iop_base = asc_dvc->iop_base;
9117 	warn_code = 0;
9118 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9119 	AscStopQueueExe(iop_base);
9120 	if ((AscStopChip(iop_base)) ||
9121 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9122 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9123 		AscResetChipAndScsiBus(asc_dvc);
9124 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9125 	}
9126 	if (!AscIsChipHalted(iop_base)) {
9127 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9128 		return (warn_code);
9129 	}
9130 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9131 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9132 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9133 		return (warn_code);
9134 	}
9135 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9136 	cfg_msw = AscGetChipCfgMsw(iop_base);
9137 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9138 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9139 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9140 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9141 		AscSetChipCfgMsw(iop_base, cfg_msw);
9142 	}
9143 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9144 	ASC_DBG(1, "chksum 0x%x\n", chksum);
9145 	if (chksum == 0) {
9146 		chksum = 0xaa55;
9147 	}
9148 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9149 		warn_code |= ASC_WARN_AUTO_CONFIG;
9150 		if (asc_dvc->cfg->chip_version == 3) {
9151 			if (eep_config->cfg_lsw != cfg_lsw) {
9152 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9153 				eep_config->cfg_lsw =
9154 				    AscGetChipCfgLsw(iop_base);
9155 			}
9156 			if (eep_config->cfg_msw != cfg_msw) {
9157 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9158 				eep_config->cfg_msw =
9159 				    AscGetChipCfgMsw(iop_base);
9160 			}
9161 		}
9162 	}
9163 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9165 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9166 	if (chksum != eep_config->chksum) {
9167 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9168 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9169 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9170 			eep_config->init_sdtr = 0xFF;
9171 			eep_config->disc_enable = 0xFF;
9172 			eep_config->start_motor = 0xFF;
9173 			eep_config->use_cmd_qng = 0;
9174 			eep_config->max_total_qng = 0xF0;
9175 			eep_config->max_tag_qng = 0x20;
9176 			eep_config->cntl = 0xBFFF;
9177 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9178 			eep_config->no_scam = 0;
9179 			eep_config->adapter_info[0] = 0;
9180 			eep_config->adapter_info[1] = 0;
9181 			eep_config->adapter_info[2] = 0;
9182 			eep_config->adapter_info[3] = 0;
9183 			eep_config->adapter_info[4] = 0;
9184 			/* Indicate EEPROM-less board. */
9185 			eep_config->adapter_info[5] = 0xBB;
9186 		} else {
9187 			ASC_PRINT
9188 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9189 			write_eep = 1;
9190 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9191 		}
9192 	}
9193 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9194 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9195 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9196 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9197 	asc_dvc->start_motor = eep_config->start_motor;
9198 	asc_dvc->dvc_cntl = eep_config->cntl;
9199 	asc_dvc->no_scam = eep_config->no_scam;
9200 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9201 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9202 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9203 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9204 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9205 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9206 	if (!AscTestExternalLram(asc_dvc)) {
9207 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9208 		     ASC_IS_PCI_ULTRA)) {
9209 			eep_config->max_total_qng =
9210 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9211 			eep_config->max_tag_qng =
9212 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9213 		} else {
9214 			eep_config->cfg_msw |= 0x0800;
9215 			cfg_msw |= 0x0800;
9216 			AscSetChipCfgMsw(iop_base, cfg_msw);
9217 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9218 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9219 		}
9220 	} else {
9221 	}
9222 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9223 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9224 	}
9225 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9226 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9227 	}
9228 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9229 		eep_config->max_tag_qng = eep_config->max_total_qng;
9230 	}
9231 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9232 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9233 	}
9234 	asc_dvc->max_total_qng = eep_config->max_total_qng;
9235 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9236 	    eep_config->use_cmd_qng) {
9237 		eep_config->disc_enable = eep_config->use_cmd_qng;
9238 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9239 	}
9240 	ASC_EEP_SET_CHIP_ID(eep_config,
9241 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9242 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9243 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9244 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9245 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9246 	}
9247 
9248 	for (i = 0; i <= ASC_MAX_TID; i++) {
9249 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9250 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9251 		asc_dvc->cfg->sdtr_period_offset[i] =
9252 		    (uchar)(ASC_DEF_SDTR_OFFSET |
9253 			    (asc_dvc->min_sdtr_index << 4));
9254 	}
9255 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9256 	if (write_eep) {
9257 		if ((i = AscSetEEPConfig(iop_base, eep_config,
9258 				     asc_dvc->bus_type)) != 0) {
9259 			ASC_PRINT1
9260 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9261 			     i);
9262 		} else {
9263 			ASC_PRINT
9264 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9265 		}
9266 	}
9267 	return (warn_code);
9268 }
9269 
AscInitGetConfig(struct Scsi_Host * shost)9270 static int AscInitGetConfig(struct Scsi_Host *shost)
9271 {
9272 	struct asc_board *board = shost_priv(shost);
9273 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9274 	unsigned short warn_code = 0;
9275 
9276 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9277 	if (asc_dvc->err_code != 0)
9278 		return asc_dvc->err_code;
9279 
9280 	if (AscFindSignature(asc_dvc->iop_base)) {
9281 		AscInitAscDvcVar(asc_dvc);
9282 		warn_code = AscInitFromEEP(asc_dvc);
9283 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9284 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9285 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9286 	} else {
9287 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9288 	}
9289 
9290 	switch (warn_code) {
9291 	case 0:	/* No error */
9292 		break;
9293 	case ASC_WARN_IO_PORT_ROTATE:
9294 		shost_printk(KERN_WARNING, shost, "I/O port address "
9295 				"modified\n");
9296 		break;
9297 	case ASC_WARN_AUTO_CONFIG:
9298 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9299 				"enabled\n");
9300 		break;
9301 	case ASC_WARN_EEPROM_CHKSUM:
9302 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9303 		break;
9304 	case ASC_WARN_IRQ_MODIFIED:
9305 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9306 		break;
9307 	case ASC_WARN_CMD_QNG_CONFLICT:
9308 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9309 				"disconnects\n");
9310 		break;
9311 	default:
9312 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9313 				warn_code);
9314 		break;
9315 	}
9316 
9317 	if (asc_dvc->err_code != 0)
9318 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9319 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9320 
9321 	return asc_dvc->err_code;
9322 }
9323 
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)9324 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9325 {
9326 	struct asc_board *board = shost_priv(shost);
9327 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9328 	PortAddr iop_base = asc_dvc->iop_base;
9329 	unsigned short cfg_msw;
9330 	unsigned short warn_code = 0;
9331 
9332 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9333 	if (asc_dvc->err_code != 0)
9334 		return asc_dvc->err_code;
9335 	if (!AscFindSignature(asc_dvc->iop_base)) {
9336 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9337 		return asc_dvc->err_code;
9338 	}
9339 
9340 	cfg_msw = AscGetChipCfgMsw(iop_base);
9341 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9342 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9343 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9344 		AscSetChipCfgMsw(iop_base, cfg_msw);
9345 	}
9346 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9347 	    asc_dvc->cfg->cmd_qng_enabled) {
9348 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9349 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9350 	}
9351 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9352 		warn_code |= ASC_WARN_AUTO_CONFIG;
9353 	}
9354 #ifdef CONFIG_PCI
9355 	if (asc_dvc->bus_type & ASC_IS_PCI) {
9356 		cfg_msw &= 0xFFC0;
9357 		AscSetChipCfgMsw(iop_base, cfg_msw);
9358 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9359 		} else {
9360 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9361 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9362 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9363 				asc_dvc->bug_fix_cntl |=
9364 				    ASC_BUG_FIX_ASYN_USE_SYN;
9365 			}
9366 		}
9367 	} else
9368 #endif /* CONFIG_PCI */
9369 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9370 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9371 		    == ASC_CHIP_VER_ASYN_BUG) {
9372 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9373 		}
9374 	}
9375 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9376 	    asc_dvc->cfg->chip_scsi_id) {
9377 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9378 	}
9379 #ifdef CONFIG_ISA
9380 	if (asc_dvc->bus_type & ASC_IS_ISA) {
9381 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9382 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9383 	}
9384 #endif /* CONFIG_ISA */
9385 
9386 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9387 
9388 	switch (warn_code) {
9389 	case 0:	/* No error. */
9390 		break;
9391 	case ASC_WARN_IO_PORT_ROTATE:
9392 		shost_printk(KERN_WARNING, shost, "I/O port address "
9393 				"modified\n");
9394 		break;
9395 	case ASC_WARN_AUTO_CONFIG:
9396 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9397 				"enabled\n");
9398 		break;
9399 	case ASC_WARN_EEPROM_CHKSUM:
9400 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9401 		break;
9402 	case ASC_WARN_IRQ_MODIFIED:
9403 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9404 		break;
9405 	case ASC_WARN_CMD_QNG_CONFLICT:
9406 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9407 				"disconnects\n");
9408 		break;
9409 	default:
9410 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9411 				warn_code);
9412 		break;
9413 	}
9414 
9415 	if (asc_dvc->err_code != 0)
9416 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9417 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9418 
9419 	return asc_dvc->err_code;
9420 }
9421 
9422 /*
9423  * EEPROM Configuration.
9424  *
9425  * All drivers should use this structure to set the default EEPROM
9426  * configuration. The BIOS now uses this structure when it is built.
9427  * Additional structure information can be found in a_condor.h where
9428  * the structure is defined.
9429  *
9430  * The *_Field_IsChar structs are needed to correct for endianness.
9431  * These values are read from the board 16 bits at a time directly
9432  * into the structs. Because some fields are char, the values will be
9433  * in the wrong order. The *_Field_IsChar tells when to flip the
9434  * bytes. Data read and written to PCI memory is automatically swapped
9435  * on big-endian platforms so char fields read as words are actually being
9436  * unswapped on big-endian platforms.
9437  */
9438 #ifdef CONFIG_PCI
9439 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9440 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9441 	0x0000,			/* cfg_msw */
9442 	0xFFFF,			/* disc_enable */
9443 	0xFFFF,			/* wdtr_able */
9444 	0xFFFF,			/* sdtr_able */
9445 	0xFFFF,			/* start_motor */
9446 	0xFFFF,			/* tagqng_able */
9447 	0xFFFF,			/* bios_scan */
9448 	0,			/* scam_tolerant */
9449 	7,			/* adapter_scsi_id */
9450 	0,			/* bios_boot_delay */
9451 	3,			/* scsi_reset_delay */
9452 	0,			/* bios_id_lun */
9453 	0,			/* termination */
9454 	0,			/* reserved1 */
9455 	0xFFE7,			/* bios_ctrl */
9456 	0xFFFF,			/* ultra_able */
9457 	0,			/* reserved2 */
9458 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9459 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9460 	0,			/* dvc_cntl */
9461 	0,			/* bug_fix */
9462 	0,			/* serial_number_word1 */
9463 	0,			/* serial_number_word2 */
9464 	0,			/* serial_number_word3 */
9465 	0,			/* check_sum */
9466 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9467 	,			/* oem_name[16] */
9468 	0,			/* dvc_err_code */
9469 	0,			/* adv_err_code */
9470 	0,			/* adv_err_addr */
9471 	0,			/* saved_dvc_err_code */
9472 	0,			/* saved_adv_err_code */
9473 	0,			/* saved_adv_err_addr */
9474 	0			/* num_of_err */
9475 };
9476 
9477 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9478 	0,			/* cfg_lsw */
9479 	0,			/* cfg_msw */
9480 	0,			/* -disc_enable */
9481 	0,			/* wdtr_able */
9482 	0,			/* sdtr_able */
9483 	0,			/* start_motor */
9484 	0,			/* tagqng_able */
9485 	0,			/* bios_scan */
9486 	0,			/* scam_tolerant */
9487 	1,			/* adapter_scsi_id */
9488 	1,			/* bios_boot_delay */
9489 	1,			/* scsi_reset_delay */
9490 	1,			/* bios_id_lun */
9491 	1,			/* termination */
9492 	1,			/* reserved1 */
9493 	0,			/* bios_ctrl */
9494 	0,			/* ultra_able */
9495 	0,			/* reserved2 */
9496 	1,			/* max_host_qng */
9497 	1,			/* max_dvc_qng */
9498 	0,			/* dvc_cntl */
9499 	0,			/* bug_fix */
9500 	0,			/* serial_number_word1 */
9501 	0,			/* serial_number_word2 */
9502 	0,			/* serial_number_word3 */
9503 	0,			/* check_sum */
9504 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9505 	,			/* oem_name[16] */
9506 	0,			/* dvc_err_code */
9507 	0,			/* adv_err_code */
9508 	0,			/* adv_err_addr */
9509 	0,			/* saved_dvc_err_code */
9510 	0,			/* saved_adv_err_code */
9511 	0,			/* saved_adv_err_addr */
9512 	0			/* num_of_err */
9513 };
9514 
9515 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9516 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9517 	0x0000,			/* 01 cfg_msw */
9518 	0xFFFF,			/* 02 disc_enable */
9519 	0xFFFF,			/* 03 wdtr_able */
9520 	0x4444,			/* 04 sdtr_speed1 */
9521 	0xFFFF,			/* 05 start_motor */
9522 	0xFFFF,			/* 06 tagqng_able */
9523 	0xFFFF,			/* 07 bios_scan */
9524 	0,			/* 08 scam_tolerant */
9525 	7,			/* 09 adapter_scsi_id */
9526 	0,			/*    bios_boot_delay */
9527 	3,			/* 10 scsi_reset_delay */
9528 	0,			/*    bios_id_lun */
9529 	0,			/* 11 termination_se */
9530 	0,			/*    termination_lvd */
9531 	0xFFE7,			/* 12 bios_ctrl */
9532 	0x4444,			/* 13 sdtr_speed2 */
9533 	0x4444,			/* 14 sdtr_speed3 */
9534 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9535 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9536 	0,			/* 16 dvc_cntl */
9537 	0x4444,			/* 17 sdtr_speed4 */
9538 	0,			/* 18 serial_number_word1 */
9539 	0,			/* 19 serial_number_word2 */
9540 	0,			/* 20 serial_number_word3 */
9541 	0,			/* 21 check_sum */
9542 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9543 	,			/* 22-29 oem_name[16] */
9544 	0,			/* 30 dvc_err_code */
9545 	0,			/* 31 adv_err_code */
9546 	0,			/* 32 adv_err_addr */
9547 	0,			/* 33 saved_dvc_err_code */
9548 	0,			/* 34 saved_adv_err_code */
9549 	0,			/* 35 saved_adv_err_addr */
9550 	0,			/* 36 reserved */
9551 	0,			/* 37 reserved */
9552 	0,			/* 38 reserved */
9553 	0,			/* 39 reserved */
9554 	0,			/* 40 reserved */
9555 	0,			/* 41 reserved */
9556 	0,			/* 42 reserved */
9557 	0,			/* 43 reserved */
9558 	0,			/* 44 reserved */
9559 	0,			/* 45 reserved */
9560 	0,			/* 46 reserved */
9561 	0,			/* 47 reserved */
9562 	0,			/* 48 reserved */
9563 	0,			/* 49 reserved */
9564 	0,			/* 50 reserved */
9565 	0,			/* 51 reserved */
9566 	0,			/* 52 reserved */
9567 	0,			/* 53 reserved */
9568 	0,			/* 54 reserved */
9569 	0,			/* 55 reserved */
9570 	0,			/* 56 cisptr_lsw */
9571 	0,			/* 57 cisprt_msw */
9572 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9573 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9574 	0,			/* 60 reserved */
9575 	0,			/* 61 reserved */
9576 	0,			/* 62 reserved */
9577 	0			/* 63 reserved */
9578 };
9579 
9580 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9581 	0,			/* 00 cfg_lsw */
9582 	0,			/* 01 cfg_msw */
9583 	0,			/* 02 disc_enable */
9584 	0,			/* 03 wdtr_able */
9585 	0,			/* 04 sdtr_speed1 */
9586 	0,			/* 05 start_motor */
9587 	0,			/* 06 tagqng_able */
9588 	0,			/* 07 bios_scan */
9589 	0,			/* 08 scam_tolerant */
9590 	1,			/* 09 adapter_scsi_id */
9591 	1,			/*    bios_boot_delay */
9592 	1,			/* 10 scsi_reset_delay */
9593 	1,			/*    bios_id_lun */
9594 	1,			/* 11 termination_se */
9595 	1,			/*    termination_lvd */
9596 	0,			/* 12 bios_ctrl */
9597 	0,			/* 13 sdtr_speed2 */
9598 	0,			/* 14 sdtr_speed3 */
9599 	1,			/* 15 max_host_qng */
9600 	1,			/*    max_dvc_qng */
9601 	0,			/* 16 dvc_cntl */
9602 	0,			/* 17 sdtr_speed4 */
9603 	0,			/* 18 serial_number_word1 */
9604 	0,			/* 19 serial_number_word2 */
9605 	0,			/* 20 serial_number_word3 */
9606 	0,			/* 21 check_sum */
9607 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9608 	,			/* 22-29 oem_name[16] */
9609 	0,			/* 30 dvc_err_code */
9610 	0,			/* 31 adv_err_code */
9611 	0,			/* 32 adv_err_addr */
9612 	0,			/* 33 saved_dvc_err_code */
9613 	0,			/* 34 saved_adv_err_code */
9614 	0,			/* 35 saved_adv_err_addr */
9615 	0,			/* 36 reserved */
9616 	0,			/* 37 reserved */
9617 	0,			/* 38 reserved */
9618 	0,			/* 39 reserved */
9619 	0,			/* 40 reserved */
9620 	0,			/* 41 reserved */
9621 	0,			/* 42 reserved */
9622 	0,			/* 43 reserved */
9623 	0,			/* 44 reserved */
9624 	0,			/* 45 reserved */
9625 	0,			/* 46 reserved */
9626 	0,			/* 47 reserved */
9627 	0,			/* 48 reserved */
9628 	0,			/* 49 reserved */
9629 	0,			/* 50 reserved */
9630 	0,			/* 51 reserved */
9631 	0,			/* 52 reserved */
9632 	0,			/* 53 reserved */
9633 	0,			/* 54 reserved */
9634 	0,			/* 55 reserved */
9635 	0,			/* 56 cisptr_lsw */
9636 	0,			/* 57 cisprt_msw */
9637 	0,			/* 58 subsysvid */
9638 	0,			/* 59 subsysid */
9639 	0,			/* 60 reserved */
9640 	0,			/* 61 reserved */
9641 	0,			/* 62 reserved */
9642 	0			/* 63 reserved */
9643 };
9644 
9645 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9646 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9647 	0x0000,			/* 01 cfg_msw */
9648 	0xFFFF,			/* 02 disc_enable */
9649 	0xFFFF,			/* 03 wdtr_able */
9650 	0x5555,			/* 04 sdtr_speed1 */
9651 	0xFFFF,			/* 05 start_motor */
9652 	0xFFFF,			/* 06 tagqng_able */
9653 	0xFFFF,			/* 07 bios_scan */
9654 	0,			/* 08 scam_tolerant */
9655 	7,			/* 09 adapter_scsi_id */
9656 	0,			/*    bios_boot_delay */
9657 	3,			/* 10 scsi_reset_delay */
9658 	0,			/*    bios_id_lun */
9659 	0,			/* 11 termination_se */
9660 	0,			/*    termination_lvd */
9661 	0xFFE7,			/* 12 bios_ctrl */
9662 	0x5555,			/* 13 sdtr_speed2 */
9663 	0x5555,			/* 14 sdtr_speed3 */
9664 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9665 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9666 	0,			/* 16 dvc_cntl */
9667 	0x5555,			/* 17 sdtr_speed4 */
9668 	0,			/* 18 serial_number_word1 */
9669 	0,			/* 19 serial_number_word2 */
9670 	0,			/* 20 serial_number_word3 */
9671 	0,			/* 21 check_sum */
9672 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9673 	,			/* 22-29 oem_name[16] */
9674 	0,			/* 30 dvc_err_code */
9675 	0,			/* 31 adv_err_code */
9676 	0,			/* 32 adv_err_addr */
9677 	0,			/* 33 saved_dvc_err_code */
9678 	0,			/* 34 saved_adv_err_code */
9679 	0,			/* 35 saved_adv_err_addr */
9680 	0,			/* 36 reserved */
9681 	0,			/* 37 reserved */
9682 	0,			/* 38 reserved */
9683 	0,			/* 39 reserved */
9684 	0,			/* 40 reserved */
9685 	0,			/* 41 reserved */
9686 	0,			/* 42 reserved */
9687 	0,			/* 43 reserved */
9688 	0,			/* 44 reserved */
9689 	0,			/* 45 reserved */
9690 	0,			/* 46 reserved */
9691 	0,			/* 47 reserved */
9692 	0,			/* 48 reserved */
9693 	0,			/* 49 reserved */
9694 	0,			/* 50 reserved */
9695 	0,			/* 51 reserved */
9696 	0,			/* 52 reserved */
9697 	0,			/* 53 reserved */
9698 	0,			/* 54 reserved */
9699 	0,			/* 55 reserved */
9700 	0,			/* 56 cisptr_lsw */
9701 	0,			/* 57 cisprt_msw */
9702 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9703 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9704 	0,			/* 60 reserved */
9705 	0,			/* 61 reserved */
9706 	0,			/* 62 reserved */
9707 	0			/* 63 reserved */
9708 };
9709 
9710 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9711 	0,			/* 00 cfg_lsw */
9712 	0,			/* 01 cfg_msw */
9713 	0,			/* 02 disc_enable */
9714 	0,			/* 03 wdtr_able */
9715 	0,			/* 04 sdtr_speed1 */
9716 	0,			/* 05 start_motor */
9717 	0,			/* 06 tagqng_able */
9718 	0,			/* 07 bios_scan */
9719 	0,			/* 08 scam_tolerant */
9720 	1,			/* 09 adapter_scsi_id */
9721 	1,			/*    bios_boot_delay */
9722 	1,			/* 10 scsi_reset_delay */
9723 	1,			/*    bios_id_lun */
9724 	1,			/* 11 termination_se */
9725 	1,			/*    termination_lvd */
9726 	0,			/* 12 bios_ctrl */
9727 	0,			/* 13 sdtr_speed2 */
9728 	0,			/* 14 sdtr_speed3 */
9729 	1,			/* 15 max_host_qng */
9730 	1,			/*    max_dvc_qng */
9731 	0,			/* 16 dvc_cntl */
9732 	0,			/* 17 sdtr_speed4 */
9733 	0,			/* 18 serial_number_word1 */
9734 	0,			/* 19 serial_number_word2 */
9735 	0,			/* 20 serial_number_word3 */
9736 	0,			/* 21 check_sum */
9737 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9738 	,			/* 22-29 oem_name[16] */
9739 	0,			/* 30 dvc_err_code */
9740 	0,			/* 31 adv_err_code */
9741 	0,			/* 32 adv_err_addr */
9742 	0,			/* 33 saved_dvc_err_code */
9743 	0,			/* 34 saved_adv_err_code */
9744 	0,			/* 35 saved_adv_err_addr */
9745 	0,			/* 36 reserved */
9746 	0,			/* 37 reserved */
9747 	0,			/* 38 reserved */
9748 	0,			/* 39 reserved */
9749 	0,			/* 40 reserved */
9750 	0,			/* 41 reserved */
9751 	0,			/* 42 reserved */
9752 	0,			/* 43 reserved */
9753 	0,			/* 44 reserved */
9754 	0,			/* 45 reserved */
9755 	0,			/* 46 reserved */
9756 	0,			/* 47 reserved */
9757 	0,			/* 48 reserved */
9758 	0,			/* 49 reserved */
9759 	0,			/* 50 reserved */
9760 	0,			/* 51 reserved */
9761 	0,			/* 52 reserved */
9762 	0,			/* 53 reserved */
9763 	0,			/* 54 reserved */
9764 	0,			/* 55 reserved */
9765 	0,			/* 56 cisptr_lsw */
9766 	0,			/* 57 cisprt_msw */
9767 	0,			/* 58 subsysvid */
9768 	0,			/* 59 subsysid */
9769 	0,			/* 60 reserved */
9770 	0,			/* 61 reserved */
9771 	0,			/* 62 reserved */
9772 	0			/* 63 reserved */
9773 };
9774 
9775 /*
9776  * Wait for EEPROM command to complete
9777  */
AdvWaitEEPCmd(AdvPortAddr iop_base)9778 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9779 {
9780 	int eep_delay_ms;
9781 
9782 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9783 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9784 		    ASC_EEP_CMD_DONE) {
9785 			break;
9786 		}
9787 		mdelay(1);
9788 	}
9789 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9790 	    0)
9791 		BUG();
9792 }
9793 
9794 /*
9795  * Read the EEPROM from specified location
9796  */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)9797 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9798 {
9799 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9800 			     ASC_EEP_CMD_READ | eep_word_addr);
9801 	AdvWaitEEPCmd(iop_base);
9802 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9803 }
9804 
9805 /*
9806  * Write the EEPROM from 'cfg_buf'.
9807  */
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9808 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9809 				ADVEEP_3550_CONFIG *cfg_buf)
9810 {
9811 	ushort *wbuf;
9812 	ushort addr, chksum;
9813 	ushort *charfields;
9814 
9815 	wbuf = (ushort *)cfg_buf;
9816 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9817 	chksum = 0;
9818 
9819 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9820 	AdvWaitEEPCmd(iop_base);
9821 
9822 	/*
9823 	 * Write EEPROM from word 0 to word 20.
9824 	 */
9825 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9826 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9827 		ushort word;
9828 
9829 		if (*charfields++) {
9830 			word = cpu_to_le16(*wbuf);
9831 		} else {
9832 			word = *wbuf;
9833 		}
9834 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9835 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9836 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9837 				     ASC_EEP_CMD_WRITE | addr);
9838 		AdvWaitEEPCmd(iop_base);
9839 		mdelay(ADV_EEP_DELAY_MS);
9840 	}
9841 
9842 	/*
9843 	 * Write EEPROM checksum at word 21.
9844 	 */
9845 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9846 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9847 	AdvWaitEEPCmd(iop_base);
9848 	wbuf++;
9849 	charfields++;
9850 
9851 	/*
9852 	 * Write EEPROM OEM name at words 22 to 29.
9853 	 */
9854 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9855 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9856 		ushort word;
9857 
9858 		if (*charfields++) {
9859 			word = cpu_to_le16(*wbuf);
9860 		} else {
9861 			word = *wbuf;
9862 		}
9863 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9864 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9865 				     ASC_EEP_CMD_WRITE | addr);
9866 		AdvWaitEEPCmd(iop_base);
9867 	}
9868 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9869 	AdvWaitEEPCmd(iop_base);
9870 }
9871 
9872 /*
9873  * Write the EEPROM from 'cfg_buf'.
9874  */
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9875 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9876 				   ADVEEP_38C0800_CONFIG *cfg_buf)
9877 {
9878 	ushort *wbuf;
9879 	ushort *charfields;
9880 	ushort addr, chksum;
9881 
9882 	wbuf = (ushort *)cfg_buf;
9883 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9884 	chksum = 0;
9885 
9886 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9887 	AdvWaitEEPCmd(iop_base);
9888 
9889 	/*
9890 	 * Write EEPROM from word 0 to word 20.
9891 	 */
9892 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9893 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9894 		ushort word;
9895 
9896 		if (*charfields++) {
9897 			word = cpu_to_le16(*wbuf);
9898 		} else {
9899 			word = *wbuf;
9900 		}
9901 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9902 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9903 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9904 				     ASC_EEP_CMD_WRITE | addr);
9905 		AdvWaitEEPCmd(iop_base);
9906 		mdelay(ADV_EEP_DELAY_MS);
9907 	}
9908 
9909 	/*
9910 	 * Write EEPROM checksum at word 21.
9911 	 */
9912 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9913 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9914 	AdvWaitEEPCmd(iop_base);
9915 	wbuf++;
9916 	charfields++;
9917 
9918 	/*
9919 	 * Write EEPROM OEM name at words 22 to 29.
9920 	 */
9921 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9922 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9923 		ushort word;
9924 
9925 		if (*charfields++) {
9926 			word = cpu_to_le16(*wbuf);
9927 		} else {
9928 			word = *wbuf;
9929 		}
9930 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9931 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9932 				     ASC_EEP_CMD_WRITE | addr);
9933 		AdvWaitEEPCmd(iop_base);
9934 	}
9935 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9936 	AdvWaitEEPCmd(iop_base);
9937 }
9938 
9939 /*
9940  * Write the EEPROM from 'cfg_buf'.
9941  */
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9942 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9943 				   ADVEEP_38C1600_CONFIG *cfg_buf)
9944 {
9945 	ushort *wbuf;
9946 	ushort *charfields;
9947 	ushort addr, chksum;
9948 
9949 	wbuf = (ushort *)cfg_buf;
9950 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9951 	chksum = 0;
9952 
9953 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9954 	AdvWaitEEPCmd(iop_base);
9955 
9956 	/*
9957 	 * Write EEPROM from word 0 to word 20.
9958 	 */
9959 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9960 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9961 		ushort word;
9962 
9963 		if (*charfields++) {
9964 			word = cpu_to_le16(*wbuf);
9965 		} else {
9966 			word = *wbuf;
9967 		}
9968 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9969 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9970 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9971 				     ASC_EEP_CMD_WRITE | addr);
9972 		AdvWaitEEPCmd(iop_base);
9973 		mdelay(ADV_EEP_DELAY_MS);
9974 	}
9975 
9976 	/*
9977 	 * Write EEPROM checksum at word 21.
9978 	 */
9979 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9980 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9981 	AdvWaitEEPCmd(iop_base);
9982 	wbuf++;
9983 	charfields++;
9984 
9985 	/*
9986 	 * Write EEPROM OEM name at words 22 to 29.
9987 	 */
9988 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9989 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9990 		ushort word;
9991 
9992 		if (*charfields++) {
9993 			word = cpu_to_le16(*wbuf);
9994 		} else {
9995 			word = *wbuf;
9996 		}
9997 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9998 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9999 				     ASC_EEP_CMD_WRITE | addr);
10000 		AdvWaitEEPCmd(iop_base);
10001 	}
10002 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10003 	AdvWaitEEPCmd(iop_base);
10004 }
10005 
10006 /*
10007  * Read EEPROM configuration into the specified buffer.
10008  *
10009  * Return a checksum based on the EEPROM configuration read.
10010  */
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10011 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10012 				  ADVEEP_3550_CONFIG *cfg_buf)
10013 {
10014 	ushort wval, chksum;
10015 	ushort *wbuf;
10016 	int eep_addr;
10017 	ushort *charfields;
10018 
10019 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10020 	wbuf = (ushort *)cfg_buf;
10021 	chksum = 0;
10022 
10023 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10024 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10025 		wval = AdvReadEEPWord(iop_base, eep_addr);
10026 		chksum += wval;	/* Checksum is calculated from word values. */
10027 		if (*charfields++) {
10028 			*wbuf = le16_to_cpu(wval);
10029 		} else {
10030 			*wbuf = wval;
10031 		}
10032 	}
10033 	/* Read checksum word. */
10034 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10035 	wbuf++;
10036 	charfields++;
10037 
10038 	/* Read rest of EEPROM not covered by the checksum. */
10039 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10040 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10041 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10042 		if (*charfields++) {
10043 			*wbuf = le16_to_cpu(*wbuf);
10044 		}
10045 	}
10046 	return chksum;
10047 }
10048 
10049 /*
10050  * Read EEPROM configuration into the specified buffer.
10051  *
10052  * Return a checksum based on the EEPROM configuration read.
10053  */
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)10054 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10055 				     ADVEEP_38C0800_CONFIG *cfg_buf)
10056 {
10057 	ushort wval, chksum;
10058 	ushort *wbuf;
10059 	int eep_addr;
10060 	ushort *charfields;
10061 
10062 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10063 	wbuf = (ushort *)cfg_buf;
10064 	chksum = 0;
10065 
10066 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10067 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10068 		wval = AdvReadEEPWord(iop_base, eep_addr);
10069 		chksum += wval;	/* Checksum is calculated from word values. */
10070 		if (*charfields++) {
10071 			*wbuf = le16_to_cpu(wval);
10072 		} else {
10073 			*wbuf = wval;
10074 		}
10075 	}
10076 	/* Read checksum word. */
10077 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10078 	wbuf++;
10079 	charfields++;
10080 
10081 	/* Read rest of EEPROM not covered by the checksum. */
10082 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10083 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10084 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10085 		if (*charfields++) {
10086 			*wbuf = le16_to_cpu(*wbuf);
10087 		}
10088 	}
10089 	return chksum;
10090 }
10091 
10092 /*
10093  * Read EEPROM configuration into the specified buffer.
10094  *
10095  * Return a checksum based on the EEPROM configuration read.
10096  */
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)10097 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10098 				     ADVEEP_38C1600_CONFIG *cfg_buf)
10099 {
10100 	ushort wval, chksum;
10101 	ushort *wbuf;
10102 	int eep_addr;
10103 	ushort *charfields;
10104 
10105 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10106 	wbuf = (ushort *)cfg_buf;
10107 	chksum = 0;
10108 
10109 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10110 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10111 		wval = AdvReadEEPWord(iop_base, eep_addr);
10112 		chksum += wval;	/* Checksum is calculated from word values. */
10113 		if (*charfields++) {
10114 			*wbuf = le16_to_cpu(wval);
10115 		} else {
10116 			*wbuf = wval;
10117 		}
10118 	}
10119 	/* Read checksum word. */
10120 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10121 	wbuf++;
10122 	charfields++;
10123 
10124 	/* Read rest of EEPROM not covered by the checksum. */
10125 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10126 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10127 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10128 		if (*charfields++) {
10129 			*wbuf = le16_to_cpu(*wbuf);
10130 		}
10131 	}
10132 	return chksum;
10133 }
10134 
10135 /*
10136  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10137  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10138  * all of this is done.
10139  *
10140  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10141  *
10142  * For a non-fatal error return a warning code. If there are no warnings
10143  * then 0 is returned.
10144  *
10145  * Note: Chip is stopped on entry.
10146  */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)10147 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10148 {
10149 	AdvPortAddr iop_base;
10150 	ushort warn_code;
10151 	ADVEEP_3550_CONFIG eep_config;
10152 
10153 	iop_base = asc_dvc->iop_base;
10154 
10155 	warn_code = 0;
10156 
10157 	/*
10158 	 * Read the board's EEPROM configuration.
10159 	 *
10160 	 * Set default values if a bad checksum is found.
10161 	 */
10162 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10163 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10164 
10165 		/*
10166 		 * Set EEPROM default values.
10167 		 */
10168 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10169 			sizeof(ADVEEP_3550_CONFIG));
10170 
10171 		/*
10172 		 * Assume the 6 byte board serial number that was read from
10173 		 * EEPROM is correct even if the EEPROM checksum failed.
10174 		 */
10175 		eep_config.serial_number_word3 =
10176 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10177 
10178 		eep_config.serial_number_word2 =
10179 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10180 
10181 		eep_config.serial_number_word1 =
10182 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10183 
10184 		AdvSet3550EEPConfig(iop_base, &eep_config);
10185 	}
10186 	/*
10187 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10188 	 * EEPROM configuration that was read.
10189 	 *
10190 	 * This is the mapping of EEPROM fields to Adv Library fields.
10191 	 */
10192 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10193 	asc_dvc->sdtr_able = eep_config.sdtr_able;
10194 	asc_dvc->ultra_able = eep_config.ultra_able;
10195 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10196 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10197 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10198 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10199 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10200 	asc_dvc->start_motor = eep_config.start_motor;
10201 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10202 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10203 	asc_dvc->no_scam = eep_config.scam_tolerant;
10204 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10205 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10206 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10207 
10208 	/*
10209 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10210 	 * maximum queuing (max. 63, min. 4).
10211 	 */
10212 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10213 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10214 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10215 		/* If the value is zero, assume it is uninitialized. */
10216 		if (eep_config.max_host_qng == 0) {
10217 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10218 		} else {
10219 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10220 		}
10221 	}
10222 
10223 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10224 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10225 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10226 		/* If the value is zero, assume it is uninitialized. */
10227 		if (eep_config.max_dvc_qng == 0) {
10228 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10229 		} else {
10230 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10231 		}
10232 	}
10233 
10234 	/*
10235 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10236 	 * set 'max_dvc_qng' to 'max_host_qng'.
10237 	 */
10238 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10239 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10240 	}
10241 
10242 	/*
10243 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10244 	 * values based on possibly adjusted EEPROM values.
10245 	 */
10246 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10247 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10248 
10249 	/*
10250 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10251 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10252 	 *
10253 	 * If the termination is specified with a non-zero 'termination'
10254 	 * value check that a legal value is set and set the ADV_DVC_CFG
10255 	 * 'termination' field appropriately.
10256 	 */
10257 	if (eep_config.termination == 0) {
10258 		asc_dvc->cfg->termination = 0;	/* auto termination */
10259 	} else {
10260 		/* Enable manual control with low off / high off. */
10261 		if (eep_config.termination == 1) {
10262 			asc_dvc->cfg->termination = TERM_CTL_SEL;
10263 
10264 			/* Enable manual control with low off / high on. */
10265 		} else if (eep_config.termination == 2) {
10266 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10267 
10268 			/* Enable manual control with low on / high on. */
10269 		} else if (eep_config.termination == 3) {
10270 			asc_dvc->cfg->termination =
10271 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10272 		} else {
10273 			/*
10274 			 * The EEPROM 'termination' field contains a bad value. Use
10275 			 * automatic termination instead.
10276 			 */
10277 			asc_dvc->cfg->termination = 0;
10278 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10279 		}
10280 	}
10281 
10282 	return warn_code;
10283 }
10284 
10285 /*
10286  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10287  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10288  * all of this is done.
10289  *
10290  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10291  *
10292  * For a non-fatal error return a warning code. If there are no warnings
10293  * then 0 is returned.
10294  *
10295  * Note: Chip is stopped on entry.
10296  */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)10297 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10298 {
10299 	AdvPortAddr iop_base;
10300 	ushort warn_code;
10301 	ADVEEP_38C0800_CONFIG eep_config;
10302 	uchar tid, termination;
10303 	ushort sdtr_speed = 0;
10304 
10305 	iop_base = asc_dvc->iop_base;
10306 
10307 	warn_code = 0;
10308 
10309 	/*
10310 	 * Read the board's EEPROM configuration.
10311 	 *
10312 	 * Set default values if a bad checksum is found.
10313 	 */
10314 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10315 	    eep_config.check_sum) {
10316 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10317 
10318 		/*
10319 		 * Set EEPROM default values.
10320 		 */
10321 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10322 			sizeof(ADVEEP_38C0800_CONFIG));
10323 
10324 		/*
10325 		 * Assume the 6 byte board serial number that was read from
10326 		 * EEPROM is correct even if the EEPROM checksum failed.
10327 		 */
10328 		eep_config.serial_number_word3 =
10329 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10330 
10331 		eep_config.serial_number_word2 =
10332 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10333 
10334 		eep_config.serial_number_word1 =
10335 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10336 
10337 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10338 	}
10339 	/*
10340 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10341 	 * EEPROM configuration that was read.
10342 	 *
10343 	 * This is the mapping of EEPROM fields to Adv Library fields.
10344 	 */
10345 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10346 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10347 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10348 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10349 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10350 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10351 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10352 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10353 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10354 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10355 	asc_dvc->start_motor = eep_config.start_motor;
10356 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10357 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10358 	asc_dvc->no_scam = eep_config.scam_tolerant;
10359 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10360 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10361 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10362 
10363 	/*
10364 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10365 	 * are set, then set an 'sdtr_able' bit for it.
10366 	 */
10367 	asc_dvc->sdtr_able = 0;
10368 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10369 		if (tid == 0) {
10370 			sdtr_speed = asc_dvc->sdtr_speed1;
10371 		} else if (tid == 4) {
10372 			sdtr_speed = asc_dvc->sdtr_speed2;
10373 		} else if (tid == 8) {
10374 			sdtr_speed = asc_dvc->sdtr_speed3;
10375 		} else if (tid == 12) {
10376 			sdtr_speed = asc_dvc->sdtr_speed4;
10377 		}
10378 		if (sdtr_speed & ADV_MAX_TID) {
10379 			asc_dvc->sdtr_able |= (1 << tid);
10380 		}
10381 		sdtr_speed >>= 4;
10382 	}
10383 
10384 	/*
10385 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10386 	 * maximum queuing (max. 63, min. 4).
10387 	 */
10388 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10389 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10390 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10391 		/* If the value is zero, assume it is uninitialized. */
10392 		if (eep_config.max_host_qng == 0) {
10393 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10394 		} else {
10395 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10396 		}
10397 	}
10398 
10399 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10400 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10401 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10402 		/* If the value is zero, assume it is uninitialized. */
10403 		if (eep_config.max_dvc_qng == 0) {
10404 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10405 		} else {
10406 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10407 		}
10408 	}
10409 
10410 	/*
10411 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10412 	 * set 'max_dvc_qng' to 'max_host_qng'.
10413 	 */
10414 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10415 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10416 	}
10417 
10418 	/*
10419 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10420 	 * values based on possibly adjusted EEPROM values.
10421 	 */
10422 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10423 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10424 
10425 	/*
10426 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10427 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10428 	 *
10429 	 * If the termination is specified with a non-zero 'termination'
10430 	 * value check that a legal value is set and set the ADV_DVC_CFG
10431 	 * 'termination' field appropriately.
10432 	 */
10433 	if (eep_config.termination_se == 0) {
10434 		termination = 0;	/* auto termination for SE */
10435 	} else {
10436 		/* Enable manual control with low off / high off. */
10437 		if (eep_config.termination_se == 1) {
10438 			termination = 0;
10439 
10440 			/* Enable manual control with low off / high on. */
10441 		} else if (eep_config.termination_se == 2) {
10442 			termination = TERM_SE_HI;
10443 
10444 			/* Enable manual control with low on / high on. */
10445 		} else if (eep_config.termination_se == 3) {
10446 			termination = TERM_SE;
10447 		} else {
10448 			/*
10449 			 * The EEPROM 'termination_se' field contains a bad value.
10450 			 * Use automatic termination instead.
10451 			 */
10452 			termination = 0;
10453 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10454 		}
10455 	}
10456 
10457 	if (eep_config.termination_lvd == 0) {
10458 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10459 	} else {
10460 		/* Enable manual control with low off / high off. */
10461 		if (eep_config.termination_lvd == 1) {
10462 			asc_dvc->cfg->termination = termination;
10463 
10464 			/* Enable manual control with low off / high on. */
10465 		} else if (eep_config.termination_lvd == 2) {
10466 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10467 
10468 			/* Enable manual control with low on / high on. */
10469 		} else if (eep_config.termination_lvd == 3) {
10470 			asc_dvc->cfg->termination = termination | TERM_LVD;
10471 		} else {
10472 			/*
10473 			 * The EEPROM 'termination_lvd' field contains a bad value.
10474 			 * Use automatic termination instead.
10475 			 */
10476 			asc_dvc->cfg->termination = termination;
10477 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10478 		}
10479 	}
10480 
10481 	return warn_code;
10482 }
10483 
10484 /*
10485  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10486  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10487  * all of this is done.
10488  *
10489  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10490  *
10491  * For a non-fatal error return a warning code. If there are no warnings
10492  * then 0 is returned.
10493  *
10494  * Note: Chip is stopped on entry.
10495  */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)10496 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10497 {
10498 	AdvPortAddr iop_base;
10499 	ushort warn_code;
10500 	ADVEEP_38C1600_CONFIG eep_config;
10501 	uchar tid, termination;
10502 	ushort sdtr_speed = 0;
10503 
10504 	iop_base = asc_dvc->iop_base;
10505 
10506 	warn_code = 0;
10507 
10508 	/*
10509 	 * Read the board's EEPROM configuration.
10510 	 *
10511 	 * Set default values if a bad checksum is found.
10512 	 */
10513 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10514 	    eep_config.check_sum) {
10515 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10516 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10517 
10518 		/*
10519 		 * Set EEPROM default values.
10520 		 */
10521 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10522 			sizeof(ADVEEP_38C1600_CONFIG));
10523 
10524 		if (PCI_FUNC(pdev->devfn) != 0) {
10525 			u8 ints;
10526 			/*
10527 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10528 			 * and old Mac system booting problem. The Expansion
10529 			 * ROM must be disabled in Function 1 for these systems
10530 			 */
10531 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10532 			/*
10533 			 * Clear the INTAB (bit 11) if the GPIO 0 input
10534 			 * indicates the Function 1 interrupt line is wired
10535 			 * to INTB.
10536 			 *
10537 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10538 			 *   1 - Function 1 interrupt line wired to INT A.
10539 			 *   0 - Function 1 interrupt line wired to INT B.
10540 			 *
10541 			 * Note: Function 0 is always wired to INTA.
10542 			 * Put all 5 GPIO bits in input mode and then read
10543 			 * their input values.
10544 			 */
10545 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10546 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10547 			if ((ints & 0x01) == 0)
10548 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10549 		}
10550 
10551 		/*
10552 		 * Assume the 6 byte board serial number that was read from
10553 		 * EEPROM is correct even if the EEPROM checksum failed.
10554 		 */
10555 		eep_config.serial_number_word3 =
10556 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10557 		eep_config.serial_number_word2 =
10558 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10559 		eep_config.serial_number_word1 =
10560 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10561 
10562 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10563 	}
10564 
10565 	/*
10566 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10567 	 * EEPROM configuration that was read.
10568 	 *
10569 	 * This is the mapping of EEPROM fields to Adv Library fields.
10570 	 */
10571 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10572 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10573 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10574 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10575 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10576 	asc_dvc->ppr_able = 0;
10577 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10578 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10579 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10580 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10581 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10582 	asc_dvc->start_motor = eep_config.start_motor;
10583 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10584 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10585 	asc_dvc->no_scam = eep_config.scam_tolerant;
10586 
10587 	/*
10588 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10589 	 * are set, then set an 'sdtr_able' bit for it.
10590 	 */
10591 	asc_dvc->sdtr_able = 0;
10592 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10593 		if (tid == 0) {
10594 			sdtr_speed = asc_dvc->sdtr_speed1;
10595 		} else if (tid == 4) {
10596 			sdtr_speed = asc_dvc->sdtr_speed2;
10597 		} else if (tid == 8) {
10598 			sdtr_speed = asc_dvc->sdtr_speed3;
10599 		} else if (tid == 12) {
10600 			sdtr_speed = asc_dvc->sdtr_speed4;
10601 		}
10602 		if (sdtr_speed & ASC_MAX_TID) {
10603 			asc_dvc->sdtr_able |= (1 << tid);
10604 		}
10605 		sdtr_speed >>= 4;
10606 	}
10607 
10608 	/*
10609 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10610 	 * maximum queuing (max. 63, min. 4).
10611 	 */
10612 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10613 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10614 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10615 		/* If the value is zero, assume it is uninitialized. */
10616 		if (eep_config.max_host_qng == 0) {
10617 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10618 		} else {
10619 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10620 		}
10621 	}
10622 
10623 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10624 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10625 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10626 		/* If the value is zero, assume it is uninitialized. */
10627 		if (eep_config.max_dvc_qng == 0) {
10628 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10629 		} else {
10630 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10631 		}
10632 	}
10633 
10634 	/*
10635 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10636 	 * set 'max_dvc_qng' to 'max_host_qng'.
10637 	 */
10638 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10639 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10640 	}
10641 
10642 	/*
10643 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10644 	 * values based on possibly adjusted EEPROM values.
10645 	 */
10646 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10647 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10648 
10649 	/*
10650 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10651 	 * the ASC_DVC_CFG 'termination' field to automatic also.
10652 	 *
10653 	 * If the termination is specified with a non-zero 'termination'
10654 	 * value check that a legal value is set and set the ASC_DVC_CFG
10655 	 * 'termination' field appropriately.
10656 	 */
10657 	if (eep_config.termination_se == 0) {
10658 		termination = 0;	/* auto termination for SE */
10659 	} else {
10660 		/* Enable manual control with low off / high off. */
10661 		if (eep_config.termination_se == 1) {
10662 			termination = 0;
10663 
10664 			/* Enable manual control with low off / high on. */
10665 		} else if (eep_config.termination_se == 2) {
10666 			termination = TERM_SE_HI;
10667 
10668 			/* Enable manual control with low on / high on. */
10669 		} else if (eep_config.termination_se == 3) {
10670 			termination = TERM_SE;
10671 		} else {
10672 			/*
10673 			 * The EEPROM 'termination_se' field contains a bad value.
10674 			 * Use automatic termination instead.
10675 			 */
10676 			termination = 0;
10677 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10678 		}
10679 	}
10680 
10681 	if (eep_config.termination_lvd == 0) {
10682 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10683 	} else {
10684 		/* Enable manual control with low off / high off. */
10685 		if (eep_config.termination_lvd == 1) {
10686 			asc_dvc->cfg->termination = termination;
10687 
10688 			/* Enable manual control with low off / high on. */
10689 		} else if (eep_config.termination_lvd == 2) {
10690 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10691 
10692 			/* Enable manual control with low on / high on. */
10693 		} else if (eep_config.termination_lvd == 3) {
10694 			asc_dvc->cfg->termination = termination | TERM_LVD;
10695 		} else {
10696 			/*
10697 			 * The EEPROM 'termination_lvd' field contains a bad value.
10698 			 * Use automatic termination instead.
10699 			 */
10700 			asc_dvc->cfg->termination = termination;
10701 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10702 		}
10703 	}
10704 
10705 	return warn_code;
10706 }
10707 
10708 /*
10709  * Initialize the ADV_DVC_VAR structure.
10710  *
10711  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10712  *
10713  * For a non-fatal error return a warning code. If there are no warnings
10714  * then 0 is returned.
10715  */
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10716 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10717 {
10718 	struct asc_board *board = shost_priv(shost);
10719 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10720 	unsigned short warn_code = 0;
10721 	AdvPortAddr iop_base = asc_dvc->iop_base;
10722 	u16 cmd;
10723 	int status;
10724 
10725 	asc_dvc->err_code = 0;
10726 
10727 	/*
10728 	 * Save the state of the PCI Configuration Command Register
10729 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10730 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10731 	 * DMA parity errors.
10732 	 */
10733 	asc_dvc->cfg->control_flag = 0;
10734 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10735 	if ((cmd & PCI_COMMAND_PARITY) == 0)
10736 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10737 
10738 	asc_dvc->cfg->chip_version =
10739 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10740 
10741 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10742 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10743 		 (ushort)ADV_CHIP_ID_BYTE);
10744 
10745 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10746 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10747 		 (ushort)ADV_CHIP_ID_WORD);
10748 
10749 	/*
10750 	 * Reset the chip to start and allow register writes.
10751 	 */
10752 	if (AdvFindSignature(iop_base) == 0) {
10753 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10754 		return ADV_ERROR;
10755 	} else {
10756 		/*
10757 		 * The caller must set 'chip_type' to a valid setting.
10758 		 */
10759 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10760 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10761 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10762 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10763 			return ADV_ERROR;
10764 		}
10765 
10766 		/*
10767 		 * Reset Chip.
10768 		 */
10769 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10770 				     ADV_CTRL_REG_CMD_RESET);
10771 		mdelay(100);
10772 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10773 				     ADV_CTRL_REG_CMD_WR_IO_REG);
10774 
10775 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10776 			status = AdvInitFrom38C1600EEP(asc_dvc);
10777 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10778 			status = AdvInitFrom38C0800EEP(asc_dvc);
10779 		} else {
10780 			status = AdvInitFrom3550EEP(asc_dvc);
10781 		}
10782 		warn_code |= status;
10783 	}
10784 
10785 	if (warn_code != 0)
10786 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10787 
10788 	if (asc_dvc->err_code)
10789 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10790 				asc_dvc->err_code);
10791 
10792 	return asc_dvc->err_code;
10793 }
10794 #endif
10795 
10796 static struct scsi_host_template advansys_template = {
10797 	.proc_name = DRV_NAME,
10798 #ifdef CONFIG_PROC_FS
10799 	.show_info = advansys_show_info,
10800 #endif
10801 	.name = DRV_NAME,
10802 	.info = advansys_info,
10803 	.queuecommand = advansys_queuecommand,
10804 	.eh_host_reset_handler = advansys_reset,
10805 	.bios_param = advansys_biosparam,
10806 	.slave_configure = advansys_slave_configure,
10807 	/*
10808 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10809 	 * must be set. The flag will be cleared in advansys_board_found
10810 	 * for non-ISA adapters.
10811 	 */
10812 	.unchecked_isa_dma = true,
10813 	/*
10814 	 * All adapters controlled by this driver are capable of large
10815 	 * scatter-gather lists. According to the mid-level SCSI documentation
10816 	 * this obviates any performance gain provided by setting
10817 	 * 'use_clustering'. But empirically while CPU utilization is increased
10818 	 * by enabling clustering, I/O throughput increases as well.
10819 	 */
10820 	.use_clustering = ENABLE_CLUSTERING,
10821 };
10822 
advansys_wide_init_chip(struct Scsi_Host * shost)10823 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10824 {
10825 	struct asc_board *board = shost_priv(shost);
10826 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10827 	size_t sgblk_pool_size;
10828 	int warn_code, err_code;
10829 
10830 	/*
10831 	 * Allocate buffer carrier structures. The total size
10832 	 * is about 8 KB, so allocate all at once.
10833 	 */
10834 	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10835 		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10836 	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10837 
10838 	if (!adv_dvc->carrier)
10839 		goto kmalloc_failed;
10840 
10841 	/*
10842 	 * Allocate up to 'max_host_qng' request structures for the Wide
10843 	 * board. The total size is about 16 KB, so allocate all at once.
10844 	 * If the allocation fails decrement and try again.
10845 	 */
10846 	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10847 	if (board->adv_reqp_size & 0x1f) {
10848 		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10849 		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10850 	}
10851 	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10852 		&board->adv_reqp_addr, GFP_KERNEL);
10853 
10854 	if (!board->adv_reqp)
10855 		goto kmalloc_failed;
10856 
10857 	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10858 		adv_dvc->max_host_qng, board->adv_reqp_size);
10859 
10860 	/*
10861 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10862 	 * the Wide board. Each structure is about 136 bytes.
10863 	 */
10864 	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10865 	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10866 						sgblk_pool_size, 32, 0);
10867 
10868 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10869 		sizeof(adv_sgblk_t), sgblk_pool_size);
10870 
10871 	if (!board->adv_sgblk_pool)
10872 		goto kmalloc_failed;
10873 
10874 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10875 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10876 		warn_code = AdvInitAsc3550Driver(adv_dvc);
10877 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10878 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10879 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10880 	} else {
10881 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10882 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10883 	}
10884 	err_code = adv_dvc->err_code;
10885 
10886 	if (warn_code || err_code) {
10887 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10888 			"0x%x\n", warn_code, err_code);
10889 	}
10890 
10891 	goto exit;
10892 
10893  kmalloc_failed:
10894 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10895 	err_code = ADV_ERROR;
10896  exit:
10897 	return err_code;
10898 }
10899 
advansys_wide_free_mem(struct asc_board * board)10900 static void advansys_wide_free_mem(struct asc_board *board)
10901 {
10902 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10903 
10904 	if (adv_dvc->carrier) {
10905 		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10906 				  adv_dvc->carrier, adv_dvc->carrier_addr);
10907 		adv_dvc->carrier = NULL;
10908 	}
10909 	if (board->adv_reqp) {
10910 		dma_free_coherent(board->dev, board->adv_reqp_size,
10911 				  board->adv_reqp, board->adv_reqp_addr);
10912 		board->adv_reqp = NULL;
10913 	}
10914 	if (board->adv_sgblk_pool) {
10915 		dma_pool_destroy(board->adv_sgblk_pool);
10916 		board->adv_sgblk_pool = NULL;
10917 	}
10918 }
10919 
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)10920 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10921 				int bus_type)
10922 {
10923 	struct pci_dev *pdev;
10924 	struct asc_board *boardp = shost_priv(shost);
10925 	ASC_DVC_VAR *asc_dvc_varp = NULL;
10926 	ADV_DVC_VAR *adv_dvc_varp = NULL;
10927 	int share_irq, warn_code, ret;
10928 
10929 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10930 
10931 	if (ASC_NARROW_BOARD(boardp)) {
10932 		ASC_DBG(1, "narrow board\n");
10933 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10934 		asc_dvc_varp->bus_type = bus_type;
10935 		asc_dvc_varp->drv_ptr = boardp;
10936 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10937 		asc_dvc_varp->iop_base = iop;
10938 	} else {
10939 #ifdef CONFIG_PCI
10940 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10941 		adv_dvc_varp->drv_ptr = boardp;
10942 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10943 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10944 			ASC_DBG(1, "wide board ASC-3550\n");
10945 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10946 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10947 			ASC_DBG(1, "wide board ASC-38C0800\n");
10948 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10949 		} else {
10950 			ASC_DBG(1, "wide board ASC-38C1600\n");
10951 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10952 		}
10953 
10954 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10955 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10956 		if (!boardp->ioremap_addr) {
10957 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10958 					"returned NULL\n",
10959 					(long)pci_resource_start(pdev, 1),
10960 					boardp->asc_n_io_port);
10961 			ret = -ENODEV;
10962 			goto err_shost;
10963 		}
10964 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10965 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10966 
10967 		/*
10968 		 * Even though it isn't used to access wide boards, other
10969 		 * than for the debug line below, save I/O Port address so
10970 		 * that it can be reported.
10971 		 */
10972 		boardp->ioport = iop;
10973 
10974 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10975 				(ushort)inp(iop + 1), (ushort)inpw(iop));
10976 #endif /* CONFIG_PCI */
10977 	}
10978 
10979 	if (ASC_NARROW_BOARD(boardp)) {
10980 		/*
10981 		 * Set the board bus type and PCI IRQ before
10982 		 * calling AscInitGetConfig().
10983 		 */
10984 		switch (asc_dvc_varp->bus_type) {
10985 #ifdef CONFIG_ISA
10986 		case ASC_IS_ISA:
10987 			shost->unchecked_isa_dma = true;
10988 			share_irq = 0;
10989 			break;
10990 		case ASC_IS_VL:
10991 			shost->unchecked_isa_dma = false;
10992 			share_irq = 0;
10993 			break;
10994 		case ASC_IS_EISA:
10995 			shost->unchecked_isa_dma = false;
10996 			share_irq = IRQF_SHARED;
10997 			break;
10998 #endif /* CONFIG_ISA */
10999 #ifdef CONFIG_PCI
11000 		case ASC_IS_PCI:
11001 			shost->unchecked_isa_dma = false;
11002 			share_irq = IRQF_SHARED;
11003 			break;
11004 #endif /* CONFIG_PCI */
11005 		default:
11006 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11007 					"%d\n", asc_dvc_varp->bus_type);
11008 			shost->unchecked_isa_dma = false;
11009 			share_irq = 0;
11010 			break;
11011 		}
11012 
11013 		/*
11014 		 * NOTE: AscInitGetConfig() may change the board's
11015 		 * bus_type value. The bus_type value should no
11016 		 * longer be used. If the bus_type field must be
11017 		 * referenced only use the bit-wise AND operator "&".
11018 		 */
11019 		ASC_DBG(2, "AscInitGetConfig()\n");
11020 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11021 	} else {
11022 #ifdef CONFIG_PCI
11023 		/*
11024 		 * For Wide boards set PCI information before calling
11025 		 * AdvInitGetConfig().
11026 		 */
11027 		shost->unchecked_isa_dma = false;
11028 		share_irq = IRQF_SHARED;
11029 		ASC_DBG(2, "AdvInitGetConfig()\n");
11030 
11031 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11032 #else
11033 		share_irq = 0;
11034 		ret = -ENODEV;
11035 #endif /* CONFIG_PCI */
11036 	}
11037 
11038 	if (ret)
11039 		goto err_unmap;
11040 
11041 	/*
11042 	 * Save the EEPROM configuration so that it can be displayed
11043 	 * from /proc/scsi/advansys/[0...].
11044 	 */
11045 	if (ASC_NARROW_BOARD(boardp)) {
11046 
11047 		ASCEEP_CONFIG *ep;
11048 
11049 		/*
11050 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11051 		 */
11052 		boardp->init_tidmask |=
11053 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11054 
11055 		/*
11056 		 * Save EEPROM settings for the board.
11057 		 */
11058 		ep = &boardp->eep_config.asc_eep;
11059 
11060 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11061 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11062 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11063 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11064 		ep->start_motor = asc_dvc_varp->start_motor;
11065 		ep->cntl = asc_dvc_varp->dvc_cntl;
11066 		ep->no_scam = asc_dvc_varp->no_scam;
11067 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11068 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11069 		/* 'max_tag_qng' is set to the same value for every device. */
11070 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11071 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11072 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11073 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11074 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11075 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11076 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11077 
11078 		/*
11079 		 * Modify board configuration.
11080 		 */
11081 		ASC_DBG(2, "AscInitSetConfig()\n");
11082 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11083 		if (ret)
11084 			goto err_unmap;
11085 	} else {
11086 		ADVEEP_3550_CONFIG *ep_3550;
11087 		ADVEEP_38C0800_CONFIG *ep_38C0800;
11088 		ADVEEP_38C1600_CONFIG *ep_38C1600;
11089 
11090 		/*
11091 		 * Save Wide EEP Configuration Information.
11092 		 */
11093 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11094 			ep_3550 = &boardp->eep_config.adv_3550_eep;
11095 
11096 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11097 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11098 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11099 			ep_3550->termination = adv_dvc_varp->cfg->termination;
11100 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11101 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11102 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11103 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11104 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11105 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11106 			ep_3550->start_motor = adv_dvc_varp->start_motor;
11107 			ep_3550->scsi_reset_delay =
11108 			    adv_dvc_varp->scsi_reset_wait;
11109 			ep_3550->serial_number_word1 =
11110 			    adv_dvc_varp->cfg->serial1;
11111 			ep_3550->serial_number_word2 =
11112 			    adv_dvc_varp->cfg->serial2;
11113 			ep_3550->serial_number_word3 =
11114 			    adv_dvc_varp->cfg->serial3;
11115 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11116 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11117 
11118 			ep_38C0800->adapter_scsi_id =
11119 			    adv_dvc_varp->chip_scsi_id;
11120 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11121 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11122 			ep_38C0800->termination_lvd =
11123 			    adv_dvc_varp->cfg->termination;
11124 			ep_38C0800->disc_enable =
11125 			    adv_dvc_varp->cfg->disc_enable;
11126 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11127 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11128 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11129 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11130 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11131 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11132 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11133 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11134 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11135 			ep_38C0800->scsi_reset_delay =
11136 			    adv_dvc_varp->scsi_reset_wait;
11137 			ep_38C0800->serial_number_word1 =
11138 			    adv_dvc_varp->cfg->serial1;
11139 			ep_38C0800->serial_number_word2 =
11140 			    adv_dvc_varp->cfg->serial2;
11141 			ep_38C0800->serial_number_word3 =
11142 			    adv_dvc_varp->cfg->serial3;
11143 		} else {
11144 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11145 
11146 			ep_38C1600->adapter_scsi_id =
11147 			    adv_dvc_varp->chip_scsi_id;
11148 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11149 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11150 			ep_38C1600->termination_lvd =
11151 			    adv_dvc_varp->cfg->termination;
11152 			ep_38C1600->disc_enable =
11153 			    adv_dvc_varp->cfg->disc_enable;
11154 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11155 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11156 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11157 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11158 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11159 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11160 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11161 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11162 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11163 			ep_38C1600->scsi_reset_delay =
11164 			    adv_dvc_varp->scsi_reset_wait;
11165 			ep_38C1600->serial_number_word1 =
11166 			    adv_dvc_varp->cfg->serial1;
11167 			ep_38C1600->serial_number_word2 =
11168 			    adv_dvc_varp->cfg->serial2;
11169 			ep_38C1600->serial_number_word3 =
11170 			    adv_dvc_varp->cfg->serial3;
11171 		}
11172 
11173 		/*
11174 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11175 		 */
11176 		boardp->init_tidmask |=
11177 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11178 	}
11179 
11180 	/*
11181 	 * Channels are numbered beginning with 0. For AdvanSys one host
11182 	 * structure supports one channel. Multi-channel boards have a
11183 	 * separate host structure for each channel.
11184 	 */
11185 	shost->max_channel = 0;
11186 	if (ASC_NARROW_BOARD(boardp)) {
11187 		shost->max_id = ASC_MAX_TID + 1;
11188 		shost->max_lun = ASC_MAX_LUN + 1;
11189 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11190 
11191 		shost->io_port = asc_dvc_varp->iop_base;
11192 		boardp->asc_n_io_port = ASC_IOADR_GAP;
11193 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11194 
11195 		/* Set maximum number of queues the adapter can handle. */
11196 		shost->can_queue = asc_dvc_varp->max_total_qng;
11197 	} else {
11198 		shost->max_id = ADV_MAX_TID + 1;
11199 		shost->max_lun = ADV_MAX_LUN + 1;
11200 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11201 
11202 		/*
11203 		 * Save the I/O Port address and length even though
11204 		 * I/O ports are not used to access Wide boards.
11205 		 * Instead the Wide boards are accessed with
11206 		 * PCI Memory Mapped I/O.
11207 		 */
11208 		shost->io_port = iop;
11209 
11210 		shost->this_id = adv_dvc_varp->chip_scsi_id;
11211 
11212 		/* Set maximum number of queues the adapter can handle. */
11213 		shost->can_queue = adv_dvc_varp->max_host_qng;
11214 	}
11215 
11216 	/*
11217 	 * Set the maximum number of scatter-gather elements the
11218 	 * adapter can handle.
11219 	 */
11220 	if (ASC_NARROW_BOARD(boardp)) {
11221 		/*
11222 		 * Allow two commands with 'sg_tablesize' scatter-gather
11223 		 * elements to be executed simultaneously. This value is
11224 		 * the theoretical hardware limit. It may be decreased
11225 		 * below.
11226 		 */
11227 		shost->sg_tablesize =
11228 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11229 		     ASC_SG_LIST_PER_Q) + 1;
11230 	} else {
11231 		shost->sg_tablesize = ADV_MAX_SG_LIST;
11232 	}
11233 
11234 	/*
11235 	 * The value of 'sg_tablesize' can not exceed the SCSI
11236 	 * mid-level driver definition of SG_ALL. SG_ALL also
11237 	 * must not be exceeded, because it is used to define the
11238 	 * size of the scatter-gather table in 'struct asc_sg_head'.
11239 	 */
11240 	if (shost->sg_tablesize > SG_ALL) {
11241 		shost->sg_tablesize = SG_ALL;
11242 	}
11243 
11244 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11245 
11246 	/* BIOS start address. */
11247 	if (ASC_NARROW_BOARD(boardp)) {
11248 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11249 						    asc_dvc_varp->bus_type);
11250 	} else {
11251 		/*
11252 		 * Fill-in BIOS board variables. The Wide BIOS saves
11253 		 * information in LRAM that is used by the driver.
11254 		 */
11255 		AdvReadWordLram(adv_dvc_varp->iop_base,
11256 				BIOS_SIGNATURE, boardp->bios_signature);
11257 		AdvReadWordLram(adv_dvc_varp->iop_base,
11258 				BIOS_VERSION, boardp->bios_version);
11259 		AdvReadWordLram(adv_dvc_varp->iop_base,
11260 				BIOS_CODESEG, boardp->bios_codeseg);
11261 		AdvReadWordLram(adv_dvc_varp->iop_base,
11262 				BIOS_CODELEN, boardp->bios_codelen);
11263 
11264 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11265 			 boardp->bios_signature, boardp->bios_version);
11266 
11267 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11268 			 boardp->bios_codeseg, boardp->bios_codelen);
11269 
11270 		/*
11271 		 * If the BIOS saved a valid signature, then fill in
11272 		 * the BIOS code segment base address.
11273 		 */
11274 		if (boardp->bios_signature == 0x55AA) {
11275 			/*
11276 			 * Convert x86 realmode code segment to a linear
11277 			 * address by shifting left 4.
11278 			 */
11279 			shost->base = ((ulong)boardp->bios_codeseg << 4);
11280 		} else {
11281 			shost->base = 0;
11282 		}
11283 	}
11284 
11285 	/*
11286 	 * Register Board Resources - I/O Port, DMA, IRQ
11287 	 */
11288 
11289 	/* Register DMA Channel for Narrow boards. */
11290 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11291 #ifdef CONFIG_ISA
11292 	if (ASC_NARROW_BOARD(boardp)) {
11293 		/* Register DMA channel for ISA bus. */
11294 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11295 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11296 			ret = request_dma(shost->dma_channel, DRV_NAME);
11297 			if (ret) {
11298 				shost_printk(KERN_ERR, shost, "request_dma() "
11299 						"%d failed %d\n",
11300 						shost->dma_channel, ret);
11301 				goto err_unmap;
11302 			}
11303 			AscEnableIsaDma(shost->dma_channel);
11304 		}
11305 	}
11306 #endif /* CONFIG_ISA */
11307 
11308 	/* Register IRQ Number. */
11309 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11310 
11311 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11312 			  DRV_NAME, shost);
11313 
11314 	if (ret) {
11315 		if (ret == -EBUSY) {
11316 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11317 					"already in use\n", boardp->irq);
11318 		} else if (ret == -EINVAL) {
11319 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11320 					"not valid\n", boardp->irq);
11321 		} else {
11322 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11323 					"failed with %d\n", boardp->irq, ret);
11324 		}
11325 		goto err_free_dma;
11326 	}
11327 
11328 	/*
11329 	 * Initialize board RISC chip and enable interrupts.
11330 	 */
11331 	if (ASC_NARROW_BOARD(boardp)) {
11332 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11333 
11334 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11335 		if (!asc_dvc_varp->overrun_buf) {
11336 			ret = -ENOMEM;
11337 			goto err_free_irq;
11338 		}
11339 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11340 
11341 		if (warn_code || asc_dvc_varp->err_code) {
11342 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11343 					"warn 0x%x, error 0x%x\n",
11344 					asc_dvc_varp->init_state, warn_code,
11345 					asc_dvc_varp->err_code);
11346 			if (!asc_dvc_varp->overrun_dma) {
11347 				ret = -ENODEV;
11348 				goto err_free_mem;
11349 			}
11350 		}
11351 	} else {
11352 		if (advansys_wide_init_chip(shost)) {
11353 			ret = -ENODEV;
11354 			goto err_free_mem;
11355 		}
11356 	}
11357 
11358 	ASC_DBG_PRT_SCSI_HOST(2, shost);
11359 
11360 	ret = scsi_add_host(shost, boardp->dev);
11361 	if (ret)
11362 		goto err_free_mem;
11363 
11364 	scsi_scan_host(shost);
11365 	return 0;
11366 
11367  err_free_mem:
11368 	if (ASC_NARROW_BOARD(boardp)) {
11369 		if (asc_dvc_varp->overrun_dma)
11370 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11371 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11372 		kfree(asc_dvc_varp->overrun_buf);
11373 	} else
11374 		advansys_wide_free_mem(boardp);
11375  err_free_irq:
11376 	free_irq(boardp->irq, shost);
11377  err_free_dma:
11378 #ifdef CONFIG_ISA
11379 	if (shost->dma_channel != NO_ISA_DMA)
11380 		free_dma(shost->dma_channel);
11381 #endif
11382  err_unmap:
11383 	if (boardp->ioremap_addr)
11384 		iounmap(boardp->ioremap_addr);
11385 #ifdef CONFIG_PCI
11386  err_shost:
11387 #endif
11388 	return ret;
11389 }
11390 
11391 /*
11392  * advansys_release()
11393  *
11394  * Release resources allocated for a single AdvanSys adapter.
11395  */
advansys_release(struct Scsi_Host * shost)11396 static int advansys_release(struct Scsi_Host *shost)
11397 {
11398 	struct asc_board *board = shost_priv(shost);
11399 	ASC_DBG(1, "begin\n");
11400 	scsi_remove_host(shost);
11401 	free_irq(board->irq, shost);
11402 #ifdef CONFIG_ISA
11403 	if (shost->dma_channel != NO_ISA_DMA) {
11404 		ASC_DBG(1, "free_dma()\n");
11405 		free_dma(shost->dma_channel);
11406 	}
11407 #endif
11408 	if (ASC_NARROW_BOARD(board)) {
11409 		dma_unmap_single(board->dev,
11410 					board->dvc_var.asc_dvc_var.overrun_dma,
11411 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11412 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11413 	} else {
11414 		iounmap(board->ioremap_addr);
11415 		advansys_wide_free_mem(board);
11416 	}
11417 	scsi_host_put(shost);
11418 	ASC_DBG(1, "end\n");
11419 	return 0;
11420 }
11421 
11422 #define ASC_IOADR_TABLE_MAX_IX  11
11423 
11424 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11425 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11426 	0x0210, 0x0230, 0x0250, 0x0330
11427 };
11428 
11429 /*
11430  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11431  * 00: 10
11432  * 01: 11
11433  * 10: 12
11434  * 11: 15
11435  */
advansys_isa_irq_no(PortAddr iop_base)11436 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11437 {
11438 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11439 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11440 	if (chip_irq == 13)
11441 		chip_irq = 15;
11442 	return chip_irq;
11443 }
11444 
advansys_isa_probe(struct device * dev,unsigned int id)11445 static int advansys_isa_probe(struct device *dev, unsigned int id)
11446 {
11447 	int err = -ENODEV;
11448 	PortAddr iop_base = _asc_def_iop_base[id];
11449 	struct Scsi_Host *shost;
11450 	struct asc_board *board;
11451 
11452 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11453 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11454 		return -ENODEV;
11455 	}
11456 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11457 	if (!AscFindSignature(iop_base))
11458 		goto release_region;
11459 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11460 		goto release_region;
11461 
11462 	err = -ENOMEM;
11463 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11464 	if (!shost)
11465 		goto release_region;
11466 
11467 	board = shost_priv(shost);
11468 	board->irq = advansys_isa_irq_no(iop_base);
11469 	board->dev = dev;
11470 	board->shost = shost;
11471 
11472 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11473 	if (err)
11474 		goto free_host;
11475 
11476 	dev_set_drvdata(dev, shost);
11477 	return 0;
11478 
11479  free_host:
11480 	scsi_host_put(shost);
11481  release_region:
11482 	release_region(iop_base, ASC_IOADR_GAP);
11483 	return err;
11484 }
11485 
advansys_isa_remove(struct device * dev,unsigned int id)11486 static int advansys_isa_remove(struct device *dev, unsigned int id)
11487 {
11488 	int ioport = _asc_def_iop_base[id];
11489 	advansys_release(dev_get_drvdata(dev));
11490 	release_region(ioport, ASC_IOADR_GAP);
11491 	return 0;
11492 }
11493 
11494 static struct isa_driver advansys_isa_driver = {
11495 	.probe		= advansys_isa_probe,
11496 	.remove		= advansys_isa_remove,
11497 	.driver = {
11498 		.owner	= THIS_MODULE,
11499 		.name	= DRV_NAME,
11500 	},
11501 };
11502 
11503 /*
11504  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11505  * 000: invalid
11506  * 001: 10
11507  * 010: 11
11508  * 011: 12
11509  * 100: invalid
11510  * 101: 14
11511  * 110: 15
11512  * 111: invalid
11513  */
advansys_vlb_irq_no(PortAddr iop_base)11514 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11515 {
11516 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11517 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11518 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11519 		return 0;
11520 	return chip_irq;
11521 }
11522 
advansys_vlb_probe(struct device * dev,unsigned int id)11523 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11524 {
11525 	int err = -ENODEV;
11526 	PortAddr iop_base = _asc_def_iop_base[id];
11527 	struct Scsi_Host *shost;
11528 	struct asc_board *board;
11529 
11530 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11531 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11532 		return -ENODEV;
11533 	}
11534 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11535 	if (!AscFindSignature(iop_base))
11536 		goto release_region;
11537 	/*
11538 	 * I don't think this condition can actually happen, but the old
11539 	 * driver did it, and the chances of finding a VLB setup in 2007
11540 	 * to do testing with is slight to none.
11541 	 */
11542 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11543 		goto release_region;
11544 
11545 	err = -ENOMEM;
11546 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11547 	if (!shost)
11548 		goto release_region;
11549 
11550 	board = shost_priv(shost);
11551 	board->irq = advansys_vlb_irq_no(iop_base);
11552 	board->dev = dev;
11553 	board->shost = shost;
11554 
11555 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11556 	if (err)
11557 		goto free_host;
11558 
11559 	dev_set_drvdata(dev, shost);
11560 	return 0;
11561 
11562  free_host:
11563 	scsi_host_put(shost);
11564  release_region:
11565 	release_region(iop_base, ASC_IOADR_GAP);
11566 	return -ENODEV;
11567 }
11568 
11569 static struct isa_driver advansys_vlb_driver = {
11570 	.probe		= advansys_vlb_probe,
11571 	.remove		= advansys_isa_remove,
11572 	.driver = {
11573 		.owner	= THIS_MODULE,
11574 		.name	= "advansys_vlb",
11575 	},
11576 };
11577 
11578 static struct eisa_device_id advansys_eisa_table[] = {
11579 	{ "ABP7401" },
11580 	{ "ABP7501" },
11581 	{ "" }
11582 };
11583 
11584 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11585 
11586 /*
11587  * EISA is a little more tricky than PCI; each EISA device may have two
11588  * channels, and this driver is written to make each channel its own Scsi_Host
11589  */
11590 struct eisa_scsi_data {
11591 	struct Scsi_Host *host[2];
11592 };
11593 
11594 /*
11595  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11596  * 000: 10
11597  * 001: 11
11598  * 010: 12
11599  * 011: invalid
11600  * 100: 14
11601  * 101: 15
11602  * 110: invalid
11603  * 111: invalid
11604  */
advansys_eisa_irq_no(struct eisa_device * edev)11605 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11606 {
11607 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11608 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11609 	if ((chip_irq == 13) || (chip_irq > 15))
11610 		return 0;
11611 	return chip_irq;
11612 }
11613 
advansys_eisa_probe(struct device * dev)11614 static int advansys_eisa_probe(struct device *dev)
11615 {
11616 	int i, ioport, irq = 0;
11617 	int err;
11618 	struct eisa_device *edev = to_eisa_device(dev);
11619 	struct eisa_scsi_data *data;
11620 
11621 	err = -ENOMEM;
11622 	data = kzalloc(sizeof(*data), GFP_KERNEL);
11623 	if (!data)
11624 		goto fail;
11625 	ioport = edev->base_addr + 0xc30;
11626 
11627 	err = -ENODEV;
11628 	for (i = 0; i < 2; i++, ioport += 0x20) {
11629 		struct asc_board *board;
11630 		struct Scsi_Host *shost;
11631 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11632 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11633 			       ioport + ASC_IOADR_GAP - 1);
11634 			continue;
11635 		}
11636 		if (!AscFindSignature(ioport)) {
11637 			release_region(ioport, ASC_IOADR_GAP);
11638 			continue;
11639 		}
11640 
11641 		/*
11642 		 * I don't know why we need to do this for EISA chips, but
11643 		 * not for any others.  It looks to be equivalent to
11644 		 * AscGetChipCfgMsw, but I may have overlooked something,
11645 		 * so I'm not converting it until I get an EISA board to
11646 		 * test with.
11647 		 */
11648 		inw(ioport + 4);
11649 
11650 		if (!irq)
11651 			irq = advansys_eisa_irq_no(edev);
11652 
11653 		err = -ENOMEM;
11654 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11655 		if (!shost)
11656 			goto release_region;
11657 
11658 		board = shost_priv(shost);
11659 		board->irq = irq;
11660 		board->dev = dev;
11661 		board->shost = shost;
11662 
11663 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11664 		if (!err) {
11665 			data->host[i] = shost;
11666 			continue;
11667 		}
11668 
11669 		scsi_host_put(shost);
11670  release_region:
11671 		release_region(ioport, ASC_IOADR_GAP);
11672 		break;
11673 	}
11674 
11675 	if (err)
11676 		goto free_data;
11677 	dev_set_drvdata(dev, data);
11678 	return 0;
11679 
11680  free_data:
11681 	kfree(data->host[0]);
11682 	kfree(data->host[1]);
11683 	kfree(data);
11684  fail:
11685 	return err;
11686 }
11687 
advansys_eisa_remove(struct device * dev)11688 static int advansys_eisa_remove(struct device *dev)
11689 {
11690 	int i;
11691 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11692 
11693 	for (i = 0; i < 2; i++) {
11694 		int ioport;
11695 		struct Scsi_Host *shost = data->host[i];
11696 		if (!shost)
11697 			continue;
11698 		ioport = shost->io_port;
11699 		advansys_release(shost);
11700 		release_region(ioport, ASC_IOADR_GAP);
11701 	}
11702 
11703 	kfree(data);
11704 	return 0;
11705 }
11706 
11707 static struct eisa_driver advansys_eisa_driver = {
11708 	.id_table =		advansys_eisa_table,
11709 	.driver = {
11710 		.name =		DRV_NAME,
11711 		.probe =	advansys_eisa_probe,
11712 		.remove =	advansys_eisa_remove,
11713 	}
11714 };
11715 
11716 /* PCI Devices supported by this driver */
11717 static struct pci_device_id advansys_pci_tbl[] = {
11718 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11719 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11720 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11721 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11722 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11723 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11724 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11725 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11726 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11727 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11728 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11729 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11730 	{}
11731 };
11732 
11733 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11734 
advansys_set_latency(struct pci_dev * pdev)11735 static void advansys_set_latency(struct pci_dev *pdev)
11736 {
11737 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11738 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11739 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11740 	} else {
11741 		u8 latency;
11742 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11743 		if (latency < 0x20)
11744 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11745 	}
11746 }
11747 
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11748 static int advansys_pci_probe(struct pci_dev *pdev,
11749 			      const struct pci_device_id *ent)
11750 {
11751 	int err, ioport;
11752 	struct Scsi_Host *shost;
11753 	struct asc_board *board;
11754 
11755 	err = pci_enable_device(pdev);
11756 	if (err)
11757 		goto fail;
11758 	err = pci_request_regions(pdev, DRV_NAME);
11759 	if (err)
11760 		goto disable_device;
11761 	pci_set_master(pdev);
11762 	advansys_set_latency(pdev);
11763 
11764 	err = -ENODEV;
11765 	if (pci_resource_len(pdev, 0) == 0)
11766 		goto release_region;
11767 
11768 	ioport = pci_resource_start(pdev, 0);
11769 
11770 	err = -ENOMEM;
11771 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11772 	if (!shost)
11773 		goto release_region;
11774 
11775 	board = shost_priv(shost);
11776 	board->irq = pdev->irq;
11777 	board->dev = &pdev->dev;
11778 	board->shost = shost;
11779 
11780 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11781 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11782 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11783 		board->flags |= ASC_IS_WIDE_BOARD;
11784 	}
11785 
11786 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11787 	if (err)
11788 		goto free_host;
11789 
11790 	pci_set_drvdata(pdev, shost);
11791 	return 0;
11792 
11793  free_host:
11794 	scsi_host_put(shost);
11795  release_region:
11796 	pci_release_regions(pdev);
11797  disable_device:
11798 	pci_disable_device(pdev);
11799  fail:
11800 	return err;
11801 }
11802 
advansys_pci_remove(struct pci_dev * pdev)11803 static void advansys_pci_remove(struct pci_dev *pdev)
11804 {
11805 	advansys_release(pci_get_drvdata(pdev));
11806 	pci_release_regions(pdev);
11807 	pci_disable_device(pdev);
11808 }
11809 
11810 static struct pci_driver advansys_pci_driver = {
11811 	.name =		DRV_NAME,
11812 	.id_table =	advansys_pci_tbl,
11813 	.probe =	advansys_pci_probe,
11814 	.remove =	advansys_pci_remove,
11815 };
11816 
advansys_init(void)11817 static int __init advansys_init(void)
11818 {
11819 	int error;
11820 
11821 	error = isa_register_driver(&advansys_isa_driver,
11822 				    ASC_IOADR_TABLE_MAX_IX);
11823 	if (error)
11824 		goto fail;
11825 
11826 	error = isa_register_driver(&advansys_vlb_driver,
11827 				    ASC_IOADR_TABLE_MAX_IX);
11828 	if (error)
11829 		goto unregister_isa;
11830 
11831 	error = eisa_driver_register(&advansys_eisa_driver);
11832 	if (error)
11833 		goto unregister_vlb;
11834 
11835 	error = pci_register_driver(&advansys_pci_driver);
11836 	if (error)
11837 		goto unregister_eisa;
11838 
11839 	return 0;
11840 
11841  unregister_eisa:
11842 	eisa_driver_unregister(&advansys_eisa_driver);
11843  unregister_vlb:
11844 	isa_unregister_driver(&advansys_vlb_driver);
11845  unregister_isa:
11846 	isa_unregister_driver(&advansys_isa_driver);
11847  fail:
11848 	return error;
11849 }
11850 
advansys_exit(void)11851 static void __exit advansys_exit(void)
11852 {
11853 	pci_unregister_driver(&advansys_pci_driver);
11854 	eisa_driver_unregister(&advansys_eisa_driver);
11855 	isa_unregister_driver(&advansys_vlb_driver);
11856 	isa_unregister_driver(&advansys_isa_driver);
11857 }
11858 
11859 module_init(advansys_init);
11860 module_exit(advansys_exit);
11861 
11862 MODULE_LICENSE("GPL");
11863 MODULE_FIRMWARE("advansys/mcode.bin");
11864 MODULE_FIRMWARE("advansys/3550.bin");
11865 MODULE_FIRMWARE("advansys/38C0800.bin");
11866 MODULE_FIRMWARE("advansys/38C1600.bin");
11867