1 /*
2 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
3 *
4 * Copyright (c) 1995-2000 Advanced System Products, Inc.
5 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
6 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
7 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
8 * All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 /*
17 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
18 * changed its name to ConnectCom Solutions, Inc.
19 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
20 */
21
22 #include <linux/module.h>
23 #include <linux/string.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/ioport.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/proc_fs.h>
32 #include <linux/init.h>
33 #include <linux/blkdev.h>
34 #include <linux/isa.h>
35 #include <linux/eisa.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/firmware.h>
40 #include <linux/dmapool.h>
41
42 #include <asm/io.h>
43 #include <asm/dma.h>
44
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50
51 #define DRV_NAME "advansys"
52 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */
53
54 /* FIXME:
55 *
56 * 1. Use scsi_transport_spi
57 * 2. advansys_info is not safe against multiple simultaneous callers
58 * 3. Add module_param to override ISA/VLB ioport array
59 */
60
61 /* Enable driver /proc statistics. */
62 #define ADVANSYS_STATS
63
64 /* Enable driver tracing. */
65 #undef ADVANSYS_DEBUG
66
67 typedef unsigned char uchar;
68
69 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
70
71 #define PCI_VENDOR_ID_ASP 0x10cd
72 #define PCI_DEVICE_ID_ASP_1200A 0x1100
73 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
74 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
75 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
76 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
77 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
78
79 #define PortAddr unsigned int /* port address size */
80 #define inp(port) inb(port)
81 #define outp(port, byte) outb((byte), (port))
82
83 #define inpw(port) inw(port)
84 #define outpw(port, word) outw((word), (port))
85
86 #define ASC_MAX_SG_QUEUE 7
87 #define ASC_MAX_SG_LIST 255
88
89 #define ASC_CS_TYPE unsigned short
90
91 #define ASC_IS_ISA (0x0001)
92 #define ASC_IS_ISAPNP (0x0081)
93 #define ASC_IS_EISA (0x0002)
94 #define ASC_IS_PCI (0x0004)
95 #define ASC_IS_PCI_ULTRA (0x0104)
96 #define ASC_IS_PCMCIA (0x0008)
97 #define ASC_IS_MCA (0x0020)
98 #define ASC_IS_VL (0x0040)
99 #define ASC_IS_WIDESCSI_16 (0x0100)
100 #define ASC_IS_WIDESCSI_32 (0x0200)
101 #define ASC_IS_BIG_ENDIAN (0x8000)
102
103 #define ASC_CHIP_MIN_VER_VL (0x01)
104 #define ASC_CHIP_MAX_VER_VL (0x07)
105 #define ASC_CHIP_MIN_VER_PCI (0x09)
106 #define ASC_CHIP_MAX_VER_PCI (0x0F)
107 #define ASC_CHIP_VER_PCI_BIT (0x08)
108 #define ASC_CHIP_MIN_VER_ISA (0x11)
109 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
110 #define ASC_CHIP_MAX_VER_ISA (0x27)
111 #define ASC_CHIP_VER_ISA_BIT (0x30)
112 #define ASC_CHIP_VER_ISAPNP_BIT (0x20)
113 #define ASC_CHIP_VER_ASYN_BUG (0x21)
114 #define ASC_CHIP_VER_PCI 0x08
115 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
116 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
117 #define ASC_CHIP_MIN_VER_EISA (0x41)
118 #define ASC_CHIP_MAX_VER_EISA (0x47)
119 #define ASC_CHIP_VER_EISA_BIT (0x40)
120 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
121 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
122 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
123 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL)
124
125 #define ASC_SCSI_ID_BITS 3
126 #define ASC_SCSI_TIX_TYPE uchar
127 #define ASC_ALL_DEVICE_BIT_SET 0xFF
128 #define ASC_SCSI_BIT_ID_TYPE uchar
129 #define ASC_MAX_TID 7
130 #define ASC_MAX_LUN 7
131 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
132 #define ASC_MAX_SENSE_LEN 32
133 #define ASC_MIN_SENSE_LEN 14
134 #define ASC_SCSI_RESET_HOLD_TIME_US 60
135
136 /*
137 * Narrow boards only support 12-byte commands, while wide boards
138 * extend to 16-byte commands.
139 */
140 #define ASC_MAX_CDB_LEN 12
141 #define ADV_MAX_CDB_LEN 16
142
143 #define MS_SDTR_LEN 0x03
144 #define MS_WDTR_LEN 0x02
145
146 #define ASC_SG_LIST_PER_Q 7
147 #define QS_FREE 0x00
148 #define QS_READY 0x01
149 #define QS_DISC1 0x02
150 #define QS_DISC2 0x04
151 #define QS_BUSY 0x08
152 #define QS_ABORTED 0x40
153 #define QS_DONE 0x80
154 #define QC_NO_CALLBACK 0x01
155 #define QC_SG_SWAP_QUEUE 0x02
156 #define QC_SG_HEAD 0x04
157 #define QC_DATA_IN 0x08
158 #define QC_DATA_OUT 0x10
159 #define QC_URGENT 0x20
160 #define QC_MSG_OUT 0x40
161 #define QC_REQ_SENSE 0x80
162 #define QCSG_SG_XFER_LIST 0x02
163 #define QCSG_SG_XFER_MORE 0x04
164 #define QCSG_SG_XFER_END 0x08
165 #define QD_IN_PROGRESS 0x00
166 #define QD_NO_ERROR 0x01
167 #define QD_ABORTED_BY_HOST 0x02
168 #define QD_WITH_ERROR 0x04
169 #define QD_INVALID_REQUEST 0x80
170 #define QD_INVALID_HOST_NUM 0x81
171 #define QD_INVALID_DEVICE 0x82
172 #define QD_ERR_INTERNAL 0xFF
173 #define QHSTA_NO_ERROR 0x00
174 #define QHSTA_M_SEL_TIMEOUT 0x11
175 #define QHSTA_M_DATA_OVER_RUN 0x12
176 #define QHSTA_M_DATA_UNDER_RUN 0x12
177 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
178 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
179 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
180 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
181 #define QHSTA_D_HOST_ABORT_FAILED 0x23
182 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
183 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
184 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
185 #define QHSTA_M_WTM_TIMEOUT 0x41
186 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
187 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
188 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
189 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
190 #define QHSTA_M_BAD_TAG_CODE 0x46
191 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
192 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
193 #define QHSTA_D_LRAM_CMP_ERROR 0x81
194 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
195 #define ASC_FLAG_SCSIQ_REQ 0x01
196 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
197 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
198 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
199 #define ASC_FLAG_WIN16 0x10
200 #define ASC_FLAG_WIN32 0x20
201 #define ASC_FLAG_ISA_OVER_16MB 0x40
202 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
203 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
204 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
205 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
206 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
207 #define ASC_SCSIQ_CPY_BEG 4
208 #define ASC_SCSIQ_SGHD_CPY_BEG 2
209 #define ASC_SCSIQ_B_FWD 0
210 #define ASC_SCSIQ_B_BWD 1
211 #define ASC_SCSIQ_B_STATUS 2
212 #define ASC_SCSIQ_B_QNO 3
213 #define ASC_SCSIQ_B_CNTL 4
214 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
215 #define ASC_SCSIQ_D_DATA_ADDR 8
216 #define ASC_SCSIQ_D_DATA_CNT 12
217 #define ASC_SCSIQ_B_SENSE_LEN 20
218 #define ASC_SCSIQ_DONE_INFO_BEG 22
219 #define ASC_SCSIQ_D_SRBPTR 22
220 #define ASC_SCSIQ_B_TARGET_IX 26
221 #define ASC_SCSIQ_B_CDB_LEN 28
222 #define ASC_SCSIQ_B_TAG_CODE 29
223 #define ASC_SCSIQ_W_VM_ID 30
224 #define ASC_SCSIQ_DONE_STATUS 32
225 #define ASC_SCSIQ_HOST_STATUS 33
226 #define ASC_SCSIQ_SCSI_STATUS 34
227 #define ASC_SCSIQ_CDB_BEG 36
228 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
229 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
230 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
231 #define ASC_SCSIQ_B_SG_WK_QP 49
232 #define ASC_SCSIQ_B_SG_WK_IX 50
233 #define ASC_SCSIQ_W_ALT_DC1 52
234 #define ASC_SCSIQ_B_LIST_CNT 6
235 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
236 #define ASC_SGQ_B_SG_CNTL 4
237 #define ASC_SGQ_B_SG_HEAD_QP 5
238 #define ASC_SGQ_B_SG_LIST_CNT 6
239 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
240 #define ASC_SGQ_LIST_BEG 8
241 #define ASC_DEF_SCSI1_QNG 4
242 #define ASC_MAX_SCSI1_QNG 4
243 #define ASC_DEF_SCSI2_QNG 16
244 #define ASC_MAX_SCSI2_QNG 32
245 #define ASC_TAG_CODE_MASK 0x23
246 #define ASC_STOP_REQ_RISC_STOP 0x01
247 #define ASC_STOP_ACK_RISC_STOP 0x03
248 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
249 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
250 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
251 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
252 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
253 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
254 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
255 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
256 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
257 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
258
259 typedef struct asc_scsiq_1 {
260 uchar status;
261 uchar q_no;
262 uchar cntl;
263 uchar sg_queue_cnt;
264 uchar target_id;
265 uchar target_lun;
266 __le32 data_addr;
267 __le32 data_cnt;
268 __le32 sense_addr;
269 uchar sense_len;
270 uchar extra_bytes;
271 } ASC_SCSIQ_1;
272
273 typedef struct asc_scsiq_2 {
274 u32 srb_tag;
275 uchar target_ix;
276 uchar flag;
277 uchar cdb_len;
278 uchar tag_code;
279 ushort vm_id;
280 } ASC_SCSIQ_2;
281
282 typedef struct asc_scsiq_3 {
283 uchar done_stat;
284 uchar host_stat;
285 uchar scsi_stat;
286 uchar scsi_msg;
287 } ASC_SCSIQ_3;
288
289 typedef struct asc_scsiq_4 {
290 uchar cdb[ASC_MAX_CDB_LEN];
291 uchar y_first_sg_list_qp;
292 uchar y_working_sg_qp;
293 uchar y_working_sg_ix;
294 uchar y_res;
295 ushort x_req_count;
296 ushort x_reconnect_rtn;
297 __le32 x_saved_data_addr;
298 __le32 x_saved_data_cnt;
299 } ASC_SCSIQ_4;
300
301 typedef struct asc_q_done_info {
302 ASC_SCSIQ_2 d2;
303 ASC_SCSIQ_3 d3;
304 uchar q_status;
305 uchar q_no;
306 uchar cntl;
307 uchar sense_len;
308 uchar extra_bytes;
309 uchar res;
310 u32 remain_bytes;
311 } ASC_QDONE_INFO;
312
313 typedef struct asc_sg_list {
314 __le32 addr;
315 __le32 bytes;
316 } ASC_SG_LIST;
317
318 typedef struct asc_sg_head {
319 ushort entry_cnt;
320 ushort queue_cnt;
321 ushort entry_to_copy;
322 ushort res;
323 ASC_SG_LIST sg_list[0];
324 } ASC_SG_HEAD;
325
326 typedef struct asc_scsi_q {
327 ASC_SCSIQ_1 q1;
328 ASC_SCSIQ_2 q2;
329 uchar *cdbptr;
330 ASC_SG_HEAD *sg_head;
331 ushort remain_sg_entry_cnt;
332 ushort next_sg_index;
333 } ASC_SCSI_Q;
334
335 typedef struct asc_scsi_bios_req_q {
336 ASC_SCSIQ_1 r1;
337 ASC_SCSIQ_2 r2;
338 uchar *cdbptr;
339 ASC_SG_HEAD *sg_head;
340 uchar *sense_ptr;
341 ASC_SCSIQ_3 r3;
342 uchar cdb[ASC_MAX_CDB_LEN];
343 uchar sense[ASC_MIN_SENSE_LEN];
344 } ASC_SCSI_BIOS_REQ_Q;
345
346 typedef struct asc_risc_q {
347 uchar fwd;
348 uchar bwd;
349 ASC_SCSIQ_1 i1;
350 ASC_SCSIQ_2 i2;
351 ASC_SCSIQ_3 i3;
352 ASC_SCSIQ_4 i4;
353 } ASC_RISC_Q;
354
355 typedef struct asc_sg_list_q {
356 uchar seq_no;
357 uchar q_no;
358 uchar cntl;
359 uchar sg_head_qp;
360 uchar sg_list_cnt;
361 uchar sg_cur_list_cnt;
362 } ASC_SG_LIST_Q;
363
364 typedef struct asc_risc_sg_list_q {
365 uchar fwd;
366 uchar bwd;
367 ASC_SG_LIST_Q sg;
368 ASC_SG_LIST sg_list[7];
369 } ASC_RISC_SG_LIST_Q;
370
371 #define ASCQ_ERR_Q_STATUS 0x0D
372 #define ASCQ_ERR_CUR_QNG 0x17
373 #define ASCQ_ERR_SG_Q_LINKS 0x18
374 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
375 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
376 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
377
378 /*
379 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
380 */
381 #define ASC_WARN_NO_ERROR 0x0000
382 #define ASC_WARN_IO_PORT_ROTATE 0x0001
383 #define ASC_WARN_EEPROM_CHKSUM 0x0002
384 #define ASC_WARN_IRQ_MODIFIED 0x0004
385 #define ASC_WARN_AUTO_CONFIG 0x0008
386 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
387 #define ASC_WARN_EEPROM_RECOVER 0x0020
388 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
389
390 /*
391 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
392 */
393 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
394 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
395 #define ASC_IERR_SET_PC_ADDR 0x0004
396 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
397 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
398 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
399 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
400 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
401 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
402 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
403 #define ASC_IERR_NO_BUS_TYPE 0x0400
404 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
405 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
406 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
407
408 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
409 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
410 #define ASC_MIN_FREE_Q (0x02)
411 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
412 #define ASC_MAX_TOTAL_QNG 240
413 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
414 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
415 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
416 #define ASC_MAX_INRAM_TAG_QNG 16
417 #define ASC_IOADR_GAP 0x10
418 #define ASC_SYN_MAX_OFFSET 0x0F
419 #define ASC_DEF_SDTR_OFFSET 0x0F
420 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
421 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
422
423 /* The narrow chip only supports a limited selection of transfer rates.
424 * These are encoded in the range 0..7 or 0..15 depending whether the chip
425 * is Ultra-capable or not. These tables let us convert from one to the other.
426 */
427 static const unsigned char asc_syn_xfer_period[8] = {
428 25, 30, 35, 40, 50, 60, 70, 85
429 };
430
431 static const unsigned char asc_syn_ultra_xfer_period[16] = {
432 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
433 };
434
435 typedef struct ext_msg {
436 uchar msg_type;
437 uchar msg_len;
438 uchar msg_req;
439 union {
440 struct {
441 uchar sdtr_xfer_period;
442 uchar sdtr_req_ack_offset;
443 } sdtr;
444 struct {
445 uchar wdtr_width;
446 } wdtr;
447 struct {
448 uchar mdp_b3;
449 uchar mdp_b2;
450 uchar mdp_b1;
451 uchar mdp_b0;
452 } mdp;
453 } u_ext_msg;
454 uchar res;
455 } EXT_MSG;
456
457 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
458 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
459 #define wdtr_width u_ext_msg.wdtr.wdtr_width
460 #define mdp_b3 u_ext_msg.mdp_b3
461 #define mdp_b2 u_ext_msg.mdp_b2
462 #define mdp_b1 u_ext_msg.mdp_b1
463 #define mdp_b0 u_ext_msg.mdp_b0
464
465 typedef struct asc_dvc_cfg {
466 ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
467 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
468 ASC_SCSI_BIT_ID_TYPE disc_enable;
469 ASC_SCSI_BIT_ID_TYPE sdtr_enable;
470 uchar chip_scsi_id;
471 uchar isa_dma_speed;
472 uchar isa_dma_channel;
473 uchar chip_version;
474 ushort mcode_date;
475 ushort mcode_version;
476 uchar max_tag_qng[ASC_MAX_TID + 1];
477 uchar sdtr_period_offset[ASC_MAX_TID + 1];
478 uchar adapter_info[6];
479 } ASC_DVC_CFG;
480
481 #define ASC_DEF_DVC_CNTL 0xFFFF
482 #define ASC_DEF_CHIP_SCSI_ID 7
483 #define ASC_DEF_ISA_DMA_SPEED 4
484 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
485 #define ASC_INIT_STATE_END_GET_CFG 0x0002
486 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
487 #define ASC_INIT_STATE_END_SET_CFG 0x0008
488 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
489 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
490 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
491 #define ASC_INIT_STATE_END_INQUIRY 0x0080
492 #define ASC_INIT_RESET_SCSI_DONE 0x0100
493 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
494 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
495 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
496 #define ASC_MIN_TAGGED_CMD 7
497 #define ASC_MAX_SCSI_RESET_WAIT 30
498 #define ASC_OVERRUN_BSIZE 64
499
500 struct asc_dvc_var; /* Forward Declaration. */
501
502 typedef struct asc_dvc_var {
503 PortAddr iop_base;
504 ushort err_code;
505 ushort dvc_cntl;
506 ushort bug_fix_cntl;
507 ushort bus_type;
508 ASC_SCSI_BIT_ID_TYPE init_sdtr;
509 ASC_SCSI_BIT_ID_TYPE sdtr_done;
510 ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
511 ASC_SCSI_BIT_ID_TYPE unit_not_ready;
512 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
513 ASC_SCSI_BIT_ID_TYPE start_motor;
514 uchar *overrun_buf;
515 dma_addr_t overrun_dma;
516 uchar scsi_reset_wait;
517 uchar chip_no;
518 bool is_in_int;
519 uchar max_total_qng;
520 uchar cur_total_qng;
521 uchar in_critical_cnt;
522 uchar last_q_shortage;
523 ushort init_state;
524 uchar cur_dvc_qng[ASC_MAX_TID + 1];
525 uchar max_dvc_qng[ASC_MAX_TID + 1];
526 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
527 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
528 const uchar *sdtr_period_tbl;
529 ASC_DVC_CFG *cfg;
530 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
531 char redo_scam;
532 ushort res2;
533 uchar dos_int13_table[ASC_MAX_TID + 1];
534 unsigned int max_dma_count;
535 ASC_SCSI_BIT_ID_TYPE no_scam;
536 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
537 uchar min_sdtr_index;
538 uchar max_sdtr_index;
539 struct asc_board *drv_ptr;
540 unsigned int uc_break;
541 } ASC_DVC_VAR;
542
543 typedef struct asc_dvc_inq_info {
544 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
545 } ASC_DVC_INQ_INFO;
546
547 typedef struct asc_cap_info {
548 u32 lba;
549 u32 blk_size;
550 } ASC_CAP_INFO;
551
552 typedef struct asc_cap_info_array {
553 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
554 } ASC_CAP_INFO_ARRAY;
555
556 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
557 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
558 #define ASC_CNTL_INITIATOR (ushort)0x0001
559 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
560 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
561 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
562 #define ASC_CNTL_NO_SCAM (ushort)0x0010
563 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
564 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
565 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
566 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
567 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
568 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
569 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
570 #define ASC_CNTL_BURST_MODE (ushort)0x2000
571 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
572 #define ASC_EEP_DVC_CFG_BEG_VL 2
573 #define ASC_EEP_MAX_DVC_ADDR_VL 15
574 #define ASC_EEP_DVC_CFG_BEG 32
575 #define ASC_EEP_MAX_DVC_ADDR 45
576 #define ASC_EEP_MAX_RETRY 20
577
578 /*
579 * These macros keep the chip SCSI id and ISA DMA speed
580 * bitfields in board order. C bitfields aren't portable
581 * between big and little-endian platforms so they are
582 * not used.
583 */
584
585 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
586 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
587 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
588 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
589 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
590 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
591
592 typedef struct asceep_config {
593 ushort cfg_lsw;
594 ushort cfg_msw;
595 uchar init_sdtr;
596 uchar disc_enable;
597 uchar use_cmd_qng;
598 uchar start_motor;
599 uchar max_total_qng;
600 uchar max_tag_qng;
601 uchar bios_scan;
602 uchar power_up_wait;
603 uchar no_scam;
604 uchar id_speed; /* low order 4 bits is chip scsi id */
605 /* high order 4 bits is isa dma speed */
606 uchar dos_int13_table[ASC_MAX_TID + 1];
607 uchar adapter_info[6];
608 ushort cntl;
609 ushort chksum;
610 } ASCEEP_CONFIG;
611
612 #define ASC_EEP_CMD_READ 0x80
613 #define ASC_EEP_CMD_WRITE 0x40
614 #define ASC_EEP_CMD_WRITE_ABLE 0x30
615 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
616 #define ASCV_MSGOUT_BEG 0x0000
617 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
618 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
619 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
620 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
621 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
622 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
623 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
624 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
625 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
626 #define ASCV_BREAK_ADDR (ushort)0x0028
627 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
628 #define ASCV_BREAK_CONTROL (ushort)0x002C
629 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
630
631 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
632 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
633 #define ASCV_MCODE_SIZE_W (ushort)0x0034
634 #define ASCV_STOP_CODE_B (ushort)0x0036
635 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
636 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
637 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
638 #define ASCV_HALTCODE_W (ushort)0x0040
639 #define ASCV_CHKSUM_W (ushort)0x0042
640 #define ASCV_MC_DATE_W (ushort)0x0044
641 #define ASCV_MC_VER_W (ushort)0x0046
642 #define ASCV_NEXTRDY_B (ushort)0x0048
643 #define ASCV_DONENEXT_B (ushort)0x0049
644 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
645 #define ASCV_SCSIBUSY_B (ushort)0x004B
646 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
647 #define ASCV_CURCDB_B (ushort)0x004D
648 #define ASCV_RCLUN_B (ushort)0x004E
649 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
650 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
651 #define ASCV_DISC_ENABLE_B (ushort)0x0052
652 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
653 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
654 #define ASCV_MCODE_CNTL_B (ushort)0x0056
655 #define ASCV_NULL_TARGET_B (ushort)0x0057
656 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
657 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
658 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
659 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
660 #define ASCV_HOST_FLAG_B (ushort)0x005D
661 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
662 #define ASCV_VER_SERIAL_B (ushort)0x0065
663 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
664 #define ASCV_WTM_FLAG_B (ushort)0x0068
665 #define ASCV_RISC_FLAG_B (ushort)0x006A
666 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
667 #define ASC_HOST_FLAG_IN_ISR 0x01
668 #define ASC_HOST_FLAG_ACK_INT 0x02
669 #define ASC_RISC_FLAG_GEN_INT 0x01
670 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
671 #define IOP_CTRL (0x0F)
672 #define IOP_STATUS (0x0E)
673 #define IOP_INT_ACK IOP_STATUS
674 #define IOP_REG_IFC (0x0D)
675 #define IOP_SYN_OFFSET (0x0B)
676 #define IOP_EXTRA_CONTROL (0x0D)
677 #define IOP_REG_PC (0x0C)
678 #define IOP_RAM_ADDR (0x0A)
679 #define IOP_RAM_DATA (0x08)
680 #define IOP_EEP_DATA (0x06)
681 #define IOP_EEP_CMD (0x07)
682 #define IOP_VERSION (0x03)
683 #define IOP_CONFIG_HIGH (0x04)
684 #define IOP_CONFIG_LOW (0x02)
685 #define IOP_SIG_BYTE (0x01)
686 #define IOP_SIG_WORD (0x00)
687 #define IOP_REG_DC1 (0x0E)
688 #define IOP_REG_DC0 (0x0C)
689 #define IOP_REG_SB (0x0B)
690 #define IOP_REG_DA1 (0x0A)
691 #define IOP_REG_DA0 (0x08)
692 #define IOP_REG_SC (0x09)
693 #define IOP_DMA_SPEED (0x07)
694 #define IOP_REG_FLAG (0x07)
695 #define IOP_FIFO_H (0x06)
696 #define IOP_FIFO_L (0x04)
697 #define IOP_REG_ID (0x05)
698 #define IOP_REG_QP (0x03)
699 #define IOP_REG_IH (0x02)
700 #define IOP_REG_IX (0x01)
701 #define IOP_REG_AX (0x00)
702 #define IFC_REG_LOCK (0x00)
703 #define IFC_REG_UNLOCK (0x09)
704 #define IFC_WR_EN_FILTER (0x10)
705 #define IFC_RD_NO_EEPROM (0x10)
706 #define IFC_SLEW_RATE (0x20)
707 #define IFC_ACT_NEG (0x40)
708 #define IFC_INP_FILTER (0x80)
709 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
710 #define SC_SEL (uchar)(0x80)
711 #define SC_BSY (uchar)(0x40)
712 #define SC_ACK (uchar)(0x20)
713 #define SC_REQ (uchar)(0x10)
714 #define SC_ATN (uchar)(0x08)
715 #define SC_IO (uchar)(0x04)
716 #define SC_CD (uchar)(0x02)
717 #define SC_MSG (uchar)(0x01)
718 #define SEC_SCSI_CTL (uchar)(0x80)
719 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
720 #define SEC_SLEW_RATE (uchar)(0x20)
721 #define SEC_ENABLE_FILTER (uchar)(0x10)
722 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
723 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
724 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
725 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
726 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
727 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
728 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
729 #define ASC_MAX_QNO 0xF8
730 #define ASC_DATA_SEC_BEG (ushort)0x0080
731 #define ASC_DATA_SEC_END (ushort)0x0080
732 #define ASC_CODE_SEC_BEG (ushort)0x0080
733 #define ASC_CODE_SEC_END (ushort)0x0080
734 #define ASC_QADR_BEG (0x4000)
735 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
736 #define ASC_QADR_END (ushort)0x7FFF
737 #define ASC_QLAST_ADR (ushort)0x7FC0
738 #define ASC_QBLK_SIZE 0x40
739 #define ASC_BIOS_DATA_QBEG 0xF8
740 #define ASC_MIN_ACTIVE_QNO 0x01
741 #define ASC_QLINK_END 0xFF
742 #define ASC_EEPROM_WORDS 0x10
743 #define ASC_MAX_MGS_LEN 0x10
744 #define ASC_BIOS_ADDR_DEF 0xDC00
745 #define ASC_BIOS_SIZE 0x3800
746 #define ASC_BIOS_RAM_OFF 0x3800
747 #define ASC_BIOS_RAM_SIZE 0x800
748 #define ASC_BIOS_MIN_ADDR 0xC000
749 #define ASC_BIOS_MAX_ADDR 0xEC00
750 #define ASC_BIOS_BANK_SIZE 0x0400
751 #define ASC_MCODE_START_ADDR 0x0080
752 #define ASC_CFG0_HOST_INT_ON 0x0020
753 #define ASC_CFG0_BIOS_ON 0x0040
754 #define ASC_CFG0_VERA_BURST_ON 0x0080
755 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
756 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
757 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
758 #define ASC_CFG_MSW_CLR_MASK 0x3080
759 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
760 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
761 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
762 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
763 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
764 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
765 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
766 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
767 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
768 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
769 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
770 #define CSW_HALTED (ASC_CS_TYPE)0x0010
771 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
772 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
773 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
774 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
775 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
776 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
777 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
778 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
779 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
780 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
781 #define CC_CHIP_RESET (uchar)0x80
782 #define CC_SCSI_RESET (uchar)0x40
783 #define CC_HALT (uchar)0x20
784 #define CC_SINGLE_STEP (uchar)0x10
785 #define CC_DMA_ABLE (uchar)0x08
786 #define CC_TEST (uchar)0x04
787 #define CC_BANK_ONE (uchar)0x02
788 #define CC_DIAG (uchar)0x01
789 #define ASC_1000_ID0W 0x04C1
790 #define ASC_1000_ID0W_FIX 0x00C1
791 #define ASC_1000_ID1B 0x25
792 #define ASC_EISA_REV_IOP_MASK (0x0C83)
793 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
794 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
795 #define INS_HALTINT (ushort)0x6281
796 #define INS_HALT (ushort)0x6280
797 #define INS_SINT (ushort)0x6200
798 #define INS_RFLAG_WTM (ushort)0x7380
799 #define ASC_MC_SAVE_CODE_WSIZE 0x500
800 #define ASC_MC_SAVE_DATA_WSIZE 0x40
801
802 typedef struct asc_mc_saved {
803 ushort data[ASC_MC_SAVE_DATA_WSIZE];
804 ushort code[ASC_MC_SAVE_CODE_WSIZE];
805 } ASC_MC_SAVED;
806
807 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
808 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
809 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
810 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
811 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
812 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
813 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
814 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
815 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
816 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
817 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
818 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
819 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
820 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
821 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
822 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
823 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
824 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
825 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
826 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
827 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
828 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
829 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
830 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
831 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
832 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
833 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
834 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
835 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
836 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
837 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
838 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
839 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
840 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
841 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
842 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
843 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
844 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
845 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
846 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
847 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
848 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
849 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
850 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
851 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
852 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
853 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
854 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
855 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
856 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
857 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
858 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
859 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
860 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
861 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
862 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
863 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
864 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
865 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
866 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
867 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
868 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
869 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
870 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
871 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
872 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
873 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
874
875 #define AdvPortAddr void __iomem * /* Virtual memory address size */
876
877 /*
878 * Define Adv Library required memory access macros.
879 */
880 #define ADV_MEM_READB(addr) readb(addr)
881 #define ADV_MEM_READW(addr) readw(addr)
882 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
883 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
884 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
885
886 /*
887 * Define total number of simultaneous maximum element scatter-gather
888 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
889 * maximum number of outstanding commands per wide host adapter. Each
890 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
891 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
892 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
893 * structures or 255 scatter-gather elements.
894 */
895 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
896
897 /*
898 * Define maximum number of scatter-gather elements per request.
899 */
900 #define ADV_MAX_SG_LIST 255
901 #define NO_OF_SG_PER_BLOCK 15
902
903 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
904 #define ADV_EEP_DVC_CFG_END (0x15)
905 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
906 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
907
908 #define ADV_EEP_DELAY_MS 100
909
910 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
911 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
912 /*
913 * For the ASC3550 Bit 13 is Termination Polarity control bit.
914 * For later ICs Bit 13 controls whether the CIS (Card Information
915 * Service Section) is loaded from EEPROM.
916 */
917 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
918 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
919 /*
920 * ASC38C1600 Bit 11
921 *
922 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
923 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
924 * Function 0 will specify INT B.
925 *
926 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
927 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
928 * Function 1 will specify INT A.
929 */
930 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
931
932 typedef struct adveep_3550_config {
933 /* Word Offset, Description */
934
935 ushort cfg_lsw; /* 00 power up initialization */
936 /* bit 13 set - Term Polarity Control */
937 /* bit 14 set - BIOS Enable */
938 /* bit 15 set - Big Endian Mode */
939 ushort cfg_msw; /* 01 unused */
940 ushort disc_enable; /* 02 disconnect enable */
941 ushort wdtr_able; /* 03 Wide DTR able */
942 ushort sdtr_able; /* 04 Synchronous DTR able */
943 ushort start_motor; /* 05 send start up motor */
944 ushort tagqng_able; /* 06 tag queuing able */
945 ushort bios_scan; /* 07 BIOS device control */
946 ushort scam_tolerant; /* 08 no scam */
947
948 uchar adapter_scsi_id; /* 09 Host Adapter ID */
949 uchar bios_boot_delay; /* power up wait */
950
951 uchar scsi_reset_delay; /* 10 reset delay */
952 uchar bios_id_lun; /* first boot device scsi id & lun */
953 /* high nibble is lun */
954 /* low nibble is scsi id */
955
956 uchar termination; /* 11 0 - automatic */
957 /* 1 - low off / high off */
958 /* 2 - low off / high on */
959 /* 3 - low on / high on */
960 /* There is no low on / high off */
961
962 uchar reserved1; /* reserved byte (not used) */
963
964 ushort bios_ctrl; /* 12 BIOS control bits */
965 /* bit 0 BIOS don't act as initiator. */
966 /* bit 1 BIOS > 1 GB support */
967 /* bit 2 BIOS > 2 Disk Support */
968 /* bit 3 BIOS don't support removables */
969 /* bit 4 BIOS support bootable CD */
970 /* bit 5 BIOS scan enabled */
971 /* bit 6 BIOS support multiple LUNs */
972 /* bit 7 BIOS display of message */
973 /* bit 8 SCAM disabled */
974 /* bit 9 Reset SCSI bus during init. */
975 /* bit 10 */
976 /* bit 11 No verbose initialization. */
977 /* bit 12 SCSI parity enabled */
978 /* bit 13 */
979 /* bit 14 */
980 /* bit 15 */
981 ushort ultra_able; /* 13 ULTRA speed able */
982 ushort reserved2; /* 14 reserved */
983 uchar max_host_qng; /* 15 maximum host queuing */
984 uchar max_dvc_qng; /* maximum per device queuing */
985 ushort dvc_cntl; /* 16 control bit for driver */
986 ushort bug_fix; /* 17 control bit for bug fix */
987 ushort serial_number_word1; /* 18 Board serial number word 1 */
988 ushort serial_number_word2; /* 19 Board serial number word 2 */
989 ushort serial_number_word3; /* 20 Board serial number word 3 */
990 ushort check_sum; /* 21 EEP check sum */
991 uchar oem_name[16]; /* 22 OEM name */
992 ushort dvc_err_code; /* 30 last device driver error code */
993 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
994 ushort adv_err_addr; /* 32 last uc error address */
995 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
996 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
997 ushort saved_adv_err_addr; /* 35 saved last uc error address */
998 ushort num_of_err; /* 36 number of error */
999 } ADVEEP_3550_CONFIG;
1000
1001 typedef struct adveep_38C0800_config {
1002 /* Word Offset, Description */
1003
1004 ushort cfg_lsw; /* 00 power up initialization */
1005 /* bit 13 set - Load CIS */
1006 /* bit 14 set - BIOS Enable */
1007 /* bit 15 set - Big Endian Mode */
1008 ushort cfg_msw; /* 01 unused */
1009 ushort disc_enable; /* 02 disconnect enable */
1010 ushort wdtr_able; /* 03 Wide DTR able */
1011 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1012 ushort start_motor; /* 05 send start up motor */
1013 ushort tagqng_able; /* 06 tag queuing able */
1014 ushort bios_scan; /* 07 BIOS device control */
1015 ushort scam_tolerant; /* 08 no scam */
1016
1017 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1018 uchar bios_boot_delay; /* power up wait */
1019
1020 uchar scsi_reset_delay; /* 10 reset delay */
1021 uchar bios_id_lun; /* first boot device scsi id & lun */
1022 /* high nibble is lun */
1023 /* low nibble is scsi id */
1024
1025 uchar termination_se; /* 11 0 - automatic */
1026 /* 1 - low off / high off */
1027 /* 2 - low off / high on */
1028 /* 3 - low on / high on */
1029 /* There is no low on / high off */
1030
1031 uchar termination_lvd; /* 11 0 - automatic */
1032 /* 1 - low off / high off */
1033 /* 2 - low off / high on */
1034 /* 3 - low on / high on */
1035 /* There is no low on / high off */
1036
1037 ushort bios_ctrl; /* 12 BIOS control bits */
1038 /* bit 0 BIOS don't act as initiator. */
1039 /* bit 1 BIOS > 1 GB support */
1040 /* bit 2 BIOS > 2 Disk Support */
1041 /* bit 3 BIOS don't support removables */
1042 /* bit 4 BIOS support bootable CD */
1043 /* bit 5 BIOS scan enabled */
1044 /* bit 6 BIOS support multiple LUNs */
1045 /* bit 7 BIOS display of message */
1046 /* bit 8 SCAM disabled */
1047 /* bit 9 Reset SCSI bus during init. */
1048 /* bit 10 */
1049 /* bit 11 No verbose initialization. */
1050 /* bit 12 SCSI parity enabled */
1051 /* bit 13 */
1052 /* bit 14 */
1053 /* bit 15 */
1054 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1055 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1056 uchar max_host_qng; /* 15 maximum host queueing */
1057 uchar max_dvc_qng; /* maximum per device queuing */
1058 ushort dvc_cntl; /* 16 control bit for driver */
1059 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1060 ushort serial_number_word1; /* 18 Board serial number word 1 */
1061 ushort serial_number_word2; /* 19 Board serial number word 2 */
1062 ushort serial_number_word3; /* 20 Board serial number word 3 */
1063 ushort check_sum; /* 21 EEP check sum */
1064 uchar oem_name[16]; /* 22 OEM name */
1065 ushort dvc_err_code; /* 30 last device driver error code */
1066 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1067 ushort adv_err_addr; /* 32 last uc error address */
1068 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1069 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1070 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1071 ushort reserved36; /* 36 reserved */
1072 ushort reserved37; /* 37 reserved */
1073 ushort reserved38; /* 38 reserved */
1074 ushort reserved39; /* 39 reserved */
1075 ushort reserved40; /* 40 reserved */
1076 ushort reserved41; /* 41 reserved */
1077 ushort reserved42; /* 42 reserved */
1078 ushort reserved43; /* 43 reserved */
1079 ushort reserved44; /* 44 reserved */
1080 ushort reserved45; /* 45 reserved */
1081 ushort reserved46; /* 46 reserved */
1082 ushort reserved47; /* 47 reserved */
1083 ushort reserved48; /* 48 reserved */
1084 ushort reserved49; /* 49 reserved */
1085 ushort reserved50; /* 50 reserved */
1086 ushort reserved51; /* 51 reserved */
1087 ushort reserved52; /* 52 reserved */
1088 ushort reserved53; /* 53 reserved */
1089 ushort reserved54; /* 54 reserved */
1090 ushort reserved55; /* 55 reserved */
1091 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1092 ushort cisprt_msw; /* 57 CIS PTR MSW */
1093 ushort subsysvid; /* 58 SubSystem Vendor ID */
1094 ushort subsysid; /* 59 SubSystem ID */
1095 ushort reserved60; /* 60 reserved */
1096 ushort reserved61; /* 61 reserved */
1097 ushort reserved62; /* 62 reserved */
1098 ushort reserved63; /* 63 reserved */
1099 } ADVEEP_38C0800_CONFIG;
1100
1101 typedef struct adveep_38C1600_config {
1102 /* Word Offset, Description */
1103
1104 ushort cfg_lsw; /* 00 power up initialization */
1105 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1106 /* clear - Func. 0 INTA, Func. 1 INTB */
1107 /* bit 13 set - Load CIS */
1108 /* bit 14 set - BIOS Enable */
1109 /* bit 15 set - Big Endian Mode */
1110 ushort cfg_msw; /* 01 unused */
1111 ushort disc_enable; /* 02 disconnect enable */
1112 ushort wdtr_able; /* 03 Wide DTR able */
1113 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */
1114 ushort start_motor; /* 05 send start up motor */
1115 ushort tagqng_able; /* 06 tag queuing able */
1116 ushort bios_scan; /* 07 BIOS device control */
1117 ushort scam_tolerant; /* 08 no scam */
1118
1119 uchar adapter_scsi_id; /* 09 Host Adapter ID */
1120 uchar bios_boot_delay; /* power up wait */
1121
1122 uchar scsi_reset_delay; /* 10 reset delay */
1123 uchar bios_id_lun; /* first boot device scsi id & lun */
1124 /* high nibble is lun */
1125 /* low nibble is scsi id */
1126
1127 uchar termination_se; /* 11 0 - automatic */
1128 /* 1 - low off / high off */
1129 /* 2 - low off / high on */
1130 /* 3 - low on / high on */
1131 /* There is no low on / high off */
1132
1133 uchar termination_lvd; /* 11 0 - automatic */
1134 /* 1 - low off / high off */
1135 /* 2 - low off / high on */
1136 /* 3 - low on / high on */
1137 /* There is no low on / high off */
1138
1139 ushort bios_ctrl; /* 12 BIOS control bits */
1140 /* bit 0 BIOS don't act as initiator. */
1141 /* bit 1 BIOS > 1 GB support */
1142 /* bit 2 BIOS > 2 Disk Support */
1143 /* bit 3 BIOS don't support removables */
1144 /* bit 4 BIOS support bootable CD */
1145 /* bit 5 BIOS scan enabled */
1146 /* bit 6 BIOS support multiple LUNs */
1147 /* bit 7 BIOS display of message */
1148 /* bit 8 SCAM disabled */
1149 /* bit 9 Reset SCSI bus during init. */
1150 /* bit 10 Basic Integrity Checking disabled */
1151 /* bit 11 No verbose initialization. */
1152 /* bit 12 SCSI parity enabled */
1153 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1154 /* bit 14 */
1155 /* bit 15 */
1156 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */
1157 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */
1158 uchar max_host_qng; /* 15 maximum host queueing */
1159 uchar max_dvc_qng; /* maximum per device queuing */
1160 ushort dvc_cntl; /* 16 control bit for driver */
1161 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */
1162 ushort serial_number_word1; /* 18 Board serial number word 1 */
1163 ushort serial_number_word2; /* 19 Board serial number word 2 */
1164 ushort serial_number_word3; /* 20 Board serial number word 3 */
1165 ushort check_sum; /* 21 EEP check sum */
1166 uchar oem_name[16]; /* 22 OEM name */
1167 ushort dvc_err_code; /* 30 last device driver error code */
1168 ushort adv_err_code; /* 31 last uc and Adv Lib error code */
1169 ushort adv_err_addr; /* 32 last uc error address */
1170 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */
1171 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */
1172 ushort saved_adv_err_addr; /* 35 saved last uc error address */
1173 ushort reserved36; /* 36 reserved */
1174 ushort reserved37; /* 37 reserved */
1175 ushort reserved38; /* 38 reserved */
1176 ushort reserved39; /* 39 reserved */
1177 ushort reserved40; /* 40 reserved */
1178 ushort reserved41; /* 41 reserved */
1179 ushort reserved42; /* 42 reserved */
1180 ushort reserved43; /* 43 reserved */
1181 ushort reserved44; /* 44 reserved */
1182 ushort reserved45; /* 45 reserved */
1183 ushort reserved46; /* 46 reserved */
1184 ushort reserved47; /* 47 reserved */
1185 ushort reserved48; /* 48 reserved */
1186 ushort reserved49; /* 49 reserved */
1187 ushort reserved50; /* 50 reserved */
1188 ushort reserved51; /* 51 reserved */
1189 ushort reserved52; /* 52 reserved */
1190 ushort reserved53; /* 53 reserved */
1191 ushort reserved54; /* 54 reserved */
1192 ushort reserved55; /* 55 reserved */
1193 ushort cisptr_lsw; /* 56 CIS PTR LSW */
1194 ushort cisprt_msw; /* 57 CIS PTR MSW */
1195 ushort subsysvid; /* 58 SubSystem Vendor ID */
1196 ushort subsysid; /* 59 SubSystem ID */
1197 ushort reserved60; /* 60 reserved */
1198 ushort reserved61; /* 61 reserved */
1199 ushort reserved62; /* 62 reserved */
1200 ushort reserved63; /* 63 reserved */
1201 } ADVEEP_38C1600_CONFIG;
1202
1203 /*
1204 * EEPROM Commands
1205 */
1206 #define ASC_EEP_CMD_DONE 0x0200
1207
1208 /* bios_ctrl */
1209 #define BIOS_CTRL_BIOS 0x0001
1210 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1211 #define BIOS_CTRL_GT_2_DISK 0x0004
1212 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1213 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1214 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1215 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1216 #define BIOS_CTRL_NO_SCAM 0x0100
1217 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1218 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1219 #define BIOS_CTRL_SCSI_PARITY 0x1000
1220 #define BIOS_CTRL_AIPP_DIS 0x2000
1221
1222 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1223
1224 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1225
1226 /*
1227 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1228 * a special 16K Adv Library and Microcode version. After the issue is
1229 * resolved, should restore 32K support.
1230 *
1231 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1232 */
1233 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1234
1235 /*
1236 * Byte I/O register address from base of 'iop_base'.
1237 */
1238 #define IOPB_INTR_STATUS_REG 0x00
1239 #define IOPB_CHIP_ID_1 0x01
1240 #define IOPB_INTR_ENABLES 0x02
1241 #define IOPB_CHIP_TYPE_REV 0x03
1242 #define IOPB_RES_ADDR_4 0x04
1243 #define IOPB_RES_ADDR_5 0x05
1244 #define IOPB_RAM_DATA 0x06
1245 #define IOPB_RES_ADDR_7 0x07
1246 #define IOPB_FLAG_REG 0x08
1247 #define IOPB_RES_ADDR_9 0x09
1248 #define IOPB_RISC_CSR 0x0A
1249 #define IOPB_RES_ADDR_B 0x0B
1250 #define IOPB_RES_ADDR_C 0x0C
1251 #define IOPB_RES_ADDR_D 0x0D
1252 #define IOPB_SOFT_OVER_WR 0x0E
1253 #define IOPB_RES_ADDR_F 0x0F
1254 #define IOPB_MEM_CFG 0x10
1255 #define IOPB_RES_ADDR_11 0x11
1256 #define IOPB_GPIO_DATA 0x12
1257 #define IOPB_RES_ADDR_13 0x13
1258 #define IOPB_FLASH_PAGE 0x14
1259 #define IOPB_RES_ADDR_15 0x15
1260 #define IOPB_GPIO_CNTL 0x16
1261 #define IOPB_RES_ADDR_17 0x17
1262 #define IOPB_FLASH_DATA 0x18
1263 #define IOPB_RES_ADDR_19 0x19
1264 #define IOPB_RES_ADDR_1A 0x1A
1265 #define IOPB_RES_ADDR_1B 0x1B
1266 #define IOPB_RES_ADDR_1C 0x1C
1267 #define IOPB_RES_ADDR_1D 0x1D
1268 #define IOPB_RES_ADDR_1E 0x1E
1269 #define IOPB_RES_ADDR_1F 0x1F
1270 #define IOPB_DMA_CFG0 0x20
1271 #define IOPB_DMA_CFG1 0x21
1272 #define IOPB_TICKLE 0x22
1273 #define IOPB_DMA_REG_WR 0x23
1274 #define IOPB_SDMA_STATUS 0x24
1275 #define IOPB_SCSI_BYTE_CNT 0x25
1276 #define IOPB_HOST_BYTE_CNT 0x26
1277 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1278 #define IOPB_BYTE_TO_XFER_0 0x28
1279 #define IOPB_BYTE_TO_XFER_1 0x29
1280 #define IOPB_BYTE_TO_XFER_2 0x2A
1281 #define IOPB_BYTE_TO_XFER_3 0x2B
1282 #define IOPB_ACC_GRP 0x2C
1283 #define IOPB_RES_ADDR_2D 0x2D
1284 #define IOPB_DEV_ID 0x2E
1285 #define IOPB_RES_ADDR_2F 0x2F
1286 #define IOPB_SCSI_DATA 0x30
1287 #define IOPB_RES_ADDR_31 0x31
1288 #define IOPB_RES_ADDR_32 0x32
1289 #define IOPB_SCSI_DATA_HSHK 0x33
1290 #define IOPB_SCSI_CTRL 0x34
1291 #define IOPB_RES_ADDR_35 0x35
1292 #define IOPB_RES_ADDR_36 0x36
1293 #define IOPB_RES_ADDR_37 0x37
1294 #define IOPB_RAM_BIST 0x38
1295 #define IOPB_PLL_TEST 0x39
1296 #define IOPB_PCI_INT_CFG 0x3A
1297 #define IOPB_RES_ADDR_3B 0x3B
1298 #define IOPB_RFIFO_CNT 0x3C
1299 #define IOPB_RES_ADDR_3D 0x3D
1300 #define IOPB_RES_ADDR_3E 0x3E
1301 #define IOPB_RES_ADDR_3F 0x3F
1302
1303 /*
1304 * Word I/O register address from base of 'iop_base'.
1305 */
1306 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1307 #define IOPW_CTRL_REG 0x02 /* CC */
1308 #define IOPW_RAM_ADDR 0x04 /* LA */
1309 #define IOPW_RAM_DATA 0x06 /* LD */
1310 #define IOPW_RES_ADDR_08 0x08
1311 #define IOPW_RISC_CSR 0x0A /* CSR */
1312 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1313 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1314 #define IOPW_RES_ADDR_10 0x10
1315 #define IOPW_SEL_MASK 0x12 /* SM */
1316 #define IOPW_RES_ADDR_14 0x14
1317 #define IOPW_FLASH_ADDR 0x16 /* FA */
1318 #define IOPW_RES_ADDR_18 0x18
1319 #define IOPW_EE_CMD 0x1A /* EC */
1320 #define IOPW_EE_DATA 0x1C /* ED */
1321 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1322 #define IOPW_RES_ADDR_20 0x20
1323 #define IOPW_Q_BASE 0x22 /* QB */
1324 #define IOPW_QP 0x24 /* QP */
1325 #define IOPW_IX 0x26 /* IX */
1326 #define IOPW_SP 0x28 /* SP */
1327 #define IOPW_PC 0x2A /* PC */
1328 #define IOPW_RES_ADDR_2C 0x2C
1329 #define IOPW_RES_ADDR_2E 0x2E
1330 #define IOPW_SCSI_DATA 0x30 /* SD */
1331 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1332 #define IOPW_SCSI_CTRL 0x34 /* SC */
1333 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1334 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1335 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1336 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1337 #define IOPW_RES_ADDR_3C 0x3C
1338 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1339
1340 /*
1341 * Doubleword I/O register address from base of 'iop_base'.
1342 */
1343 #define IOPDW_RES_ADDR_0 0x00
1344 #define IOPDW_RAM_DATA 0x04
1345 #define IOPDW_RES_ADDR_8 0x08
1346 #define IOPDW_RES_ADDR_C 0x0C
1347 #define IOPDW_RES_ADDR_10 0x10
1348 #define IOPDW_COMMA 0x14
1349 #define IOPDW_COMMB 0x18
1350 #define IOPDW_RES_ADDR_1C 0x1C
1351 #define IOPDW_SDMA_ADDR0 0x20
1352 #define IOPDW_SDMA_ADDR1 0x24
1353 #define IOPDW_SDMA_COUNT 0x28
1354 #define IOPDW_SDMA_ERROR 0x2C
1355 #define IOPDW_RDMA_ADDR0 0x30
1356 #define IOPDW_RDMA_ADDR1 0x34
1357 #define IOPDW_RDMA_COUNT 0x38
1358 #define IOPDW_RDMA_ERROR 0x3C
1359
1360 #define ADV_CHIP_ID_BYTE 0x25
1361 #define ADV_CHIP_ID_WORD 0x04C1
1362
1363 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1364 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1365 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1366 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1367 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1368 #define ADV_INTR_ENABLE_RST_INTR 0x20
1369 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1370 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1371
1372 #define ADV_INTR_STATUS_INTRA 0x01
1373 #define ADV_INTR_STATUS_INTRB 0x02
1374 #define ADV_INTR_STATUS_INTRC 0x04
1375
1376 #define ADV_RISC_CSR_STOP (0x0000)
1377 #define ADV_RISC_TEST_COND (0x2000)
1378 #define ADV_RISC_CSR_RUN (0x4000)
1379 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1380
1381 #define ADV_CTRL_REG_HOST_INTR 0x0100
1382 #define ADV_CTRL_REG_SEL_INTR 0x0200
1383 #define ADV_CTRL_REG_DPR_INTR 0x0400
1384 #define ADV_CTRL_REG_RTA_INTR 0x0800
1385 #define ADV_CTRL_REG_RMA_INTR 0x1000
1386 #define ADV_CTRL_REG_RES_BIT14 0x2000
1387 #define ADV_CTRL_REG_DPE_INTR 0x4000
1388 #define ADV_CTRL_REG_POWER_DONE 0x8000
1389 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1390
1391 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1392 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1393 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1394 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1395 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1396
1397 #define ADV_TICKLE_NOP 0x00
1398 #define ADV_TICKLE_A 0x01
1399 #define ADV_TICKLE_B 0x02
1400 #define ADV_TICKLE_C 0x03
1401
1402 #define AdvIsIntPending(port) \
1403 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1404
1405 /*
1406 * SCSI_CFG0 Register bit definitions
1407 */
1408 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1409 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1410 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1411 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1412 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1413 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1414 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1415 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1416 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1417 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1418 #define OUR_ID 0x000F /* SCSI ID */
1419
1420 /*
1421 * SCSI_CFG1 Register bit definitions
1422 */
1423 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1424 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1425 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1426 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1427 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1428 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1429 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1430 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1431 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1432 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1433 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1434 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1435 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1436 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1437 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1438
1439 /*
1440 * Addendum for ASC-38C0800 Chip
1441 *
1442 * The ASC-38C1600 Chip uses the same definitions except that the
1443 * bus mode override bits [12:10] have been moved to byte register
1444 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1445 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1446 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1447 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1448 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1449 */
1450 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1451 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1452 #define HVD 0x1000 /* HVD Device Detect */
1453 #define LVD 0x0800 /* LVD Device Detect */
1454 #define SE 0x0400 /* SE Device Detect */
1455 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1456 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1457 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1458 #define TERM_SE 0x0030 /* SE Termination Bits */
1459 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1460 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1461 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1462 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1463 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1464 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1465 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1466 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1467
1468 #define CABLE_ILLEGAL_A 0x7
1469 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1470
1471 #define CABLE_ILLEGAL_B 0xB
1472 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1473
1474 /*
1475 * MEM_CFG Register bit definitions
1476 */
1477 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1478 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1479 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1480 #define RAM_SZ_2KB 0x00 /* 2 KB */
1481 #define RAM_SZ_4KB 0x04 /* 4 KB */
1482 #define RAM_SZ_8KB 0x08 /* 8 KB */
1483 #define RAM_SZ_16KB 0x0C /* 16 KB */
1484 #define RAM_SZ_32KB 0x10 /* 32 KB */
1485 #define RAM_SZ_64KB 0x14 /* 64 KB */
1486
1487 /*
1488 * DMA_CFG0 Register bit definitions
1489 *
1490 * This register is only accessible to the host.
1491 */
1492 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1493 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1494 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1495 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1496 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1497 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1498 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1499 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1500 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1501 #define START_CTL 0x0C /* DMA start conditions */
1502 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1503 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1504 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1505 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1506 #define READ_CMD 0x03 /* Memory Read Method */
1507 #define READ_CMD_MR 0x00 /* Memory Read */
1508 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1509 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1510
1511 /*
1512 * ASC-38C0800 RAM BIST Register bit definitions
1513 */
1514 #define RAM_TEST_MODE 0x80
1515 #define PRE_TEST_MODE 0x40
1516 #define NORMAL_MODE 0x00
1517 #define RAM_TEST_DONE 0x10
1518 #define RAM_TEST_STATUS 0x0F
1519 #define RAM_TEST_HOST_ERROR 0x08
1520 #define RAM_TEST_INTRAM_ERROR 0x04
1521 #define RAM_TEST_RISC_ERROR 0x02
1522 #define RAM_TEST_SCSI_ERROR 0x01
1523 #define RAM_TEST_SUCCESS 0x00
1524 #define PRE_TEST_VALUE 0x05
1525 #define NORMAL_VALUE 0x00
1526
1527 /*
1528 * ASC38C1600 Definitions
1529 *
1530 * IOPB_PCI_INT_CFG Bit Field Definitions
1531 */
1532
1533 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1534
1535 /*
1536 * Bit 1 can be set to change the interrupt for the Function to operate in
1537 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1538 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1539 * mode, otherwise the operating mode is undefined.
1540 */
1541 #define TOTEMPOLE 0x02
1542
1543 /*
1544 * Bit 0 can be used to change the Int Pin for the Function. The value is
1545 * 0 by default for both Functions with Function 0 using INT A and Function
1546 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1547 * INT A is used.
1548 *
1549 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1550 * value specified in the PCI Configuration Space.
1551 */
1552 #define INTAB 0x01
1553
1554 /*
1555 * Adv Library Status Definitions
1556 */
1557 #define ADV_TRUE 1
1558 #define ADV_FALSE 0
1559 #define ADV_SUCCESS 1
1560 #define ADV_BUSY 0
1561 #define ADV_ERROR (-1)
1562
1563 /*
1564 * ADV_DVC_VAR 'warn_code' values
1565 */
1566 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1567 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1568 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1569 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1570
1571 #define ADV_MAX_TID 15 /* max. target identifier */
1572 #define ADV_MAX_LUN 7 /* max. logical unit number */
1573
1574 /*
1575 * Fixed locations of microcode operating variables.
1576 */
1577 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1578 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1579 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1580 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1581 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1582 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1583 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1584 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1585 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1586 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1587 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1588 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1589 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1590 #define ASC_MC_CHIP_TYPE 0x009A
1591 #define ASC_MC_INTRB_CODE 0x009B
1592 #define ASC_MC_WDTR_ABLE 0x009C
1593 #define ASC_MC_SDTR_ABLE 0x009E
1594 #define ASC_MC_TAGQNG_ABLE 0x00A0
1595 #define ASC_MC_DISC_ENABLE 0x00A2
1596 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1597 #define ASC_MC_IDLE_CMD 0x00A6
1598 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1599 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1600 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1601 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1602 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1603 #define ASC_MC_SDTR_DONE 0x00B6
1604 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1605 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1606 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1607 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1608 #define ASC_MC_WDTR_DONE 0x0124
1609 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1610 #define ASC_MC_ICQ 0x0160
1611 #define ASC_MC_IRQ 0x0164
1612 #define ASC_MC_PPR_ABLE 0x017A
1613
1614 /*
1615 * BIOS LRAM variable absolute offsets.
1616 */
1617 #define BIOS_CODESEG 0x54
1618 #define BIOS_CODELEN 0x56
1619 #define BIOS_SIGNATURE 0x58
1620 #define BIOS_VERSION 0x5A
1621
1622 /*
1623 * Microcode Control Flags
1624 *
1625 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1626 * and handled by the microcode.
1627 */
1628 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1629 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1630
1631 /*
1632 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1633 */
1634 #define HSHK_CFG_WIDE_XFR 0x8000
1635 #define HSHK_CFG_RATE 0x0F00
1636 #define HSHK_CFG_OFFSET 0x001F
1637
1638 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1639 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1640 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1641 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1642
1643 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1644 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1645 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1646 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1647 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1648
1649 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1650 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1651 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1652 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1653 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1654 /*
1655 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1656 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1657 */
1658 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1659 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1660
1661 /*
1662 * All fields here are accessed by the board microcode and need to be
1663 * little-endian.
1664 */
1665 typedef struct adv_carr_t {
1666 __le32 carr_va; /* Carrier Virtual Address */
1667 __le32 carr_pa; /* Carrier Physical Address */
1668 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1669 /*
1670 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1671 *
1672 * next_vpa [3:1] Reserved Bits
1673 * next_vpa [0] Done Flag set in Response Queue.
1674 */
1675 __le32 next_vpa;
1676 } ADV_CARR_T;
1677
1678 /*
1679 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1680 */
1681 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0
1682
1683 #define ADV_RQ_DONE 0x00000001
1684 #define ADV_RQ_GOOD 0x00000002
1685 #define ADV_CQ_STOPPER 0x00000000
1686
1687 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1688
1689 /*
1690 * Each carrier is 64 bytes, and we need three additional
1691 * carrier for icq, irq, and the termination carrier.
1692 */
1693 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1694
1695 #define ADV_CARRIER_BUFSIZE \
1696 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1697
1698 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1699 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1700 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1701
1702 /*
1703 * Adapter temporary configuration structure
1704 *
1705 * This structure can be discarded after initialization. Don't add
1706 * fields here needed after initialization.
1707 *
1708 * Field naming convention:
1709 *
1710 * *_enable indicates the field enables or disables a feature. The
1711 * value of the field is never reset.
1712 */
1713 typedef struct adv_dvc_cfg {
1714 ushort disc_enable; /* enable disconnection */
1715 uchar chip_version; /* chip version */
1716 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1717 ushort control_flag; /* Microcode Control Flag */
1718 ushort mcode_date; /* Microcode date */
1719 ushort mcode_version; /* Microcode version */
1720 ushort serial1; /* EEPROM serial number word 1 */
1721 ushort serial2; /* EEPROM serial number word 2 */
1722 ushort serial3; /* EEPROM serial number word 3 */
1723 } ADV_DVC_CFG;
1724
1725 struct adv_dvc_var;
1726 struct adv_scsi_req_q;
1727
1728 typedef struct adv_sg_block {
1729 uchar reserved1;
1730 uchar reserved2;
1731 uchar reserved3;
1732 uchar sg_cnt; /* Valid entries in block. */
1733 __le32 sg_ptr; /* Pointer to next sg block. */
1734 struct {
1735 __le32 sg_addr; /* SG element address. */
1736 __le32 sg_count; /* SG element count. */
1737 } sg_list[NO_OF_SG_PER_BLOCK];
1738 } ADV_SG_BLOCK;
1739
1740 /*
1741 * ADV_SCSI_REQ_Q - microcode request structure
1742 *
1743 * All fields in this structure up to byte 60 are used by the microcode.
1744 * The microcode makes assumptions about the size and ordering of fields
1745 * in this structure. Do not change the structure definition here without
1746 * coordinating the change with the microcode.
1747 *
1748 * All fields accessed by microcode must be maintained in little_endian
1749 * order.
1750 */
1751 typedef struct adv_scsi_req_q {
1752 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */
1753 uchar target_cmd;
1754 uchar target_id; /* Device target identifier. */
1755 uchar target_lun; /* Device target logical unit number. */
1756 __le32 data_addr; /* Data buffer physical address. */
1757 __le32 data_cnt; /* Data count. Ucode sets to residual. */
1758 __le32 sense_addr;
1759 __le32 carr_pa;
1760 uchar mflag;
1761 uchar sense_len;
1762 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */
1763 uchar scsi_cntl;
1764 uchar done_status; /* Completion status. */
1765 uchar scsi_status; /* SCSI status byte. */
1766 uchar host_status; /* Ucode host status. */
1767 uchar sg_working_ix;
1768 uchar cdb[12]; /* SCSI CDB bytes 0-11. */
1769 __le32 sg_real_addr; /* SG list physical address. */
1770 __le32 scsiq_rptr;
1771 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */
1772 __le32 scsiq_ptr;
1773 __le32 carr_va;
1774 /*
1775 * End of microcode structure - 60 bytes. The rest of the structure
1776 * is used by the Adv Library and ignored by the microcode.
1777 */
1778 u32 srb_tag;
1779 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */
1780 } ADV_SCSI_REQ_Q;
1781
1782 /*
1783 * The following two structures are used to process Wide Board requests.
1784 *
1785 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1786 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1787 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1788 * to the Mid-Level SCSI request structure.
1789 *
1790 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1791 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1792 * up to 255 scatter-gather elements may be used per request or
1793 * ADV_SCSI_REQ_Q.
1794 *
1795 * Both structures must be 32 byte aligned.
1796 */
1797 typedef struct adv_sgblk {
1798 ADV_SG_BLOCK sg_block; /* Sgblock structure. */
1799 dma_addr_t sg_addr; /* Physical address */
1800 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */
1801 } adv_sgblk_t;
1802
1803 typedef struct adv_req {
1804 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */
1805 uchar align[24]; /* Request structure padding. */
1806 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */
1807 dma_addr_t req_addr;
1808 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */
1809 } adv_req_t __aligned(32);
1810
1811 /*
1812 * Adapter operation variable structure.
1813 *
1814 * One structure is required per host adapter.
1815 *
1816 * Field naming convention:
1817 *
1818 * *_able indicates both whether a feature should be enabled or disabled
1819 * and whether a device isi capable of the feature. At initialization
1820 * this field may be set, but later if a device is found to be incapable
1821 * of the feature, the field is cleared.
1822 */
1823 typedef struct adv_dvc_var {
1824 AdvPortAddr iop_base; /* I/O port address */
1825 ushort err_code; /* fatal error code */
1826 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */
1827 ushort wdtr_able; /* try WDTR for a device */
1828 ushort sdtr_able; /* try SDTR for a device */
1829 ushort ultra_able; /* try SDTR Ultra speed for a device */
1830 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */
1831 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */
1832 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */
1833 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */
1834 ushort tagqng_able; /* try tagged queuing with a device */
1835 ushort ppr_able; /* PPR message capable per TID bitmask. */
1836 uchar max_dvc_qng; /* maximum number of tagged commands per device */
1837 ushort start_motor; /* start motor command allowed */
1838 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */
1839 uchar chip_no; /* should be assigned by caller */
1840 uchar max_host_qng; /* maximum number of Q'ed command allowed */
1841 ushort no_scam; /* scam_tolerant of EEPROM */
1842 struct asc_board *drv_ptr; /* driver pointer to private structure */
1843 uchar chip_scsi_id; /* chip SCSI target ID */
1844 uchar chip_type;
1845 uchar bist_err_code;
1846 ADV_CARR_T *carrier;
1847 ADV_CARR_T *carr_freelist; /* Carrier free list. */
1848 dma_addr_t carrier_addr;
1849 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */
1850 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */
1851 ushort carr_pending_cnt; /* Count of pending carriers. */
1852 /*
1853 * Note: The following fields will not be used after initialization. The
1854 * driver may discard the buffer after initialization is done.
1855 */
1856 ADV_DVC_CFG *cfg; /* temporary configuration structure */
1857 } ADV_DVC_VAR;
1858
1859 /*
1860 * Microcode idle loop commands
1861 */
1862 #define IDLE_CMD_COMPLETED 0
1863 #define IDLE_CMD_STOP_CHIP 0x0001
1864 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1865 #define IDLE_CMD_SEND_INT 0x0004
1866 #define IDLE_CMD_ABORT 0x0008
1867 #define IDLE_CMD_DEVICE_RESET 0x0010
1868 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1869 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1870 #define IDLE_CMD_SCSIREQ 0x0080
1871
1872 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1873 #define IDLE_CMD_STATUS_FAILURE 0x0002
1874
1875 /*
1876 * AdvSendIdleCmd() flag definitions.
1877 */
1878 #define ADV_NOWAIT 0x01
1879
1880 /*
1881 * Wait loop time out values.
1882 */
1883 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1884 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1885 #define SCSI_MAX_RETRY 10 /* retry count */
1886
1887 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1888 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1889 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1890 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1891
1892 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1893
1894 /* Read byte from a register. */
1895 #define AdvReadByteRegister(iop_base, reg_off) \
1896 (ADV_MEM_READB((iop_base) + (reg_off)))
1897
1898 /* Write byte to a register. */
1899 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1900 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1901
1902 /* Read word (2 bytes) from a register. */
1903 #define AdvReadWordRegister(iop_base, reg_off) \
1904 (ADV_MEM_READW((iop_base) + (reg_off)))
1905
1906 /* Write word (2 bytes) to a register. */
1907 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1908 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1909
1910 /* Write dword (4 bytes) to a register. */
1911 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1912 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1913
1914 /* Read byte from LRAM. */
1915 #define AdvReadByteLram(iop_base, addr, byte) \
1916 do { \
1917 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1918 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1919 } while (0)
1920
1921 /* Write byte to LRAM. */
1922 #define AdvWriteByteLram(iop_base, addr, byte) \
1923 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1924 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1925
1926 /* Read word (2 bytes) from LRAM. */
1927 #define AdvReadWordLram(iop_base, addr, word) \
1928 do { \
1929 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1930 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1931 } while (0)
1932
1933 /* Write word (2 bytes) to LRAM. */
1934 #define AdvWriteWordLram(iop_base, addr, word) \
1935 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1936 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1937
1938 /* Write little-endian double word (4 bytes) to LRAM */
1939 /* Because of unspecified C language ordering don't use auto-increment. */
1940 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1941 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1942 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1943 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1944 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1945 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1946 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1947
1948 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1949 #define AdvReadWordAutoIncLram(iop_base) \
1950 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1951
1952 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1953 #define AdvWriteWordAutoIncLram(iop_base, word) \
1954 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1955
1956 /*
1957 * Define macro to check for Condor signature.
1958 *
1959 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1960 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1961 */
1962 #define AdvFindSignature(iop_base) \
1963 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1964 ADV_CHIP_ID_BYTE) && \
1965 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1966 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
1967
1968 /*
1969 * Define macro to Return the version number of the chip at 'iop_base'.
1970 *
1971 * The second parameter 'bus_type' is currently unused.
1972 */
1973 #define AdvGetChipVersion(iop_base, bus_type) \
1974 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1975
1976 /*
1977 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1978 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1979 *
1980 * If the request has not yet been sent to the device it will simply be
1981 * aborted from RISC memory. If the request is disconnected it will be
1982 * aborted on reselection by sending an Abort Message to the target ID.
1983 *
1984 * Return value:
1985 * ADV_TRUE(1) - Queue was successfully aborted.
1986 * ADV_FALSE(0) - Queue was not found on the active queue list.
1987 */
1988 #define AdvAbortQueue(asc_dvc, srb_tag) \
1989 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1990 (ADV_DCNT) (srb_tag))
1991
1992 /*
1993 * Send a Bus Device Reset Message to the specified target ID.
1994 *
1995 * All outstanding commands will be purged if sending the
1996 * Bus Device Reset Message is successful.
1997 *
1998 * Return Value:
1999 * ADV_TRUE(1) - All requests on the target are purged.
2000 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2001 * are not purged.
2002 */
2003 #define AdvResetDevice(asc_dvc, target_id) \
2004 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2005 (ADV_DCNT) (target_id))
2006
2007 /*
2008 * SCSI Wide Type definition.
2009 */
2010 #define ADV_SCSI_BIT_ID_TYPE ushort
2011
2012 /*
2013 * AdvInitScsiTarget() 'cntl_flag' options.
2014 */
2015 #define ADV_SCAN_LUN 0x01
2016 #define ADV_CAPINFO_NOLUN 0x02
2017
2018 /*
2019 * Convert target id to target id bit mask.
2020 */
2021 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2022
2023 /*
2024 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2025 */
2026
2027 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2028 #define QD_NO_ERROR 0x01
2029 #define QD_ABORTED_BY_HOST 0x02
2030 #define QD_WITH_ERROR 0x04
2031
2032 #define QHSTA_NO_ERROR 0x00
2033 #define QHSTA_M_SEL_TIMEOUT 0x11
2034 #define QHSTA_M_DATA_OVER_RUN 0x12
2035 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2036 #define QHSTA_M_QUEUE_ABORTED 0x15
2037 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2038 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2039 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2040 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2041 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2042 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2043 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2044 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2045 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2046 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2047 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2048 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2049 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2050 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2051 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2052 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2053 #define QHSTA_M_WTM_TIMEOUT 0x41
2054 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2055 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2056 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2057 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2058 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2059 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2060
2061 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2062 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2063
2064 /*
2065 * Total contiguous memory needed for driver SG blocks.
2066 *
2067 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2068 * number of scatter-gather elements the driver supports in a
2069 * single request.
2070 */
2071
2072 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2073 (sizeof(ADV_SG_BLOCK) * \
2074 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2075
2076 /* struct asc_board flags */
2077 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2078
2079 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2080
2081 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2082
2083 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2084
2085 /* Asc Library return codes */
2086 #define ASC_TRUE 1
2087 #define ASC_FALSE 0
2088 #define ASC_NOERROR 1
2089 #define ASC_BUSY 0
2090 #define ASC_ERROR (-1)
2091
2092 /* struct scsi_cmnd function return codes */
2093 #define STATUS_BYTE(byte) (byte)
2094 #define MSG_BYTE(byte) ((byte) << 8)
2095 #define HOST_BYTE(byte) ((byte) << 16)
2096 #define DRIVER_BYTE(byte) ((byte) << 24)
2097
2098 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2099 #ifndef ADVANSYS_STATS
2100 #define ASC_STATS_ADD(shost, counter, count)
2101 #else /* ADVANSYS_STATS */
2102 #define ASC_STATS_ADD(shost, counter, count) \
2103 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2104 #endif /* ADVANSYS_STATS */
2105
2106 /* If the result wraps when calculating tenths, return 0. */
2107 #define ASC_TENTHS(num, den) \
2108 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2109 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2110
2111 /*
2112 * Display a message to the console.
2113 */
2114 #define ASC_PRINT(s) \
2115 { \
2116 printk("advansys: "); \
2117 printk(s); \
2118 }
2119
2120 #define ASC_PRINT1(s, a1) \
2121 { \
2122 printk("advansys: "); \
2123 printk((s), (a1)); \
2124 }
2125
2126 #define ASC_PRINT2(s, a1, a2) \
2127 { \
2128 printk("advansys: "); \
2129 printk((s), (a1), (a2)); \
2130 }
2131
2132 #define ASC_PRINT3(s, a1, a2, a3) \
2133 { \
2134 printk("advansys: "); \
2135 printk((s), (a1), (a2), (a3)); \
2136 }
2137
2138 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2139 { \
2140 printk("advansys: "); \
2141 printk((s), (a1), (a2), (a3), (a4)); \
2142 }
2143
2144 #ifndef ADVANSYS_DEBUG
2145
2146 #define ASC_DBG(lvl, s...)
2147 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2148 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2149 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2150 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2151 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2152 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2153 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2154 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2155 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2156
2157 #else /* ADVANSYS_DEBUG */
2158
2159 /*
2160 * Debugging Message Levels:
2161 * 0: Errors Only
2162 * 1: High-Level Tracing
2163 * 2-N: Verbose Tracing
2164 */
2165
2166 #define ASC_DBG(lvl, format, arg...) { \
2167 if (asc_dbglvl >= (lvl)) \
2168 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2169 __func__ , ## arg); \
2170 }
2171
2172 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2173 { \
2174 if (asc_dbglvl >= (lvl)) { \
2175 asc_prt_scsi_host(s); \
2176 } \
2177 }
2178
2179 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2180 { \
2181 if (asc_dbglvl >= (lvl)) { \
2182 asc_prt_asc_scsi_q(scsiqp); \
2183 } \
2184 }
2185
2186 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2187 { \
2188 if (asc_dbglvl >= (lvl)) { \
2189 asc_prt_asc_qdone_info(qdone); \
2190 } \
2191 }
2192
2193 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2194 { \
2195 if (asc_dbglvl >= (lvl)) { \
2196 asc_prt_adv_scsi_req_q(scsiqp); \
2197 } \
2198 }
2199
2200 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2201 { \
2202 if (asc_dbglvl >= (lvl)) { \
2203 asc_prt_hex((name), (start), (length)); \
2204 } \
2205 }
2206
2207 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2208 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2209
2210 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2211 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2212
2213 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2214 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2215 #endif /* ADVANSYS_DEBUG */
2216
2217 #ifdef ADVANSYS_STATS
2218
2219 /* Per board statistics structure */
2220 struct asc_stats {
2221 /* Driver Entrypoint Statistics */
2222 unsigned int queuecommand; /* # calls to advansys_queuecommand() */
2223 unsigned int reset; /* # calls to advansys_eh_bus_reset() */
2224 unsigned int biosparam; /* # calls to advansys_biosparam() */
2225 unsigned int interrupt; /* # advansys_interrupt() calls */
2226 unsigned int callback; /* # calls to asc/adv_isr_callback() */
2227 unsigned int done; /* # calls to request's scsi_done function */
2228 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */
2229 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */
2230 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2231 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2232 unsigned int exe_noerror; /* # ASC_NOERROR returns. */
2233 unsigned int exe_busy; /* # ASC_BUSY returns. */
2234 unsigned int exe_error; /* # ASC_ERROR returns. */
2235 unsigned int exe_unknown; /* # unknown returns. */
2236 /* Data Transfer Statistics */
2237 unsigned int xfer_cnt; /* # I/O requests received */
2238 unsigned int xfer_elem; /* # scatter-gather elements */
2239 unsigned int xfer_sect; /* # 512-byte blocks */
2240 };
2241 #endif /* ADVANSYS_STATS */
2242
2243 /*
2244 * Structure allocated for each board.
2245 *
2246 * This structure is allocated by scsi_host_alloc() at the end
2247 * of the 'Scsi_Host' structure starting at the 'hostdata'
2248 * field. It is guaranteed to be allocated from DMA-able memory.
2249 */
2250 struct asc_board {
2251 struct device *dev;
2252 struct Scsi_Host *shost;
2253 uint flags; /* Board flags */
2254 unsigned int irq;
2255 union {
2256 ASC_DVC_VAR asc_dvc_var; /* Narrow board */
2257 ADV_DVC_VAR adv_dvc_var; /* Wide board */
2258 } dvc_var;
2259 union {
2260 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */
2261 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */
2262 } dvc_cfg;
2263 ushort asc_n_io_port; /* Number I/O ports. */
2264 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */
2265 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2266 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */
2267 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2268 union {
2269 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */
2270 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */
2271 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */
2272 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */
2273 } eep_config;
2274 /* /proc/scsi/advansys/[0...] */
2275 #ifdef ADVANSYS_STATS
2276 struct asc_stats asc_stats; /* Board statistics */
2277 #endif /* ADVANSYS_STATS */
2278 /*
2279 * The following fields are used only for Narrow Boards.
2280 */
2281 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */
2282 /*
2283 * The following fields are used only for Wide Boards.
2284 */
2285 void __iomem *ioremap_addr; /* I/O Memory remap address. */
2286 ushort ioport; /* I/O Port address. */
2287 adv_req_t *adv_reqp; /* Request structures. */
2288 dma_addr_t adv_reqp_addr;
2289 size_t adv_reqp_size;
2290 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */
2291 ushort bios_signature; /* BIOS Signature. */
2292 ushort bios_version; /* BIOS Version. */
2293 ushort bios_codeseg; /* BIOS Code Segment. */
2294 ushort bios_codelen; /* BIOS Code Segment Length. */
2295 };
2296
2297 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2298 dvc_var.asc_dvc_var)
2299 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2300 dvc_var.adv_dvc_var)
2301 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2302
2303 #ifdef ADVANSYS_DEBUG
2304 static int asc_dbglvl = 3;
2305
2306 /*
2307 * asc_prt_asc_dvc_var()
2308 */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2309 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2310 {
2311 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2312
2313 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2314 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2315
2316 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2317 (unsigned)h->init_sdtr);
2318
2319 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2320 "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2321 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2322 (unsigned)h->chip_no);
2323
2324 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2325 "%u,\n", (unsigned)h->queue_full_or_busy,
2326 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2327
2328 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2329 "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2330 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2331 (unsigned)h->in_critical_cnt);
2332
2333 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2334 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2335 (unsigned)h->init_state, (unsigned)h->no_scam,
2336 (unsigned)h->pci_fix_asyn_xfer);
2337
2338 printk(" cfg 0x%lx\n", (ulong)h->cfg);
2339 }
2340
2341 /*
2342 * asc_prt_asc_dvc_cfg()
2343 */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2344 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2345 {
2346 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2347
2348 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2349 h->can_tagged_qng, h->cmd_qng_enabled);
2350 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2351 h->disc_enable, h->sdtr_enable);
2352
2353 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2354 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2355 h->isa_dma_channel, h->chip_version);
2356
2357 printk(" mcode_date 0x%x, mcode_version %d\n",
2358 h->mcode_date, h->mcode_version);
2359 }
2360
2361 /*
2362 * asc_prt_adv_dvc_var()
2363 *
2364 * Display an ADV_DVC_VAR structure.
2365 */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2366 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2367 {
2368 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2369
2370 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2371 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2372
2373 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2374 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2375
2376 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2377 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2378
2379 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2380 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2381 h->carr_freelist);
2382
2383 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2384
2385 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2386 (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2387
2388 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2389 (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2390 }
2391
2392 /*
2393 * asc_prt_adv_dvc_cfg()
2394 *
2395 * Display an ADV_DVC_CFG structure.
2396 */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2397 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2398 {
2399 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2400
2401 printk(" disc_enable 0x%x, termination 0x%x\n",
2402 h->disc_enable, h->termination);
2403
2404 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2405 h->chip_version, h->mcode_date);
2406
2407 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2408 h->mcode_version, h->control_flag);
2409 }
2410
2411 /*
2412 * asc_prt_scsi_host()
2413 */
asc_prt_scsi_host(struct Scsi_Host * s)2414 static void asc_prt_scsi_host(struct Scsi_Host *s)
2415 {
2416 struct asc_board *boardp = shost_priv(s);
2417
2418 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2419 printk(" host_busy %d, host_no %d,\n",
2420 scsi_host_busy(s), s->host_no);
2421
2422 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2423 (ulong)s->base, (ulong)s->io_port, boardp->irq);
2424
2425 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2426 s->dma_channel, s->this_id, s->can_queue);
2427
2428 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2429 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2430
2431 if (ASC_NARROW_BOARD(boardp)) {
2432 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2433 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2434 } else {
2435 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2436 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2437 }
2438 }
2439
2440 /*
2441 * asc_prt_hex()
2442 *
2443 * Print hexadecimal output in 4 byte groupings 32 bytes
2444 * or 8 double-words per line.
2445 */
asc_prt_hex(char * f,uchar * s,int l)2446 static void asc_prt_hex(char *f, uchar *s, int l)
2447 {
2448 int i;
2449 int j;
2450 int k;
2451 int m;
2452
2453 printk("%s: (%d bytes)\n", f, l);
2454
2455 for (i = 0; i < l; i += 32) {
2456
2457 /* Display a maximum of 8 double-words per line. */
2458 if ((k = (l - i) / 4) >= 8) {
2459 k = 8;
2460 m = 0;
2461 } else {
2462 m = (l - i) % 4;
2463 }
2464
2465 for (j = 0; j < k; j++) {
2466 printk(" %2.2X%2.2X%2.2X%2.2X",
2467 (unsigned)s[i + (j * 4)],
2468 (unsigned)s[i + (j * 4) + 1],
2469 (unsigned)s[i + (j * 4) + 2],
2470 (unsigned)s[i + (j * 4) + 3]);
2471 }
2472
2473 switch (m) {
2474 case 0:
2475 default:
2476 break;
2477 case 1:
2478 printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2479 break;
2480 case 2:
2481 printk(" %2.2X%2.2X",
2482 (unsigned)s[i + (j * 4)],
2483 (unsigned)s[i + (j * 4) + 1]);
2484 break;
2485 case 3:
2486 printk(" %2.2X%2.2X%2.2X",
2487 (unsigned)s[i + (j * 4) + 1],
2488 (unsigned)s[i + (j * 4) + 2],
2489 (unsigned)s[i + (j * 4) + 3]);
2490 break;
2491 }
2492
2493 printk("\n");
2494 }
2495 }
2496
2497 /*
2498 * asc_prt_asc_scsi_q()
2499 */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2500 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2501 {
2502 ASC_SG_HEAD *sgp;
2503 int i;
2504
2505 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2506
2507 printk
2508 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2509 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2510 q->q2.tag_code);
2511
2512 printk
2513 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2514 (ulong)le32_to_cpu(q->q1.data_addr),
2515 (ulong)le32_to_cpu(q->q1.data_cnt),
2516 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2517
2518 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2519 (ulong)q->cdbptr, q->q2.cdb_len,
2520 (ulong)q->sg_head, q->q1.sg_queue_cnt);
2521
2522 if (q->sg_head) {
2523 sgp = q->sg_head;
2524 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2525 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2526 sgp->queue_cnt);
2527 for (i = 0; i < sgp->entry_cnt; i++) {
2528 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2529 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2530 (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2531 }
2532
2533 }
2534 }
2535
2536 /*
2537 * asc_prt_asc_qdone_info()
2538 */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2539 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2540 {
2541 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2542 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2543 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2544 q->d2.tag_code);
2545 printk
2546 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2547 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2548 }
2549
2550 /*
2551 * asc_prt_adv_sgblock()
2552 *
2553 * Display an ADV_SG_BLOCK structure.
2554 */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2555 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2556 {
2557 int i;
2558
2559 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2560 (ulong)b, sgblockno);
2561 printk(" sg_cnt %u, sg_ptr 0x%x\n",
2562 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2563 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2564 if (b->sg_ptr != 0)
2565 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2566 for (i = 0; i < b->sg_cnt; i++) {
2567 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2568 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2569 (u32)le32_to_cpu(b->sg_list[i].sg_count));
2570 }
2571 }
2572
2573 /*
2574 * asc_prt_adv_scsi_req_q()
2575 *
2576 * Display an ADV_SCSI_REQ_Q structure.
2577 */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2578 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2579 {
2580 int sg_blk_cnt;
2581 struct adv_sg_block *sg_ptr;
2582 adv_sgblk_t *sgblkp;
2583
2584 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2585
2586 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
2587 q->target_id, q->target_lun, q->srb_tag);
2588
2589 printk(" cntl 0x%x, data_addr 0x%lx\n",
2590 q->cntl, (ulong)le32_to_cpu(q->data_addr));
2591
2592 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2593 (ulong)le32_to_cpu(q->data_cnt),
2594 (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2595
2596 printk
2597 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2598 q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2599
2600 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2601 q->sg_working_ix, q->target_cmd);
2602
2603 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2604 (ulong)le32_to_cpu(q->scsiq_rptr),
2605 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2606
2607 /* Display the request's ADV_SG_BLOCK structures. */
2608 if (q->sg_list_ptr != NULL) {
2609 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2610 sg_blk_cnt = 0;
2611 while (sgblkp) {
2612 sg_ptr = &sgblkp->sg_block;
2613 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2614 if (sg_ptr->sg_ptr == 0) {
2615 break;
2616 }
2617 sgblkp = sgblkp->next_sgblkp;
2618 sg_blk_cnt++;
2619 }
2620 }
2621 }
2622 #endif /* ADVANSYS_DEBUG */
2623
2624 /*
2625 * advansys_info()
2626 *
2627 * Return suitable for printing on the console with the argument
2628 * adapter's configuration information.
2629 *
2630 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2631 * otherwise the static 'info' array will be overrun.
2632 */
advansys_info(struct Scsi_Host * shost)2633 static const char *advansys_info(struct Scsi_Host *shost)
2634 {
2635 static char info[ASC_INFO_SIZE];
2636 struct asc_board *boardp = shost_priv(shost);
2637 ASC_DVC_VAR *asc_dvc_varp;
2638 ADV_DVC_VAR *adv_dvc_varp;
2639 char *busname;
2640 char *widename = NULL;
2641
2642 if (ASC_NARROW_BOARD(boardp)) {
2643 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2644 ASC_DBG(1, "begin\n");
2645 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2646 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2647 ASC_IS_ISAPNP) {
2648 busname = "ISA PnP";
2649 } else {
2650 busname = "ISA";
2651 }
2652 sprintf(info,
2653 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2654 ASC_VERSION, busname,
2655 (ulong)shost->io_port,
2656 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2657 boardp->irq, shost->dma_channel);
2658 } else {
2659 if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2660 busname = "VL";
2661 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2662 busname = "EISA";
2663 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2664 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2665 == ASC_IS_PCI_ULTRA) {
2666 busname = "PCI Ultra";
2667 } else {
2668 busname = "PCI";
2669 }
2670 } else {
2671 busname = "?";
2672 shost_printk(KERN_ERR, shost, "unknown bus "
2673 "type %d\n", asc_dvc_varp->bus_type);
2674 }
2675 sprintf(info,
2676 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2677 ASC_VERSION, busname, (ulong)shost->io_port,
2678 (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2679 boardp->irq);
2680 }
2681 } else {
2682 /*
2683 * Wide Adapter Information
2684 *
2685 * Memory-mapped I/O is used instead of I/O space to access
2686 * the adapter, but display the I/O Port range. The Memory
2687 * I/O address is displayed through the driver /proc file.
2688 */
2689 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2690 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2691 widename = "Ultra-Wide";
2692 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2693 widename = "Ultra2-Wide";
2694 } else {
2695 widename = "Ultra3-Wide";
2696 }
2697 sprintf(info,
2698 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2699 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2700 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2701 }
2702 BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2703 ASC_DBG(1, "end\n");
2704 return info;
2705 }
2706
2707 #ifdef CONFIG_PROC_FS
2708
2709 /*
2710 * asc_prt_board_devices()
2711 *
2712 * Print driver information for devices attached to the board.
2713 */
asc_prt_board_devices(struct seq_file * m,struct Scsi_Host * shost)2714 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2715 {
2716 struct asc_board *boardp = shost_priv(shost);
2717 int chip_scsi_id;
2718 int i;
2719
2720 seq_printf(m,
2721 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2722 shost->host_no);
2723
2724 if (ASC_NARROW_BOARD(boardp)) {
2725 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2726 } else {
2727 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2728 }
2729
2730 seq_puts(m, "Target IDs Detected:");
2731 for (i = 0; i <= ADV_MAX_TID; i++) {
2732 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2733 seq_printf(m, " %X,", i);
2734 }
2735 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2736 }
2737
2738 /*
2739 * Display Wide Board BIOS Information.
2740 */
asc_prt_adv_bios(struct seq_file * m,struct Scsi_Host * shost)2741 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2742 {
2743 struct asc_board *boardp = shost_priv(shost);
2744 ushort major, minor, letter;
2745
2746 seq_puts(m, "\nROM BIOS Version: ");
2747
2748 /*
2749 * If the BIOS saved a valid signature, then fill in
2750 * the BIOS code segment base address.
2751 */
2752 if (boardp->bios_signature != 0x55AA) {
2753 seq_puts(m, "Disabled or Pre-3.1\n"
2754 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2755 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2756 } else {
2757 major = (boardp->bios_version >> 12) & 0xF;
2758 minor = (boardp->bios_version >> 8) & 0xF;
2759 letter = (boardp->bios_version & 0xFF);
2760
2761 seq_printf(m, "%d.%d%c\n",
2762 major, minor,
2763 letter >= 26 ? '?' : letter + 'A');
2764 /*
2765 * Current available ROM BIOS release is 3.1I for UW
2766 * and 3.2I for U2W. This code doesn't differentiate
2767 * UW and U2W boards.
2768 */
2769 if (major < 3 || (major <= 3 && minor < 1) ||
2770 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2771 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2772 "ftp://ftp.connectcom.net/pub\n");
2773 }
2774 }
2775 }
2776
2777 /*
2778 * Add serial number to information bar if signature AAh
2779 * is found in at bit 15-9 (7 bits) of word 1.
2780 *
2781 * Serial Number consists fo 12 alpha-numeric digits.
2782 *
2783 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2784 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2785 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2786 * 5 - Product revision (A-J) Word0: " "
2787 *
2788 * Signature Word1: 15-9 (7 bits)
2789 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2790 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2791 *
2792 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2793 *
2794 * Note 1: Only production cards will have a serial number.
2795 *
2796 * Note 2: Signature is most significant 7 bits (0xFE).
2797 *
2798 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2799 */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)2800 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2801 {
2802 ushort w, num;
2803
2804 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2805 return ASC_FALSE;
2806 } else {
2807 /*
2808 * First word - 6 digits.
2809 */
2810 w = serialnum[0];
2811
2812 /* Product type - 1st digit. */
2813 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2814 /* Product type is P=Prototype */
2815 *cp += 0x8;
2816 }
2817 cp++;
2818
2819 /* Manufacturing location - 2nd digit. */
2820 *cp++ = 'A' + ((w & 0x1C00) >> 10);
2821
2822 /* Product ID - 3rd, 4th digits. */
2823 num = w & 0x3FF;
2824 *cp++ = '0' + (num / 100);
2825 num %= 100;
2826 *cp++ = '0' + (num / 10);
2827
2828 /* Product revision - 5th digit. */
2829 *cp++ = 'A' + (num % 10);
2830
2831 /*
2832 * Second word
2833 */
2834 w = serialnum[1];
2835
2836 /*
2837 * Year - 6th digit.
2838 *
2839 * If bit 15 of third word is set, then the
2840 * last digit of the year is greater than 7.
2841 */
2842 if (serialnum[2] & 0x8000) {
2843 *cp++ = '8' + ((w & 0x1C0) >> 6);
2844 } else {
2845 *cp++ = '0' + ((w & 0x1C0) >> 6);
2846 }
2847
2848 /* Week of year - 7th, 8th digits. */
2849 num = w & 0x003F;
2850 *cp++ = '0' + num / 10;
2851 num %= 10;
2852 *cp++ = '0' + num;
2853
2854 /*
2855 * Third word
2856 */
2857 w = serialnum[2] & 0x7FFF;
2858
2859 /* Serial number - 9th digit. */
2860 *cp++ = 'A' + (w / 1000);
2861
2862 /* 10th, 11th, 12th digits. */
2863 num = w % 1000;
2864 *cp++ = '0' + num / 100;
2865 num %= 100;
2866 *cp++ = '0' + num / 10;
2867 num %= 10;
2868 *cp++ = '0' + num;
2869
2870 *cp = '\0'; /* Null Terminate the string. */
2871 return ASC_TRUE;
2872 }
2873 }
2874
2875 /*
2876 * asc_prt_asc_board_eeprom()
2877 *
2878 * Print board EEPROM configuration.
2879 */
asc_prt_asc_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2880 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2881 {
2882 struct asc_board *boardp = shost_priv(shost);
2883 ASC_DVC_VAR *asc_dvc_varp;
2884 ASCEEP_CONFIG *ep;
2885 int i;
2886 #ifdef CONFIG_ISA
2887 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2888 #endif /* CONFIG_ISA */
2889 uchar serialstr[13];
2890
2891 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2892 ep = &boardp->eep_config.asc_eep;
2893
2894 seq_printf(m,
2895 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2896 shost->host_no);
2897
2898 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2899 == ASC_TRUE)
2900 seq_printf(m, " Serial Number: %s\n", serialstr);
2901 else if (ep->adapter_info[5] == 0xBB)
2902 seq_puts(m,
2903 " Default Settings Used for EEPROM-less Adapter.\n");
2904 else
2905 seq_puts(m, " Serial Number Signature Not Present.\n");
2906
2907 seq_printf(m,
2908 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2909 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2910 ep->max_tag_qng);
2911
2912 seq_printf(m,
2913 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2914
2915 seq_puts(m, " Target ID: ");
2916 for (i = 0; i <= ASC_MAX_TID; i++)
2917 seq_printf(m, " %d", i);
2918
2919 seq_puts(m, "\n Disconnects: ");
2920 for (i = 0; i <= ASC_MAX_TID; i++)
2921 seq_printf(m, " %c",
2922 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2923
2924 seq_puts(m, "\n Command Queuing: ");
2925 for (i = 0; i <= ASC_MAX_TID; i++)
2926 seq_printf(m, " %c",
2927 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2928
2929 seq_puts(m, "\n Start Motor: ");
2930 for (i = 0; i <= ASC_MAX_TID; i++)
2931 seq_printf(m, " %c",
2932 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2933
2934 seq_puts(m, "\n Synchronous Transfer:");
2935 for (i = 0; i <= ASC_MAX_TID; i++)
2936 seq_printf(m, " %c",
2937 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2938 seq_putc(m, '\n');
2939
2940 #ifdef CONFIG_ISA
2941 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2942 seq_printf(m,
2943 " Host ISA DMA speed: %d MB/S\n",
2944 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2945 }
2946 #endif /* CONFIG_ISA */
2947 }
2948
2949 /*
2950 * asc_prt_adv_board_eeprom()
2951 *
2952 * Print board EEPROM configuration.
2953 */
asc_prt_adv_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2954 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2955 {
2956 struct asc_board *boardp = shost_priv(shost);
2957 ADV_DVC_VAR *adv_dvc_varp;
2958 int i;
2959 char *termstr;
2960 uchar serialstr[13];
2961 ADVEEP_3550_CONFIG *ep_3550 = NULL;
2962 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2963 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2964 ushort word;
2965 ushort *wordp;
2966 ushort sdtr_speed = 0;
2967
2968 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2969 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2970 ep_3550 = &boardp->eep_config.adv_3550_eep;
2971 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2972 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2973 } else {
2974 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2975 }
2976
2977 seq_printf(m,
2978 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2979 shost->host_no);
2980
2981 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2982 wordp = &ep_3550->serial_number_word1;
2983 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2984 wordp = &ep_38C0800->serial_number_word1;
2985 } else {
2986 wordp = &ep_38C1600->serial_number_word1;
2987 }
2988
2989 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2990 seq_printf(m, " Serial Number: %s\n", serialstr);
2991 else
2992 seq_puts(m, " Serial Number Signature Not Present.\n");
2993
2994 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2995 seq_printf(m,
2996 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2997 ep_3550->adapter_scsi_id,
2998 ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2999 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3000 seq_printf(m,
3001 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3002 ep_38C0800->adapter_scsi_id,
3003 ep_38C0800->max_host_qng,
3004 ep_38C0800->max_dvc_qng);
3005 else
3006 seq_printf(m,
3007 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3008 ep_38C1600->adapter_scsi_id,
3009 ep_38C1600->max_host_qng,
3010 ep_38C1600->max_dvc_qng);
3011 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3012 word = ep_3550->termination;
3013 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3014 word = ep_38C0800->termination_lvd;
3015 } else {
3016 word = ep_38C1600->termination_lvd;
3017 }
3018 switch (word) {
3019 case 1:
3020 termstr = "Low Off/High Off";
3021 break;
3022 case 2:
3023 termstr = "Low Off/High On";
3024 break;
3025 case 3:
3026 termstr = "Low On/High On";
3027 break;
3028 default:
3029 case 0:
3030 termstr = "Automatic";
3031 break;
3032 }
3033
3034 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3035 seq_printf(m,
3036 " termination: %u (%s), bios_ctrl: 0x%x\n",
3037 ep_3550->termination, termstr,
3038 ep_3550->bios_ctrl);
3039 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3040 seq_printf(m,
3041 " termination: %u (%s), bios_ctrl: 0x%x\n",
3042 ep_38C0800->termination_lvd, termstr,
3043 ep_38C0800->bios_ctrl);
3044 else
3045 seq_printf(m,
3046 " termination: %u (%s), bios_ctrl: 0x%x\n",
3047 ep_38C1600->termination_lvd, termstr,
3048 ep_38C1600->bios_ctrl);
3049
3050 seq_puts(m, " Target ID: ");
3051 for (i = 0; i <= ADV_MAX_TID; i++)
3052 seq_printf(m, " %X", i);
3053 seq_putc(m, '\n');
3054
3055 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3056 word = ep_3550->disc_enable;
3057 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3058 word = ep_38C0800->disc_enable;
3059 } else {
3060 word = ep_38C1600->disc_enable;
3061 }
3062 seq_puts(m, " Disconnects: ");
3063 for (i = 0; i <= ADV_MAX_TID; i++)
3064 seq_printf(m, " %c",
3065 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3066 seq_putc(m, '\n');
3067
3068 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3069 word = ep_3550->tagqng_able;
3070 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3071 word = ep_38C0800->tagqng_able;
3072 } else {
3073 word = ep_38C1600->tagqng_able;
3074 }
3075 seq_puts(m, " Command Queuing: ");
3076 for (i = 0; i <= ADV_MAX_TID; i++)
3077 seq_printf(m, " %c",
3078 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3079 seq_putc(m, '\n');
3080
3081 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3082 word = ep_3550->start_motor;
3083 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3084 word = ep_38C0800->start_motor;
3085 } else {
3086 word = ep_38C1600->start_motor;
3087 }
3088 seq_puts(m, " Start Motor: ");
3089 for (i = 0; i <= ADV_MAX_TID; i++)
3090 seq_printf(m, " %c",
3091 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3092 seq_putc(m, '\n');
3093
3094 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3095 seq_puts(m, " Synchronous Transfer:");
3096 for (i = 0; i <= ADV_MAX_TID; i++)
3097 seq_printf(m, " %c",
3098 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3099 'Y' : 'N');
3100 seq_putc(m, '\n');
3101 }
3102
3103 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3104 seq_puts(m, " Ultra Transfer: ");
3105 for (i = 0; i <= ADV_MAX_TID; i++)
3106 seq_printf(m, " %c",
3107 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3108 ? 'Y' : 'N');
3109 seq_putc(m, '\n');
3110 }
3111
3112 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3113 word = ep_3550->wdtr_able;
3114 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3115 word = ep_38C0800->wdtr_able;
3116 } else {
3117 word = ep_38C1600->wdtr_able;
3118 }
3119 seq_puts(m, " Wide Transfer: ");
3120 for (i = 0; i <= ADV_MAX_TID; i++)
3121 seq_printf(m, " %c",
3122 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3123 seq_putc(m, '\n');
3124
3125 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3126 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3127 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n ");
3128 for (i = 0; i <= ADV_MAX_TID; i++) {
3129 char *speed_str;
3130
3131 if (i == 0) {
3132 sdtr_speed = adv_dvc_varp->sdtr_speed1;
3133 } else if (i == 4) {
3134 sdtr_speed = adv_dvc_varp->sdtr_speed2;
3135 } else if (i == 8) {
3136 sdtr_speed = adv_dvc_varp->sdtr_speed3;
3137 } else if (i == 12) {
3138 sdtr_speed = adv_dvc_varp->sdtr_speed4;
3139 }
3140 switch (sdtr_speed & ADV_MAX_TID) {
3141 case 0:
3142 speed_str = "Off";
3143 break;
3144 case 1:
3145 speed_str = " 5";
3146 break;
3147 case 2:
3148 speed_str = " 10";
3149 break;
3150 case 3:
3151 speed_str = " 20";
3152 break;
3153 case 4:
3154 speed_str = " 40";
3155 break;
3156 case 5:
3157 speed_str = " 80";
3158 break;
3159 default:
3160 speed_str = "Unk";
3161 break;
3162 }
3163 seq_printf(m, "%X:%s ", i, speed_str);
3164 if (i == 7)
3165 seq_puts(m, "\n ");
3166 sdtr_speed >>= 4;
3167 }
3168 seq_putc(m, '\n');
3169 }
3170 }
3171
3172 /*
3173 * asc_prt_driver_conf()
3174 */
asc_prt_driver_conf(struct seq_file * m,struct Scsi_Host * shost)3175 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3176 {
3177 struct asc_board *boardp = shost_priv(shost);
3178 int chip_scsi_id;
3179
3180 seq_printf(m,
3181 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3182 shost->host_no);
3183
3184 seq_printf(m,
3185 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3186 scsi_host_busy(shost), shost->max_id,
3187 shost->max_lun, shost->max_channel);
3188
3189 seq_printf(m,
3190 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3191 shost->unique_id, shost->can_queue, shost->this_id,
3192 shost->sg_tablesize, shost->cmd_per_lun);
3193
3194 seq_printf(m,
3195 " unchecked_isa_dma %d, use_clustering %d\n",
3196 shost->unchecked_isa_dma, shost->use_clustering);
3197
3198 seq_printf(m,
3199 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3200 boardp->flags, shost->last_reset, jiffies,
3201 boardp->asc_n_io_port);
3202
3203 seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3204
3205 if (ASC_NARROW_BOARD(boardp)) {
3206 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3207 } else {
3208 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3209 }
3210 }
3211
3212 /*
3213 * asc_prt_asc_board_info()
3214 *
3215 * Print dynamic board configuration information.
3216 */
asc_prt_asc_board_info(struct seq_file * m,struct Scsi_Host * shost)3217 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3218 {
3219 struct asc_board *boardp = shost_priv(shost);
3220 int chip_scsi_id;
3221 ASC_DVC_VAR *v;
3222 ASC_DVC_CFG *c;
3223 int i;
3224 int renegotiate = 0;
3225
3226 v = &boardp->dvc_var.asc_dvc_var;
3227 c = &boardp->dvc_cfg.asc_dvc_cfg;
3228 chip_scsi_id = c->chip_scsi_id;
3229
3230 seq_printf(m,
3231 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3232 shost->host_no);
3233
3234 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3235 "mcode_version 0x%x, err_code %u\n",
3236 c->chip_version, c->mcode_date, c->mcode_version,
3237 v->err_code);
3238
3239 /* Current number of commands waiting for the host. */
3240 seq_printf(m,
3241 " Total Command Pending: %d\n", v->cur_total_qng);
3242
3243 seq_puts(m, " Command Queuing:");
3244 for (i = 0; i <= ASC_MAX_TID; i++) {
3245 if ((chip_scsi_id == i) ||
3246 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3247 continue;
3248 }
3249 seq_printf(m, " %X:%c",
3250 i,
3251 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3252 }
3253
3254 /* Current number of commands waiting for a device. */
3255 seq_puts(m, "\n Command Queue Pending:");
3256 for (i = 0; i <= ASC_MAX_TID; i++) {
3257 if ((chip_scsi_id == i) ||
3258 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3259 continue;
3260 }
3261 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3262 }
3263
3264 /* Current limit on number of commands that can be sent to a device. */
3265 seq_puts(m, "\n Command Queue Limit:");
3266 for (i = 0; i <= ASC_MAX_TID; i++) {
3267 if ((chip_scsi_id == i) ||
3268 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3269 continue;
3270 }
3271 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3272 }
3273
3274 /* Indicate whether the device has returned queue full status. */
3275 seq_puts(m, "\n Command Queue Full:");
3276 for (i = 0; i <= ASC_MAX_TID; i++) {
3277 if ((chip_scsi_id == i) ||
3278 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3279 continue;
3280 }
3281 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3282 seq_printf(m, " %X:Y-%d",
3283 i, boardp->queue_full_cnt[i]);
3284 else
3285 seq_printf(m, " %X:N", i);
3286 }
3287
3288 seq_puts(m, "\n Synchronous Transfer:");
3289 for (i = 0; i <= ASC_MAX_TID; i++) {
3290 if ((chip_scsi_id == i) ||
3291 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3292 continue;
3293 }
3294 seq_printf(m, " %X:%c",
3295 i,
3296 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3297 }
3298 seq_putc(m, '\n');
3299
3300 for (i = 0; i <= ASC_MAX_TID; i++) {
3301 uchar syn_period_ix;
3302
3303 if ((chip_scsi_id == i) ||
3304 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3305 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3306 continue;
3307 }
3308
3309 seq_printf(m, " %X:", i);
3310
3311 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3312 seq_puts(m, " Asynchronous");
3313 } else {
3314 syn_period_ix =
3315 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3316 1);
3317
3318 seq_printf(m,
3319 " Transfer Period Factor: %d (%d.%d Mhz),",
3320 v->sdtr_period_tbl[syn_period_ix],
3321 250 / v->sdtr_period_tbl[syn_period_ix],
3322 ASC_TENTHS(250,
3323 v->sdtr_period_tbl[syn_period_ix]));
3324
3325 seq_printf(m, " REQ/ACK Offset: %d",
3326 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3327 }
3328
3329 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3330 seq_puts(m, "*\n");
3331 renegotiate = 1;
3332 } else {
3333 seq_putc(m, '\n');
3334 }
3335 }
3336
3337 if (renegotiate) {
3338 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3339 }
3340 }
3341
3342 /*
3343 * asc_prt_adv_board_info()
3344 *
3345 * Print dynamic board configuration information.
3346 */
asc_prt_adv_board_info(struct seq_file * m,struct Scsi_Host * shost)3347 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3348 {
3349 struct asc_board *boardp = shost_priv(shost);
3350 int i;
3351 ADV_DVC_VAR *v;
3352 ADV_DVC_CFG *c;
3353 AdvPortAddr iop_base;
3354 ushort chip_scsi_id;
3355 ushort lramword;
3356 uchar lrambyte;
3357 ushort tagqng_able;
3358 ushort sdtr_able, wdtr_able;
3359 ushort wdtr_done, sdtr_done;
3360 ushort period = 0;
3361 int renegotiate = 0;
3362
3363 v = &boardp->dvc_var.adv_dvc_var;
3364 c = &boardp->dvc_cfg.adv_dvc_cfg;
3365 iop_base = v->iop_base;
3366 chip_scsi_id = v->chip_scsi_id;
3367
3368 seq_printf(m,
3369 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3370 shost->host_no);
3371
3372 seq_printf(m,
3373 " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3374 (unsigned long)v->iop_base,
3375 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3376 v->err_code);
3377
3378 seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3379 "mcode_version 0x%x\n", c->chip_version,
3380 c->mcode_date, c->mcode_version);
3381
3382 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3383 seq_puts(m, " Queuing Enabled:");
3384 for (i = 0; i <= ADV_MAX_TID; i++) {
3385 if ((chip_scsi_id == i) ||
3386 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3387 continue;
3388 }
3389
3390 seq_printf(m, " %X:%c",
3391 i,
3392 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3393 }
3394
3395 seq_puts(m, "\n Queue Limit:");
3396 for (i = 0; i <= ADV_MAX_TID; i++) {
3397 if ((chip_scsi_id == i) ||
3398 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3399 continue;
3400 }
3401
3402 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3403 lrambyte);
3404
3405 seq_printf(m, " %X:%d", i, lrambyte);
3406 }
3407
3408 seq_puts(m, "\n Command Pending:");
3409 for (i = 0; i <= ADV_MAX_TID; i++) {
3410 if ((chip_scsi_id == i) ||
3411 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412 continue;
3413 }
3414
3415 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3416 lrambyte);
3417
3418 seq_printf(m, " %X:%d", i, lrambyte);
3419 }
3420 seq_putc(m, '\n');
3421
3422 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3423 seq_puts(m, " Wide Enabled:");
3424 for (i = 0; i <= ADV_MAX_TID; i++) {
3425 if ((chip_scsi_id == i) ||
3426 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3427 continue;
3428 }
3429
3430 seq_printf(m, " %X:%c",
3431 i,
3432 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3433 }
3434 seq_putc(m, '\n');
3435
3436 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3437 seq_puts(m, " Transfer Bit Width:");
3438 for (i = 0; i <= ADV_MAX_TID; i++) {
3439 if ((chip_scsi_id == i) ||
3440 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3441 continue;
3442 }
3443
3444 AdvReadWordLram(iop_base,
3445 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3446 lramword);
3447
3448 seq_printf(m, " %X:%d",
3449 i, (lramword & 0x8000) ? 16 : 8);
3450
3451 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3452 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3453 seq_putc(m, '*');
3454 renegotiate = 1;
3455 }
3456 }
3457 seq_putc(m, '\n');
3458
3459 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3460 seq_puts(m, " Synchronous Enabled:");
3461 for (i = 0; i <= ADV_MAX_TID; i++) {
3462 if ((chip_scsi_id == i) ||
3463 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3464 continue;
3465 }
3466
3467 seq_printf(m, " %X:%c",
3468 i,
3469 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3470 }
3471 seq_putc(m, '\n');
3472
3473 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3474 for (i = 0; i <= ADV_MAX_TID; i++) {
3475
3476 AdvReadWordLram(iop_base,
3477 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3478 lramword);
3479 lramword &= ~0x8000;
3480
3481 if ((chip_scsi_id == i) ||
3482 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3483 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3484 continue;
3485 }
3486
3487 seq_printf(m, " %X:", i);
3488
3489 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3490 seq_puts(m, " Asynchronous");
3491 } else {
3492 seq_puts(m, " Transfer Period Factor: ");
3493
3494 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */
3495 seq_puts(m, "9 (80.0 Mhz),");
3496 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */
3497 seq_puts(m, "10 (40.0 Mhz),");
3498 } else { /* 20 Mhz or below. */
3499
3500 period = (((lramword >> 8) * 25) + 50) / 4;
3501
3502 if (period == 0) { /* Should never happen. */
3503 seq_printf(m, "%d (? Mhz), ", period);
3504 } else {
3505 seq_printf(m,
3506 "%d (%d.%d Mhz),",
3507 period, 250 / period,
3508 ASC_TENTHS(250, period));
3509 }
3510 }
3511
3512 seq_printf(m, " REQ/ACK Offset: %d",
3513 lramword & 0x1F);
3514 }
3515
3516 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3517 seq_puts(m, "*\n");
3518 renegotiate = 1;
3519 } else {
3520 seq_putc(m, '\n');
3521 }
3522 }
3523
3524 if (renegotiate) {
3525 seq_puts(m, " * = Re-negotiation pending before next command.\n");
3526 }
3527 }
3528
3529 #ifdef ADVANSYS_STATS
3530 /*
3531 * asc_prt_board_stats()
3532 */
asc_prt_board_stats(struct seq_file * m,struct Scsi_Host * shost)3533 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3534 {
3535 struct asc_board *boardp = shost_priv(shost);
3536 struct asc_stats *s = &boardp->asc_stats;
3537
3538 seq_printf(m,
3539 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3540 shost->host_no);
3541
3542 seq_printf(m,
3543 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3544 s->queuecommand, s->reset, s->biosparam,
3545 s->interrupt);
3546
3547 seq_printf(m,
3548 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3549 s->callback, s->done, s->build_error,
3550 s->adv_build_noreq, s->adv_build_nosg);
3551
3552 seq_printf(m,
3553 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3554 s->exe_noerror, s->exe_busy, s->exe_error,
3555 s->exe_unknown);
3556
3557 /*
3558 * Display data transfer statistics.
3559 */
3560 if (s->xfer_cnt > 0) {
3561 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3562 s->xfer_cnt, s->xfer_elem);
3563
3564 seq_printf(m, "xfer_bytes %u.%01u kb\n",
3565 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3566
3567 /* Scatter gather transfer statistics */
3568 seq_printf(m, " avg_num_elem %u.%01u, ",
3569 s->xfer_elem / s->xfer_cnt,
3570 ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3571
3572 seq_printf(m, "avg_elem_size %u.%01u kb, ",
3573 (s->xfer_sect / 2) / s->xfer_elem,
3574 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3575
3576 seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3577 (s->xfer_sect / 2) / s->xfer_cnt,
3578 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3579 }
3580 }
3581 #endif /* ADVANSYS_STATS */
3582
3583 /*
3584 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3585 *
3586 * m: seq_file to print into
3587 * shost: Scsi_Host
3588 *
3589 * Return the number of bytes read from or written to a
3590 * /proc/scsi/advansys/[0...] file.
3591 */
3592 static int
advansys_show_info(struct seq_file * m,struct Scsi_Host * shost)3593 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3594 {
3595 struct asc_board *boardp = shost_priv(shost);
3596
3597 ASC_DBG(1, "begin\n");
3598
3599 /*
3600 * User read of /proc/scsi/advansys/[0...] file.
3601 */
3602
3603 /*
3604 * Get board configuration information.
3605 *
3606 * advansys_info() returns the board string from its own static buffer.
3607 */
3608 /* Copy board information. */
3609 seq_printf(m, "%s\n", (char *)advansys_info(shost));
3610 /*
3611 * Display Wide Board BIOS Information.
3612 */
3613 if (!ASC_NARROW_BOARD(boardp))
3614 asc_prt_adv_bios(m, shost);
3615
3616 /*
3617 * Display driver information for each device attached to the board.
3618 */
3619 asc_prt_board_devices(m, shost);
3620
3621 /*
3622 * Display EEPROM configuration for the board.
3623 */
3624 if (ASC_NARROW_BOARD(boardp))
3625 asc_prt_asc_board_eeprom(m, shost);
3626 else
3627 asc_prt_adv_board_eeprom(m, shost);
3628
3629 /*
3630 * Display driver configuration and information for the board.
3631 */
3632 asc_prt_driver_conf(m, shost);
3633
3634 #ifdef ADVANSYS_STATS
3635 /*
3636 * Display driver statistics for the board.
3637 */
3638 asc_prt_board_stats(m, shost);
3639 #endif /* ADVANSYS_STATS */
3640
3641 /*
3642 * Display Asc Library dynamic configuration information
3643 * for the board.
3644 */
3645 if (ASC_NARROW_BOARD(boardp))
3646 asc_prt_asc_board_info(m, shost);
3647 else
3648 asc_prt_adv_board_info(m, shost);
3649 return 0;
3650 }
3651 #endif /* CONFIG_PROC_FS */
3652
asc_scsi_done(struct scsi_cmnd * scp)3653 static void asc_scsi_done(struct scsi_cmnd *scp)
3654 {
3655 scsi_dma_unmap(scp);
3656 ASC_STATS(scp->device->host, done);
3657 scp->scsi_done(scp);
3658 }
3659
AscSetBank(PortAddr iop_base,uchar bank)3660 static void AscSetBank(PortAddr iop_base, uchar bank)
3661 {
3662 uchar val;
3663
3664 val = AscGetChipControl(iop_base) &
3665 (~
3666 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3667 CC_CHIP_RESET));
3668 if (bank == 1) {
3669 val |= CC_BANK_ONE;
3670 } else if (bank == 2) {
3671 val |= CC_DIAG | CC_BANK_ONE;
3672 } else {
3673 val &= ~CC_BANK_ONE;
3674 }
3675 AscSetChipControl(iop_base, val);
3676 }
3677
AscSetChipIH(PortAddr iop_base,ushort ins_code)3678 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3679 {
3680 AscSetBank(iop_base, 1);
3681 AscWriteChipIH(iop_base, ins_code);
3682 AscSetBank(iop_base, 0);
3683 }
3684
AscStartChip(PortAddr iop_base)3685 static int AscStartChip(PortAddr iop_base)
3686 {
3687 AscSetChipControl(iop_base, 0);
3688 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3689 return (0);
3690 }
3691 return (1);
3692 }
3693
AscStopChip(PortAddr iop_base)3694 static bool AscStopChip(PortAddr iop_base)
3695 {
3696 uchar cc_val;
3697
3698 cc_val =
3699 AscGetChipControl(iop_base) &
3700 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3701 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3702 AscSetChipIH(iop_base, INS_HALT);
3703 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3704 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3705 return false;
3706 }
3707 return true;
3708 }
3709
AscIsChipHalted(PortAddr iop_base)3710 static bool AscIsChipHalted(PortAddr iop_base)
3711 {
3712 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3713 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3714 return true;
3715 }
3716 }
3717 return false;
3718 }
3719
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)3720 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3721 {
3722 PortAddr iop_base;
3723 int i = 10;
3724
3725 iop_base = asc_dvc->iop_base;
3726 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3727 && (i-- > 0)) {
3728 mdelay(100);
3729 }
3730 AscStopChip(iop_base);
3731 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3732 udelay(60);
3733 AscSetChipIH(iop_base, INS_RFLAG_WTM);
3734 AscSetChipIH(iop_base, INS_HALT);
3735 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3736 AscSetChipControl(iop_base, CC_HALT);
3737 mdelay(200);
3738 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3739 AscSetChipStatus(iop_base, 0);
3740 return (AscIsChipHalted(iop_base));
3741 }
3742
AscFindSignature(PortAddr iop_base)3743 static int AscFindSignature(PortAddr iop_base)
3744 {
3745 ushort sig_word;
3746
3747 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3748 iop_base, AscGetChipSignatureByte(iop_base));
3749 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3750 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3751 iop_base, AscGetChipSignatureWord(iop_base));
3752 sig_word = AscGetChipSignatureWord(iop_base);
3753 if ((sig_word == (ushort)ASC_1000_ID0W) ||
3754 (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3755 return (1);
3756 }
3757 }
3758 return (0);
3759 }
3760
AscEnableInterrupt(PortAddr iop_base)3761 static void AscEnableInterrupt(PortAddr iop_base)
3762 {
3763 ushort cfg;
3764
3765 cfg = AscGetChipCfgLsw(iop_base);
3766 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3767 }
3768
AscDisableInterrupt(PortAddr iop_base)3769 static void AscDisableInterrupt(PortAddr iop_base)
3770 {
3771 ushort cfg;
3772
3773 cfg = AscGetChipCfgLsw(iop_base);
3774 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3775 }
3776
AscReadLramByte(PortAddr iop_base,ushort addr)3777 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3778 {
3779 unsigned char byte_data;
3780 unsigned short word_data;
3781
3782 if (isodd_word(addr)) {
3783 AscSetChipLramAddr(iop_base, addr - 1);
3784 word_data = AscGetChipLramData(iop_base);
3785 byte_data = (word_data >> 8) & 0xFF;
3786 } else {
3787 AscSetChipLramAddr(iop_base, addr);
3788 word_data = AscGetChipLramData(iop_base);
3789 byte_data = word_data & 0xFF;
3790 }
3791 return byte_data;
3792 }
3793
AscReadLramWord(PortAddr iop_base,ushort addr)3794 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3795 {
3796 ushort word_data;
3797
3798 AscSetChipLramAddr(iop_base, addr);
3799 word_data = AscGetChipLramData(iop_base);
3800 return (word_data);
3801 }
3802
3803 static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)3804 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3805 {
3806 int i;
3807
3808 AscSetChipLramAddr(iop_base, s_addr);
3809 for (i = 0; i < words; i++) {
3810 AscSetChipLramData(iop_base, set_wval);
3811 }
3812 }
3813
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)3814 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3815 {
3816 AscSetChipLramAddr(iop_base, addr);
3817 AscSetChipLramData(iop_base, word_val);
3818 }
3819
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)3820 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3821 {
3822 ushort word_data;
3823
3824 if (isodd_word(addr)) {
3825 addr--;
3826 word_data = AscReadLramWord(iop_base, addr);
3827 word_data &= 0x00FF;
3828 word_data |= (((ushort)byte_val << 8) & 0xFF00);
3829 } else {
3830 word_data = AscReadLramWord(iop_base, addr);
3831 word_data &= 0xFF00;
3832 word_data |= ((ushort)byte_val & 0x00FF);
3833 }
3834 AscWriteLramWord(iop_base, addr, word_data);
3835 }
3836
3837 /*
3838 * Copy 2 bytes to LRAM.
3839 *
3840 * The source data is assumed to be in little-endian order in memory
3841 * and is maintained in little-endian order when written to LRAM.
3842 */
3843 static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)3844 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3845 const uchar *s_buffer, int words)
3846 {
3847 int i;
3848
3849 AscSetChipLramAddr(iop_base, s_addr);
3850 for (i = 0; i < 2 * words; i += 2) {
3851 /*
3852 * On a little-endian system the second argument below
3853 * produces a little-endian ushort which is written to
3854 * LRAM in little-endian order. On a big-endian system
3855 * the second argument produces a big-endian ushort which
3856 * is "transparently" byte-swapped by outpw() and written
3857 * in little-endian order to LRAM.
3858 */
3859 outpw(iop_base + IOP_RAM_DATA,
3860 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3861 }
3862 }
3863
3864 /*
3865 * Copy 4 bytes to LRAM.
3866 *
3867 * The source data is assumed to be in little-endian order in memory
3868 * and is maintained in little-endian order when written to LRAM.
3869 */
3870 static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)3871 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3872 ushort s_addr, uchar *s_buffer, int dwords)
3873 {
3874 int i;
3875
3876 AscSetChipLramAddr(iop_base, s_addr);
3877 for (i = 0; i < 4 * dwords; i += 4) {
3878 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */
3879 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */
3880 }
3881 }
3882
3883 /*
3884 * Copy 2 bytes from LRAM.
3885 *
3886 * The source data is assumed to be in little-endian order in LRAM
3887 * and is maintained in little-endian order when written to memory.
3888 */
3889 static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)3890 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3891 ushort s_addr, uchar *d_buffer, int words)
3892 {
3893 int i;
3894 ushort word;
3895
3896 AscSetChipLramAddr(iop_base, s_addr);
3897 for (i = 0; i < 2 * words; i += 2) {
3898 word = inpw(iop_base + IOP_RAM_DATA);
3899 d_buffer[i] = word & 0xff;
3900 d_buffer[i + 1] = (word >> 8) & 0xff;
3901 }
3902 }
3903
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)3904 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3905 {
3906 u32 sum = 0;
3907 int i;
3908
3909 for (i = 0; i < words; i++, s_addr += 2) {
3910 sum += AscReadLramWord(iop_base, s_addr);
3911 }
3912 return (sum);
3913 }
3914
AscInitLram(ASC_DVC_VAR * asc_dvc)3915 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3916 {
3917 uchar i;
3918 ushort s_addr;
3919 PortAddr iop_base;
3920
3921 iop_base = asc_dvc->iop_base;
3922 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3923 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3924 64) >> 1));
3925 i = ASC_MIN_ACTIVE_QNO;
3926 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3928 (uchar)(i + 1));
3929 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3930 (uchar)(asc_dvc->max_total_qng));
3931 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3932 (uchar)i);
3933 i++;
3934 s_addr += ASC_QBLK_SIZE;
3935 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3937 (uchar)(i + 1));
3938 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3939 (uchar)(i - 1));
3940 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3941 (uchar)i);
3942 }
3943 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3944 (uchar)ASC_QLINK_END);
3945 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3946 (uchar)(asc_dvc->max_total_qng - 1));
3947 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3948 (uchar)asc_dvc->max_total_qng);
3949 i++;
3950 s_addr += ASC_QBLK_SIZE;
3951 for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3952 i++, s_addr += ASC_QBLK_SIZE) {
3953 AscWriteLramByte(iop_base,
3954 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3955 AscWriteLramByte(iop_base,
3956 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3957 AscWriteLramByte(iop_base,
3958 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3959 }
3960 }
3961
3962 static u32
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)3963 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3964 const uchar *mcode_buf, ushort mcode_size)
3965 {
3966 u32 chksum;
3967 ushort mcode_word_size;
3968 ushort mcode_chksum;
3969
3970 /* Write the microcode buffer starting at LRAM address 0. */
3971 mcode_word_size = (ushort)(mcode_size >> 1);
3972 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3973 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3974
3975 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3976 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3977 mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3978 (ushort)ASC_CODE_SEC_BEG,
3979 (ushort)((mcode_size -
3980 s_addr - (ushort)
3981 ASC_CODE_SEC_BEG) /
3982 2));
3983 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3984 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3985 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3986 return chksum;
3987 }
3988
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)3989 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3990 {
3991 PortAddr iop_base;
3992 int i;
3993 ushort lram_addr;
3994
3995 iop_base = asc_dvc->iop_base;
3996 AscPutRiscVarFreeQHead(iop_base, 1);
3997 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3998 AscPutVarFreeQHead(iop_base, 1);
3999 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4000 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4001 (uchar)((int)asc_dvc->max_total_qng + 1));
4002 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4003 (uchar)((int)asc_dvc->max_total_qng + 2));
4004 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4005 asc_dvc->max_total_qng);
4006 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4007 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4008 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4009 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4010 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4011 AscPutQDoneInProgress(iop_base, 0);
4012 lram_addr = ASC_QADR_BEG;
4013 for (i = 0; i < 32; i++, lram_addr += 2) {
4014 AscWriteLramWord(iop_base, lram_addr, 0);
4015 }
4016 }
4017
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)4018 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4019 {
4020 int i;
4021 int warn_code;
4022 PortAddr iop_base;
4023 __le32 phy_addr;
4024 __le32 phy_size;
4025 struct asc_board *board = asc_dvc_to_board(asc_dvc);
4026
4027 iop_base = asc_dvc->iop_base;
4028 warn_code = 0;
4029 for (i = 0; i <= ASC_MAX_TID; i++) {
4030 AscPutMCodeInitSDTRAtID(iop_base, i,
4031 asc_dvc->cfg->sdtr_period_offset[i]);
4032 }
4033
4034 AscInitQLinkVar(asc_dvc);
4035 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4036 asc_dvc->cfg->disc_enable);
4037 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4038 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4039
4040 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4041 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4042 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4043 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4044 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4045 warn_code = -ENOMEM;
4046 goto err_dma_map;
4047 }
4048 phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4049 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4050 (uchar *)&phy_addr, 1);
4051 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4052 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4053 (uchar *)&phy_size, 1);
4054
4055 asc_dvc->cfg->mcode_date =
4056 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4057 asc_dvc->cfg->mcode_version =
4058 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4059
4060 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4061 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4062 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4063 warn_code = -EINVAL;
4064 goto err_mcode_start;
4065 }
4066 if (AscStartChip(iop_base) != 1) {
4067 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4068 warn_code = -EIO;
4069 goto err_mcode_start;
4070 }
4071
4072 return warn_code;
4073
4074 err_mcode_start:
4075 dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4076 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4077 err_dma_map:
4078 asc_dvc->overrun_dma = 0;
4079 return warn_code;
4080 }
4081
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4082 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4083 {
4084 const struct firmware *fw;
4085 const char fwname[] = "advansys/mcode.bin";
4086 int err;
4087 unsigned long chksum;
4088 int warn_code;
4089 PortAddr iop_base;
4090
4091 iop_base = asc_dvc->iop_base;
4092 warn_code = 0;
4093 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4094 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4095 AscResetChipAndScsiBus(asc_dvc);
4096 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4097 }
4098 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4099 if (asc_dvc->err_code != 0)
4100 return ASC_ERROR;
4101 if (!AscFindSignature(asc_dvc->iop_base)) {
4102 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4103 return warn_code;
4104 }
4105 AscDisableInterrupt(iop_base);
4106 AscInitLram(asc_dvc);
4107
4108 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4109 if (err) {
4110 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4111 fwname, err);
4112 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4113 return err;
4114 }
4115 if (fw->size < 4) {
4116 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4117 fw->size, fwname);
4118 release_firmware(fw);
4119 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4120 return -EINVAL;
4121 }
4122 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4123 (fw->data[1] << 8) | fw->data[0];
4124 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4125 if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4126 fw->size - 4) != chksum) {
4127 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4128 release_firmware(fw);
4129 return warn_code;
4130 }
4131 release_firmware(fw);
4132 warn_code |= AscInitMicroCodeVar(asc_dvc);
4133 if (!asc_dvc->overrun_dma)
4134 return warn_code;
4135 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4136 AscEnableInterrupt(iop_base);
4137 return warn_code;
4138 }
4139
4140 /*
4141 * Load the Microcode
4142 *
4143 * Write the microcode image to RISC memory starting at address 0.
4144 *
4145 * The microcode is stored compressed in the following format:
4146 *
4147 * 254 word (508 byte) table indexed by byte code followed
4148 * by the following byte codes:
4149 *
4150 * 1-Byte Code:
4151 * 00: Emit word 0 in table.
4152 * 01: Emit word 1 in table.
4153 * .
4154 * FD: Emit word 253 in table.
4155 *
4156 * Multi-Byte Code:
4157 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4158 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4159 *
4160 * Returns 0 or an error if the checksum doesn't match
4161 */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4162 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4163 int size, int memsize, int chksum)
4164 {
4165 int i, j, end, len = 0;
4166 u32 sum;
4167
4168 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4169
4170 for (i = 253 * 2; i < size; i++) {
4171 if (buf[i] == 0xff) {
4172 unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4173 for (j = 0; j < buf[i + 1]; j++) {
4174 AdvWriteWordAutoIncLram(iop_base, word);
4175 len += 2;
4176 }
4177 i += 3;
4178 } else if (buf[i] == 0xfe) {
4179 unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4180 AdvWriteWordAutoIncLram(iop_base, word);
4181 i += 2;
4182 len += 2;
4183 } else {
4184 unsigned int off = buf[i] * 2;
4185 unsigned short word = (buf[off + 1] << 8) | buf[off];
4186 AdvWriteWordAutoIncLram(iop_base, word);
4187 len += 2;
4188 }
4189 }
4190
4191 end = len;
4192
4193 while (len < memsize) {
4194 AdvWriteWordAutoIncLram(iop_base, 0);
4195 len += 2;
4196 }
4197
4198 /* Verify the microcode checksum. */
4199 sum = 0;
4200 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4201
4202 for (len = 0; len < end; len += 2) {
4203 sum += AdvReadWordAutoIncLram(iop_base);
4204 }
4205
4206 if (sum != chksum)
4207 return ASC_IERR_MCODE_CHKSUM;
4208
4209 return 0;
4210 }
4211
AdvBuildCarrierFreelist(struct adv_dvc_var * adv_dvc)4212 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4213 {
4214 off_t carr_offset = 0, next_offset;
4215 dma_addr_t carr_paddr;
4216 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4217
4218 for (i = 0; i < carr_num; i++) {
4219 carr_offset = i * sizeof(ADV_CARR_T);
4220 /* Get physical address of the carrier 'carrp'. */
4221 carr_paddr = adv_dvc->carrier_addr + carr_offset;
4222
4223 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4224 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4225 adv_dvc->carrier[i].areq_vpa = 0;
4226 next_offset = carr_offset + sizeof(ADV_CARR_T);
4227 if (i == carr_num)
4228 next_offset = ~0;
4229 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4230 }
4231 /*
4232 * We cannot have a carrier with 'carr_va' of '0', as
4233 * a reference to this carrier would be interpreted as
4234 * list termination.
4235 * So start at carrier 1 with the freelist.
4236 */
4237 adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4238 }
4239
adv_get_carrier(struct adv_dvc_var * adv_dvc,u32 offset)4240 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4241 {
4242 int index;
4243
4244 BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4245
4246 index = offset / sizeof(ADV_CARR_T);
4247 return &adv_dvc->carrier[index];
4248 }
4249
adv_get_next_carrier(struct adv_dvc_var * adv_dvc)4250 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4251 {
4252 ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4253 u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4254
4255 if (next_vpa == 0 || next_vpa == ~0) {
4256 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4257 return NULL;
4258 }
4259
4260 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4261 /*
4262 * insert stopper carrier to terminate list
4263 */
4264 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4265
4266 return carrp;
4267 }
4268
4269 /*
4270 * 'offset' is the index in the request pointer array
4271 */
adv_get_reqp(struct adv_dvc_var * adv_dvc,u32 offset)4272 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4273 {
4274 struct asc_board *boardp = adv_dvc->drv_ptr;
4275
4276 BUG_ON(offset > adv_dvc->max_host_qng);
4277 return &boardp->adv_reqp[offset];
4278 }
4279
4280 /*
4281 * Send an idle command to the chip and wait for completion.
4282 *
4283 * Command completion is polled for once per microsecond.
4284 *
4285 * The function can be called from anywhere including an interrupt handler.
4286 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4287 * functions to prevent reentrancy.
4288 *
4289 * Return Values:
4290 * ADV_TRUE - command completed successfully
4291 * ADV_FALSE - command failed
4292 * ADV_ERROR - command timed out
4293 */
4294 static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,u32 idle_cmd_parameter)4295 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4296 ushort idle_cmd, u32 idle_cmd_parameter)
4297 {
4298 int result, i, j;
4299 AdvPortAddr iop_base;
4300
4301 iop_base = asc_dvc->iop_base;
4302
4303 /*
4304 * Clear the idle command status which is set by the microcode
4305 * to a non-zero value to indicate when the command is completed.
4306 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4307 */
4308 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4309
4310 /*
4311 * Write the idle command value after the idle command parameter
4312 * has been written to avoid a race condition. If the order is not
4313 * followed, the microcode may process the idle command before the
4314 * parameters have been written to LRAM.
4315 */
4316 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4317 cpu_to_le32(idle_cmd_parameter));
4318 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4319
4320 /*
4321 * Tickle the RISC to tell it to process the idle command.
4322 */
4323 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4324 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4325 /*
4326 * Clear the tickle value. In the ASC-3550 the RISC flag
4327 * command 'clr_tickle_b' does not work unless the host
4328 * value is cleared.
4329 */
4330 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4331 }
4332
4333 /* Wait for up to 100 millisecond for the idle command to timeout. */
4334 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4335 /* Poll once each microsecond for command completion. */
4336 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4337 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4338 result);
4339 if (result != 0)
4340 return result;
4341 udelay(1);
4342 }
4343 }
4344
4345 BUG(); /* The idle command should never timeout. */
4346 return ADV_ERROR;
4347 }
4348
4349 /*
4350 * Reset SCSI Bus and purge all outstanding requests.
4351 *
4352 * Return Value:
4353 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4354 * ADV_FALSE(0) - Microcode command failed.
4355 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4356 * may be hung which requires driver recovery.
4357 */
AdvResetSB(ADV_DVC_VAR * asc_dvc)4358 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4359 {
4360 int status;
4361
4362 /*
4363 * Send the SCSI Bus Reset idle start idle command which asserts
4364 * the SCSI Bus Reset signal.
4365 */
4366 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4367 if (status != ADV_TRUE) {
4368 return status;
4369 }
4370
4371 /*
4372 * Delay for the specified SCSI Bus Reset hold time.
4373 *
4374 * The hold time delay is done on the host because the RISC has no
4375 * microsecond accurate timer.
4376 */
4377 udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4378
4379 /*
4380 * Send the SCSI Bus Reset end idle command which de-asserts
4381 * the SCSI Bus Reset signal and purges any pending requests.
4382 */
4383 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4384 if (status != ADV_TRUE) {
4385 return status;
4386 }
4387
4388 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4389
4390 return status;
4391 }
4392
4393 /*
4394 * Initialize the ASC-3550.
4395 *
4396 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4397 *
4398 * For a non-fatal error return a warning code. If there are no warnings
4399 * then 0 is returned.
4400 *
4401 * Needed after initialization for error recovery.
4402 */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)4403 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4404 {
4405 const struct firmware *fw;
4406 const char fwname[] = "advansys/3550.bin";
4407 AdvPortAddr iop_base;
4408 ushort warn_code;
4409 int begin_addr;
4410 int end_addr;
4411 ushort code_sum;
4412 int word;
4413 int i;
4414 int err;
4415 unsigned long chksum;
4416 ushort scsi_cfg1;
4417 uchar tid;
4418 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4419 ushort wdtr_able = 0, sdtr_able, tagqng_able;
4420 uchar max_cmd[ADV_MAX_TID + 1];
4421
4422 /* If there is already an error, don't continue. */
4423 if (asc_dvc->err_code != 0)
4424 return ADV_ERROR;
4425
4426 /*
4427 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4428 */
4429 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4430 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4431 return ADV_ERROR;
4432 }
4433
4434 warn_code = 0;
4435 iop_base = asc_dvc->iop_base;
4436
4437 /*
4438 * Save the RISC memory BIOS region before writing the microcode.
4439 * The BIOS may already be loaded and using its RISC LRAM region
4440 * so its region must be saved and restored.
4441 *
4442 * Note: This code makes the assumption, which is currently true,
4443 * that a chip reset does not clear RISC LRAM.
4444 */
4445 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4446 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4447 bios_mem[i]);
4448 }
4449
4450 /*
4451 * Save current per TID negotiated values.
4452 */
4453 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4454 ushort bios_version, major, minor;
4455
4456 bios_version =
4457 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4458 major = (bios_version >> 12) & 0xF;
4459 minor = (bios_version >> 8) & 0xF;
4460 if (major < 3 || (major == 3 && minor == 1)) {
4461 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4462 AdvReadWordLram(iop_base, 0x120, wdtr_able);
4463 } else {
4464 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4465 }
4466 }
4467 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4468 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4469 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4470 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4471 max_cmd[tid]);
4472 }
4473
4474 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4475 if (err) {
4476 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4477 fwname, err);
4478 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4479 return err;
4480 }
4481 if (fw->size < 4) {
4482 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4483 fw->size, fwname);
4484 release_firmware(fw);
4485 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4486 return -EINVAL;
4487 }
4488 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4489 (fw->data[1] << 8) | fw->data[0];
4490 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4491 fw->size - 4, ADV_3550_MEMSIZE,
4492 chksum);
4493 release_firmware(fw);
4494 if (asc_dvc->err_code)
4495 return ADV_ERROR;
4496
4497 /*
4498 * Restore the RISC memory BIOS region.
4499 */
4500 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4501 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4502 bios_mem[i]);
4503 }
4504
4505 /*
4506 * Calculate and write the microcode code checksum to the microcode
4507 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4508 */
4509 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4510 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4511 code_sum = 0;
4512 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4513 for (word = begin_addr; word < end_addr; word += 2) {
4514 code_sum += AdvReadWordAutoIncLram(iop_base);
4515 }
4516 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4517
4518 /*
4519 * Read and save microcode version and date.
4520 */
4521 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4522 asc_dvc->cfg->mcode_date);
4523 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4524 asc_dvc->cfg->mcode_version);
4525
4526 /*
4527 * Set the chip type to indicate the ASC3550.
4528 */
4529 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4530
4531 /*
4532 * If the PCI Configuration Command Register "Parity Error Response
4533 * Control" Bit was clear (0), then set the microcode variable
4534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4535 * to ignore DMA parity errors.
4536 */
4537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4539 word |= CONTROL_FLAG_IGNORE_PERR;
4540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4541 }
4542
4543 /*
4544 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4545 * threshold of 128 bytes. This register is only accessible to the host.
4546 */
4547 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4548 START_CTL_EMFU | READ_CMD_MRM);
4549
4550 /*
4551 * Microcode operating variables for WDTR, SDTR, and command tag
4552 * queuing will be set in slave_configure() based on what a
4553 * device reports it is capable of in Inquiry byte 7.
4554 *
4555 * If SCSI Bus Resets have been disabled, then directly set
4556 * SDTR and WDTR from the EEPROM configuration. This will allow
4557 * the BIOS and warm boot to work without a SCSI bus hang on
4558 * the Inquiry caused by host and target mismatched DTR values.
4559 * Without the SCSI Bus Reset, before an Inquiry a device can't
4560 * be assumed to be in Asynchronous, Narrow mode.
4561 */
4562 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4563 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4564 asc_dvc->wdtr_able);
4565 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4566 asc_dvc->sdtr_able);
4567 }
4568
4569 /*
4570 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4571 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4572 * bitmask. These values determine the maximum SDTR speed negotiated
4573 * with a device.
4574 *
4575 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4576 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4577 * without determining here whether the device supports SDTR.
4578 *
4579 * 4-bit speed SDTR speed name
4580 * =========== ===============
4581 * 0000b (0x0) SDTR disabled
4582 * 0001b (0x1) 5 Mhz
4583 * 0010b (0x2) 10 Mhz
4584 * 0011b (0x3) 20 Mhz (Ultra)
4585 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4586 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4587 * 0110b (0x6) Undefined
4588 * .
4589 * 1111b (0xF) Undefined
4590 */
4591 word = 0;
4592 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4593 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4594 /* Set Ultra speed for TID 'tid'. */
4595 word |= (0x3 << (4 * (tid % 4)));
4596 } else {
4597 /* Set Fast speed for TID 'tid'. */
4598 word |= (0x2 << (4 * (tid % 4)));
4599 }
4600 if (tid == 3) { /* Check if done with sdtr_speed1. */
4601 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4602 word = 0;
4603 } else if (tid == 7) { /* Check if done with sdtr_speed2. */
4604 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4605 word = 0;
4606 } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4607 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4608 word = 0;
4609 } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4610 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4611 /* End of loop. */
4612 }
4613 }
4614
4615 /*
4616 * Set microcode operating variable for the disconnect per TID bitmask.
4617 */
4618 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4619 asc_dvc->cfg->disc_enable);
4620
4621 /*
4622 * Set SCSI_CFG0 Microcode Default Value.
4623 *
4624 * The microcode will set the SCSI_CFG0 register using this value
4625 * after it is started below.
4626 */
4627 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4628 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4629 asc_dvc->chip_scsi_id);
4630
4631 /*
4632 * Determine SCSI_CFG1 Microcode Default Value.
4633 *
4634 * The microcode will set the SCSI_CFG1 register using this value
4635 * after it is started below.
4636 */
4637
4638 /* Read current SCSI_CFG1 Register value. */
4639 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4640
4641 /*
4642 * If all three connectors are in use, return an error.
4643 */
4644 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4645 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4646 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4647 return ADV_ERROR;
4648 }
4649
4650 /*
4651 * If the internal narrow cable is reversed all of the SCSI_CTRL
4652 * register signals will be set. Check for and return an error if
4653 * this condition is found.
4654 */
4655 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4656 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4657 return ADV_ERROR;
4658 }
4659
4660 /*
4661 * If this is a differential board and a single-ended device
4662 * is attached to one of the connectors, return an error.
4663 */
4664 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4665 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4666 return ADV_ERROR;
4667 }
4668
4669 /*
4670 * If automatic termination control is enabled, then set the
4671 * termination value based on a table listed in a_condor.h.
4672 *
4673 * If manual termination was specified with an EEPROM setting
4674 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4675 * is ready to be 'ored' into SCSI_CFG1.
4676 */
4677 if (asc_dvc->cfg->termination == 0) {
4678 /*
4679 * The software always controls termination by setting TERM_CTL_SEL.
4680 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4681 */
4682 asc_dvc->cfg->termination |= TERM_CTL_SEL;
4683
4684 switch (scsi_cfg1 & CABLE_DETECT) {
4685 /* TERM_CTL_H: on, TERM_CTL_L: on */
4686 case 0x3:
4687 case 0x7:
4688 case 0xB:
4689 case 0xD:
4690 case 0xE:
4691 case 0xF:
4692 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4693 break;
4694
4695 /* TERM_CTL_H: on, TERM_CTL_L: off */
4696 case 0x1:
4697 case 0x5:
4698 case 0x9:
4699 case 0xA:
4700 case 0xC:
4701 asc_dvc->cfg->termination |= TERM_CTL_H;
4702 break;
4703
4704 /* TERM_CTL_H: off, TERM_CTL_L: off */
4705 case 0x2:
4706 case 0x6:
4707 break;
4708 }
4709 }
4710
4711 /*
4712 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4713 */
4714 scsi_cfg1 &= ~TERM_CTL;
4715
4716 /*
4717 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4718 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4719 * referenced, because the hardware internally inverts
4720 * the Termination High and Low bits if TERM_POL is set.
4721 */
4722 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4723
4724 /*
4725 * Set SCSI_CFG1 Microcode Default Value
4726 *
4727 * Set filter value and possibly modified termination control
4728 * bits in the Microcode SCSI_CFG1 Register Value.
4729 *
4730 * The microcode will set the SCSI_CFG1 register using this value
4731 * after it is started below.
4732 */
4733 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4734 FLTR_DISABLE | scsi_cfg1);
4735
4736 /*
4737 * Set MEM_CFG Microcode Default Value
4738 *
4739 * The microcode will set the MEM_CFG register using this value
4740 * after it is started below.
4741 *
4742 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4743 * are defined.
4744 *
4745 * ASC-3550 has 8KB internal memory.
4746 */
4747 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4748 BIOS_EN | RAM_SZ_8KB);
4749
4750 /*
4751 * Set SEL_MASK Microcode Default Value
4752 *
4753 * The microcode will set the SEL_MASK register using this value
4754 * after it is started below.
4755 */
4756 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4757 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4758
4759 AdvBuildCarrierFreelist(asc_dvc);
4760
4761 /*
4762 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4763 */
4764
4765 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4766 if (!asc_dvc->icq_sp) {
4767 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4768 return ADV_ERROR;
4769 }
4770
4771 /*
4772 * Set RISC ICQ physical address start value.
4773 */
4774 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4775
4776 /*
4777 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4778 */
4779 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4780 if (!asc_dvc->irq_sp) {
4781 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4782 return ADV_ERROR;
4783 }
4784
4785 /*
4786 * Set RISC IRQ physical address start value.
4787 */
4788 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4789 asc_dvc->carr_pending_cnt = 0;
4790
4791 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4792 (ADV_INTR_ENABLE_HOST_INTR |
4793 ADV_INTR_ENABLE_GLOBAL_INTR));
4794
4795 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4796 AdvWriteWordRegister(iop_base, IOPW_PC, word);
4797
4798 /* finally, finally, gentlemen, start your engine */
4799 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4800
4801 /*
4802 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4803 * Resets should be performed. The RISC has to be running
4804 * to issue a SCSI Bus Reset.
4805 */
4806 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4807 /*
4808 * If the BIOS Signature is present in memory, restore the
4809 * BIOS Handshake Configuration Table and do not perform
4810 * a SCSI Bus Reset.
4811 */
4812 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4813 0x55AA) {
4814 /*
4815 * Restore per TID negotiated values.
4816 */
4817 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4818 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4819 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4820 tagqng_able);
4821 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4822 AdvWriteByteLram(iop_base,
4823 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4824 max_cmd[tid]);
4825 }
4826 } else {
4827 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4828 warn_code = ASC_WARN_BUSRESET_ERROR;
4829 }
4830 }
4831 }
4832
4833 return warn_code;
4834 }
4835
4836 /*
4837 * Initialize the ASC-38C0800.
4838 *
4839 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4840 *
4841 * For a non-fatal error return a warning code. If there are no warnings
4842 * then 0 is returned.
4843 *
4844 * Needed after initialization for error recovery.
4845 */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)4846 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4847 {
4848 const struct firmware *fw;
4849 const char fwname[] = "advansys/38C0800.bin";
4850 AdvPortAddr iop_base;
4851 ushort warn_code;
4852 int begin_addr;
4853 int end_addr;
4854 ushort code_sum;
4855 int word;
4856 int i;
4857 int err;
4858 unsigned long chksum;
4859 ushort scsi_cfg1;
4860 uchar byte;
4861 uchar tid;
4862 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
4863 ushort wdtr_able, sdtr_able, tagqng_able;
4864 uchar max_cmd[ADV_MAX_TID + 1];
4865
4866 /* If there is already an error, don't continue. */
4867 if (asc_dvc->err_code != 0)
4868 return ADV_ERROR;
4869
4870 /*
4871 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4872 */
4873 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4874 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4875 return ADV_ERROR;
4876 }
4877
4878 warn_code = 0;
4879 iop_base = asc_dvc->iop_base;
4880
4881 /*
4882 * Save the RISC memory BIOS region before writing the microcode.
4883 * The BIOS may already be loaded and using its RISC LRAM region
4884 * so its region must be saved and restored.
4885 *
4886 * Note: This code makes the assumption, which is currently true,
4887 * that a chip reset does not clear RISC LRAM.
4888 */
4889 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4890 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4891 bios_mem[i]);
4892 }
4893
4894 /*
4895 * Save current per TID negotiated values.
4896 */
4897 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4898 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4899 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4900 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4901 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4902 max_cmd[tid]);
4903 }
4904
4905 /*
4906 * RAM BIST (RAM Built-In Self Test)
4907 *
4908 * Address : I/O base + offset 0x38h register (byte).
4909 * Function: Bit 7-6(RW) : RAM mode
4910 * Normal Mode : 0x00
4911 * Pre-test Mode : 0x40
4912 * RAM Test Mode : 0x80
4913 * Bit 5 : unused
4914 * Bit 4(RO) : Done bit
4915 * Bit 3-0(RO) : Status
4916 * Host Error : 0x08
4917 * Int_RAM Error : 0x04
4918 * RISC Error : 0x02
4919 * SCSI Error : 0x01
4920 * No Error : 0x00
4921 *
4922 * Note: RAM BIST code should be put right here, before loading the
4923 * microcode and after saving the RISC memory BIOS region.
4924 */
4925
4926 /*
4927 * LRAM Pre-test
4928 *
4929 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4930 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4931 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4932 * to NORMAL_MODE, return an error too.
4933 */
4934 for (i = 0; i < 2; i++) {
4935 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4936 mdelay(10); /* Wait for 10ms before reading back. */
4937 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4938 if ((byte & RAM_TEST_DONE) == 0
4939 || (byte & 0x0F) != PRE_TEST_VALUE) {
4940 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4941 return ADV_ERROR;
4942 }
4943
4944 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4945 mdelay(10); /* Wait for 10ms before reading back. */
4946 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4947 != NORMAL_VALUE) {
4948 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4949 return ADV_ERROR;
4950 }
4951 }
4952
4953 /*
4954 * LRAM Test - It takes about 1.5 ms to run through the test.
4955 *
4956 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4957 * If Done bit not set or Status not 0, save register byte, set the
4958 * err_code, and return an error.
4959 */
4960 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4961 mdelay(10); /* Wait for 10ms before checking status. */
4962
4963 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4964 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4965 /* Get here if Done bit not set or Status not 0. */
4966 asc_dvc->bist_err_code = byte; /* for BIOS display message */
4967 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4968 return ADV_ERROR;
4969 }
4970
4971 /* We need to reset back to normal mode after LRAM test passes. */
4972 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4973
4974 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4975 if (err) {
4976 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4977 fwname, err);
4978 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4979 return err;
4980 }
4981 if (fw->size < 4) {
4982 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4983 fw->size, fwname);
4984 release_firmware(fw);
4985 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4986 return -EINVAL;
4987 }
4988 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4989 (fw->data[1] << 8) | fw->data[0];
4990 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4991 fw->size - 4, ADV_38C0800_MEMSIZE,
4992 chksum);
4993 release_firmware(fw);
4994 if (asc_dvc->err_code)
4995 return ADV_ERROR;
4996
4997 /*
4998 * Restore the RISC memory BIOS region.
4999 */
5000 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5001 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5002 bios_mem[i]);
5003 }
5004
5005 /*
5006 * Calculate and write the microcode code checksum to the microcode
5007 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5008 */
5009 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5010 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5011 code_sum = 0;
5012 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5013 for (word = begin_addr; word < end_addr; word += 2) {
5014 code_sum += AdvReadWordAutoIncLram(iop_base);
5015 }
5016 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5017
5018 /*
5019 * Read microcode version and date.
5020 */
5021 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5022 asc_dvc->cfg->mcode_date);
5023 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5024 asc_dvc->cfg->mcode_version);
5025
5026 /*
5027 * Set the chip type to indicate the ASC38C0800.
5028 */
5029 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5030
5031 /*
5032 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5033 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5034 * cable detection and then we are able to read C_DET[3:0].
5035 *
5036 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5037 * Microcode Default Value' section below.
5038 */
5039 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5040 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5041 scsi_cfg1 | DIS_TERM_DRV);
5042
5043 /*
5044 * If the PCI Configuration Command Register "Parity Error Response
5045 * Control" Bit was clear (0), then set the microcode variable
5046 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5047 * to ignore DMA parity errors.
5048 */
5049 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5050 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5051 word |= CONTROL_FLAG_IGNORE_PERR;
5052 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5053 }
5054
5055 /*
5056 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5057 * bits for the default FIFO threshold.
5058 *
5059 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5060 *
5061 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5062 */
5063 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5064 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5065 READ_CMD_MRM);
5066
5067 /*
5068 * Microcode operating variables for WDTR, SDTR, and command tag
5069 * queuing will be set in slave_configure() based on what a
5070 * device reports it is capable of in Inquiry byte 7.
5071 *
5072 * If SCSI Bus Resets have been disabled, then directly set
5073 * SDTR and WDTR from the EEPROM configuration. This will allow
5074 * the BIOS and warm boot to work without a SCSI bus hang on
5075 * the Inquiry caused by host and target mismatched DTR values.
5076 * Without the SCSI Bus Reset, before an Inquiry a device can't
5077 * be assumed to be in Asynchronous, Narrow mode.
5078 */
5079 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5080 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5081 asc_dvc->wdtr_able);
5082 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5083 asc_dvc->sdtr_able);
5084 }
5085
5086 /*
5087 * Set microcode operating variables for DISC and SDTR_SPEED1,
5088 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5089 * configuration values.
5090 *
5091 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5092 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5093 * without determining here whether the device supports SDTR.
5094 */
5095 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5096 asc_dvc->cfg->disc_enable);
5097 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5098 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5099 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5100 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5101
5102 /*
5103 * Set SCSI_CFG0 Microcode Default Value.
5104 *
5105 * The microcode will set the SCSI_CFG0 register using this value
5106 * after it is started below.
5107 */
5108 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5109 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5110 asc_dvc->chip_scsi_id);
5111
5112 /*
5113 * Determine SCSI_CFG1 Microcode Default Value.
5114 *
5115 * The microcode will set the SCSI_CFG1 register using this value
5116 * after it is started below.
5117 */
5118
5119 /* Read current SCSI_CFG1 Register value. */
5120 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5121
5122 /*
5123 * If the internal narrow cable is reversed all of the SCSI_CTRL
5124 * register signals will be set. Check for and return an error if
5125 * this condition is found.
5126 */
5127 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5128 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5129 return ADV_ERROR;
5130 }
5131
5132 /*
5133 * All kind of combinations of devices attached to one of four
5134 * connectors are acceptable except HVD device attached. For example,
5135 * LVD device can be attached to SE connector while SE device attached
5136 * to LVD connector. If LVD device attached to SE connector, it only
5137 * runs up to Ultra speed.
5138 *
5139 * If an HVD device is attached to one of LVD connectors, return an
5140 * error. However, there is no way to detect HVD device attached to
5141 * SE connectors.
5142 */
5143 if (scsi_cfg1 & HVD) {
5144 asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5145 return ADV_ERROR;
5146 }
5147
5148 /*
5149 * If either SE or LVD automatic termination control is enabled, then
5150 * set the termination value based on a table listed in a_condor.h.
5151 *
5152 * If manual termination was specified with an EEPROM setting then
5153 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5154 * to be 'ored' into SCSI_CFG1.
5155 */
5156 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5157 /* SE automatic termination control is enabled. */
5158 switch (scsi_cfg1 & C_DET_SE) {
5159 /* TERM_SE_HI: on, TERM_SE_LO: on */
5160 case 0x1:
5161 case 0x2:
5162 case 0x3:
5163 asc_dvc->cfg->termination |= TERM_SE;
5164 break;
5165
5166 /* TERM_SE_HI: on, TERM_SE_LO: off */
5167 case 0x0:
5168 asc_dvc->cfg->termination |= TERM_SE_HI;
5169 break;
5170 }
5171 }
5172
5173 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5174 /* LVD automatic termination control is enabled. */
5175 switch (scsi_cfg1 & C_DET_LVD) {
5176 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5177 case 0x4:
5178 case 0x8:
5179 case 0xC:
5180 asc_dvc->cfg->termination |= TERM_LVD;
5181 break;
5182
5183 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5184 case 0x0:
5185 break;
5186 }
5187 }
5188
5189 /*
5190 * Clear any set TERM_SE and TERM_LVD bits.
5191 */
5192 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5193
5194 /*
5195 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5196 */
5197 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5198
5199 /*
5200 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5201 * bits and set possibly modified termination control bits in the
5202 * Microcode SCSI_CFG1 Register Value.
5203 */
5204 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5205
5206 /*
5207 * Set SCSI_CFG1 Microcode Default Value
5208 *
5209 * Set possibly modified termination control and reset DIS_TERM_DRV
5210 * bits in the Microcode SCSI_CFG1 Register Value.
5211 *
5212 * The microcode will set the SCSI_CFG1 register using this value
5213 * after it is started below.
5214 */
5215 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5216
5217 /*
5218 * Set MEM_CFG Microcode Default Value
5219 *
5220 * The microcode will set the MEM_CFG register using this value
5221 * after it is started below.
5222 *
5223 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5224 * are defined.
5225 *
5226 * ASC-38C0800 has 16KB internal memory.
5227 */
5228 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5229 BIOS_EN | RAM_SZ_16KB);
5230
5231 /*
5232 * Set SEL_MASK Microcode Default Value
5233 *
5234 * The microcode will set the SEL_MASK register using this value
5235 * after it is started below.
5236 */
5237 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5238 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5239
5240 AdvBuildCarrierFreelist(asc_dvc);
5241
5242 /*
5243 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5244 */
5245
5246 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5247 if (!asc_dvc->icq_sp) {
5248 ASC_DBG(0, "Failed to get ICQ carrier\n");
5249 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5250 return ADV_ERROR;
5251 }
5252
5253 /*
5254 * Set RISC ICQ physical address start value.
5255 * carr_pa is LE, must be native before write
5256 */
5257 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5258
5259 /*
5260 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5261 */
5262 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5263 if (!asc_dvc->irq_sp) {
5264 ASC_DBG(0, "Failed to get IRQ carrier\n");
5265 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5266 return ADV_ERROR;
5267 }
5268
5269 /*
5270 * Set RISC IRQ physical address start value.
5271 *
5272 * carr_pa is LE, must be native before write *
5273 */
5274 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5275 asc_dvc->carr_pending_cnt = 0;
5276
5277 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5278 (ADV_INTR_ENABLE_HOST_INTR |
5279 ADV_INTR_ENABLE_GLOBAL_INTR));
5280
5281 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5282 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5283
5284 /* finally, finally, gentlemen, start your engine */
5285 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5286
5287 /*
5288 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5289 * Resets should be performed. The RISC has to be running
5290 * to issue a SCSI Bus Reset.
5291 */
5292 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5293 /*
5294 * If the BIOS Signature is present in memory, restore the
5295 * BIOS Handshake Configuration Table and do not perform
5296 * a SCSI Bus Reset.
5297 */
5298 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5299 0x55AA) {
5300 /*
5301 * Restore per TID negotiated values.
5302 */
5303 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5304 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5305 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5306 tagqng_able);
5307 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5308 AdvWriteByteLram(iop_base,
5309 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5310 max_cmd[tid]);
5311 }
5312 } else {
5313 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5314 warn_code = ASC_WARN_BUSRESET_ERROR;
5315 }
5316 }
5317 }
5318
5319 return warn_code;
5320 }
5321
5322 /*
5323 * Initialize the ASC-38C1600.
5324 *
5325 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5326 *
5327 * For a non-fatal error return a warning code. If there are no warnings
5328 * then 0 is returned.
5329 *
5330 * Needed after initialization for error recovery.
5331 */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)5332 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5333 {
5334 const struct firmware *fw;
5335 const char fwname[] = "advansys/38C1600.bin";
5336 AdvPortAddr iop_base;
5337 ushort warn_code;
5338 int begin_addr;
5339 int end_addr;
5340 ushort code_sum;
5341 long word;
5342 int i;
5343 int err;
5344 unsigned long chksum;
5345 ushort scsi_cfg1;
5346 uchar byte;
5347 uchar tid;
5348 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */
5349 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5350 uchar max_cmd[ASC_MAX_TID + 1];
5351
5352 /* If there is already an error, don't continue. */
5353 if (asc_dvc->err_code != 0) {
5354 return ADV_ERROR;
5355 }
5356
5357 /*
5358 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5359 */
5360 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5361 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5362 return ADV_ERROR;
5363 }
5364
5365 warn_code = 0;
5366 iop_base = asc_dvc->iop_base;
5367
5368 /*
5369 * Save the RISC memory BIOS region before writing the microcode.
5370 * The BIOS may already be loaded and using its RISC LRAM region
5371 * so its region must be saved and restored.
5372 *
5373 * Note: This code makes the assumption, which is currently true,
5374 * that a chip reset does not clear RISC LRAM.
5375 */
5376 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5377 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5378 bios_mem[i]);
5379 }
5380
5381 /*
5382 * Save current per TID negotiated values.
5383 */
5384 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5385 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5386 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5387 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5388 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5389 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5390 max_cmd[tid]);
5391 }
5392
5393 /*
5394 * RAM BIST (Built-In Self Test)
5395 *
5396 * Address : I/O base + offset 0x38h register (byte).
5397 * Function: Bit 7-6(RW) : RAM mode
5398 * Normal Mode : 0x00
5399 * Pre-test Mode : 0x40
5400 * RAM Test Mode : 0x80
5401 * Bit 5 : unused
5402 * Bit 4(RO) : Done bit
5403 * Bit 3-0(RO) : Status
5404 * Host Error : 0x08
5405 * Int_RAM Error : 0x04
5406 * RISC Error : 0x02
5407 * SCSI Error : 0x01
5408 * No Error : 0x00
5409 *
5410 * Note: RAM BIST code should be put right here, before loading the
5411 * microcode and after saving the RISC memory BIOS region.
5412 */
5413
5414 /*
5415 * LRAM Pre-test
5416 *
5417 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5418 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5419 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5420 * to NORMAL_MODE, return an error too.
5421 */
5422 for (i = 0; i < 2; i++) {
5423 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5424 mdelay(10); /* Wait for 10ms before reading back. */
5425 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5426 if ((byte & RAM_TEST_DONE) == 0
5427 || (byte & 0x0F) != PRE_TEST_VALUE) {
5428 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5429 return ADV_ERROR;
5430 }
5431
5432 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5433 mdelay(10); /* Wait for 10ms before reading back. */
5434 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5435 != NORMAL_VALUE) {
5436 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5437 return ADV_ERROR;
5438 }
5439 }
5440
5441 /*
5442 * LRAM Test - It takes about 1.5 ms to run through the test.
5443 *
5444 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5445 * If Done bit not set or Status not 0, save register byte, set the
5446 * err_code, and return an error.
5447 */
5448 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5449 mdelay(10); /* Wait for 10ms before checking status. */
5450
5451 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5452 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5453 /* Get here if Done bit not set or Status not 0. */
5454 asc_dvc->bist_err_code = byte; /* for BIOS display message */
5455 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5456 return ADV_ERROR;
5457 }
5458
5459 /* We need to reset back to normal mode after LRAM test passes. */
5460 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5461
5462 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5463 if (err) {
5464 printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5465 fwname, err);
5466 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5467 return err;
5468 }
5469 if (fw->size < 4) {
5470 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5471 fw->size, fwname);
5472 release_firmware(fw);
5473 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5474 return -EINVAL;
5475 }
5476 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5477 (fw->data[1] << 8) | fw->data[0];
5478 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5479 fw->size - 4, ADV_38C1600_MEMSIZE,
5480 chksum);
5481 release_firmware(fw);
5482 if (asc_dvc->err_code)
5483 return ADV_ERROR;
5484
5485 /*
5486 * Restore the RISC memory BIOS region.
5487 */
5488 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5489 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5490 bios_mem[i]);
5491 }
5492
5493 /*
5494 * Calculate and write the microcode code checksum to the microcode
5495 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5496 */
5497 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5498 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5499 code_sum = 0;
5500 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5501 for (word = begin_addr; word < end_addr; word += 2) {
5502 code_sum += AdvReadWordAutoIncLram(iop_base);
5503 }
5504 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5505
5506 /*
5507 * Read microcode version and date.
5508 */
5509 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5510 asc_dvc->cfg->mcode_date);
5511 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5512 asc_dvc->cfg->mcode_version);
5513
5514 /*
5515 * Set the chip type to indicate the ASC38C1600.
5516 */
5517 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5518
5519 /*
5520 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5521 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5522 * cable detection and then we are able to read C_DET[3:0].
5523 *
5524 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5525 * Microcode Default Value' section below.
5526 */
5527 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5528 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5529 scsi_cfg1 | DIS_TERM_DRV);
5530
5531 /*
5532 * If the PCI Configuration Command Register "Parity Error Response
5533 * Control" Bit was clear (0), then set the microcode variable
5534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5535 * to ignore DMA parity errors.
5536 */
5537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5539 word |= CONTROL_FLAG_IGNORE_PERR;
5540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5541 }
5542
5543 /*
5544 * If the BIOS control flag AIPP (Asynchronous Information
5545 * Phase Protection) disable bit is not set, then set the firmware
5546 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5547 * AIPP checking and encoding.
5548 */
5549 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5550 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5551 word |= CONTROL_FLAG_ENABLE_AIPP;
5552 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5553 }
5554
5555 /*
5556 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5557 * and START_CTL_TH [3:2].
5558 */
5559 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5560 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5561
5562 /*
5563 * Microcode operating variables for WDTR, SDTR, and command tag
5564 * queuing will be set in slave_configure() based on what a
5565 * device reports it is capable of in Inquiry byte 7.
5566 *
5567 * If SCSI Bus Resets have been disabled, then directly set
5568 * SDTR and WDTR from the EEPROM configuration. This will allow
5569 * the BIOS and warm boot to work without a SCSI bus hang on
5570 * the Inquiry caused by host and target mismatched DTR values.
5571 * Without the SCSI Bus Reset, before an Inquiry a device can't
5572 * be assumed to be in Asynchronous, Narrow mode.
5573 */
5574 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5575 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5576 asc_dvc->wdtr_able);
5577 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5578 asc_dvc->sdtr_able);
5579 }
5580
5581 /*
5582 * Set microcode operating variables for DISC and SDTR_SPEED1,
5583 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5584 * configuration values.
5585 *
5586 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5587 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5588 * without determining here whether the device supports SDTR.
5589 */
5590 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5591 asc_dvc->cfg->disc_enable);
5592 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5593 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5594 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5595 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5596
5597 /*
5598 * Set SCSI_CFG0 Microcode Default Value.
5599 *
5600 * The microcode will set the SCSI_CFG0 register using this value
5601 * after it is started below.
5602 */
5603 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5604 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5605 asc_dvc->chip_scsi_id);
5606
5607 /*
5608 * Calculate SCSI_CFG1 Microcode Default Value.
5609 *
5610 * The microcode will set the SCSI_CFG1 register using this value
5611 * after it is started below.
5612 *
5613 * Each ASC-38C1600 function has only two cable detect bits.
5614 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5615 */
5616 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5617
5618 /*
5619 * If the cable is reversed all of the SCSI_CTRL register signals
5620 * will be set. Check for and return an error if this condition is
5621 * found.
5622 */
5623 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5624 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5625 return ADV_ERROR;
5626 }
5627
5628 /*
5629 * Each ASC-38C1600 function has two connectors. Only an HVD device
5630 * can not be connected to either connector. An LVD device or SE device
5631 * may be connected to either connecor. If an SE device is connected,
5632 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5633 *
5634 * If an HVD device is attached, return an error.
5635 */
5636 if (scsi_cfg1 & HVD) {
5637 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5638 return ADV_ERROR;
5639 }
5640
5641 /*
5642 * Each function in the ASC-38C1600 uses only the SE cable detect and
5643 * termination because there are two connectors for each function. Each
5644 * function may use either LVD or SE mode. Corresponding the SE automatic
5645 * termination control EEPROM bits are used for each function. Each
5646 * function has its own EEPROM. If SE automatic control is enabled for
5647 * the function, then set the termination value based on a table listed
5648 * in a_condor.h.
5649 *
5650 * If manual termination is specified in the EEPROM for the function,
5651 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5652 * ready to be 'ored' into SCSI_CFG1.
5653 */
5654 if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5655 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5656 /* SE automatic termination control is enabled. */
5657 switch (scsi_cfg1 & C_DET_SE) {
5658 /* TERM_SE_HI: on, TERM_SE_LO: on */
5659 case 0x1:
5660 case 0x2:
5661 case 0x3:
5662 asc_dvc->cfg->termination |= TERM_SE;
5663 break;
5664
5665 case 0x0:
5666 if (PCI_FUNC(pdev->devfn) == 0) {
5667 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5668 } else {
5669 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5670 asc_dvc->cfg->termination |= TERM_SE_HI;
5671 }
5672 break;
5673 }
5674 }
5675
5676 /*
5677 * Clear any set TERM_SE bits.
5678 */
5679 scsi_cfg1 &= ~TERM_SE;
5680
5681 /*
5682 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5683 */
5684 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5685
5686 /*
5687 * Clear Big Endian and Terminator Polarity bits and set possibly
5688 * modified termination control bits in the Microcode SCSI_CFG1
5689 * Register Value.
5690 *
5691 * Big Endian bit is not used even on big endian machines.
5692 */
5693 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5694
5695 /*
5696 * Set SCSI_CFG1 Microcode Default Value
5697 *
5698 * Set possibly modified termination control bits in the Microcode
5699 * SCSI_CFG1 Register Value.
5700 *
5701 * The microcode will set the SCSI_CFG1 register using this value
5702 * after it is started below.
5703 */
5704 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5705
5706 /*
5707 * Set MEM_CFG Microcode Default Value
5708 *
5709 * The microcode will set the MEM_CFG register using this value
5710 * after it is started below.
5711 *
5712 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5713 * are defined.
5714 *
5715 * ASC-38C1600 has 32KB internal memory.
5716 *
5717 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5718 * out a special 16K Adv Library and Microcode version. After the issue
5719 * resolved, we should turn back to the 32K support. Both a_condor.h and
5720 * mcode.sas files also need to be updated.
5721 *
5722 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5723 * BIOS_EN | RAM_SZ_32KB);
5724 */
5725 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5726 BIOS_EN | RAM_SZ_16KB);
5727
5728 /*
5729 * Set SEL_MASK Microcode Default Value
5730 *
5731 * The microcode will set the SEL_MASK register using this value
5732 * after it is started below.
5733 */
5734 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5735 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5736
5737 AdvBuildCarrierFreelist(asc_dvc);
5738
5739 /*
5740 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5741 */
5742 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5743 if (!asc_dvc->icq_sp) {
5744 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5745 return ADV_ERROR;
5746 }
5747
5748 /*
5749 * Set RISC ICQ physical address start value. Initialize the
5750 * COMMA register to the same value otherwise the RISC will
5751 * prematurely detect a command is available.
5752 */
5753 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5754 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5755 le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5756
5757 /*
5758 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5759 */
5760 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5761 if (!asc_dvc->irq_sp) {
5762 asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5763 return ADV_ERROR;
5764 }
5765
5766 /*
5767 * Set RISC IRQ physical address start value.
5768 */
5769 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5770 asc_dvc->carr_pending_cnt = 0;
5771
5772 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5773 (ADV_INTR_ENABLE_HOST_INTR |
5774 ADV_INTR_ENABLE_GLOBAL_INTR));
5775 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5776 AdvWriteWordRegister(iop_base, IOPW_PC, word);
5777
5778 /* finally, finally, gentlemen, start your engine */
5779 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5780
5781 /*
5782 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5783 * Resets should be performed. The RISC has to be running
5784 * to issue a SCSI Bus Reset.
5785 */
5786 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5787 /*
5788 * If the BIOS Signature is present in memory, restore the
5789 * per TID microcode operating variables.
5790 */
5791 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5792 0x55AA) {
5793 /*
5794 * Restore per TID negotiated values.
5795 */
5796 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5797 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5798 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5799 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5800 tagqng_able);
5801 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5802 AdvWriteByteLram(iop_base,
5803 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5804 max_cmd[tid]);
5805 }
5806 } else {
5807 if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5808 warn_code = ASC_WARN_BUSRESET_ERROR;
5809 }
5810 }
5811 }
5812
5813 return warn_code;
5814 }
5815
5816 /*
5817 * Reset chip and SCSI Bus.
5818 *
5819 * Return Value:
5820 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
5821 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
5822 */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)5823 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5824 {
5825 int status;
5826 ushort wdtr_able, sdtr_able, tagqng_able;
5827 ushort ppr_able = 0;
5828 uchar tid, max_cmd[ADV_MAX_TID + 1];
5829 AdvPortAddr iop_base;
5830 ushort bios_sig;
5831
5832 iop_base = asc_dvc->iop_base;
5833
5834 /*
5835 * Save current per TID negotiated values.
5836 */
5837 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5838 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5839 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5840 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5841 }
5842 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5843 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5844 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5845 max_cmd[tid]);
5846 }
5847
5848 /*
5849 * Force the AdvInitAsc3550/38C0800Driver() function to
5850 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5851 * The initialization functions assumes a SCSI Bus Reset is not
5852 * needed if the BIOS signature word is present.
5853 */
5854 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5855 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5856
5857 /*
5858 * Stop chip and reset it.
5859 */
5860 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5861 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5862 mdelay(100);
5863 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5864 ADV_CTRL_REG_CMD_WR_IO_REG);
5865
5866 /*
5867 * Reset Adv Library error code, if any, and try
5868 * re-initializing the chip.
5869 */
5870 asc_dvc->err_code = 0;
5871 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5872 status = AdvInitAsc38C1600Driver(asc_dvc);
5873 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5874 status = AdvInitAsc38C0800Driver(asc_dvc);
5875 } else {
5876 status = AdvInitAsc3550Driver(asc_dvc);
5877 }
5878
5879 /* Translate initialization return value to status value. */
5880 if (status == 0) {
5881 status = ADV_TRUE;
5882 } else {
5883 status = ADV_FALSE;
5884 }
5885
5886 /*
5887 * Restore the BIOS signature word.
5888 */
5889 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5890
5891 /*
5892 * Restore per TID negotiated values.
5893 */
5894 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5895 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5896 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5897 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5898 }
5899 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5900 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5901 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5902 max_cmd[tid]);
5903 }
5904
5905 return status;
5906 }
5907
5908 /*
5909 * adv_async_callback() - Adv Library asynchronous event callback function.
5910 */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)5911 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5912 {
5913 switch (code) {
5914 case ADV_ASYNC_SCSI_BUS_RESET_DET:
5915 /*
5916 * The firmware detected a SCSI Bus reset.
5917 */
5918 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5919 break;
5920
5921 case ADV_ASYNC_RDMA_FAILURE:
5922 /*
5923 * Handle RDMA failure by resetting the SCSI Bus and
5924 * possibly the chip if it is unresponsive. Log the error
5925 * with a unique code.
5926 */
5927 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5928 AdvResetChipAndSB(adv_dvc_varp);
5929 break;
5930
5931 case ADV_HOST_SCSI_BUS_RESET:
5932 /*
5933 * Host generated SCSI bus reset occurred.
5934 */
5935 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5936 break;
5937
5938 default:
5939 ASC_DBG(0, "unknown code 0x%x\n", code);
5940 break;
5941 }
5942 }
5943
5944 /*
5945 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5946 *
5947 * Callback function for the Wide SCSI Adv Library.
5948 */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)5949 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5950 {
5951 struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5952 u32 srb_tag;
5953 adv_req_t *reqp;
5954 adv_sgblk_t *sgblkp;
5955 struct scsi_cmnd *scp;
5956 u32 resid_cnt;
5957 dma_addr_t sense_addr;
5958
5959 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5960 adv_dvc_varp, scsiqp);
5961 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5962
5963 /*
5964 * Get the adv_req_t structure for the command that has been
5965 * completed. The adv_req_t structure actually contains the
5966 * completed ADV_SCSI_REQ_Q structure.
5967 */
5968 srb_tag = le32_to_cpu(scsiqp->srb_tag);
5969 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5970
5971 ASC_DBG(1, "scp 0x%p\n", scp);
5972 if (scp == NULL) {
5973 ASC_PRINT
5974 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5975 return;
5976 }
5977 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5978
5979 reqp = (adv_req_t *)scp->host_scribble;
5980 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5981 if (reqp == NULL) {
5982 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5983 return;
5984 }
5985 /*
5986 * Remove backreferences to avoid duplicate
5987 * command completions.
5988 */
5989 scp->host_scribble = NULL;
5990 reqp->cmndp = NULL;
5991
5992 ASC_STATS(boardp->shost, callback);
5993 ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5994
5995 sense_addr = le32_to_cpu(scsiqp->sense_addr);
5996 dma_unmap_single(boardp->dev, sense_addr,
5997 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5998
5999 /*
6000 * 'done_status' contains the command's ending status.
6001 */
6002 switch (scsiqp->done_status) {
6003 case QD_NO_ERROR:
6004 ASC_DBG(2, "QD_NO_ERROR\n");
6005 scp->result = 0;
6006
6007 /*
6008 * Check for an underrun condition.
6009 *
6010 * If there was no error and an underrun condition, then
6011 * then return the number of underrun bytes.
6012 */
6013 resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6014 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6015 resid_cnt <= scsi_bufflen(scp)) {
6016 ASC_DBG(1, "underrun condition %lu bytes\n",
6017 (ulong)resid_cnt);
6018 scsi_set_resid(scp, resid_cnt);
6019 }
6020 break;
6021
6022 case QD_WITH_ERROR:
6023 ASC_DBG(2, "QD_WITH_ERROR\n");
6024 switch (scsiqp->host_status) {
6025 case QHSTA_NO_ERROR:
6026 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6027 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6028 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6029 SCSI_SENSE_BUFFERSIZE);
6030 /*
6031 * Note: The 'status_byte()' macro used by
6032 * target drivers defined in scsi.h shifts the
6033 * status byte returned by host drivers right
6034 * by 1 bit. This is why target drivers also
6035 * use right shifted status byte definitions.
6036 * For instance target drivers use
6037 * CHECK_CONDITION, defined to 0x1, instead of
6038 * the SCSI defined check condition value of
6039 * 0x2. Host drivers are supposed to return
6040 * the status byte as it is defined by SCSI.
6041 */
6042 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6043 STATUS_BYTE(scsiqp->scsi_status);
6044 } else {
6045 scp->result = STATUS_BYTE(scsiqp->scsi_status);
6046 }
6047 break;
6048
6049 default:
6050 /* Some other QHSTA error occurred. */
6051 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6052 scp->result = HOST_BYTE(DID_BAD_TARGET);
6053 break;
6054 }
6055 break;
6056
6057 case QD_ABORTED_BY_HOST:
6058 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6059 scp->result =
6060 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6061 break;
6062
6063 default:
6064 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6065 scp->result =
6066 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6067 break;
6068 }
6069
6070 /*
6071 * If the 'init_tidmask' bit isn't already set for the target and the
6072 * current request finished normally, then set the bit for the target
6073 * to indicate that a device is present.
6074 */
6075 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6076 scsiqp->done_status == QD_NO_ERROR &&
6077 scsiqp->host_status == QHSTA_NO_ERROR) {
6078 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6079 }
6080
6081 asc_scsi_done(scp);
6082
6083 /*
6084 * Free all 'adv_sgblk_t' structures allocated for the request.
6085 */
6086 while ((sgblkp = reqp->sgblkp) != NULL) {
6087 /* Remove 'sgblkp' from the request list. */
6088 reqp->sgblkp = sgblkp->next_sgblkp;
6089
6090 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6091 sgblkp->sg_addr);
6092 }
6093
6094 ASC_DBG(1, "done\n");
6095 }
6096
6097 /*
6098 * Adv Library Interrupt Service Routine
6099 *
6100 * This function is called by a driver's interrupt service routine.
6101 * The function disables and re-enables interrupts.
6102 *
6103 * When a microcode idle command is completed, the ADV_DVC_VAR
6104 * 'idle_cmd_done' field is set to ADV_TRUE.
6105 *
6106 * Note: AdvISR() can be called when interrupts are disabled or even
6107 * when there is no hardware interrupt condition present. It will
6108 * always check for completed idle commands and microcode requests.
6109 * This is an important feature that shouldn't be changed because it
6110 * allows commands to be completed from polling mode loops.
6111 *
6112 * Return:
6113 * ADV_TRUE(1) - interrupt was pending
6114 * ADV_FALSE(0) - no interrupt was pending
6115 */
AdvISR(ADV_DVC_VAR * asc_dvc)6116 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6117 {
6118 AdvPortAddr iop_base;
6119 uchar int_stat;
6120 ushort target_bit;
6121 ADV_CARR_T *free_carrp;
6122 __le32 irq_next_vpa;
6123 ADV_SCSI_REQ_Q *scsiq;
6124 adv_req_t *reqp;
6125
6126 iop_base = asc_dvc->iop_base;
6127
6128 /* Reading the register clears the interrupt. */
6129 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6130
6131 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6132 ADV_INTR_STATUS_INTRC)) == 0) {
6133 return ADV_FALSE;
6134 }
6135
6136 /*
6137 * Notify the driver of an asynchronous microcode condition by
6138 * calling the adv_async_callback function. The function
6139 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6140 */
6141 if (int_stat & ADV_INTR_STATUS_INTRB) {
6142 uchar intrb_code;
6143
6144 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6145
6146 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6147 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6148 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6149 asc_dvc->carr_pending_cnt != 0) {
6150 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6151 ADV_TICKLE_A);
6152 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6153 AdvWriteByteRegister(iop_base,
6154 IOPB_TICKLE,
6155 ADV_TICKLE_NOP);
6156 }
6157 }
6158 }
6159
6160 adv_async_callback(asc_dvc, intrb_code);
6161 }
6162
6163 /*
6164 * Check if the IRQ stopper carrier contains a completed request.
6165 */
6166 while (((irq_next_vpa =
6167 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6168 /*
6169 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6170 * The RISC will have set 'areq_vpa' to a virtual address.
6171 *
6172 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6173 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6174 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6175 * in AdvExeScsiQueue().
6176 */
6177 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6178 ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6179 asc_dvc->irq_sp, pa_offset);
6180 reqp = adv_get_reqp(asc_dvc, pa_offset);
6181 scsiq = &reqp->scsi_req_q;
6182
6183 /*
6184 * Request finished with good status and the queue was not
6185 * DMAed to host memory by the firmware. Set all status fields
6186 * to indicate good status.
6187 */
6188 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6189 scsiq->done_status = QD_NO_ERROR;
6190 scsiq->host_status = scsiq->scsi_status = 0;
6191 scsiq->data_cnt = 0L;
6192 }
6193
6194 /*
6195 * Advance the stopper pointer to the next carrier
6196 * ignoring the lower four bits. Free the previous
6197 * stopper carrier.
6198 */
6199 free_carrp = asc_dvc->irq_sp;
6200 asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6201 ADV_GET_CARRP(irq_next_vpa));
6202
6203 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6204 asc_dvc->carr_freelist = free_carrp;
6205 asc_dvc->carr_pending_cnt--;
6206
6207 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6208
6209 /*
6210 * Clear request microcode control flag.
6211 */
6212 scsiq->cntl = 0;
6213
6214 /*
6215 * Notify the driver of the completed request by passing
6216 * the ADV_SCSI_REQ_Q pointer to its callback function.
6217 */
6218 adv_isr_callback(asc_dvc, scsiq);
6219 /*
6220 * Note: After the driver callback function is called, 'scsiq'
6221 * can no longer be referenced.
6222 *
6223 * Fall through and continue processing other completed
6224 * requests...
6225 */
6226 }
6227 return ADV_TRUE;
6228 }
6229
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6230 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6231 {
6232 if (asc_dvc->err_code == 0) {
6233 asc_dvc->err_code = err_code;
6234 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6235 err_code);
6236 }
6237 return err_code;
6238 }
6239
AscAckInterrupt(PortAddr iop_base)6240 static void AscAckInterrupt(PortAddr iop_base)
6241 {
6242 uchar host_flag;
6243 uchar risc_flag;
6244 ushort loop;
6245
6246 loop = 0;
6247 do {
6248 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6249 if (loop++ > 0x7FFF) {
6250 break;
6251 }
6252 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6253 host_flag =
6254 AscReadLramByte(iop_base,
6255 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6256 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6257 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6258 AscSetChipStatus(iop_base, CIW_INT_ACK);
6259 loop = 0;
6260 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6261 AscSetChipStatus(iop_base, CIW_INT_ACK);
6262 if (loop++ > 3) {
6263 break;
6264 }
6265 }
6266 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6267 }
6268
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6269 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6270 {
6271 const uchar *period_table;
6272 int max_index;
6273 int min_index;
6274 int i;
6275
6276 period_table = asc_dvc->sdtr_period_tbl;
6277 max_index = (int)asc_dvc->max_sdtr_index;
6278 min_index = (int)asc_dvc->min_sdtr_index;
6279 if ((syn_time <= period_table[max_index])) {
6280 for (i = min_index; i < (max_index - 1); i++) {
6281 if (syn_time <= period_table[i]) {
6282 return (uchar)i;
6283 }
6284 }
6285 return (uchar)max_index;
6286 } else {
6287 return (uchar)(max_index + 1);
6288 }
6289 }
6290
6291 static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6292 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6293 {
6294 PortAddr iop_base = asc_dvc->iop_base;
6295 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6296 EXT_MSG sdtr_buf = {
6297 .msg_type = EXTENDED_MESSAGE,
6298 .msg_len = MS_SDTR_LEN,
6299 .msg_req = EXTENDED_SDTR,
6300 .xfer_period = sdtr_period,
6301 .req_ack_offset = sdtr_offset,
6302 };
6303 sdtr_offset &= ASC_SYN_MAX_OFFSET;
6304
6305 if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6306 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6307 (uchar *)&sdtr_buf,
6308 sizeof(EXT_MSG) >> 1);
6309 return ((sdtr_period_index << 4) | sdtr_offset);
6310 } else {
6311 sdtr_buf.req_ack_offset = 0;
6312 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6313 (uchar *)&sdtr_buf,
6314 sizeof(EXT_MSG) >> 1);
6315 return 0;
6316 }
6317 }
6318
6319 static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)6320 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6321 {
6322 uchar byte;
6323 uchar sdtr_period_ix;
6324
6325 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6326 if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6327 return 0xFF;
6328 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6329 return byte;
6330 }
6331
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)6332 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6333 {
6334 ASC_SCSI_BIT_ID_TYPE org_id;
6335 int i;
6336 bool sta = true;
6337
6338 AscSetBank(iop_base, 1);
6339 org_id = AscReadChipDvcID(iop_base);
6340 for (i = 0; i <= ASC_MAX_TID; i++) {
6341 if (org_id == (0x01 << i))
6342 break;
6343 }
6344 org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6345 AscWriteChipDvcID(iop_base, id);
6346 if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6347 AscSetBank(iop_base, 0);
6348 AscSetChipSyn(iop_base, sdtr_data);
6349 if (AscGetChipSyn(iop_base) != sdtr_data) {
6350 sta = false;
6351 }
6352 } else {
6353 sta = false;
6354 }
6355 AscSetBank(iop_base, 1);
6356 AscWriteChipDvcID(iop_base, org_id);
6357 AscSetBank(iop_base, 0);
6358 return (sta);
6359 }
6360
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)6361 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6362 {
6363 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6364 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6365 }
6366
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)6367 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6368 {
6369 EXT_MSG ext_msg;
6370 EXT_MSG out_msg;
6371 ushort halt_q_addr;
6372 bool sdtr_accept;
6373 ushort int_halt_code;
6374 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6375 ASC_SCSI_BIT_ID_TYPE target_id;
6376 PortAddr iop_base;
6377 uchar tag_code;
6378 uchar q_status;
6379 uchar halt_qp;
6380 uchar sdtr_data;
6381 uchar target_ix;
6382 uchar q_cntl, tid_no;
6383 uchar cur_dvc_qng;
6384 uchar asyn_sdtr;
6385 uchar scsi_status;
6386 struct asc_board *boardp;
6387
6388 BUG_ON(!asc_dvc->drv_ptr);
6389 boardp = asc_dvc->drv_ptr;
6390
6391 iop_base = asc_dvc->iop_base;
6392 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6393
6394 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6395 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6396 target_ix = AscReadLramByte(iop_base,
6397 (ushort)(halt_q_addr +
6398 (ushort)ASC_SCSIQ_B_TARGET_IX));
6399 q_cntl = AscReadLramByte(iop_base,
6400 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6401 tid_no = ASC_TIX_TO_TID(target_ix);
6402 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6403 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6404 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6405 } else {
6406 asyn_sdtr = 0;
6407 }
6408 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6409 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6410 AscSetChipSDTR(iop_base, 0, tid_no);
6411 boardp->sdtr_data[tid_no] = 0;
6412 }
6413 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6414 return;
6415 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6416 if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6417 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6418 boardp->sdtr_data[tid_no] = asyn_sdtr;
6419 }
6420 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6421 return;
6422 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6423 AscMemWordCopyPtrFromLram(iop_base,
6424 ASCV_MSGIN_BEG,
6425 (uchar *)&ext_msg,
6426 sizeof(EXT_MSG) >> 1);
6427
6428 if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6429 ext_msg.msg_req == EXTENDED_SDTR &&
6430 ext_msg.msg_len == MS_SDTR_LEN) {
6431 sdtr_accept = true;
6432 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6433
6434 sdtr_accept = false;
6435 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6436 }
6437 if ((ext_msg.xfer_period <
6438 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6439 || (ext_msg.xfer_period >
6440 asc_dvc->sdtr_period_tbl[asc_dvc->
6441 max_sdtr_index])) {
6442 sdtr_accept = false;
6443 ext_msg.xfer_period =
6444 asc_dvc->sdtr_period_tbl[asc_dvc->
6445 min_sdtr_index];
6446 }
6447 if (sdtr_accept) {
6448 sdtr_data =
6449 AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6450 ext_msg.req_ack_offset);
6451 if ((sdtr_data == 0xFF)) {
6452
6453 q_cntl |= QC_MSG_OUT;
6454 asc_dvc->init_sdtr &= ~target_id;
6455 asc_dvc->sdtr_done &= ~target_id;
6456 AscSetChipSDTR(iop_base, asyn_sdtr,
6457 tid_no);
6458 boardp->sdtr_data[tid_no] = asyn_sdtr;
6459 }
6460 }
6461 if (ext_msg.req_ack_offset == 0) {
6462
6463 q_cntl &= ~QC_MSG_OUT;
6464 asc_dvc->init_sdtr &= ~target_id;
6465 asc_dvc->sdtr_done &= ~target_id;
6466 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6467 } else {
6468 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6469 q_cntl &= ~QC_MSG_OUT;
6470 asc_dvc->sdtr_done |= target_id;
6471 asc_dvc->init_sdtr |= target_id;
6472 asc_dvc->pci_fix_asyn_xfer &=
6473 ~target_id;
6474 sdtr_data =
6475 AscCalSDTRData(asc_dvc,
6476 ext_msg.xfer_period,
6477 ext_msg.
6478 req_ack_offset);
6479 AscSetChipSDTR(iop_base, sdtr_data,
6480 tid_no);
6481 boardp->sdtr_data[tid_no] = sdtr_data;
6482 } else {
6483 q_cntl |= QC_MSG_OUT;
6484 AscMsgOutSDTR(asc_dvc,
6485 ext_msg.xfer_period,
6486 ext_msg.req_ack_offset);
6487 asc_dvc->pci_fix_asyn_xfer &=
6488 ~target_id;
6489 sdtr_data =
6490 AscCalSDTRData(asc_dvc,
6491 ext_msg.xfer_period,
6492 ext_msg.
6493 req_ack_offset);
6494 AscSetChipSDTR(iop_base, sdtr_data,
6495 tid_no);
6496 boardp->sdtr_data[tid_no] = sdtr_data;
6497 asc_dvc->sdtr_done |= target_id;
6498 asc_dvc->init_sdtr |= target_id;
6499 }
6500 }
6501
6502 AscWriteLramByte(iop_base,
6503 (ushort)(halt_q_addr +
6504 (ushort)ASC_SCSIQ_B_CNTL),
6505 q_cntl);
6506 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6507 return;
6508 } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6509 ext_msg.msg_req == EXTENDED_WDTR &&
6510 ext_msg.msg_len == MS_WDTR_LEN) {
6511
6512 ext_msg.wdtr_width = 0;
6513 AscMemWordCopyPtrToLram(iop_base,
6514 ASCV_MSGOUT_BEG,
6515 (uchar *)&ext_msg,
6516 sizeof(EXT_MSG) >> 1);
6517 q_cntl |= QC_MSG_OUT;
6518 AscWriteLramByte(iop_base,
6519 (ushort)(halt_q_addr +
6520 (ushort)ASC_SCSIQ_B_CNTL),
6521 q_cntl);
6522 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6523 return;
6524 } else {
6525
6526 ext_msg.msg_type = MESSAGE_REJECT;
6527 AscMemWordCopyPtrToLram(iop_base,
6528 ASCV_MSGOUT_BEG,
6529 (uchar *)&ext_msg,
6530 sizeof(EXT_MSG) >> 1);
6531 q_cntl |= QC_MSG_OUT;
6532 AscWriteLramByte(iop_base,
6533 (ushort)(halt_q_addr +
6534 (ushort)ASC_SCSIQ_B_CNTL),
6535 q_cntl);
6536 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6537 return;
6538 }
6539 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6540
6541 q_cntl |= QC_REQ_SENSE;
6542
6543 if ((asc_dvc->init_sdtr & target_id) != 0) {
6544
6545 asc_dvc->sdtr_done &= ~target_id;
6546
6547 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6548 q_cntl |= QC_MSG_OUT;
6549 AscMsgOutSDTR(asc_dvc,
6550 asc_dvc->
6551 sdtr_period_tbl[(sdtr_data >> 4) &
6552 (uchar)(asc_dvc->
6553 max_sdtr_index -
6554 1)],
6555 (uchar)(sdtr_data & (uchar)
6556 ASC_SYN_MAX_OFFSET));
6557 }
6558
6559 AscWriteLramByte(iop_base,
6560 (ushort)(halt_q_addr +
6561 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6562
6563 tag_code = AscReadLramByte(iop_base,
6564 (ushort)(halt_q_addr + (ushort)
6565 ASC_SCSIQ_B_TAG_CODE));
6566 tag_code &= 0xDC;
6567 if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6568 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6569 ) {
6570
6571 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6572 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6573
6574 }
6575 AscWriteLramByte(iop_base,
6576 (ushort)(halt_q_addr +
6577 (ushort)ASC_SCSIQ_B_TAG_CODE),
6578 tag_code);
6579
6580 q_status = AscReadLramByte(iop_base,
6581 (ushort)(halt_q_addr + (ushort)
6582 ASC_SCSIQ_B_STATUS));
6583 q_status |= (QS_READY | QS_BUSY);
6584 AscWriteLramByte(iop_base,
6585 (ushort)(halt_q_addr +
6586 (ushort)ASC_SCSIQ_B_STATUS),
6587 q_status);
6588
6589 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6590 scsi_busy &= ~target_id;
6591 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6592
6593 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6594 return;
6595 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6596
6597 AscMemWordCopyPtrFromLram(iop_base,
6598 ASCV_MSGOUT_BEG,
6599 (uchar *)&out_msg,
6600 sizeof(EXT_MSG) >> 1);
6601
6602 if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6603 (out_msg.msg_len == MS_SDTR_LEN) &&
6604 (out_msg.msg_req == EXTENDED_SDTR)) {
6605
6606 asc_dvc->init_sdtr &= ~target_id;
6607 asc_dvc->sdtr_done &= ~target_id;
6608 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6609 boardp->sdtr_data[tid_no] = asyn_sdtr;
6610 }
6611 q_cntl &= ~QC_MSG_OUT;
6612 AscWriteLramByte(iop_base,
6613 (ushort)(halt_q_addr +
6614 (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6615 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6616 return;
6617 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6618
6619 scsi_status = AscReadLramByte(iop_base,
6620 (ushort)((ushort)halt_q_addr +
6621 (ushort)
6622 ASC_SCSIQ_SCSI_STATUS));
6623 cur_dvc_qng =
6624 AscReadLramByte(iop_base,
6625 (ushort)((ushort)ASC_QADR_BEG +
6626 (ushort)target_ix));
6627 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6628
6629 scsi_busy = AscReadLramByte(iop_base,
6630 (ushort)ASCV_SCSIBUSY_B);
6631 scsi_busy |= target_id;
6632 AscWriteLramByte(iop_base,
6633 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6634 asc_dvc->queue_full_or_busy |= target_id;
6635
6636 if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6637 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6638 cur_dvc_qng -= 1;
6639 asc_dvc->max_dvc_qng[tid_no] =
6640 cur_dvc_qng;
6641
6642 AscWriteLramByte(iop_base,
6643 (ushort)((ushort)
6644 ASCV_MAX_DVC_QNG_BEG
6645 + (ushort)
6646 tid_no),
6647 cur_dvc_qng);
6648
6649 /*
6650 * Set the device queue depth to the
6651 * number of active requests when the
6652 * QUEUE FULL condition was encountered.
6653 */
6654 boardp->queue_full |= target_id;
6655 boardp->queue_full_cnt[tid_no] =
6656 cur_dvc_qng;
6657 }
6658 }
6659 }
6660 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6661 return;
6662 }
6663 return;
6664 }
6665
6666 /*
6667 * void
6668 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6669 *
6670 * Calling/Exit State:
6671 * none
6672 *
6673 * Description:
6674 * Input an ASC_QDONE_INFO structure from the chip
6675 */
6676 static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)6677 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6678 {
6679 int i;
6680 ushort word;
6681
6682 AscSetChipLramAddr(iop_base, s_addr);
6683 for (i = 0; i < 2 * words; i += 2) {
6684 if (i == 10) {
6685 continue;
6686 }
6687 word = inpw(iop_base + IOP_RAM_DATA);
6688 inbuf[i] = word & 0xff;
6689 inbuf[i + 1] = (word >> 8) & 0xff;
6690 }
6691 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6692 }
6693
6694 static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,unsigned int max_dma_count)6695 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6696 ushort q_addr,
6697 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6698 {
6699 ushort _val;
6700 uchar sg_queue_cnt;
6701
6702 DvcGetQinfo(iop_base,
6703 q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6704 (uchar *)scsiq,
6705 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6706
6707 _val = AscReadLramWord(iop_base,
6708 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6709 scsiq->q_status = (uchar)_val;
6710 scsiq->q_no = (uchar)(_val >> 8);
6711 _val = AscReadLramWord(iop_base,
6712 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6713 scsiq->cntl = (uchar)_val;
6714 sg_queue_cnt = (uchar)(_val >> 8);
6715 _val = AscReadLramWord(iop_base,
6716 (ushort)(q_addr +
6717 (ushort)ASC_SCSIQ_B_SENSE_LEN));
6718 scsiq->sense_len = (uchar)_val;
6719 scsiq->extra_bytes = (uchar)(_val >> 8);
6720
6721 /*
6722 * Read high word of remain bytes from alternate location.
6723 */
6724 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6725 (ushort)(q_addr +
6726 (ushort)
6727 ASC_SCSIQ_W_ALT_DC1)))
6728 << 16);
6729 /*
6730 * Read low word of remain bytes from original location.
6731 */
6732 scsiq->remain_bytes += AscReadLramWord(iop_base,
6733 (ushort)(q_addr + (ushort)
6734 ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6735
6736 scsiq->remain_bytes &= max_dma_count;
6737 return sg_queue_cnt;
6738 }
6739
6740 /*
6741 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6742 *
6743 * Interrupt callback function for the Narrow SCSI Asc Library.
6744 */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)6745 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6746 {
6747 struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6748 u32 srb_tag;
6749 struct scsi_cmnd *scp;
6750
6751 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6752 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6753
6754 /*
6755 * Decrease the srb_tag by 1 to find the SCSI command
6756 */
6757 srb_tag = qdonep->d2.srb_tag - 1;
6758 scp = scsi_host_find_tag(boardp->shost, srb_tag);
6759 if (!scp)
6760 return;
6761
6762 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6763
6764 ASC_STATS(boardp->shost, callback);
6765
6766 dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6767 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6768 /*
6769 * 'qdonep' contains the command's ending status.
6770 */
6771 switch (qdonep->d3.done_stat) {
6772 case QD_NO_ERROR:
6773 ASC_DBG(2, "QD_NO_ERROR\n");
6774 scp->result = 0;
6775
6776 /*
6777 * Check for an underrun condition.
6778 *
6779 * If there was no error and an underrun condition, then
6780 * return the number of underrun bytes.
6781 */
6782 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6783 qdonep->remain_bytes <= scsi_bufflen(scp)) {
6784 ASC_DBG(1, "underrun condition %u bytes\n",
6785 (unsigned)qdonep->remain_bytes);
6786 scsi_set_resid(scp, qdonep->remain_bytes);
6787 }
6788 break;
6789
6790 case QD_WITH_ERROR:
6791 ASC_DBG(2, "QD_WITH_ERROR\n");
6792 switch (qdonep->d3.host_stat) {
6793 case QHSTA_NO_ERROR:
6794 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6795 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6796 ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6797 SCSI_SENSE_BUFFERSIZE);
6798 /*
6799 * Note: The 'status_byte()' macro used by
6800 * target drivers defined in scsi.h shifts the
6801 * status byte returned by host drivers right
6802 * by 1 bit. This is why target drivers also
6803 * use right shifted status byte definitions.
6804 * For instance target drivers use
6805 * CHECK_CONDITION, defined to 0x1, instead of
6806 * the SCSI defined check condition value of
6807 * 0x2. Host drivers are supposed to return
6808 * the status byte as it is defined by SCSI.
6809 */
6810 scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6811 STATUS_BYTE(qdonep->d3.scsi_stat);
6812 } else {
6813 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6814 }
6815 break;
6816
6817 default:
6818 /* QHSTA error occurred */
6819 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6820 scp->result = HOST_BYTE(DID_BAD_TARGET);
6821 break;
6822 }
6823 break;
6824
6825 case QD_ABORTED_BY_HOST:
6826 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6827 scp->result =
6828 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6829 scsi_msg) |
6830 STATUS_BYTE(qdonep->d3.scsi_stat);
6831 break;
6832
6833 default:
6834 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6835 scp->result =
6836 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6837 scsi_msg) |
6838 STATUS_BYTE(qdonep->d3.scsi_stat);
6839 break;
6840 }
6841
6842 /*
6843 * If the 'init_tidmask' bit isn't already set for the target and the
6844 * current request finished normally, then set the bit for the target
6845 * to indicate that a device is present.
6846 */
6847 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6848 qdonep->d3.done_stat == QD_NO_ERROR &&
6849 qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6850 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6851 }
6852
6853 asc_scsi_done(scp);
6854 }
6855
AscIsrQDone(ASC_DVC_VAR * asc_dvc)6856 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6857 {
6858 uchar next_qp;
6859 uchar n_q_used;
6860 uchar sg_list_qp;
6861 uchar sg_queue_cnt;
6862 uchar q_cnt;
6863 uchar done_q_tail;
6864 uchar tid_no;
6865 ASC_SCSI_BIT_ID_TYPE scsi_busy;
6866 ASC_SCSI_BIT_ID_TYPE target_id;
6867 PortAddr iop_base;
6868 ushort q_addr;
6869 ushort sg_q_addr;
6870 uchar cur_target_qng;
6871 ASC_QDONE_INFO scsiq_buf;
6872 ASC_QDONE_INFO *scsiq;
6873 bool false_overrun;
6874
6875 iop_base = asc_dvc->iop_base;
6876 n_q_used = 1;
6877 scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6878 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6879 q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6880 next_qp = AscReadLramByte(iop_base,
6881 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6882 if (next_qp != ASC_QLINK_END) {
6883 AscPutVarDoneQTail(iop_base, next_qp);
6884 q_addr = ASC_QNO_TO_QADDR(next_qp);
6885 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6886 asc_dvc->max_dma_count);
6887 AscWriteLramByte(iop_base,
6888 (ushort)(q_addr +
6889 (ushort)ASC_SCSIQ_B_STATUS),
6890 (uchar)(scsiq->
6891 q_status & (uchar)~(QS_READY |
6892 QS_ABORTED)));
6893 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6894 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6895 if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6896 sg_q_addr = q_addr;
6897 sg_list_qp = next_qp;
6898 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6899 sg_list_qp = AscReadLramByte(iop_base,
6900 (ushort)(sg_q_addr
6901 + (ushort)
6902 ASC_SCSIQ_B_FWD));
6903 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6904 if (sg_list_qp == ASC_QLINK_END) {
6905 AscSetLibErrorCode(asc_dvc,
6906 ASCQ_ERR_SG_Q_LINKS);
6907 scsiq->d3.done_stat = QD_WITH_ERROR;
6908 scsiq->d3.host_stat =
6909 QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6910 goto FATAL_ERR_QDONE;
6911 }
6912 AscWriteLramByte(iop_base,
6913 (ushort)(sg_q_addr + (ushort)
6914 ASC_SCSIQ_B_STATUS),
6915 QS_FREE);
6916 }
6917 n_q_used = sg_queue_cnt + 1;
6918 AscPutVarDoneQTail(iop_base, sg_list_qp);
6919 }
6920 if (asc_dvc->queue_full_or_busy & target_id) {
6921 cur_target_qng = AscReadLramByte(iop_base,
6922 (ushort)((ushort)
6923 ASC_QADR_BEG
6924 + (ushort)
6925 scsiq->d2.
6926 target_ix));
6927 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6928 scsi_busy = AscReadLramByte(iop_base, (ushort)
6929 ASCV_SCSIBUSY_B);
6930 scsi_busy &= ~target_id;
6931 AscWriteLramByte(iop_base,
6932 (ushort)ASCV_SCSIBUSY_B,
6933 scsi_busy);
6934 asc_dvc->queue_full_or_busy &= ~target_id;
6935 }
6936 }
6937 if (asc_dvc->cur_total_qng >= n_q_used) {
6938 asc_dvc->cur_total_qng -= n_q_used;
6939 if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6940 asc_dvc->cur_dvc_qng[tid_no]--;
6941 }
6942 } else {
6943 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6944 scsiq->d3.done_stat = QD_WITH_ERROR;
6945 goto FATAL_ERR_QDONE;
6946 }
6947 if ((scsiq->d2.srb_tag == 0UL) ||
6948 ((scsiq->q_status & QS_ABORTED) != 0)) {
6949 return (0x11);
6950 } else if (scsiq->q_status == QS_DONE) {
6951 /*
6952 * This is also curious.
6953 * false_overrun will _always_ be set to 'false'
6954 */
6955 false_overrun = false;
6956 if (scsiq->extra_bytes != 0) {
6957 scsiq->remain_bytes += scsiq->extra_bytes;
6958 }
6959 if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6960 if (scsiq->d3.host_stat ==
6961 QHSTA_M_DATA_OVER_RUN) {
6962 if ((scsiq->
6963 cntl & (QC_DATA_IN | QC_DATA_OUT))
6964 == 0) {
6965 scsiq->d3.done_stat =
6966 QD_NO_ERROR;
6967 scsiq->d3.host_stat =
6968 QHSTA_NO_ERROR;
6969 } else if (false_overrun) {
6970 scsiq->d3.done_stat =
6971 QD_NO_ERROR;
6972 scsiq->d3.host_stat =
6973 QHSTA_NO_ERROR;
6974 }
6975 } else if (scsiq->d3.host_stat ==
6976 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6977 AscStopChip(iop_base);
6978 AscSetChipControl(iop_base,
6979 (uchar)(CC_SCSI_RESET
6980 | CC_HALT));
6981 udelay(60);
6982 AscSetChipControl(iop_base, CC_HALT);
6983 AscSetChipStatus(iop_base,
6984 CIW_CLR_SCSI_RESET_INT);
6985 AscSetChipStatus(iop_base, 0);
6986 AscSetChipControl(iop_base, 0);
6987 }
6988 }
6989 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6990 asc_isr_callback(asc_dvc, scsiq);
6991 } else {
6992 if ((AscReadLramByte(iop_base,
6993 (ushort)(q_addr + (ushort)
6994 ASC_SCSIQ_CDB_BEG))
6995 == START_STOP)) {
6996 asc_dvc->unit_not_ready &= ~target_id;
6997 if (scsiq->d3.done_stat != QD_NO_ERROR) {
6998 asc_dvc->start_motor &=
6999 ~target_id;
7000 }
7001 }
7002 }
7003 return (1);
7004 } else {
7005 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7006 FATAL_ERR_QDONE:
7007 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7008 asc_isr_callback(asc_dvc, scsiq);
7009 }
7010 return (0x80);
7011 }
7012 }
7013 return (0);
7014 }
7015
AscISR(ASC_DVC_VAR * asc_dvc)7016 static int AscISR(ASC_DVC_VAR *asc_dvc)
7017 {
7018 ASC_CS_TYPE chipstat;
7019 PortAddr iop_base;
7020 ushort saved_ram_addr;
7021 uchar ctrl_reg;
7022 uchar saved_ctrl_reg;
7023 int int_pending;
7024 int status;
7025 uchar host_flag;
7026
7027 iop_base = asc_dvc->iop_base;
7028 int_pending = ASC_FALSE;
7029
7030 if (AscIsIntPending(iop_base) == 0)
7031 return int_pending;
7032
7033 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7034 return ASC_ERROR;
7035 }
7036 if (asc_dvc->in_critical_cnt != 0) {
7037 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7038 return ASC_ERROR;
7039 }
7040 if (asc_dvc->is_in_int) {
7041 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7042 return ASC_ERROR;
7043 }
7044 asc_dvc->is_in_int = true;
7045 ctrl_reg = AscGetChipControl(iop_base);
7046 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7047 CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7048 chipstat = AscGetChipStatus(iop_base);
7049 if (chipstat & CSW_SCSI_RESET_LATCH) {
7050 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7051 int i = 10;
7052 int_pending = ASC_TRUE;
7053 asc_dvc->sdtr_done = 0;
7054 saved_ctrl_reg &= (uchar)(~CC_HALT);
7055 while ((AscGetChipStatus(iop_base) &
7056 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7057 mdelay(100);
7058 }
7059 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7060 AscSetChipControl(iop_base, CC_HALT);
7061 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7062 AscSetChipStatus(iop_base, 0);
7063 chipstat = AscGetChipStatus(iop_base);
7064 }
7065 }
7066 saved_ram_addr = AscGetChipLramAddr(iop_base);
7067 host_flag = AscReadLramByte(iop_base,
7068 ASCV_HOST_FLAG_B) &
7069 (uchar)(~ASC_HOST_FLAG_IN_ISR);
7070 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7071 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7072 if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7073 AscAckInterrupt(iop_base);
7074 int_pending = ASC_TRUE;
7075 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7076 AscIsrChipHalted(asc_dvc);
7077 saved_ctrl_reg &= (uchar)(~CC_HALT);
7078 } else {
7079 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7080 while (((status =
7081 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7082 }
7083 } else {
7084 do {
7085 if ((status =
7086 AscIsrQDone(asc_dvc)) == 1) {
7087 break;
7088 }
7089 } while (status == 0x11);
7090 }
7091 if ((status & 0x80) != 0)
7092 int_pending = ASC_ERROR;
7093 }
7094 }
7095 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7096 AscSetChipLramAddr(iop_base, saved_ram_addr);
7097 AscSetChipControl(iop_base, saved_ctrl_reg);
7098 asc_dvc->is_in_int = false;
7099 return int_pending;
7100 }
7101
7102 /*
7103 * advansys_reset()
7104 *
7105 * Reset the host associated with the command 'scp'.
7106 *
7107 * This function runs its own thread. Interrupts must be blocked but
7108 * sleeping is allowed and no locking other than for host structures is
7109 * required. Returns SUCCESS or FAILED.
7110 */
advansys_reset(struct scsi_cmnd * scp)7111 static int advansys_reset(struct scsi_cmnd *scp)
7112 {
7113 struct Scsi_Host *shost = scp->device->host;
7114 struct asc_board *boardp = shost_priv(shost);
7115 unsigned long flags;
7116 int status;
7117 int ret = SUCCESS;
7118
7119 ASC_DBG(1, "0x%p\n", scp);
7120
7121 ASC_STATS(shost, reset);
7122
7123 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7124
7125 if (ASC_NARROW_BOARD(boardp)) {
7126 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7127
7128 /* Reset the chip and SCSI bus. */
7129 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7130 status = AscInitAsc1000Driver(asc_dvc);
7131
7132 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7133 if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7134 scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7135 "0x%x, status: 0x%x\n", asc_dvc->err_code,
7136 status);
7137 ret = FAILED;
7138 } else if (status) {
7139 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7140 "0x%x\n", status);
7141 } else {
7142 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7143 "successful\n");
7144 }
7145
7146 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7147 } else {
7148 /*
7149 * If the suggest reset bus flags are set, then reset the bus.
7150 * Otherwise only reset the device.
7151 */
7152 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7153
7154 /*
7155 * Reset the chip and SCSI bus.
7156 */
7157 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7158 switch (AdvResetChipAndSB(adv_dvc)) {
7159 case ASC_TRUE:
7160 scmd_printk(KERN_INFO, scp, "SCSI host reset "
7161 "successful\n");
7162 break;
7163 case ASC_FALSE:
7164 default:
7165 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7166 ret = FAILED;
7167 break;
7168 }
7169 spin_lock_irqsave(shost->host_lock, flags);
7170 AdvISR(adv_dvc);
7171 spin_unlock_irqrestore(shost->host_lock, flags);
7172 }
7173
7174 ASC_DBG(1, "ret %d\n", ret);
7175
7176 return ret;
7177 }
7178
7179 /*
7180 * advansys_biosparam()
7181 *
7182 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7183 * support is enabled for a drive.
7184 *
7185 * ip (information pointer) is an int array with the following definition:
7186 * ip[0]: heads
7187 * ip[1]: sectors
7188 * ip[2]: cylinders
7189 */
7190 static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])7191 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7192 sector_t capacity, int ip[])
7193 {
7194 struct asc_board *boardp = shost_priv(sdev->host);
7195
7196 ASC_DBG(1, "begin\n");
7197 ASC_STATS(sdev->host, biosparam);
7198 if (ASC_NARROW_BOARD(boardp)) {
7199 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7200 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7201 ip[0] = 255;
7202 ip[1] = 63;
7203 } else {
7204 ip[0] = 64;
7205 ip[1] = 32;
7206 }
7207 } else {
7208 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7209 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7210 ip[0] = 255;
7211 ip[1] = 63;
7212 } else {
7213 ip[0] = 64;
7214 ip[1] = 32;
7215 }
7216 }
7217 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7218 ASC_DBG(1, "end\n");
7219 return 0;
7220 }
7221
7222 /*
7223 * First-level interrupt handler.
7224 *
7225 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7226 */
advansys_interrupt(int irq,void * dev_id)7227 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7228 {
7229 struct Scsi_Host *shost = dev_id;
7230 struct asc_board *boardp = shost_priv(shost);
7231 irqreturn_t result = IRQ_NONE;
7232 unsigned long flags;
7233
7234 ASC_DBG(2, "boardp 0x%p\n", boardp);
7235 spin_lock_irqsave(shost->host_lock, flags);
7236 if (ASC_NARROW_BOARD(boardp)) {
7237 if (AscIsIntPending(shost->io_port)) {
7238 result = IRQ_HANDLED;
7239 ASC_STATS(shost, interrupt);
7240 ASC_DBG(1, "before AscISR()\n");
7241 AscISR(&boardp->dvc_var.asc_dvc_var);
7242 }
7243 } else {
7244 ASC_DBG(1, "before AdvISR()\n");
7245 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7246 result = IRQ_HANDLED;
7247 ASC_STATS(shost, interrupt);
7248 }
7249 }
7250 spin_unlock_irqrestore(shost->host_lock, flags);
7251
7252 ASC_DBG(1, "end\n");
7253 return result;
7254 }
7255
AscHostReqRiscHalt(PortAddr iop_base)7256 static bool AscHostReqRiscHalt(PortAddr iop_base)
7257 {
7258 int count = 0;
7259 bool sta = false;
7260 uchar saved_stop_code;
7261
7262 if (AscIsChipHalted(iop_base))
7263 return true;
7264 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7265 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7266 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7267 do {
7268 if (AscIsChipHalted(iop_base)) {
7269 sta = true;
7270 break;
7271 }
7272 mdelay(100);
7273 } while (count++ < 20);
7274 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7275 return sta;
7276 }
7277
7278 static bool
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)7279 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7280 {
7281 bool sta = false;
7282
7283 if (AscHostReqRiscHalt(iop_base)) {
7284 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7285 AscStartChip(iop_base);
7286 }
7287 return sta;
7288 }
7289
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)7290 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7291 {
7292 char type = sdev->type;
7293 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7294
7295 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7296 return;
7297 if (asc_dvc->init_sdtr & tid_bits)
7298 return;
7299
7300 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7301 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7302
7303 asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7304 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7305 (type == TYPE_ROM) || (type == TYPE_TAPE))
7306 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7307
7308 if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7309 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7310 ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7311 }
7312
7313 static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)7314 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7315 {
7316 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7317 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7318
7319 if (sdev->lun == 0) {
7320 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7321 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7322 asc_dvc->init_sdtr |= tid_bit;
7323 } else {
7324 asc_dvc->init_sdtr &= ~tid_bit;
7325 }
7326
7327 if (orig_init_sdtr != asc_dvc->init_sdtr)
7328 AscAsyncFix(asc_dvc, sdev);
7329 }
7330
7331 if (sdev->tagged_supported) {
7332 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7333 if (sdev->lun == 0) {
7334 asc_dvc->cfg->can_tagged_qng |= tid_bit;
7335 asc_dvc->use_tagged_qng |= tid_bit;
7336 }
7337 scsi_change_queue_depth(sdev,
7338 asc_dvc->max_dvc_qng[sdev->id]);
7339 }
7340 } else {
7341 if (sdev->lun == 0) {
7342 asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7343 asc_dvc->use_tagged_qng &= ~tid_bit;
7344 }
7345 }
7346
7347 if ((sdev->lun == 0) &&
7348 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7349 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7350 asc_dvc->cfg->disc_enable);
7351 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7352 asc_dvc->use_tagged_qng);
7353 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7354 asc_dvc->cfg->can_tagged_qng);
7355
7356 asc_dvc->max_dvc_qng[sdev->id] =
7357 asc_dvc->cfg->max_tag_qng[sdev->id];
7358 AscWriteLramByte(asc_dvc->iop_base,
7359 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7360 asc_dvc->max_dvc_qng[sdev->id]);
7361 }
7362 }
7363
7364 /*
7365 * Wide Transfers
7366 *
7367 * If the EEPROM enabled WDTR for the device and the device supports wide
7368 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7369 * write the new value to the microcode.
7370 */
7371 static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)7372 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7373 {
7374 unsigned short cfg_word;
7375 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7376 if ((cfg_word & tidmask) != 0)
7377 return;
7378
7379 cfg_word |= tidmask;
7380 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7381
7382 /*
7383 * Clear the microcode SDTR and WDTR negotiation done indicators for
7384 * the target to cause it to negotiate with the new setting set above.
7385 * WDTR when accepted causes the target to enter asynchronous mode, so
7386 * SDTR must be negotiated.
7387 */
7388 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7389 cfg_word &= ~tidmask;
7390 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7391 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7392 cfg_word &= ~tidmask;
7393 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7394 }
7395
7396 /*
7397 * Synchronous Transfers
7398 *
7399 * If the EEPROM enabled SDTR for the device and the device
7400 * supports synchronous transfers, then turn on the device's
7401 * 'sdtr_able' bit. Write the new value to the microcode.
7402 */
7403 static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)7404 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7405 {
7406 unsigned short cfg_word;
7407 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7408 if ((cfg_word & tidmask) != 0)
7409 return;
7410
7411 cfg_word |= tidmask;
7412 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7413
7414 /*
7415 * Clear the microcode "SDTR negotiation" done indicator for the
7416 * target to cause it to negotiate with the new setting set above.
7417 */
7418 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7419 cfg_word &= ~tidmask;
7420 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7421 }
7422
7423 /*
7424 * PPR (Parallel Protocol Request) Capable
7425 *
7426 * If the device supports DT mode, then it must be PPR capable.
7427 * The PPR message will be used in place of the SDTR and WDTR
7428 * messages to negotiate synchronous speed and offset, transfer
7429 * width, and protocol options.
7430 */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)7431 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7432 AdvPortAddr iop_base, unsigned short tidmask)
7433 {
7434 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7435 adv_dvc->ppr_able |= tidmask;
7436 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7437 }
7438
7439 static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)7440 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7441 {
7442 AdvPortAddr iop_base = adv_dvc->iop_base;
7443 unsigned short tidmask = 1 << sdev->id;
7444
7445 if (sdev->lun == 0) {
7446 /*
7447 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7448 * is enabled in the EEPROM and the device supports the
7449 * feature, then enable it in the microcode.
7450 */
7451
7452 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7453 advansys_wide_enable_wdtr(iop_base, tidmask);
7454 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7455 advansys_wide_enable_sdtr(iop_base, tidmask);
7456 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7457 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7458
7459 /*
7460 * Tag Queuing is disabled for the BIOS which runs in polled
7461 * mode and would see no benefit from Tag Queuing. Also by
7462 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7463 * bugs will at least work with the BIOS.
7464 */
7465 if ((adv_dvc->tagqng_able & tidmask) &&
7466 sdev->tagged_supported) {
7467 unsigned short cfg_word;
7468 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7469 cfg_word |= tidmask;
7470 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7471 cfg_word);
7472 AdvWriteByteLram(iop_base,
7473 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7474 adv_dvc->max_dvc_qng);
7475 }
7476 }
7477
7478 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7479 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7480 }
7481
7482 /*
7483 * Set the number of commands to queue per device for the
7484 * specified host adapter.
7485 */
advansys_slave_configure(struct scsi_device * sdev)7486 static int advansys_slave_configure(struct scsi_device *sdev)
7487 {
7488 struct asc_board *boardp = shost_priv(sdev->host);
7489
7490 if (ASC_NARROW_BOARD(boardp))
7491 advansys_narrow_slave_configure(sdev,
7492 &boardp->dvc_var.asc_dvc_var);
7493 else
7494 advansys_wide_slave_configure(sdev,
7495 &boardp->dvc_var.adv_dvc_var);
7496
7497 return 0;
7498 }
7499
asc_get_sense_buffer_dma(struct scsi_cmnd * scp)7500 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7501 {
7502 struct asc_board *board = shost_priv(scp->device->host);
7503
7504 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7505 SCSI_SENSE_BUFFERSIZE,
7506 DMA_FROM_DEVICE);
7507 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7508 ASC_DBG(1, "failed to map sense buffer\n");
7509 return 0;
7510 }
7511 return cpu_to_le32(scp->SCp.dma_handle);
7512 }
7513
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)7514 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7515 struct asc_scsi_q *asc_scsi_q)
7516 {
7517 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7518 int use_sg;
7519 u32 srb_tag;
7520
7521 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7522
7523 /*
7524 * Set the srb_tag to the command tag + 1, as
7525 * srb_tag '0' is used internally by the chip.
7526 */
7527 srb_tag = scp->request->tag + 1;
7528 asc_scsi_q->q2.srb_tag = srb_tag;
7529
7530 /*
7531 * Build the ASC_SCSI_Q request.
7532 */
7533 asc_scsi_q->cdbptr = &scp->cmnd[0];
7534 asc_scsi_q->q2.cdb_len = scp->cmd_len;
7535 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7536 asc_scsi_q->q1.target_lun = scp->device->lun;
7537 asc_scsi_q->q2.target_ix =
7538 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7539 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7540 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7541 if (!asc_scsi_q->q1.sense_addr)
7542 return ASC_BUSY;
7543
7544 /*
7545 * If there are any outstanding requests for the current target,
7546 * then every 255th request send an ORDERED request. This heuristic
7547 * tries to retain the benefit of request sorting while preventing
7548 * request starvation. 255 is the max number of tags or pending commands
7549 * a device may have outstanding.
7550 *
7551 * The request count is incremented below for every successfully
7552 * started request.
7553 *
7554 */
7555 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7556 (boardp->reqcnt[scp->device->id] % 255) == 0) {
7557 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7558 } else {
7559 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7560 }
7561
7562 /* Build ASC_SCSI_Q */
7563 use_sg = scsi_dma_map(scp);
7564 if (use_sg < 0) {
7565 ASC_DBG(1, "failed to map sglist\n");
7566 return ASC_BUSY;
7567 } else if (use_sg > 0) {
7568 int sgcnt;
7569 struct scatterlist *slp;
7570 struct asc_sg_head *asc_sg_head;
7571
7572 if (use_sg > scp->device->host->sg_tablesize) {
7573 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7574 "sg_tablesize %d\n", use_sg,
7575 scp->device->host->sg_tablesize);
7576 scsi_dma_unmap(scp);
7577 scp->result = HOST_BYTE(DID_ERROR);
7578 return ASC_ERROR;
7579 }
7580
7581 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7582 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7583 if (!asc_sg_head) {
7584 scsi_dma_unmap(scp);
7585 scp->result = HOST_BYTE(DID_SOFT_ERROR);
7586 return ASC_ERROR;
7587 }
7588
7589 asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7590 asc_scsi_q->sg_head = asc_sg_head;
7591 asc_scsi_q->q1.data_cnt = 0;
7592 asc_scsi_q->q1.data_addr = 0;
7593 /* This is a byte value, otherwise it would need to be swapped. */
7594 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7595 ASC_STATS_ADD(scp->device->host, xfer_elem,
7596 asc_sg_head->entry_cnt);
7597
7598 /*
7599 * Convert scatter-gather list into ASC_SG_HEAD list.
7600 */
7601 scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7602 asc_sg_head->sg_list[sgcnt].addr =
7603 cpu_to_le32(sg_dma_address(slp));
7604 asc_sg_head->sg_list[sgcnt].bytes =
7605 cpu_to_le32(sg_dma_len(slp));
7606 ASC_STATS_ADD(scp->device->host, xfer_sect,
7607 DIV_ROUND_UP(sg_dma_len(slp), 512));
7608 }
7609 }
7610
7611 ASC_STATS(scp->device->host, xfer_cnt);
7612
7613 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7614 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7615
7616 return ASC_NOERROR;
7617 }
7618
7619 /*
7620 * Build scatter-gather list for Adv Library (Wide Board).
7621 *
7622 * Additional ADV_SG_BLOCK structures will need to be allocated
7623 * if the total number of scatter-gather elements exceeds
7624 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7625 * assumed to be physically contiguous.
7626 *
7627 * Return:
7628 * ADV_SUCCESS(1) - SG List successfully created
7629 * ADV_ERROR(-1) - SG List creation failed
7630 */
7631 static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,ADV_SCSI_REQ_Q * scsiqp,struct scsi_cmnd * scp,int use_sg)7632 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7633 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7634 {
7635 adv_sgblk_t *sgblkp, *prev_sgblkp;
7636 struct scatterlist *slp;
7637 int sg_elem_cnt;
7638 ADV_SG_BLOCK *sg_block, *prev_sg_block;
7639 dma_addr_t sgblk_paddr;
7640 int i;
7641
7642 slp = scsi_sglist(scp);
7643 sg_elem_cnt = use_sg;
7644 prev_sgblkp = NULL;
7645 prev_sg_block = NULL;
7646 reqp->sgblkp = NULL;
7647
7648 for (;;) {
7649 /*
7650 * Allocate a 'adv_sgblk_t' structure from the board free
7651 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7652 * (15) scatter-gather elements.
7653 */
7654 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7655 &sgblk_paddr);
7656 if (!sgblkp) {
7657 ASC_DBG(1, "no free adv_sgblk_t\n");
7658 ASC_STATS(scp->device->host, adv_build_nosg);
7659
7660 /*
7661 * Allocation failed. Free 'adv_sgblk_t' structures
7662 * already allocated for the request.
7663 */
7664 while ((sgblkp = reqp->sgblkp) != NULL) {
7665 /* Remove 'sgblkp' from the request list. */
7666 reqp->sgblkp = sgblkp->next_sgblkp;
7667 sgblkp->next_sgblkp = NULL;
7668 dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7669 sgblkp->sg_addr);
7670 }
7671 return ASC_BUSY;
7672 }
7673 /* Complete 'adv_sgblk_t' board allocation. */
7674 sgblkp->sg_addr = sgblk_paddr;
7675 sgblkp->next_sgblkp = NULL;
7676 sg_block = &sgblkp->sg_block;
7677
7678 /*
7679 * Check if this is the first 'adv_sgblk_t' for the
7680 * request.
7681 */
7682 if (reqp->sgblkp == NULL) {
7683 /* Request's first scatter-gather block. */
7684 reqp->sgblkp = sgblkp;
7685
7686 /*
7687 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7688 * address pointers.
7689 */
7690 scsiqp->sg_list_ptr = sg_block;
7691 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7692 } else {
7693 /* Request's second or later scatter-gather block. */
7694 prev_sgblkp->next_sgblkp = sgblkp;
7695
7696 /*
7697 * Point the previous ADV_SG_BLOCK structure to
7698 * the newly allocated ADV_SG_BLOCK structure.
7699 */
7700 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7701 }
7702
7703 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7704 sg_block->sg_list[i].sg_addr =
7705 cpu_to_le32(sg_dma_address(slp));
7706 sg_block->sg_list[i].sg_count =
7707 cpu_to_le32(sg_dma_len(slp));
7708 ASC_STATS_ADD(scp->device->host, xfer_sect,
7709 DIV_ROUND_UP(sg_dma_len(slp), 512));
7710
7711 if (--sg_elem_cnt == 0) {
7712 /*
7713 * Last ADV_SG_BLOCK and scatter-gather entry.
7714 */
7715 sg_block->sg_cnt = i + 1;
7716 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7717 return ADV_SUCCESS;
7718 }
7719 slp++;
7720 }
7721 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7722 prev_sg_block = sg_block;
7723 prev_sgblkp = sgblkp;
7724 }
7725 }
7726
7727 /*
7728 * Build a request structure for the Adv Library (Wide Board).
7729 *
7730 * If an adv_req_t can not be allocated to issue the request,
7731 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7732 *
7733 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7734 * microcode for DMA addresses or math operations are byte swapped
7735 * to little-endian order.
7736 */
7737 static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,adv_req_t ** adv_reqpp)7738 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7739 adv_req_t **adv_reqpp)
7740 {
7741 u32 srb_tag = scp->request->tag;
7742 adv_req_t *reqp;
7743 ADV_SCSI_REQ_Q *scsiqp;
7744 int ret;
7745 int use_sg;
7746 dma_addr_t sense_addr;
7747
7748 /*
7749 * Allocate an adv_req_t structure from the board to execute
7750 * the command.
7751 */
7752 reqp = &boardp->adv_reqp[srb_tag];
7753 if (reqp->cmndp && reqp->cmndp != scp ) {
7754 ASC_DBG(1, "no free adv_req_t\n");
7755 ASC_STATS(scp->device->host, adv_build_noreq);
7756 return ASC_BUSY;
7757 }
7758
7759 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7760
7761 scsiqp = &reqp->scsi_req_q;
7762
7763 /*
7764 * Initialize the structure.
7765 */
7766 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7767
7768 /*
7769 * Set the srb_tag to the command tag.
7770 */
7771 scsiqp->srb_tag = srb_tag;
7772
7773 /*
7774 * Set 'host_scribble' to point to the adv_req_t structure.
7775 */
7776 reqp->cmndp = scp;
7777 scp->host_scribble = (void *)reqp;
7778
7779 /*
7780 * Build the ADV_SCSI_REQ_Q request.
7781 */
7782
7783 /* Set CDB length and copy it to the request structure. */
7784 scsiqp->cdb_len = scp->cmd_len;
7785 /* Copy first 12 CDB bytes to cdb[]. */
7786 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7787 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7788 if (scp->cmd_len > 12) {
7789 int cdb16_len = scp->cmd_len - 12;
7790
7791 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7792 }
7793
7794 scsiqp->target_id = scp->device->id;
7795 scsiqp->target_lun = scp->device->lun;
7796
7797 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7798 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7799 if (dma_mapping_error(boardp->dev, sense_addr)) {
7800 ASC_DBG(1, "failed to map sense buffer\n");
7801 ASC_STATS(scp->device->host, adv_build_noreq);
7802 return ASC_BUSY;
7803 }
7804 scsiqp->sense_addr = cpu_to_le32(sense_addr);
7805 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7806
7807 /* Build ADV_SCSI_REQ_Q */
7808
7809 use_sg = scsi_dma_map(scp);
7810 if (use_sg < 0) {
7811 ASC_DBG(1, "failed to map SG list\n");
7812 ASC_STATS(scp->device->host, adv_build_noreq);
7813 return ASC_BUSY;
7814 } else if (use_sg == 0) {
7815 /* Zero-length transfer */
7816 reqp->sgblkp = NULL;
7817 scsiqp->data_cnt = 0;
7818
7819 scsiqp->data_addr = 0;
7820 scsiqp->sg_list_ptr = NULL;
7821 scsiqp->sg_real_addr = 0;
7822 } else {
7823 if (use_sg > ADV_MAX_SG_LIST) {
7824 scmd_printk(KERN_ERR, scp, "use_sg %d > "
7825 "ADV_MAX_SG_LIST %d\n", use_sg,
7826 scp->device->host->sg_tablesize);
7827 scsi_dma_unmap(scp);
7828 scp->result = HOST_BYTE(DID_ERROR);
7829 reqp->cmndp = NULL;
7830 scp->host_scribble = NULL;
7831
7832 return ASC_ERROR;
7833 }
7834
7835 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7836
7837 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7838 if (ret != ADV_SUCCESS) {
7839 scsi_dma_unmap(scp);
7840 scp->result = HOST_BYTE(DID_ERROR);
7841 reqp->cmndp = NULL;
7842 scp->host_scribble = NULL;
7843
7844 return ret;
7845 }
7846
7847 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7848 }
7849
7850 ASC_STATS(scp->device->host, xfer_cnt);
7851
7852 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7853 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7854
7855 *adv_reqpp = reqp;
7856
7857 return ASC_NOERROR;
7858 }
7859
AscSgListToQueue(int sg_list)7860 static int AscSgListToQueue(int sg_list)
7861 {
7862 int n_sg_list_qs;
7863
7864 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7865 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7866 n_sg_list_qs++;
7867 return n_sg_list_qs + 1;
7868 }
7869
7870 static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)7871 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7872 {
7873 uint cur_used_qs;
7874 uint cur_free_qs;
7875 ASC_SCSI_BIT_ID_TYPE target_id;
7876 uchar tid_no;
7877
7878 target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7879 tid_no = ASC_TIX_TO_TID(target_ix);
7880 if ((asc_dvc->unit_not_ready & target_id) ||
7881 (asc_dvc->queue_full_or_busy & target_id)) {
7882 return 0;
7883 }
7884 if (n_qs == 1) {
7885 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7886 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7887 } else {
7888 cur_used_qs = (uint) asc_dvc->cur_total_qng +
7889 (uint) ASC_MIN_FREE_Q;
7890 }
7891 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7892 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7893 if (asc_dvc->cur_dvc_qng[tid_no] >=
7894 asc_dvc->max_dvc_qng[tid_no]) {
7895 return 0;
7896 }
7897 return cur_free_qs;
7898 }
7899 if (n_qs > 1) {
7900 if ((n_qs > asc_dvc->last_q_shortage)
7901 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7902 asc_dvc->last_q_shortage = n_qs;
7903 }
7904 }
7905 return 0;
7906 }
7907
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)7908 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7909 {
7910 ushort q_addr;
7911 uchar next_qp;
7912 uchar q_status;
7913
7914 q_addr = ASC_QNO_TO_QADDR(free_q_head);
7915 q_status = (uchar)AscReadLramByte(iop_base,
7916 (ushort)(q_addr +
7917 ASC_SCSIQ_B_STATUS));
7918 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7919 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7920 return next_qp;
7921 return ASC_QLINK_END;
7922 }
7923
7924 static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)7925 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7926 {
7927 uchar i;
7928
7929 for (i = 0; i < n_free_q; i++) {
7930 free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7931 if (free_q_head == ASC_QLINK_END)
7932 break;
7933 }
7934 return free_q_head;
7935 }
7936
7937 /*
7938 * void
7939 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7940 *
7941 * Calling/Exit State:
7942 * none
7943 *
7944 * Description:
7945 * Output an ASC_SCSI_Q structure to the chip
7946 */
7947 static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)7948 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7949 {
7950 int i;
7951
7952 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7953 AscSetChipLramAddr(iop_base, s_addr);
7954 for (i = 0; i < 2 * words; i += 2) {
7955 if (i == 4 || i == 20) {
7956 continue;
7957 }
7958 outpw(iop_base + IOP_RAM_DATA,
7959 ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7960 }
7961 }
7962
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7963 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7964 {
7965 ushort q_addr;
7966 uchar tid_no;
7967 uchar sdtr_data;
7968 uchar syn_period_ix;
7969 uchar syn_offset;
7970 PortAddr iop_base;
7971
7972 iop_base = asc_dvc->iop_base;
7973 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7974 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7975 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7976 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7977 syn_period_ix =
7978 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7979 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7980 AscMsgOutSDTR(asc_dvc,
7981 asc_dvc->sdtr_period_tbl[syn_period_ix],
7982 syn_offset);
7983 scsiq->q1.cntl |= QC_MSG_OUT;
7984 }
7985 q_addr = ASC_QNO_TO_QADDR(q_no);
7986 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7987 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7988 }
7989 scsiq->q1.status = QS_FREE;
7990 AscMemWordCopyPtrToLram(iop_base,
7991 q_addr + ASC_SCSIQ_CDB_BEG,
7992 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7993
7994 DvcPutScsiQ(iop_base,
7995 q_addr + ASC_SCSIQ_CPY_BEG,
7996 (uchar *)&scsiq->q1.cntl,
7997 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7998 AscWriteLramWord(iop_base,
7999 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8000 (ushort)(((ushort)scsiq->q1.
8001 q_no << 8) | (ushort)QS_READY));
8002 return 1;
8003 }
8004
8005 static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)8006 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8007 {
8008 int sta;
8009 int i;
8010 ASC_SG_HEAD *sg_head;
8011 ASC_SG_LIST_Q scsi_sg_q;
8012 __le32 saved_data_addr;
8013 __le32 saved_data_cnt;
8014 PortAddr iop_base;
8015 ushort sg_list_dwords;
8016 ushort sg_index;
8017 ushort sg_entry_cnt;
8018 ushort q_addr;
8019 uchar next_qp;
8020
8021 iop_base = asc_dvc->iop_base;
8022 sg_head = scsiq->sg_head;
8023 saved_data_addr = scsiq->q1.data_addr;
8024 saved_data_cnt = scsiq->q1.data_cnt;
8025 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8026 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8027 /*
8028 * Set sg_entry_cnt to be the number of SG elements that
8029 * will fit in the allocated SG queues. It is minus 1, because
8030 * the first SG element is handled above.
8031 */
8032 sg_entry_cnt = sg_head->entry_cnt - 1;
8033
8034 if (sg_entry_cnt != 0) {
8035 scsiq->q1.cntl |= QC_SG_HEAD;
8036 q_addr = ASC_QNO_TO_QADDR(q_no);
8037 sg_index = 1;
8038 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8039 scsi_sg_q.sg_head_qp = q_no;
8040 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8041 for (i = 0; i < sg_head->queue_cnt; i++) {
8042 scsi_sg_q.seq_no = i + 1;
8043 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8044 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8045 sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8046 if (i == 0) {
8047 scsi_sg_q.sg_list_cnt =
8048 ASC_SG_LIST_PER_Q;
8049 scsi_sg_q.sg_cur_list_cnt =
8050 ASC_SG_LIST_PER_Q;
8051 } else {
8052 scsi_sg_q.sg_list_cnt =
8053 ASC_SG_LIST_PER_Q - 1;
8054 scsi_sg_q.sg_cur_list_cnt =
8055 ASC_SG_LIST_PER_Q - 1;
8056 }
8057 } else {
8058 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8059 sg_list_dwords = sg_entry_cnt << 1;
8060 if (i == 0) {
8061 scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8062 scsi_sg_q.sg_cur_list_cnt =
8063 sg_entry_cnt;
8064 } else {
8065 scsi_sg_q.sg_list_cnt =
8066 sg_entry_cnt - 1;
8067 scsi_sg_q.sg_cur_list_cnt =
8068 sg_entry_cnt - 1;
8069 }
8070 sg_entry_cnt = 0;
8071 }
8072 next_qp = AscReadLramByte(iop_base,
8073 (ushort)(q_addr +
8074 ASC_SCSIQ_B_FWD));
8075 scsi_sg_q.q_no = next_qp;
8076 q_addr = ASC_QNO_TO_QADDR(next_qp);
8077 AscMemWordCopyPtrToLram(iop_base,
8078 q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8079 (uchar *)&scsi_sg_q,
8080 sizeof(ASC_SG_LIST_Q) >> 1);
8081 AscMemDWordCopyPtrToLram(iop_base,
8082 q_addr + ASC_SGQ_LIST_BEG,
8083 (uchar *)&sg_head->
8084 sg_list[sg_index],
8085 sg_list_dwords);
8086 sg_index += ASC_SG_LIST_PER_Q;
8087 scsiq->next_sg_index = sg_index;
8088 }
8089 } else {
8090 scsiq->q1.cntl &= ~QC_SG_HEAD;
8091 }
8092 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8093 scsiq->q1.data_addr = saved_data_addr;
8094 scsiq->q1.data_cnt = saved_data_cnt;
8095 return (sta);
8096 }
8097
8098 static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)8099 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8100 {
8101 PortAddr iop_base;
8102 uchar free_q_head;
8103 uchar next_qp;
8104 uchar tid_no;
8105 uchar target_ix;
8106 int sta;
8107
8108 iop_base = asc_dvc->iop_base;
8109 target_ix = scsiq->q2.target_ix;
8110 tid_no = ASC_TIX_TO_TID(target_ix);
8111 sta = 0;
8112 free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8113 if (n_q_required > 1) {
8114 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8115 (uchar)n_q_required);
8116 if (next_qp != ASC_QLINK_END) {
8117 asc_dvc->last_q_shortage = 0;
8118 scsiq->sg_head->queue_cnt = n_q_required - 1;
8119 scsiq->q1.q_no = free_q_head;
8120 sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8121 free_q_head);
8122 }
8123 } else if (n_q_required == 1) {
8124 next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8125 if (next_qp != ASC_QLINK_END) {
8126 scsiq->q1.q_no = free_q_head;
8127 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8128 }
8129 }
8130 if (sta == 1) {
8131 AscPutVarFreeQHead(iop_base, next_qp);
8132 asc_dvc->cur_total_qng += n_q_required;
8133 asc_dvc->cur_dvc_qng[tid_no]++;
8134 }
8135 return sta;
8136 }
8137
8138 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8139 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8140 INQUIRY,
8141 REQUEST_SENSE,
8142 READ_CAPACITY,
8143 READ_TOC,
8144 MODE_SELECT,
8145 MODE_SENSE,
8146 MODE_SELECT_10,
8147 MODE_SENSE_10,
8148 0xFF,
8149 0xFF,
8150 0xFF,
8151 0xFF,
8152 0xFF,
8153 0xFF,
8154 0xFF,
8155 0xFF
8156 };
8157
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)8158 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8159 {
8160 PortAddr iop_base;
8161 int sta;
8162 int n_q_required;
8163 bool disable_syn_offset_one_fix;
8164 int i;
8165 u32 addr;
8166 ushort sg_entry_cnt = 0;
8167 ushort sg_entry_cnt_minus_one = 0;
8168 uchar target_ix;
8169 uchar tid_no;
8170 uchar sdtr_data;
8171 uchar extra_bytes;
8172 uchar scsi_cmd;
8173 uchar disable_cmd;
8174 ASC_SG_HEAD *sg_head;
8175 unsigned long data_cnt;
8176
8177 iop_base = asc_dvc->iop_base;
8178 sg_head = scsiq->sg_head;
8179 if (asc_dvc->err_code != 0)
8180 return ASC_ERROR;
8181 scsiq->q1.q_no = 0;
8182 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8183 scsiq->q1.extra_bytes = 0;
8184 }
8185 sta = 0;
8186 target_ix = scsiq->q2.target_ix;
8187 tid_no = ASC_TIX_TO_TID(target_ix);
8188 n_q_required = 1;
8189 if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8190 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8191 asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8192 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8193 AscMsgOutSDTR(asc_dvc,
8194 asc_dvc->
8195 sdtr_period_tbl[(sdtr_data >> 4) &
8196 (uchar)(asc_dvc->
8197 max_sdtr_index -
8198 1)],
8199 (uchar)(sdtr_data & (uchar)
8200 ASC_SYN_MAX_OFFSET));
8201 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8202 }
8203 }
8204 if (asc_dvc->in_critical_cnt != 0) {
8205 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8206 return ASC_ERROR;
8207 }
8208 asc_dvc->in_critical_cnt++;
8209 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8210 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8211 asc_dvc->in_critical_cnt--;
8212 return ASC_ERROR;
8213 }
8214 if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8215 asc_dvc->in_critical_cnt--;
8216 return ASC_ERROR;
8217 }
8218 if (sg_entry_cnt == 1) {
8219 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8220 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8221 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8222 }
8223 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8224 }
8225 scsi_cmd = scsiq->cdbptr[0];
8226 disable_syn_offset_one_fix = false;
8227 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8228 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8229 if (scsiq->q1.cntl & QC_SG_HEAD) {
8230 data_cnt = 0;
8231 for (i = 0; i < sg_entry_cnt; i++) {
8232 data_cnt += le32_to_cpu(sg_head->sg_list[i].
8233 bytes);
8234 }
8235 } else {
8236 data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8237 }
8238 if (data_cnt != 0UL) {
8239 if (data_cnt < 512UL) {
8240 disable_syn_offset_one_fix = true;
8241 } else {
8242 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8243 i++) {
8244 disable_cmd =
8245 _syn_offset_one_disable_cmd[i];
8246 if (disable_cmd == 0xFF) {
8247 break;
8248 }
8249 if (scsi_cmd == disable_cmd) {
8250 disable_syn_offset_one_fix =
8251 true;
8252 break;
8253 }
8254 }
8255 }
8256 }
8257 }
8258 if (disable_syn_offset_one_fix) {
8259 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8260 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8261 ASC_TAG_FLAG_DISABLE_DISCONNECT);
8262 } else {
8263 scsiq->q2.tag_code &= 0x27;
8264 }
8265 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8266 if (asc_dvc->bug_fix_cntl) {
8267 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8268 if ((scsi_cmd == READ_6) ||
8269 (scsi_cmd == READ_10)) {
8270 addr = le32_to_cpu(sg_head->
8271 sg_list
8272 [sg_entry_cnt_minus_one].
8273 addr) +
8274 le32_to_cpu(sg_head->
8275 sg_list
8276 [sg_entry_cnt_minus_one].
8277 bytes);
8278 extra_bytes =
8279 (uchar)((ushort)addr & 0x0003);
8280 if ((extra_bytes != 0)
8281 &&
8282 ((scsiq->q2.
8283 tag_code &
8284 ASC_TAG_FLAG_EXTRA_BYTES)
8285 == 0)) {
8286 scsiq->q2.tag_code |=
8287 ASC_TAG_FLAG_EXTRA_BYTES;
8288 scsiq->q1.extra_bytes =
8289 extra_bytes;
8290 data_cnt =
8291 le32_to_cpu(sg_head->
8292 sg_list
8293 [sg_entry_cnt_minus_one].
8294 bytes);
8295 data_cnt -= extra_bytes;
8296 sg_head->
8297 sg_list
8298 [sg_entry_cnt_minus_one].
8299 bytes =
8300 cpu_to_le32(data_cnt);
8301 }
8302 }
8303 }
8304 }
8305 sg_head->entry_to_copy = sg_head->entry_cnt;
8306 n_q_required = AscSgListToQueue(sg_entry_cnt);
8307 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8308 (uint) n_q_required)
8309 || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8310 if ((sta =
8311 AscSendScsiQueue(asc_dvc, scsiq,
8312 n_q_required)) == 1) {
8313 asc_dvc->in_critical_cnt--;
8314 return (sta);
8315 }
8316 }
8317 } else {
8318 if (asc_dvc->bug_fix_cntl) {
8319 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8320 if ((scsi_cmd == READ_6) ||
8321 (scsi_cmd == READ_10)) {
8322 addr =
8323 le32_to_cpu(scsiq->q1.data_addr) +
8324 le32_to_cpu(scsiq->q1.data_cnt);
8325 extra_bytes =
8326 (uchar)((ushort)addr & 0x0003);
8327 if ((extra_bytes != 0)
8328 &&
8329 ((scsiq->q2.
8330 tag_code &
8331 ASC_TAG_FLAG_EXTRA_BYTES)
8332 == 0)) {
8333 data_cnt =
8334 le32_to_cpu(scsiq->q1.
8335 data_cnt);
8336 if (((ushort)data_cnt & 0x01FF)
8337 == 0) {
8338 scsiq->q2.tag_code |=
8339 ASC_TAG_FLAG_EXTRA_BYTES;
8340 data_cnt -= extra_bytes;
8341 scsiq->q1.data_cnt =
8342 cpu_to_le32
8343 (data_cnt);
8344 scsiq->q1.extra_bytes =
8345 extra_bytes;
8346 }
8347 }
8348 }
8349 }
8350 }
8351 n_q_required = 1;
8352 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8353 ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8354 if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8355 n_q_required)) == 1) {
8356 asc_dvc->in_critical_cnt--;
8357 return (sta);
8358 }
8359 }
8360 }
8361 asc_dvc->in_critical_cnt--;
8362 return (sta);
8363 }
8364
8365 /*
8366 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8367 *
8368 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8369 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8370 * RISC to notify it a new command is ready to be executed.
8371 *
8372 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8373 * set to SCSI_MAX_RETRY.
8374 *
8375 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8376 * for DMA addresses or math operations are byte swapped to little-endian
8377 * order.
8378 *
8379 * Return:
8380 * ADV_SUCCESS(1) - The request was successfully queued.
8381 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8382 * request completes.
8383 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8384 * host IC error.
8385 */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,adv_req_t * reqp)8386 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8387 {
8388 AdvPortAddr iop_base;
8389 ADV_CARR_T *new_carrp;
8390 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8391
8392 /*
8393 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8394 */
8395 if (scsiq->target_id > ADV_MAX_TID) {
8396 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8397 scsiq->done_status = QD_WITH_ERROR;
8398 return ADV_ERROR;
8399 }
8400
8401 iop_base = asc_dvc->iop_base;
8402
8403 /*
8404 * Allocate a carrier ensuring at least one carrier always
8405 * remains on the freelist and initialize fields.
8406 */
8407 new_carrp = adv_get_next_carrier(asc_dvc);
8408 if (!new_carrp) {
8409 ASC_DBG(1, "No free carriers\n");
8410 return ADV_BUSY;
8411 }
8412
8413 asc_dvc->carr_pending_cnt++;
8414
8415 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8416 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8417 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8418
8419 scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8420 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8421
8422 /*
8423 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8424 * the microcode. The newly allocated stopper will become the new
8425 * stopper.
8426 */
8427 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8428
8429 /*
8430 * Set the 'next_vpa' pointer for the old stopper to be the
8431 * physical address of the new stopper. The RISC can only
8432 * follow physical addresses.
8433 */
8434 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8435
8436 /*
8437 * Set the host adapter stopper pointer to point to the new carrier.
8438 */
8439 asc_dvc->icq_sp = new_carrp;
8440
8441 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8442 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8443 /*
8444 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8445 */
8446 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8447 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8448 /*
8449 * Clear the tickle value. In the ASC-3550 the RISC flag
8450 * command 'clr_tickle_a' does not work unless the host
8451 * value is cleared.
8452 */
8453 AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8454 ADV_TICKLE_NOP);
8455 }
8456 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8457 /*
8458 * Notify the RISC a carrier is ready by writing the physical
8459 * address of the new carrier stopper to the COMMA register.
8460 */
8461 AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8462 le32_to_cpu(new_carrp->carr_pa));
8463 }
8464
8465 return ADV_SUCCESS;
8466 }
8467
8468 /*
8469 * Execute a single 'struct scsi_cmnd'.
8470 */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)8471 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8472 {
8473 int ret, err_code;
8474 struct asc_board *boardp = shost_priv(scp->device->host);
8475
8476 ASC_DBG(1, "scp 0x%p\n", scp);
8477
8478 if (ASC_NARROW_BOARD(boardp)) {
8479 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8480 struct asc_scsi_q asc_scsi_q;
8481
8482 ret = asc_build_req(boardp, scp, &asc_scsi_q);
8483 if (ret != ASC_NOERROR) {
8484 ASC_STATS(scp->device->host, build_error);
8485 return ret;
8486 }
8487
8488 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8489 kfree(asc_scsi_q.sg_head);
8490 err_code = asc_dvc->err_code;
8491 } else {
8492 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8493 adv_req_t *adv_reqp;
8494
8495 switch (adv_build_req(boardp, scp, &adv_reqp)) {
8496 case ASC_NOERROR:
8497 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8498 break;
8499 case ASC_BUSY:
8500 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8501 /*
8502 * The asc_stats fields 'adv_build_noreq' and
8503 * 'adv_build_nosg' count wide board busy conditions.
8504 * They are updated in adv_build_req and
8505 * adv_get_sglist, respectively.
8506 */
8507 return ASC_BUSY;
8508 case ASC_ERROR:
8509 default:
8510 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8511 ASC_STATS(scp->device->host, build_error);
8512 return ASC_ERROR;
8513 }
8514
8515 ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8516 err_code = adv_dvc->err_code;
8517 }
8518
8519 switch (ret) {
8520 case ASC_NOERROR:
8521 ASC_STATS(scp->device->host, exe_noerror);
8522 /*
8523 * Increment monotonically increasing per device
8524 * successful request counter. Wrapping doesn't matter.
8525 */
8526 boardp->reqcnt[scp->device->id]++;
8527 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8528 break;
8529 case ASC_BUSY:
8530 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8531 ASC_STATS(scp->device->host, exe_busy);
8532 break;
8533 case ASC_ERROR:
8534 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8535 "err_code 0x%x\n", err_code);
8536 ASC_STATS(scp->device->host, exe_error);
8537 scp->result = HOST_BYTE(DID_ERROR);
8538 break;
8539 default:
8540 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8541 "err_code 0x%x\n", err_code);
8542 ASC_STATS(scp->device->host, exe_unknown);
8543 scp->result = HOST_BYTE(DID_ERROR);
8544 break;
8545 }
8546
8547 ASC_DBG(1, "end\n");
8548 return ret;
8549 }
8550
8551 /*
8552 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8553 *
8554 * This function always returns 0. Command return status is saved
8555 * in the 'scp' result field.
8556 */
8557 static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))8558 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8559 {
8560 struct Scsi_Host *shost = scp->device->host;
8561 int asc_res, result = 0;
8562
8563 ASC_STATS(shost, queuecommand);
8564 scp->scsi_done = done;
8565
8566 asc_res = asc_execute_scsi_cmnd(scp);
8567
8568 switch (asc_res) {
8569 case ASC_NOERROR:
8570 break;
8571 case ASC_BUSY:
8572 result = SCSI_MLQUEUE_HOST_BUSY;
8573 break;
8574 case ASC_ERROR:
8575 default:
8576 asc_scsi_done(scp);
8577 break;
8578 }
8579
8580 return result;
8581 }
8582
DEF_SCSI_QCMD(advansys_queuecommand)8583 static DEF_SCSI_QCMD(advansys_queuecommand)
8584
8585 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8586 {
8587 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8588 (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8589 return inpw(eisa_cfg_iop);
8590 }
8591
8592 /*
8593 * Return the BIOS address of the adapter at the specified
8594 * I/O port and with the specified bus type.
8595 */
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)8596 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8597 unsigned short bus_type)
8598 {
8599 unsigned short cfg_lsw;
8600 unsigned short bios_addr;
8601
8602 /*
8603 * The PCI BIOS is re-located by the motherboard BIOS. Because
8604 * of this the driver can not determine where a PCI BIOS is
8605 * loaded and executes.
8606 */
8607 if (bus_type & ASC_IS_PCI)
8608 return 0;
8609
8610 if ((bus_type & ASC_IS_EISA) != 0) {
8611 cfg_lsw = AscGetEisaChipCfg(iop_base);
8612 cfg_lsw &= 0x000F;
8613 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8614 return bios_addr;
8615 }
8616
8617 cfg_lsw = AscGetChipCfgLsw(iop_base);
8618
8619 /*
8620 * ISA PnP uses the top bit as the 32K BIOS flag
8621 */
8622 if (bus_type == ASC_IS_ISAPNP)
8623 cfg_lsw &= 0x7FFF;
8624 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8625 return bios_addr;
8626 }
8627
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)8628 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8629 {
8630 ushort cfg_lsw;
8631
8632 if (AscGetChipScsiID(iop_base) == new_host_id) {
8633 return (new_host_id);
8634 }
8635 cfg_lsw = AscGetChipCfgLsw(iop_base);
8636 cfg_lsw &= 0xF8FF;
8637 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8638 AscSetChipCfgLsw(iop_base, cfg_lsw);
8639 return (AscGetChipScsiID(iop_base));
8640 }
8641
AscGetChipScsiCtrl(PortAddr iop_base)8642 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8643 {
8644 unsigned char sc;
8645
8646 AscSetBank(iop_base, 1);
8647 sc = inp(iop_base + IOP_REG_SC);
8648 AscSetBank(iop_base, 0);
8649 return sc;
8650 }
8651
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)8652 static unsigned char AscGetChipVersion(PortAddr iop_base,
8653 unsigned short bus_type)
8654 {
8655 if (bus_type & ASC_IS_EISA) {
8656 PortAddr eisa_iop;
8657 unsigned char revision;
8658 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8659 (PortAddr) ASC_EISA_REV_IOP_MASK;
8660 revision = inp(eisa_iop);
8661 return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8662 }
8663 return AscGetChipVerNo(iop_base);
8664 }
8665
8666 #ifdef CONFIG_ISA
AscEnableIsaDma(uchar dma_channel)8667 static void AscEnableIsaDma(uchar dma_channel)
8668 {
8669 if (dma_channel < 4) {
8670 outp(0x000B, (ushort)(0xC0 | dma_channel));
8671 outp(0x000A, dma_channel);
8672 } else if (dma_channel < 8) {
8673 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8674 outp(0x00D4, (ushort)(dma_channel - 4));
8675 }
8676 }
8677 #endif /* CONFIG_ISA */
8678
AscStopQueueExe(PortAddr iop_base)8679 static int AscStopQueueExe(PortAddr iop_base)
8680 {
8681 int count = 0;
8682
8683 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8684 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8685 ASC_STOP_REQ_RISC_STOP);
8686 do {
8687 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8688 ASC_STOP_ACK_RISC_STOP) {
8689 return (1);
8690 }
8691 mdelay(100);
8692 } while (count++ < 20);
8693 }
8694 return (0);
8695 }
8696
AscGetMaxDmaCount(ushort bus_type)8697 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8698 {
8699 if (bus_type & ASC_IS_ISA)
8700 return ASC_MAX_ISA_DMA_COUNT;
8701 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8702 return ASC_MAX_VL_DMA_COUNT;
8703 return ASC_MAX_PCI_DMA_COUNT;
8704 }
8705
8706 #ifdef CONFIG_ISA
AscGetIsaDmaChannel(PortAddr iop_base)8707 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8708 {
8709 ushort channel;
8710
8711 channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8712 if (channel == 0x03)
8713 return (0);
8714 else if (channel == 0x00)
8715 return (7);
8716 return (channel + 4);
8717 }
8718
AscSetIsaDmaChannel(PortAddr iop_base,ushort dma_channel)8719 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8720 {
8721 ushort cfg_lsw;
8722 uchar value;
8723
8724 if ((dma_channel >= 5) && (dma_channel <= 7)) {
8725 if (dma_channel == 7)
8726 value = 0x00;
8727 else
8728 value = dma_channel - 4;
8729 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8730 cfg_lsw |= value;
8731 AscSetChipCfgLsw(iop_base, cfg_lsw);
8732 return (AscGetIsaDmaChannel(iop_base));
8733 }
8734 return 0;
8735 }
8736
AscGetIsaDmaSpeed(PortAddr iop_base)8737 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8738 {
8739 uchar speed_value;
8740
8741 AscSetBank(iop_base, 1);
8742 speed_value = AscReadChipDmaSpeed(iop_base);
8743 speed_value &= 0x07;
8744 AscSetBank(iop_base, 0);
8745 return speed_value;
8746 }
8747
AscSetIsaDmaSpeed(PortAddr iop_base,uchar speed_value)8748 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8749 {
8750 speed_value &= 0x07;
8751 AscSetBank(iop_base, 1);
8752 AscWriteChipDmaSpeed(iop_base, speed_value);
8753 AscSetBank(iop_base, 0);
8754 return AscGetIsaDmaSpeed(iop_base);
8755 }
8756 #endif /* CONFIG_ISA */
8757
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)8758 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8759 {
8760 int i;
8761 PortAddr iop_base;
8762 uchar chip_version;
8763
8764 iop_base = asc_dvc->iop_base;
8765 asc_dvc->err_code = 0;
8766 if ((asc_dvc->bus_type &
8767 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8768 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8769 }
8770 AscSetChipControl(iop_base, CC_HALT);
8771 AscSetChipStatus(iop_base, 0);
8772 asc_dvc->bug_fix_cntl = 0;
8773 asc_dvc->pci_fix_asyn_xfer = 0;
8774 asc_dvc->pci_fix_asyn_xfer_always = 0;
8775 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8776 asc_dvc->sdtr_done = 0;
8777 asc_dvc->cur_total_qng = 0;
8778 asc_dvc->is_in_int = false;
8779 asc_dvc->in_critical_cnt = 0;
8780 asc_dvc->last_q_shortage = 0;
8781 asc_dvc->use_tagged_qng = 0;
8782 asc_dvc->no_scam = 0;
8783 asc_dvc->unit_not_ready = 0;
8784 asc_dvc->queue_full_or_busy = 0;
8785 asc_dvc->redo_scam = 0;
8786 asc_dvc->res2 = 0;
8787 asc_dvc->min_sdtr_index = 0;
8788 asc_dvc->cfg->can_tagged_qng = 0;
8789 asc_dvc->cfg->cmd_qng_enabled = 0;
8790 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8791 asc_dvc->init_sdtr = 0;
8792 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8793 asc_dvc->scsi_reset_wait = 3;
8794 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8795 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8796 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8797 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8798 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8799 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8800 asc_dvc->cfg->chip_version = chip_version;
8801 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8802 asc_dvc->max_sdtr_index = 7;
8803 if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8804 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8805 asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8806 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8807 asc_dvc->max_sdtr_index = 15;
8808 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8809 AscSetExtraControl(iop_base,
8810 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8811 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8812 AscSetExtraControl(iop_base,
8813 (SEC_ACTIVE_NEGATE |
8814 SEC_ENABLE_FILTER));
8815 }
8816 }
8817 if (asc_dvc->bus_type == ASC_IS_PCI) {
8818 AscSetExtraControl(iop_base,
8819 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8820 }
8821
8822 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8823 #ifdef CONFIG_ISA
8824 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8825 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8826 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8827 asc_dvc->bus_type = ASC_IS_ISAPNP;
8828 }
8829 asc_dvc->cfg->isa_dma_channel =
8830 (uchar)AscGetIsaDmaChannel(iop_base);
8831 }
8832 #endif /* CONFIG_ISA */
8833 for (i = 0; i <= ASC_MAX_TID; i++) {
8834 asc_dvc->cur_dvc_qng[i] = 0;
8835 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8836 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8837 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8838 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8839 }
8840 }
8841
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)8842 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8843 {
8844 int retry;
8845
8846 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8847 unsigned char read_back;
8848 AscSetChipEEPCmd(iop_base, cmd_reg);
8849 mdelay(1);
8850 read_back = AscGetChipEEPCmd(iop_base);
8851 if (read_back == cmd_reg)
8852 return 1;
8853 }
8854 return 0;
8855 }
8856
AscWaitEEPRead(void)8857 static void AscWaitEEPRead(void)
8858 {
8859 mdelay(1);
8860 }
8861
AscReadEEPWord(PortAddr iop_base,uchar addr)8862 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8863 {
8864 ushort read_wval;
8865 uchar cmd_reg;
8866
8867 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8868 AscWaitEEPRead();
8869 cmd_reg = addr | ASC_EEP_CMD_READ;
8870 AscWriteEEPCmdReg(iop_base, cmd_reg);
8871 AscWaitEEPRead();
8872 read_wval = AscGetChipEEPData(iop_base);
8873 AscWaitEEPRead();
8874 return read_wval;
8875 }
8876
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8877 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8878 ushort bus_type)
8879 {
8880 ushort wval;
8881 ushort sum;
8882 ushort *wbuf;
8883 int cfg_beg;
8884 int cfg_end;
8885 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8886 int s_addr;
8887
8888 wbuf = (ushort *)cfg_buf;
8889 sum = 0;
8890 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8891 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8892 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8893 sum += *wbuf;
8894 }
8895 if (bus_type & ASC_IS_VL) {
8896 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8897 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8898 } else {
8899 cfg_beg = ASC_EEP_DVC_CFG_BEG;
8900 cfg_end = ASC_EEP_MAX_DVC_ADDR;
8901 }
8902 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8903 wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8904 if (s_addr <= uchar_end_in_config) {
8905 /*
8906 * Swap all char fields - must unswap bytes already swapped
8907 * by AscReadEEPWord().
8908 */
8909 *wbuf = le16_to_cpu(wval);
8910 } else {
8911 /* Don't swap word field at the end - cntl field. */
8912 *wbuf = wval;
8913 }
8914 sum += wval; /* Checksum treats all EEPROM data as words. */
8915 }
8916 /*
8917 * Read the checksum word which will be compared against 'sum'
8918 * by the caller. Word field already swapped.
8919 */
8920 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8921 return sum;
8922 }
8923
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)8924 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8925 {
8926 PortAddr iop_base;
8927 ushort q_addr;
8928 ushort saved_word;
8929 int sta;
8930
8931 iop_base = asc_dvc->iop_base;
8932 sta = 0;
8933 q_addr = ASC_QNO_TO_QADDR(241);
8934 saved_word = AscReadLramWord(iop_base, q_addr);
8935 AscSetChipLramAddr(iop_base, q_addr);
8936 AscSetChipLramData(iop_base, 0x55AA);
8937 mdelay(10);
8938 AscSetChipLramAddr(iop_base, q_addr);
8939 if (AscGetChipLramData(iop_base) == 0x55AA) {
8940 sta = 1;
8941 AscWriteLramWord(iop_base, q_addr, saved_word);
8942 }
8943 return (sta);
8944 }
8945
AscWaitEEPWrite(void)8946 static void AscWaitEEPWrite(void)
8947 {
8948 mdelay(20);
8949 }
8950
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)8951 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8952 {
8953 ushort read_back;
8954 int retry;
8955
8956 retry = 0;
8957 while (true) {
8958 AscSetChipEEPData(iop_base, data_reg);
8959 mdelay(1);
8960 read_back = AscGetChipEEPData(iop_base);
8961 if (read_back == data_reg) {
8962 return (1);
8963 }
8964 if (retry++ > ASC_EEP_MAX_RETRY) {
8965 return (0);
8966 }
8967 }
8968 }
8969
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)8970 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8971 {
8972 ushort read_wval;
8973
8974 read_wval = AscReadEEPWord(iop_base, addr);
8975 if (read_wval != word_val) {
8976 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8977 AscWaitEEPRead();
8978 AscWriteEEPDataReg(iop_base, word_val);
8979 AscWaitEEPRead();
8980 AscWriteEEPCmdReg(iop_base,
8981 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8982 AscWaitEEPWrite();
8983 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8984 AscWaitEEPRead();
8985 return (AscReadEEPWord(iop_base, addr));
8986 }
8987 return (read_wval);
8988 }
8989
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8990 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8991 ushort bus_type)
8992 {
8993 int n_error;
8994 ushort *wbuf;
8995 ushort word;
8996 ushort sum;
8997 int s_addr;
8998 int cfg_beg;
8999 int cfg_end;
9000 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9001
9002 wbuf = (ushort *)cfg_buf;
9003 n_error = 0;
9004 sum = 0;
9005 /* Write two config words; AscWriteEEPWord() will swap bytes. */
9006 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9007 sum += *wbuf;
9008 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9009 n_error++;
9010 }
9011 }
9012 if (bus_type & ASC_IS_VL) {
9013 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9014 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9015 } else {
9016 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9017 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9018 }
9019 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9020 if (s_addr <= uchar_end_in_config) {
9021 /*
9022 * This is a char field. Swap char fields before they are
9023 * swapped again by AscWriteEEPWord().
9024 */
9025 word = cpu_to_le16(*wbuf);
9026 if (word !=
9027 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9028 n_error++;
9029 }
9030 } else {
9031 /* Don't swap word field at the end - cntl field. */
9032 if (*wbuf !=
9033 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9034 n_error++;
9035 }
9036 }
9037 sum += *wbuf; /* Checksum calculated from word values. */
9038 }
9039 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9040 *wbuf = sum;
9041 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9042 n_error++;
9043 }
9044
9045 /* Read EEPROM back again. */
9046 wbuf = (ushort *)cfg_buf;
9047 /*
9048 * Read two config words; Byte-swapping done by AscReadEEPWord().
9049 */
9050 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9051 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9052 n_error++;
9053 }
9054 }
9055 if (bus_type & ASC_IS_VL) {
9056 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9057 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9058 } else {
9059 cfg_beg = ASC_EEP_DVC_CFG_BEG;
9060 cfg_end = ASC_EEP_MAX_DVC_ADDR;
9061 }
9062 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9063 if (s_addr <= uchar_end_in_config) {
9064 /*
9065 * Swap all char fields. Must unswap bytes already swapped
9066 * by AscReadEEPWord().
9067 */
9068 word =
9069 le16_to_cpu(AscReadEEPWord
9070 (iop_base, (uchar)s_addr));
9071 } else {
9072 /* Don't swap word field at the end - cntl field. */
9073 word = AscReadEEPWord(iop_base, (uchar)s_addr);
9074 }
9075 if (*wbuf != word) {
9076 n_error++;
9077 }
9078 }
9079 /* Read checksum; Byte swapping not needed. */
9080 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9081 n_error++;
9082 }
9083 return n_error;
9084 }
9085
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)9086 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9087 ushort bus_type)
9088 {
9089 int retry;
9090 int n_error;
9091
9092 retry = 0;
9093 while (true) {
9094 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9095 bus_type)) == 0) {
9096 break;
9097 }
9098 if (++retry > ASC_EEP_MAX_RETRY) {
9099 break;
9100 }
9101 }
9102 return n_error;
9103 }
9104
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)9105 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9106 {
9107 ASCEEP_CONFIG eep_config_buf;
9108 ASCEEP_CONFIG *eep_config;
9109 PortAddr iop_base;
9110 ushort chksum;
9111 ushort warn_code;
9112 ushort cfg_msw, cfg_lsw;
9113 int i;
9114 int write_eep = 0;
9115
9116 iop_base = asc_dvc->iop_base;
9117 warn_code = 0;
9118 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9119 AscStopQueueExe(iop_base);
9120 if ((AscStopChip(iop_base)) ||
9121 (AscGetChipScsiCtrl(iop_base) != 0)) {
9122 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9123 AscResetChipAndScsiBus(asc_dvc);
9124 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9125 }
9126 if (!AscIsChipHalted(iop_base)) {
9127 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9128 return (warn_code);
9129 }
9130 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9131 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9132 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9133 return (warn_code);
9134 }
9135 eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9136 cfg_msw = AscGetChipCfgMsw(iop_base);
9137 cfg_lsw = AscGetChipCfgLsw(iop_base);
9138 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9139 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9140 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9141 AscSetChipCfgMsw(iop_base, cfg_msw);
9142 }
9143 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9144 ASC_DBG(1, "chksum 0x%x\n", chksum);
9145 if (chksum == 0) {
9146 chksum = 0xaa55;
9147 }
9148 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9149 warn_code |= ASC_WARN_AUTO_CONFIG;
9150 if (asc_dvc->cfg->chip_version == 3) {
9151 if (eep_config->cfg_lsw != cfg_lsw) {
9152 warn_code |= ASC_WARN_EEPROM_RECOVER;
9153 eep_config->cfg_lsw =
9154 AscGetChipCfgLsw(iop_base);
9155 }
9156 if (eep_config->cfg_msw != cfg_msw) {
9157 warn_code |= ASC_WARN_EEPROM_RECOVER;
9158 eep_config->cfg_msw =
9159 AscGetChipCfgMsw(iop_base);
9160 }
9161 }
9162 }
9163 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9164 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9165 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9166 if (chksum != eep_config->chksum) {
9167 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9168 ASC_CHIP_VER_PCI_ULTRA_3050) {
9169 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9170 eep_config->init_sdtr = 0xFF;
9171 eep_config->disc_enable = 0xFF;
9172 eep_config->start_motor = 0xFF;
9173 eep_config->use_cmd_qng = 0;
9174 eep_config->max_total_qng = 0xF0;
9175 eep_config->max_tag_qng = 0x20;
9176 eep_config->cntl = 0xBFFF;
9177 ASC_EEP_SET_CHIP_ID(eep_config, 7);
9178 eep_config->no_scam = 0;
9179 eep_config->adapter_info[0] = 0;
9180 eep_config->adapter_info[1] = 0;
9181 eep_config->adapter_info[2] = 0;
9182 eep_config->adapter_info[3] = 0;
9183 eep_config->adapter_info[4] = 0;
9184 /* Indicate EEPROM-less board. */
9185 eep_config->adapter_info[5] = 0xBB;
9186 } else {
9187 ASC_PRINT
9188 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9189 write_eep = 1;
9190 warn_code |= ASC_WARN_EEPROM_CHKSUM;
9191 }
9192 }
9193 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9194 asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9195 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9196 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9197 asc_dvc->start_motor = eep_config->start_motor;
9198 asc_dvc->dvc_cntl = eep_config->cntl;
9199 asc_dvc->no_scam = eep_config->no_scam;
9200 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9201 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9202 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9203 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9204 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9205 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9206 if (!AscTestExternalLram(asc_dvc)) {
9207 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9208 ASC_IS_PCI_ULTRA)) {
9209 eep_config->max_total_qng =
9210 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9211 eep_config->max_tag_qng =
9212 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9213 } else {
9214 eep_config->cfg_msw |= 0x0800;
9215 cfg_msw |= 0x0800;
9216 AscSetChipCfgMsw(iop_base, cfg_msw);
9217 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9218 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9219 }
9220 } else {
9221 }
9222 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9223 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9224 }
9225 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9226 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9227 }
9228 if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9229 eep_config->max_tag_qng = eep_config->max_total_qng;
9230 }
9231 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9232 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9233 }
9234 asc_dvc->max_total_qng = eep_config->max_total_qng;
9235 if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9236 eep_config->use_cmd_qng) {
9237 eep_config->disc_enable = eep_config->use_cmd_qng;
9238 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9239 }
9240 ASC_EEP_SET_CHIP_ID(eep_config,
9241 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9242 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9243 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9244 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9245 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9246 }
9247
9248 for (i = 0; i <= ASC_MAX_TID; i++) {
9249 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9250 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9251 asc_dvc->cfg->sdtr_period_offset[i] =
9252 (uchar)(ASC_DEF_SDTR_OFFSET |
9253 (asc_dvc->min_sdtr_index << 4));
9254 }
9255 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9256 if (write_eep) {
9257 if ((i = AscSetEEPConfig(iop_base, eep_config,
9258 asc_dvc->bus_type)) != 0) {
9259 ASC_PRINT1
9260 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9261 i);
9262 } else {
9263 ASC_PRINT
9264 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9265 }
9266 }
9267 return (warn_code);
9268 }
9269
AscInitGetConfig(struct Scsi_Host * shost)9270 static int AscInitGetConfig(struct Scsi_Host *shost)
9271 {
9272 struct asc_board *board = shost_priv(shost);
9273 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9274 unsigned short warn_code = 0;
9275
9276 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9277 if (asc_dvc->err_code != 0)
9278 return asc_dvc->err_code;
9279
9280 if (AscFindSignature(asc_dvc->iop_base)) {
9281 AscInitAscDvcVar(asc_dvc);
9282 warn_code = AscInitFromEEP(asc_dvc);
9283 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9284 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9285 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9286 } else {
9287 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9288 }
9289
9290 switch (warn_code) {
9291 case 0: /* No error */
9292 break;
9293 case ASC_WARN_IO_PORT_ROTATE:
9294 shost_printk(KERN_WARNING, shost, "I/O port address "
9295 "modified\n");
9296 break;
9297 case ASC_WARN_AUTO_CONFIG:
9298 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9299 "enabled\n");
9300 break;
9301 case ASC_WARN_EEPROM_CHKSUM:
9302 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9303 break;
9304 case ASC_WARN_IRQ_MODIFIED:
9305 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9306 break;
9307 case ASC_WARN_CMD_QNG_CONFLICT:
9308 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9309 "disconnects\n");
9310 break;
9311 default:
9312 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9313 warn_code);
9314 break;
9315 }
9316
9317 if (asc_dvc->err_code != 0)
9318 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9319 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9320
9321 return asc_dvc->err_code;
9322 }
9323
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)9324 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9325 {
9326 struct asc_board *board = shost_priv(shost);
9327 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9328 PortAddr iop_base = asc_dvc->iop_base;
9329 unsigned short cfg_msw;
9330 unsigned short warn_code = 0;
9331
9332 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9333 if (asc_dvc->err_code != 0)
9334 return asc_dvc->err_code;
9335 if (!AscFindSignature(asc_dvc->iop_base)) {
9336 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9337 return asc_dvc->err_code;
9338 }
9339
9340 cfg_msw = AscGetChipCfgMsw(iop_base);
9341 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9342 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9343 warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9344 AscSetChipCfgMsw(iop_base, cfg_msw);
9345 }
9346 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9347 asc_dvc->cfg->cmd_qng_enabled) {
9348 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9349 warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9350 }
9351 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9352 warn_code |= ASC_WARN_AUTO_CONFIG;
9353 }
9354 #ifdef CONFIG_PCI
9355 if (asc_dvc->bus_type & ASC_IS_PCI) {
9356 cfg_msw &= 0xFFC0;
9357 AscSetChipCfgMsw(iop_base, cfg_msw);
9358 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9359 } else {
9360 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9361 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9362 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9363 asc_dvc->bug_fix_cntl |=
9364 ASC_BUG_FIX_ASYN_USE_SYN;
9365 }
9366 }
9367 } else
9368 #endif /* CONFIG_PCI */
9369 if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9370 if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9371 == ASC_CHIP_VER_ASYN_BUG) {
9372 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9373 }
9374 }
9375 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9376 asc_dvc->cfg->chip_scsi_id) {
9377 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9378 }
9379 #ifdef CONFIG_ISA
9380 if (asc_dvc->bus_type & ASC_IS_ISA) {
9381 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9382 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9383 }
9384 #endif /* CONFIG_ISA */
9385
9386 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9387
9388 switch (warn_code) {
9389 case 0: /* No error. */
9390 break;
9391 case ASC_WARN_IO_PORT_ROTATE:
9392 shost_printk(KERN_WARNING, shost, "I/O port address "
9393 "modified\n");
9394 break;
9395 case ASC_WARN_AUTO_CONFIG:
9396 shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9397 "enabled\n");
9398 break;
9399 case ASC_WARN_EEPROM_CHKSUM:
9400 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9401 break;
9402 case ASC_WARN_IRQ_MODIFIED:
9403 shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9404 break;
9405 case ASC_WARN_CMD_QNG_CONFLICT:
9406 shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9407 "disconnects\n");
9408 break;
9409 default:
9410 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9411 warn_code);
9412 break;
9413 }
9414
9415 if (asc_dvc->err_code != 0)
9416 shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9417 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9418
9419 return asc_dvc->err_code;
9420 }
9421
9422 /*
9423 * EEPROM Configuration.
9424 *
9425 * All drivers should use this structure to set the default EEPROM
9426 * configuration. The BIOS now uses this structure when it is built.
9427 * Additional structure information can be found in a_condor.h where
9428 * the structure is defined.
9429 *
9430 * The *_Field_IsChar structs are needed to correct for endianness.
9431 * These values are read from the board 16 bits at a time directly
9432 * into the structs. Because some fields are char, the values will be
9433 * in the wrong order. The *_Field_IsChar tells when to flip the
9434 * bytes. Data read and written to PCI memory is automatically swapped
9435 * on big-endian platforms so char fields read as words are actually being
9436 * unswapped on big-endian platforms.
9437 */
9438 #ifdef CONFIG_PCI
9439 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9440 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9441 0x0000, /* cfg_msw */
9442 0xFFFF, /* disc_enable */
9443 0xFFFF, /* wdtr_able */
9444 0xFFFF, /* sdtr_able */
9445 0xFFFF, /* start_motor */
9446 0xFFFF, /* tagqng_able */
9447 0xFFFF, /* bios_scan */
9448 0, /* scam_tolerant */
9449 7, /* adapter_scsi_id */
9450 0, /* bios_boot_delay */
9451 3, /* scsi_reset_delay */
9452 0, /* bios_id_lun */
9453 0, /* termination */
9454 0, /* reserved1 */
9455 0xFFE7, /* bios_ctrl */
9456 0xFFFF, /* ultra_able */
9457 0, /* reserved2 */
9458 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */
9459 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9460 0, /* dvc_cntl */
9461 0, /* bug_fix */
9462 0, /* serial_number_word1 */
9463 0, /* serial_number_word2 */
9464 0, /* serial_number_word3 */
9465 0, /* check_sum */
9466 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9467 , /* oem_name[16] */
9468 0, /* dvc_err_code */
9469 0, /* adv_err_code */
9470 0, /* adv_err_addr */
9471 0, /* saved_dvc_err_code */
9472 0, /* saved_adv_err_code */
9473 0, /* saved_adv_err_addr */
9474 0 /* num_of_err */
9475 };
9476
9477 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9478 0, /* cfg_lsw */
9479 0, /* cfg_msw */
9480 0, /* -disc_enable */
9481 0, /* wdtr_able */
9482 0, /* sdtr_able */
9483 0, /* start_motor */
9484 0, /* tagqng_able */
9485 0, /* bios_scan */
9486 0, /* scam_tolerant */
9487 1, /* adapter_scsi_id */
9488 1, /* bios_boot_delay */
9489 1, /* scsi_reset_delay */
9490 1, /* bios_id_lun */
9491 1, /* termination */
9492 1, /* reserved1 */
9493 0, /* bios_ctrl */
9494 0, /* ultra_able */
9495 0, /* reserved2 */
9496 1, /* max_host_qng */
9497 1, /* max_dvc_qng */
9498 0, /* dvc_cntl */
9499 0, /* bug_fix */
9500 0, /* serial_number_word1 */
9501 0, /* serial_number_word2 */
9502 0, /* serial_number_word3 */
9503 0, /* check_sum */
9504 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9505 , /* oem_name[16] */
9506 0, /* dvc_err_code */
9507 0, /* adv_err_code */
9508 0, /* adv_err_addr */
9509 0, /* saved_dvc_err_code */
9510 0, /* saved_adv_err_code */
9511 0, /* saved_adv_err_addr */
9512 0 /* num_of_err */
9513 };
9514
9515 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9516 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9517 0x0000, /* 01 cfg_msw */
9518 0xFFFF, /* 02 disc_enable */
9519 0xFFFF, /* 03 wdtr_able */
9520 0x4444, /* 04 sdtr_speed1 */
9521 0xFFFF, /* 05 start_motor */
9522 0xFFFF, /* 06 tagqng_able */
9523 0xFFFF, /* 07 bios_scan */
9524 0, /* 08 scam_tolerant */
9525 7, /* 09 adapter_scsi_id */
9526 0, /* bios_boot_delay */
9527 3, /* 10 scsi_reset_delay */
9528 0, /* bios_id_lun */
9529 0, /* 11 termination_se */
9530 0, /* termination_lvd */
9531 0xFFE7, /* 12 bios_ctrl */
9532 0x4444, /* 13 sdtr_speed2 */
9533 0x4444, /* 14 sdtr_speed3 */
9534 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9535 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9536 0, /* 16 dvc_cntl */
9537 0x4444, /* 17 sdtr_speed4 */
9538 0, /* 18 serial_number_word1 */
9539 0, /* 19 serial_number_word2 */
9540 0, /* 20 serial_number_word3 */
9541 0, /* 21 check_sum */
9542 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9543 , /* 22-29 oem_name[16] */
9544 0, /* 30 dvc_err_code */
9545 0, /* 31 adv_err_code */
9546 0, /* 32 adv_err_addr */
9547 0, /* 33 saved_dvc_err_code */
9548 0, /* 34 saved_adv_err_code */
9549 0, /* 35 saved_adv_err_addr */
9550 0, /* 36 reserved */
9551 0, /* 37 reserved */
9552 0, /* 38 reserved */
9553 0, /* 39 reserved */
9554 0, /* 40 reserved */
9555 0, /* 41 reserved */
9556 0, /* 42 reserved */
9557 0, /* 43 reserved */
9558 0, /* 44 reserved */
9559 0, /* 45 reserved */
9560 0, /* 46 reserved */
9561 0, /* 47 reserved */
9562 0, /* 48 reserved */
9563 0, /* 49 reserved */
9564 0, /* 50 reserved */
9565 0, /* 51 reserved */
9566 0, /* 52 reserved */
9567 0, /* 53 reserved */
9568 0, /* 54 reserved */
9569 0, /* 55 reserved */
9570 0, /* 56 cisptr_lsw */
9571 0, /* 57 cisprt_msw */
9572 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9573 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */
9574 0, /* 60 reserved */
9575 0, /* 61 reserved */
9576 0, /* 62 reserved */
9577 0 /* 63 reserved */
9578 };
9579
9580 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9581 0, /* 00 cfg_lsw */
9582 0, /* 01 cfg_msw */
9583 0, /* 02 disc_enable */
9584 0, /* 03 wdtr_able */
9585 0, /* 04 sdtr_speed1 */
9586 0, /* 05 start_motor */
9587 0, /* 06 tagqng_able */
9588 0, /* 07 bios_scan */
9589 0, /* 08 scam_tolerant */
9590 1, /* 09 adapter_scsi_id */
9591 1, /* bios_boot_delay */
9592 1, /* 10 scsi_reset_delay */
9593 1, /* bios_id_lun */
9594 1, /* 11 termination_se */
9595 1, /* termination_lvd */
9596 0, /* 12 bios_ctrl */
9597 0, /* 13 sdtr_speed2 */
9598 0, /* 14 sdtr_speed3 */
9599 1, /* 15 max_host_qng */
9600 1, /* max_dvc_qng */
9601 0, /* 16 dvc_cntl */
9602 0, /* 17 sdtr_speed4 */
9603 0, /* 18 serial_number_word1 */
9604 0, /* 19 serial_number_word2 */
9605 0, /* 20 serial_number_word3 */
9606 0, /* 21 check_sum */
9607 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9608 , /* 22-29 oem_name[16] */
9609 0, /* 30 dvc_err_code */
9610 0, /* 31 adv_err_code */
9611 0, /* 32 adv_err_addr */
9612 0, /* 33 saved_dvc_err_code */
9613 0, /* 34 saved_adv_err_code */
9614 0, /* 35 saved_adv_err_addr */
9615 0, /* 36 reserved */
9616 0, /* 37 reserved */
9617 0, /* 38 reserved */
9618 0, /* 39 reserved */
9619 0, /* 40 reserved */
9620 0, /* 41 reserved */
9621 0, /* 42 reserved */
9622 0, /* 43 reserved */
9623 0, /* 44 reserved */
9624 0, /* 45 reserved */
9625 0, /* 46 reserved */
9626 0, /* 47 reserved */
9627 0, /* 48 reserved */
9628 0, /* 49 reserved */
9629 0, /* 50 reserved */
9630 0, /* 51 reserved */
9631 0, /* 52 reserved */
9632 0, /* 53 reserved */
9633 0, /* 54 reserved */
9634 0, /* 55 reserved */
9635 0, /* 56 cisptr_lsw */
9636 0, /* 57 cisprt_msw */
9637 0, /* 58 subsysvid */
9638 0, /* 59 subsysid */
9639 0, /* 60 reserved */
9640 0, /* 61 reserved */
9641 0, /* 62 reserved */
9642 0 /* 63 reserved */
9643 };
9644
9645 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9646 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9647 0x0000, /* 01 cfg_msw */
9648 0xFFFF, /* 02 disc_enable */
9649 0xFFFF, /* 03 wdtr_able */
9650 0x5555, /* 04 sdtr_speed1 */
9651 0xFFFF, /* 05 start_motor */
9652 0xFFFF, /* 06 tagqng_able */
9653 0xFFFF, /* 07 bios_scan */
9654 0, /* 08 scam_tolerant */
9655 7, /* 09 adapter_scsi_id */
9656 0, /* bios_boot_delay */
9657 3, /* 10 scsi_reset_delay */
9658 0, /* bios_id_lun */
9659 0, /* 11 termination_se */
9660 0, /* termination_lvd */
9661 0xFFE7, /* 12 bios_ctrl */
9662 0x5555, /* 13 sdtr_speed2 */
9663 0x5555, /* 14 sdtr_speed3 */
9664 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
9665 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */
9666 0, /* 16 dvc_cntl */
9667 0x5555, /* 17 sdtr_speed4 */
9668 0, /* 18 serial_number_word1 */
9669 0, /* 19 serial_number_word2 */
9670 0, /* 20 serial_number_word3 */
9671 0, /* 21 check_sum */
9672 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9673 , /* 22-29 oem_name[16] */
9674 0, /* 30 dvc_err_code */
9675 0, /* 31 adv_err_code */
9676 0, /* 32 adv_err_addr */
9677 0, /* 33 saved_dvc_err_code */
9678 0, /* 34 saved_adv_err_code */
9679 0, /* 35 saved_adv_err_addr */
9680 0, /* 36 reserved */
9681 0, /* 37 reserved */
9682 0, /* 38 reserved */
9683 0, /* 39 reserved */
9684 0, /* 40 reserved */
9685 0, /* 41 reserved */
9686 0, /* 42 reserved */
9687 0, /* 43 reserved */
9688 0, /* 44 reserved */
9689 0, /* 45 reserved */
9690 0, /* 46 reserved */
9691 0, /* 47 reserved */
9692 0, /* 48 reserved */
9693 0, /* 49 reserved */
9694 0, /* 50 reserved */
9695 0, /* 51 reserved */
9696 0, /* 52 reserved */
9697 0, /* 53 reserved */
9698 0, /* 54 reserved */
9699 0, /* 55 reserved */
9700 0, /* 56 cisptr_lsw */
9701 0, /* 57 cisprt_msw */
9702 PCI_VENDOR_ID_ASP, /* 58 subsysvid */
9703 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */
9704 0, /* 60 reserved */
9705 0, /* 61 reserved */
9706 0, /* 62 reserved */
9707 0 /* 63 reserved */
9708 };
9709
9710 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9711 0, /* 00 cfg_lsw */
9712 0, /* 01 cfg_msw */
9713 0, /* 02 disc_enable */
9714 0, /* 03 wdtr_able */
9715 0, /* 04 sdtr_speed1 */
9716 0, /* 05 start_motor */
9717 0, /* 06 tagqng_able */
9718 0, /* 07 bios_scan */
9719 0, /* 08 scam_tolerant */
9720 1, /* 09 adapter_scsi_id */
9721 1, /* bios_boot_delay */
9722 1, /* 10 scsi_reset_delay */
9723 1, /* bios_id_lun */
9724 1, /* 11 termination_se */
9725 1, /* termination_lvd */
9726 0, /* 12 bios_ctrl */
9727 0, /* 13 sdtr_speed2 */
9728 0, /* 14 sdtr_speed3 */
9729 1, /* 15 max_host_qng */
9730 1, /* max_dvc_qng */
9731 0, /* 16 dvc_cntl */
9732 0, /* 17 sdtr_speed4 */
9733 0, /* 18 serial_number_word1 */
9734 0, /* 19 serial_number_word2 */
9735 0, /* 20 serial_number_word3 */
9736 0, /* 21 check_sum */
9737 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9738 , /* 22-29 oem_name[16] */
9739 0, /* 30 dvc_err_code */
9740 0, /* 31 adv_err_code */
9741 0, /* 32 adv_err_addr */
9742 0, /* 33 saved_dvc_err_code */
9743 0, /* 34 saved_adv_err_code */
9744 0, /* 35 saved_adv_err_addr */
9745 0, /* 36 reserved */
9746 0, /* 37 reserved */
9747 0, /* 38 reserved */
9748 0, /* 39 reserved */
9749 0, /* 40 reserved */
9750 0, /* 41 reserved */
9751 0, /* 42 reserved */
9752 0, /* 43 reserved */
9753 0, /* 44 reserved */
9754 0, /* 45 reserved */
9755 0, /* 46 reserved */
9756 0, /* 47 reserved */
9757 0, /* 48 reserved */
9758 0, /* 49 reserved */
9759 0, /* 50 reserved */
9760 0, /* 51 reserved */
9761 0, /* 52 reserved */
9762 0, /* 53 reserved */
9763 0, /* 54 reserved */
9764 0, /* 55 reserved */
9765 0, /* 56 cisptr_lsw */
9766 0, /* 57 cisprt_msw */
9767 0, /* 58 subsysvid */
9768 0, /* 59 subsysid */
9769 0, /* 60 reserved */
9770 0, /* 61 reserved */
9771 0, /* 62 reserved */
9772 0 /* 63 reserved */
9773 };
9774
9775 /*
9776 * Wait for EEPROM command to complete
9777 */
AdvWaitEEPCmd(AdvPortAddr iop_base)9778 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9779 {
9780 int eep_delay_ms;
9781
9782 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9783 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9784 ASC_EEP_CMD_DONE) {
9785 break;
9786 }
9787 mdelay(1);
9788 }
9789 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9790 0)
9791 BUG();
9792 }
9793
9794 /*
9795 * Read the EEPROM from specified location
9796 */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)9797 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9798 {
9799 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9800 ASC_EEP_CMD_READ | eep_word_addr);
9801 AdvWaitEEPCmd(iop_base);
9802 return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9803 }
9804
9805 /*
9806 * Write the EEPROM from 'cfg_buf'.
9807 */
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9808 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9809 ADVEEP_3550_CONFIG *cfg_buf)
9810 {
9811 ushort *wbuf;
9812 ushort addr, chksum;
9813 ushort *charfields;
9814
9815 wbuf = (ushort *)cfg_buf;
9816 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9817 chksum = 0;
9818
9819 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9820 AdvWaitEEPCmd(iop_base);
9821
9822 /*
9823 * Write EEPROM from word 0 to word 20.
9824 */
9825 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9826 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9827 ushort word;
9828
9829 if (*charfields++) {
9830 word = cpu_to_le16(*wbuf);
9831 } else {
9832 word = *wbuf;
9833 }
9834 chksum += *wbuf; /* Checksum is calculated from word values. */
9835 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9836 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9837 ASC_EEP_CMD_WRITE | addr);
9838 AdvWaitEEPCmd(iop_base);
9839 mdelay(ADV_EEP_DELAY_MS);
9840 }
9841
9842 /*
9843 * Write EEPROM checksum at word 21.
9844 */
9845 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9846 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9847 AdvWaitEEPCmd(iop_base);
9848 wbuf++;
9849 charfields++;
9850
9851 /*
9852 * Write EEPROM OEM name at words 22 to 29.
9853 */
9854 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9855 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9856 ushort word;
9857
9858 if (*charfields++) {
9859 word = cpu_to_le16(*wbuf);
9860 } else {
9861 word = *wbuf;
9862 }
9863 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9864 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9865 ASC_EEP_CMD_WRITE | addr);
9866 AdvWaitEEPCmd(iop_base);
9867 }
9868 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9869 AdvWaitEEPCmd(iop_base);
9870 }
9871
9872 /*
9873 * Write the EEPROM from 'cfg_buf'.
9874 */
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9875 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9876 ADVEEP_38C0800_CONFIG *cfg_buf)
9877 {
9878 ushort *wbuf;
9879 ushort *charfields;
9880 ushort addr, chksum;
9881
9882 wbuf = (ushort *)cfg_buf;
9883 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9884 chksum = 0;
9885
9886 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9887 AdvWaitEEPCmd(iop_base);
9888
9889 /*
9890 * Write EEPROM from word 0 to word 20.
9891 */
9892 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9893 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9894 ushort word;
9895
9896 if (*charfields++) {
9897 word = cpu_to_le16(*wbuf);
9898 } else {
9899 word = *wbuf;
9900 }
9901 chksum += *wbuf; /* Checksum is calculated from word values. */
9902 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9903 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9904 ASC_EEP_CMD_WRITE | addr);
9905 AdvWaitEEPCmd(iop_base);
9906 mdelay(ADV_EEP_DELAY_MS);
9907 }
9908
9909 /*
9910 * Write EEPROM checksum at word 21.
9911 */
9912 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9913 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9914 AdvWaitEEPCmd(iop_base);
9915 wbuf++;
9916 charfields++;
9917
9918 /*
9919 * Write EEPROM OEM name at words 22 to 29.
9920 */
9921 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9922 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9923 ushort word;
9924
9925 if (*charfields++) {
9926 word = cpu_to_le16(*wbuf);
9927 } else {
9928 word = *wbuf;
9929 }
9930 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9931 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9932 ASC_EEP_CMD_WRITE | addr);
9933 AdvWaitEEPCmd(iop_base);
9934 }
9935 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9936 AdvWaitEEPCmd(iop_base);
9937 }
9938
9939 /*
9940 * Write the EEPROM from 'cfg_buf'.
9941 */
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9942 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9943 ADVEEP_38C1600_CONFIG *cfg_buf)
9944 {
9945 ushort *wbuf;
9946 ushort *charfields;
9947 ushort addr, chksum;
9948
9949 wbuf = (ushort *)cfg_buf;
9950 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9951 chksum = 0;
9952
9953 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9954 AdvWaitEEPCmd(iop_base);
9955
9956 /*
9957 * Write EEPROM from word 0 to word 20.
9958 */
9959 for (addr = ADV_EEP_DVC_CFG_BEGIN;
9960 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9961 ushort word;
9962
9963 if (*charfields++) {
9964 word = cpu_to_le16(*wbuf);
9965 } else {
9966 word = *wbuf;
9967 }
9968 chksum += *wbuf; /* Checksum is calculated from word values. */
9969 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9970 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9971 ASC_EEP_CMD_WRITE | addr);
9972 AdvWaitEEPCmd(iop_base);
9973 mdelay(ADV_EEP_DELAY_MS);
9974 }
9975
9976 /*
9977 * Write EEPROM checksum at word 21.
9978 */
9979 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9980 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9981 AdvWaitEEPCmd(iop_base);
9982 wbuf++;
9983 charfields++;
9984
9985 /*
9986 * Write EEPROM OEM name at words 22 to 29.
9987 */
9988 for (addr = ADV_EEP_DVC_CTL_BEGIN;
9989 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9990 ushort word;
9991
9992 if (*charfields++) {
9993 word = cpu_to_le16(*wbuf);
9994 } else {
9995 word = *wbuf;
9996 }
9997 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9998 AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9999 ASC_EEP_CMD_WRITE | addr);
10000 AdvWaitEEPCmd(iop_base);
10001 }
10002 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10003 AdvWaitEEPCmd(iop_base);
10004 }
10005
10006 /*
10007 * Read EEPROM configuration into the specified buffer.
10008 *
10009 * Return a checksum based on the EEPROM configuration read.
10010 */
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)10011 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10012 ADVEEP_3550_CONFIG *cfg_buf)
10013 {
10014 ushort wval, chksum;
10015 ushort *wbuf;
10016 int eep_addr;
10017 ushort *charfields;
10018
10019 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10020 wbuf = (ushort *)cfg_buf;
10021 chksum = 0;
10022
10023 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10024 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10025 wval = AdvReadEEPWord(iop_base, eep_addr);
10026 chksum += wval; /* Checksum is calculated from word values. */
10027 if (*charfields++) {
10028 *wbuf = le16_to_cpu(wval);
10029 } else {
10030 *wbuf = wval;
10031 }
10032 }
10033 /* Read checksum word. */
10034 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10035 wbuf++;
10036 charfields++;
10037
10038 /* Read rest of EEPROM not covered by the checksum. */
10039 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10040 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10041 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10042 if (*charfields++) {
10043 *wbuf = le16_to_cpu(*wbuf);
10044 }
10045 }
10046 return chksum;
10047 }
10048
10049 /*
10050 * Read EEPROM configuration into the specified buffer.
10051 *
10052 * Return a checksum based on the EEPROM configuration read.
10053 */
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)10054 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10055 ADVEEP_38C0800_CONFIG *cfg_buf)
10056 {
10057 ushort wval, chksum;
10058 ushort *wbuf;
10059 int eep_addr;
10060 ushort *charfields;
10061
10062 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10063 wbuf = (ushort *)cfg_buf;
10064 chksum = 0;
10065
10066 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10067 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10068 wval = AdvReadEEPWord(iop_base, eep_addr);
10069 chksum += wval; /* Checksum is calculated from word values. */
10070 if (*charfields++) {
10071 *wbuf = le16_to_cpu(wval);
10072 } else {
10073 *wbuf = wval;
10074 }
10075 }
10076 /* Read checksum word. */
10077 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10078 wbuf++;
10079 charfields++;
10080
10081 /* Read rest of EEPROM not covered by the checksum. */
10082 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10083 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10084 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10085 if (*charfields++) {
10086 *wbuf = le16_to_cpu(*wbuf);
10087 }
10088 }
10089 return chksum;
10090 }
10091
10092 /*
10093 * Read EEPROM configuration into the specified buffer.
10094 *
10095 * Return a checksum based on the EEPROM configuration read.
10096 */
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)10097 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10098 ADVEEP_38C1600_CONFIG *cfg_buf)
10099 {
10100 ushort wval, chksum;
10101 ushort *wbuf;
10102 int eep_addr;
10103 ushort *charfields;
10104
10105 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10106 wbuf = (ushort *)cfg_buf;
10107 chksum = 0;
10108
10109 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10110 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10111 wval = AdvReadEEPWord(iop_base, eep_addr);
10112 chksum += wval; /* Checksum is calculated from word values. */
10113 if (*charfields++) {
10114 *wbuf = le16_to_cpu(wval);
10115 } else {
10116 *wbuf = wval;
10117 }
10118 }
10119 /* Read checksum word. */
10120 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10121 wbuf++;
10122 charfields++;
10123
10124 /* Read rest of EEPROM not covered by the checksum. */
10125 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10126 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10127 *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10128 if (*charfields++) {
10129 *wbuf = le16_to_cpu(*wbuf);
10130 }
10131 }
10132 return chksum;
10133 }
10134
10135 /*
10136 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10137 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10138 * all of this is done.
10139 *
10140 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10141 *
10142 * For a non-fatal error return a warning code. If there are no warnings
10143 * then 0 is returned.
10144 *
10145 * Note: Chip is stopped on entry.
10146 */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)10147 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10148 {
10149 AdvPortAddr iop_base;
10150 ushort warn_code;
10151 ADVEEP_3550_CONFIG eep_config;
10152
10153 iop_base = asc_dvc->iop_base;
10154
10155 warn_code = 0;
10156
10157 /*
10158 * Read the board's EEPROM configuration.
10159 *
10160 * Set default values if a bad checksum is found.
10161 */
10162 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10163 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10164
10165 /*
10166 * Set EEPROM default values.
10167 */
10168 memcpy(&eep_config, &Default_3550_EEPROM_Config,
10169 sizeof(ADVEEP_3550_CONFIG));
10170
10171 /*
10172 * Assume the 6 byte board serial number that was read from
10173 * EEPROM is correct even if the EEPROM checksum failed.
10174 */
10175 eep_config.serial_number_word3 =
10176 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10177
10178 eep_config.serial_number_word2 =
10179 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10180
10181 eep_config.serial_number_word1 =
10182 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10183
10184 AdvSet3550EEPConfig(iop_base, &eep_config);
10185 }
10186 /*
10187 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10188 * EEPROM configuration that was read.
10189 *
10190 * This is the mapping of EEPROM fields to Adv Library fields.
10191 */
10192 asc_dvc->wdtr_able = eep_config.wdtr_able;
10193 asc_dvc->sdtr_able = eep_config.sdtr_able;
10194 asc_dvc->ultra_able = eep_config.ultra_able;
10195 asc_dvc->tagqng_able = eep_config.tagqng_able;
10196 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10197 asc_dvc->max_host_qng = eep_config.max_host_qng;
10198 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10199 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10200 asc_dvc->start_motor = eep_config.start_motor;
10201 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10202 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10203 asc_dvc->no_scam = eep_config.scam_tolerant;
10204 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10205 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10206 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10207
10208 /*
10209 * Set the host maximum queuing (max. 253, min. 16) and the per device
10210 * maximum queuing (max. 63, min. 4).
10211 */
10212 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10213 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10214 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10215 /* If the value is zero, assume it is uninitialized. */
10216 if (eep_config.max_host_qng == 0) {
10217 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10218 } else {
10219 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10220 }
10221 }
10222
10223 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10224 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10225 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10226 /* If the value is zero, assume it is uninitialized. */
10227 if (eep_config.max_dvc_qng == 0) {
10228 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10229 } else {
10230 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10231 }
10232 }
10233
10234 /*
10235 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10236 * set 'max_dvc_qng' to 'max_host_qng'.
10237 */
10238 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10239 eep_config.max_dvc_qng = eep_config.max_host_qng;
10240 }
10241
10242 /*
10243 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10244 * values based on possibly adjusted EEPROM values.
10245 */
10246 asc_dvc->max_host_qng = eep_config.max_host_qng;
10247 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10248
10249 /*
10250 * If the EEPROM 'termination' field is set to automatic (0), then set
10251 * the ADV_DVC_CFG 'termination' field to automatic also.
10252 *
10253 * If the termination is specified with a non-zero 'termination'
10254 * value check that a legal value is set and set the ADV_DVC_CFG
10255 * 'termination' field appropriately.
10256 */
10257 if (eep_config.termination == 0) {
10258 asc_dvc->cfg->termination = 0; /* auto termination */
10259 } else {
10260 /* Enable manual control with low off / high off. */
10261 if (eep_config.termination == 1) {
10262 asc_dvc->cfg->termination = TERM_CTL_SEL;
10263
10264 /* Enable manual control with low off / high on. */
10265 } else if (eep_config.termination == 2) {
10266 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10267
10268 /* Enable manual control with low on / high on. */
10269 } else if (eep_config.termination == 3) {
10270 asc_dvc->cfg->termination =
10271 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10272 } else {
10273 /*
10274 * The EEPROM 'termination' field contains a bad value. Use
10275 * automatic termination instead.
10276 */
10277 asc_dvc->cfg->termination = 0;
10278 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10279 }
10280 }
10281
10282 return warn_code;
10283 }
10284
10285 /*
10286 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10287 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10288 * all of this is done.
10289 *
10290 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10291 *
10292 * For a non-fatal error return a warning code. If there are no warnings
10293 * then 0 is returned.
10294 *
10295 * Note: Chip is stopped on entry.
10296 */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)10297 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10298 {
10299 AdvPortAddr iop_base;
10300 ushort warn_code;
10301 ADVEEP_38C0800_CONFIG eep_config;
10302 uchar tid, termination;
10303 ushort sdtr_speed = 0;
10304
10305 iop_base = asc_dvc->iop_base;
10306
10307 warn_code = 0;
10308
10309 /*
10310 * Read the board's EEPROM configuration.
10311 *
10312 * Set default values if a bad checksum is found.
10313 */
10314 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10315 eep_config.check_sum) {
10316 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10317
10318 /*
10319 * Set EEPROM default values.
10320 */
10321 memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10322 sizeof(ADVEEP_38C0800_CONFIG));
10323
10324 /*
10325 * Assume the 6 byte board serial number that was read from
10326 * EEPROM is correct even if the EEPROM checksum failed.
10327 */
10328 eep_config.serial_number_word3 =
10329 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10330
10331 eep_config.serial_number_word2 =
10332 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10333
10334 eep_config.serial_number_word1 =
10335 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10336
10337 AdvSet38C0800EEPConfig(iop_base, &eep_config);
10338 }
10339 /*
10340 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10341 * EEPROM configuration that was read.
10342 *
10343 * This is the mapping of EEPROM fields to Adv Library fields.
10344 */
10345 asc_dvc->wdtr_able = eep_config.wdtr_able;
10346 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10347 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10348 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10349 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10350 asc_dvc->tagqng_able = eep_config.tagqng_able;
10351 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10352 asc_dvc->max_host_qng = eep_config.max_host_qng;
10353 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10354 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10355 asc_dvc->start_motor = eep_config.start_motor;
10356 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10357 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10358 asc_dvc->no_scam = eep_config.scam_tolerant;
10359 asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10360 asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10361 asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10362
10363 /*
10364 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10365 * are set, then set an 'sdtr_able' bit for it.
10366 */
10367 asc_dvc->sdtr_able = 0;
10368 for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10369 if (tid == 0) {
10370 sdtr_speed = asc_dvc->sdtr_speed1;
10371 } else if (tid == 4) {
10372 sdtr_speed = asc_dvc->sdtr_speed2;
10373 } else if (tid == 8) {
10374 sdtr_speed = asc_dvc->sdtr_speed3;
10375 } else if (tid == 12) {
10376 sdtr_speed = asc_dvc->sdtr_speed4;
10377 }
10378 if (sdtr_speed & ADV_MAX_TID) {
10379 asc_dvc->sdtr_able |= (1 << tid);
10380 }
10381 sdtr_speed >>= 4;
10382 }
10383
10384 /*
10385 * Set the host maximum queuing (max. 253, min. 16) and the per device
10386 * maximum queuing (max. 63, min. 4).
10387 */
10388 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10389 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10390 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10391 /* If the value is zero, assume it is uninitialized. */
10392 if (eep_config.max_host_qng == 0) {
10393 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10394 } else {
10395 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10396 }
10397 }
10398
10399 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10400 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10401 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10402 /* If the value is zero, assume it is uninitialized. */
10403 if (eep_config.max_dvc_qng == 0) {
10404 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10405 } else {
10406 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10407 }
10408 }
10409
10410 /*
10411 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10412 * set 'max_dvc_qng' to 'max_host_qng'.
10413 */
10414 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10415 eep_config.max_dvc_qng = eep_config.max_host_qng;
10416 }
10417
10418 /*
10419 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10420 * values based on possibly adjusted EEPROM values.
10421 */
10422 asc_dvc->max_host_qng = eep_config.max_host_qng;
10423 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10424
10425 /*
10426 * If the EEPROM 'termination' field is set to automatic (0), then set
10427 * the ADV_DVC_CFG 'termination' field to automatic also.
10428 *
10429 * If the termination is specified with a non-zero 'termination'
10430 * value check that a legal value is set and set the ADV_DVC_CFG
10431 * 'termination' field appropriately.
10432 */
10433 if (eep_config.termination_se == 0) {
10434 termination = 0; /* auto termination for SE */
10435 } else {
10436 /* Enable manual control with low off / high off. */
10437 if (eep_config.termination_se == 1) {
10438 termination = 0;
10439
10440 /* Enable manual control with low off / high on. */
10441 } else if (eep_config.termination_se == 2) {
10442 termination = TERM_SE_HI;
10443
10444 /* Enable manual control with low on / high on. */
10445 } else if (eep_config.termination_se == 3) {
10446 termination = TERM_SE;
10447 } else {
10448 /*
10449 * The EEPROM 'termination_se' field contains a bad value.
10450 * Use automatic termination instead.
10451 */
10452 termination = 0;
10453 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10454 }
10455 }
10456
10457 if (eep_config.termination_lvd == 0) {
10458 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10459 } else {
10460 /* Enable manual control with low off / high off. */
10461 if (eep_config.termination_lvd == 1) {
10462 asc_dvc->cfg->termination = termination;
10463
10464 /* Enable manual control with low off / high on. */
10465 } else if (eep_config.termination_lvd == 2) {
10466 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10467
10468 /* Enable manual control with low on / high on. */
10469 } else if (eep_config.termination_lvd == 3) {
10470 asc_dvc->cfg->termination = termination | TERM_LVD;
10471 } else {
10472 /*
10473 * The EEPROM 'termination_lvd' field contains a bad value.
10474 * Use automatic termination instead.
10475 */
10476 asc_dvc->cfg->termination = termination;
10477 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10478 }
10479 }
10480
10481 return warn_code;
10482 }
10483
10484 /*
10485 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10486 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10487 * all of this is done.
10488 *
10489 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10490 *
10491 * For a non-fatal error return a warning code. If there are no warnings
10492 * then 0 is returned.
10493 *
10494 * Note: Chip is stopped on entry.
10495 */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)10496 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10497 {
10498 AdvPortAddr iop_base;
10499 ushort warn_code;
10500 ADVEEP_38C1600_CONFIG eep_config;
10501 uchar tid, termination;
10502 ushort sdtr_speed = 0;
10503
10504 iop_base = asc_dvc->iop_base;
10505
10506 warn_code = 0;
10507
10508 /*
10509 * Read the board's EEPROM configuration.
10510 *
10511 * Set default values if a bad checksum is found.
10512 */
10513 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10514 eep_config.check_sum) {
10515 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10516 warn_code |= ASC_WARN_EEPROM_CHKSUM;
10517
10518 /*
10519 * Set EEPROM default values.
10520 */
10521 memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10522 sizeof(ADVEEP_38C1600_CONFIG));
10523
10524 if (PCI_FUNC(pdev->devfn) != 0) {
10525 u8 ints;
10526 /*
10527 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10528 * and old Mac system booting problem. The Expansion
10529 * ROM must be disabled in Function 1 for these systems
10530 */
10531 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10532 /*
10533 * Clear the INTAB (bit 11) if the GPIO 0 input
10534 * indicates the Function 1 interrupt line is wired
10535 * to INTB.
10536 *
10537 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10538 * 1 - Function 1 interrupt line wired to INT A.
10539 * 0 - Function 1 interrupt line wired to INT B.
10540 *
10541 * Note: Function 0 is always wired to INTA.
10542 * Put all 5 GPIO bits in input mode and then read
10543 * their input values.
10544 */
10545 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10546 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10547 if ((ints & 0x01) == 0)
10548 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10549 }
10550
10551 /*
10552 * Assume the 6 byte board serial number that was read from
10553 * EEPROM is correct even if the EEPROM checksum failed.
10554 */
10555 eep_config.serial_number_word3 =
10556 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10557 eep_config.serial_number_word2 =
10558 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10559 eep_config.serial_number_word1 =
10560 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10561
10562 AdvSet38C1600EEPConfig(iop_base, &eep_config);
10563 }
10564
10565 /*
10566 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10567 * EEPROM configuration that was read.
10568 *
10569 * This is the mapping of EEPROM fields to Adv Library fields.
10570 */
10571 asc_dvc->wdtr_able = eep_config.wdtr_able;
10572 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10573 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10574 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10575 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10576 asc_dvc->ppr_able = 0;
10577 asc_dvc->tagqng_able = eep_config.tagqng_able;
10578 asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10579 asc_dvc->max_host_qng = eep_config.max_host_qng;
10580 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10581 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10582 asc_dvc->start_motor = eep_config.start_motor;
10583 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10584 asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10585 asc_dvc->no_scam = eep_config.scam_tolerant;
10586
10587 /*
10588 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10589 * are set, then set an 'sdtr_able' bit for it.
10590 */
10591 asc_dvc->sdtr_able = 0;
10592 for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10593 if (tid == 0) {
10594 sdtr_speed = asc_dvc->sdtr_speed1;
10595 } else if (tid == 4) {
10596 sdtr_speed = asc_dvc->sdtr_speed2;
10597 } else if (tid == 8) {
10598 sdtr_speed = asc_dvc->sdtr_speed3;
10599 } else if (tid == 12) {
10600 sdtr_speed = asc_dvc->sdtr_speed4;
10601 }
10602 if (sdtr_speed & ASC_MAX_TID) {
10603 asc_dvc->sdtr_able |= (1 << tid);
10604 }
10605 sdtr_speed >>= 4;
10606 }
10607
10608 /*
10609 * Set the host maximum queuing (max. 253, min. 16) and the per device
10610 * maximum queuing (max. 63, min. 4).
10611 */
10612 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10613 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10614 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10615 /* If the value is zero, assume it is uninitialized. */
10616 if (eep_config.max_host_qng == 0) {
10617 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10618 } else {
10619 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10620 }
10621 }
10622
10623 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10624 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10625 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10626 /* If the value is zero, assume it is uninitialized. */
10627 if (eep_config.max_dvc_qng == 0) {
10628 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10629 } else {
10630 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10631 }
10632 }
10633
10634 /*
10635 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10636 * set 'max_dvc_qng' to 'max_host_qng'.
10637 */
10638 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10639 eep_config.max_dvc_qng = eep_config.max_host_qng;
10640 }
10641
10642 /*
10643 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10644 * values based on possibly adjusted EEPROM values.
10645 */
10646 asc_dvc->max_host_qng = eep_config.max_host_qng;
10647 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10648
10649 /*
10650 * If the EEPROM 'termination' field is set to automatic (0), then set
10651 * the ASC_DVC_CFG 'termination' field to automatic also.
10652 *
10653 * If the termination is specified with a non-zero 'termination'
10654 * value check that a legal value is set and set the ASC_DVC_CFG
10655 * 'termination' field appropriately.
10656 */
10657 if (eep_config.termination_se == 0) {
10658 termination = 0; /* auto termination for SE */
10659 } else {
10660 /* Enable manual control with low off / high off. */
10661 if (eep_config.termination_se == 1) {
10662 termination = 0;
10663
10664 /* Enable manual control with low off / high on. */
10665 } else if (eep_config.termination_se == 2) {
10666 termination = TERM_SE_HI;
10667
10668 /* Enable manual control with low on / high on. */
10669 } else if (eep_config.termination_se == 3) {
10670 termination = TERM_SE;
10671 } else {
10672 /*
10673 * The EEPROM 'termination_se' field contains a bad value.
10674 * Use automatic termination instead.
10675 */
10676 termination = 0;
10677 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10678 }
10679 }
10680
10681 if (eep_config.termination_lvd == 0) {
10682 asc_dvc->cfg->termination = termination; /* auto termination for LVD */
10683 } else {
10684 /* Enable manual control with low off / high off. */
10685 if (eep_config.termination_lvd == 1) {
10686 asc_dvc->cfg->termination = termination;
10687
10688 /* Enable manual control with low off / high on. */
10689 } else if (eep_config.termination_lvd == 2) {
10690 asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10691
10692 /* Enable manual control with low on / high on. */
10693 } else if (eep_config.termination_lvd == 3) {
10694 asc_dvc->cfg->termination = termination | TERM_LVD;
10695 } else {
10696 /*
10697 * The EEPROM 'termination_lvd' field contains a bad value.
10698 * Use automatic termination instead.
10699 */
10700 asc_dvc->cfg->termination = termination;
10701 warn_code |= ASC_WARN_EEPROM_TERMINATION;
10702 }
10703 }
10704
10705 return warn_code;
10706 }
10707
10708 /*
10709 * Initialize the ADV_DVC_VAR structure.
10710 *
10711 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10712 *
10713 * For a non-fatal error return a warning code. If there are no warnings
10714 * then 0 is returned.
10715 */
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10716 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10717 {
10718 struct asc_board *board = shost_priv(shost);
10719 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10720 unsigned short warn_code = 0;
10721 AdvPortAddr iop_base = asc_dvc->iop_base;
10722 u16 cmd;
10723 int status;
10724
10725 asc_dvc->err_code = 0;
10726
10727 /*
10728 * Save the state of the PCI Configuration Command Register
10729 * "Parity Error Response Control" Bit. If the bit is clear (0),
10730 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10731 * DMA parity errors.
10732 */
10733 asc_dvc->cfg->control_flag = 0;
10734 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10735 if ((cmd & PCI_COMMAND_PARITY) == 0)
10736 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10737
10738 asc_dvc->cfg->chip_version =
10739 AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10740
10741 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10742 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10743 (ushort)ADV_CHIP_ID_BYTE);
10744
10745 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10746 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10747 (ushort)ADV_CHIP_ID_WORD);
10748
10749 /*
10750 * Reset the chip to start and allow register writes.
10751 */
10752 if (AdvFindSignature(iop_base) == 0) {
10753 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10754 return ADV_ERROR;
10755 } else {
10756 /*
10757 * The caller must set 'chip_type' to a valid setting.
10758 */
10759 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10760 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10761 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10762 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10763 return ADV_ERROR;
10764 }
10765
10766 /*
10767 * Reset Chip.
10768 */
10769 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10770 ADV_CTRL_REG_CMD_RESET);
10771 mdelay(100);
10772 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10773 ADV_CTRL_REG_CMD_WR_IO_REG);
10774
10775 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10776 status = AdvInitFrom38C1600EEP(asc_dvc);
10777 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10778 status = AdvInitFrom38C0800EEP(asc_dvc);
10779 } else {
10780 status = AdvInitFrom3550EEP(asc_dvc);
10781 }
10782 warn_code |= status;
10783 }
10784
10785 if (warn_code != 0)
10786 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10787
10788 if (asc_dvc->err_code)
10789 shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10790 asc_dvc->err_code);
10791
10792 return asc_dvc->err_code;
10793 }
10794 #endif
10795
10796 static struct scsi_host_template advansys_template = {
10797 .proc_name = DRV_NAME,
10798 #ifdef CONFIG_PROC_FS
10799 .show_info = advansys_show_info,
10800 #endif
10801 .name = DRV_NAME,
10802 .info = advansys_info,
10803 .queuecommand = advansys_queuecommand,
10804 .eh_host_reset_handler = advansys_reset,
10805 .bios_param = advansys_biosparam,
10806 .slave_configure = advansys_slave_configure,
10807 /*
10808 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10809 * must be set. The flag will be cleared in advansys_board_found
10810 * for non-ISA adapters.
10811 */
10812 .unchecked_isa_dma = true,
10813 /*
10814 * All adapters controlled by this driver are capable of large
10815 * scatter-gather lists. According to the mid-level SCSI documentation
10816 * this obviates any performance gain provided by setting
10817 * 'use_clustering'. But empirically while CPU utilization is increased
10818 * by enabling clustering, I/O throughput increases as well.
10819 */
10820 .use_clustering = ENABLE_CLUSTERING,
10821 };
10822
advansys_wide_init_chip(struct Scsi_Host * shost)10823 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10824 {
10825 struct asc_board *board = shost_priv(shost);
10826 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10827 size_t sgblk_pool_size;
10828 int warn_code, err_code;
10829
10830 /*
10831 * Allocate buffer carrier structures. The total size
10832 * is about 8 KB, so allocate all at once.
10833 */
10834 adv_dvc->carrier = dma_alloc_coherent(board->dev,
10835 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10836 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10837
10838 if (!adv_dvc->carrier)
10839 goto kmalloc_failed;
10840
10841 /*
10842 * Allocate up to 'max_host_qng' request structures for the Wide
10843 * board. The total size is about 16 KB, so allocate all at once.
10844 * If the allocation fails decrement and try again.
10845 */
10846 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10847 if (board->adv_reqp_size & 0x1f) {
10848 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10849 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10850 }
10851 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10852 &board->adv_reqp_addr, GFP_KERNEL);
10853
10854 if (!board->adv_reqp)
10855 goto kmalloc_failed;
10856
10857 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10858 adv_dvc->max_host_qng, board->adv_reqp_size);
10859
10860 /*
10861 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10862 * the Wide board. Each structure is about 136 bytes.
10863 */
10864 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10865 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10866 sgblk_pool_size, 32, 0);
10867
10868 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10869 sizeof(adv_sgblk_t), sgblk_pool_size);
10870
10871 if (!board->adv_sgblk_pool)
10872 goto kmalloc_failed;
10873
10874 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10875 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10876 warn_code = AdvInitAsc3550Driver(adv_dvc);
10877 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10878 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10879 warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10880 } else {
10881 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10882 warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10883 }
10884 err_code = adv_dvc->err_code;
10885
10886 if (warn_code || err_code) {
10887 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10888 "0x%x\n", warn_code, err_code);
10889 }
10890
10891 goto exit;
10892
10893 kmalloc_failed:
10894 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10895 err_code = ADV_ERROR;
10896 exit:
10897 return err_code;
10898 }
10899
advansys_wide_free_mem(struct asc_board * board)10900 static void advansys_wide_free_mem(struct asc_board *board)
10901 {
10902 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10903
10904 if (adv_dvc->carrier) {
10905 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10906 adv_dvc->carrier, adv_dvc->carrier_addr);
10907 adv_dvc->carrier = NULL;
10908 }
10909 if (board->adv_reqp) {
10910 dma_free_coherent(board->dev, board->adv_reqp_size,
10911 board->adv_reqp, board->adv_reqp_addr);
10912 board->adv_reqp = NULL;
10913 }
10914 if (board->adv_sgblk_pool) {
10915 dma_pool_destroy(board->adv_sgblk_pool);
10916 board->adv_sgblk_pool = NULL;
10917 }
10918 }
10919
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)10920 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10921 int bus_type)
10922 {
10923 struct pci_dev *pdev;
10924 struct asc_board *boardp = shost_priv(shost);
10925 ASC_DVC_VAR *asc_dvc_varp = NULL;
10926 ADV_DVC_VAR *adv_dvc_varp = NULL;
10927 int share_irq, warn_code, ret;
10928
10929 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10930
10931 if (ASC_NARROW_BOARD(boardp)) {
10932 ASC_DBG(1, "narrow board\n");
10933 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10934 asc_dvc_varp->bus_type = bus_type;
10935 asc_dvc_varp->drv_ptr = boardp;
10936 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10937 asc_dvc_varp->iop_base = iop;
10938 } else {
10939 #ifdef CONFIG_PCI
10940 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10941 adv_dvc_varp->drv_ptr = boardp;
10942 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10943 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10944 ASC_DBG(1, "wide board ASC-3550\n");
10945 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10946 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10947 ASC_DBG(1, "wide board ASC-38C0800\n");
10948 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10949 } else {
10950 ASC_DBG(1, "wide board ASC-38C1600\n");
10951 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10952 }
10953
10954 boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10955 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10956 if (!boardp->ioremap_addr) {
10957 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10958 "returned NULL\n",
10959 (long)pci_resource_start(pdev, 1),
10960 boardp->asc_n_io_port);
10961 ret = -ENODEV;
10962 goto err_shost;
10963 }
10964 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10965 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10966
10967 /*
10968 * Even though it isn't used to access wide boards, other
10969 * than for the debug line below, save I/O Port address so
10970 * that it can be reported.
10971 */
10972 boardp->ioport = iop;
10973
10974 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10975 (ushort)inp(iop + 1), (ushort)inpw(iop));
10976 #endif /* CONFIG_PCI */
10977 }
10978
10979 if (ASC_NARROW_BOARD(boardp)) {
10980 /*
10981 * Set the board bus type and PCI IRQ before
10982 * calling AscInitGetConfig().
10983 */
10984 switch (asc_dvc_varp->bus_type) {
10985 #ifdef CONFIG_ISA
10986 case ASC_IS_ISA:
10987 shost->unchecked_isa_dma = true;
10988 share_irq = 0;
10989 break;
10990 case ASC_IS_VL:
10991 shost->unchecked_isa_dma = false;
10992 share_irq = 0;
10993 break;
10994 case ASC_IS_EISA:
10995 shost->unchecked_isa_dma = false;
10996 share_irq = IRQF_SHARED;
10997 break;
10998 #endif /* CONFIG_ISA */
10999 #ifdef CONFIG_PCI
11000 case ASC_IS_PCI:
11001 shost->unchecked_isa_dma = false;
11002 share_irq = IRQF_SHARED;
11003 break;
11004 #endif /* CONFIG_PCI */
11005 default:
11006 shost_printk(KERN_ERR, shost, "unknown adapter type: "
11007 "%d\n", asc_dvc_varp->bus_type);
11008 shost->unchecked_isa_dma = false;
11009 share_irq = 0;
11010 break;
11011 }
11012
11013 /*
11014 * NOTE: AscInitGetConfig() may change the board's
11015 * bus_type value. The bus_type value should no
11016 * longer be used. If the bus_type field must be
11017 * referenced only use the bit-wise AND operator "&".
11018 */
11019 ASC_DBG(2, "AscInitGetConfig()\n");
11020 ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11021 } else {
11022 #ifdef CONFIG_PCI
11023 /*
11024 * For Wide boards set PCI information before calling
11025 * AdvInitGetConfig().
11026 */
11027 shost->unchecked_isa_dma = false;
11028 share_irq = IRQF_SHARED;
11029 ASC_DBG(2, "AdvInitGetConfig()\n");
11030
11031 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11032 #else
11033 share_irq = 0;
11034 ret = -ENODEV;
11035 #endif /* CONFIG_PCI */
11036 }
11037
11038 if (ret)
11039 goto err_unmap;
11040
11041 /*
11042 * Save the EEPROM configuration so that it can be displayed
11043 * from /proc/scsi/advansys/[0...].
11044 */
11045 if (ASC_NARROW_BOARD(boardp)) {
11046
11047 ASCEEP_CONFIG *ep;
11048
11049 /*
11050 * Set the adapter's target id bit in the 'init_tidmask' field.
11051 */
11052 boardp->init_tidmask |=
11053 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11054
11055 /*
11056 * Save EEPROM settings for the board.
11057 */
11058 ep = &boardp->eep_config.asc_eep;
11059
11060 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11061 ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11062 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11063 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11064 ep->start_motor = asc_dvc_varp->start_motor;
11065 ep->cntl = asc_dvc_varp->dvc_cntl;
11066 ep->no_scam = asc_dvc_varp->no_scam;
11067 ep->max_total_qng = asc_dvc_varp->max_total_qng;
11068 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11069 /* 'max_tag_qng' is set to the same value for every device. */
11070 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11071 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11072 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11073 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11074 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11075 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11076 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11077
11078 /*
11079 * Modify board configuration.
11080 */
11081 ASC_DBG(2, "AscInitSetConfig()\n");
11082 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11083 if (ret)
11084 goto err_unmap;
11085 } else {
11086 ADVEEP_3550_CONFIG *ep_3550;
11087 ADVEEP_38C0800_CONFIG *ep_38C0800;
11088 ADVEEP_38C1600_CONFIG *ep_38C1600;
11089
11090 /*
11091 * Save Wide EEP Configuration Information.
11092 */
11093 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11094 ep_3550 = &boardp->eep_config.adv_3550_eep;
11095
11096 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11097 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11098 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11099 ep_3550->termination = adv_dvc_varp->cfg->termination;
11100 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11101 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11102 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11103 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11104 ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11105 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11106 ep_3550->start_motor = adv_dvc_varp->start_motor;
11107 ep_3550->scsi_reset_delay =
11108 adv_dvc_varp->scsi_reset_wait;
11109 ep_3550->serial_number_word1 =
11110 adv_dvc_varp->cfg->serial1;
11111 ep_3550->serial_number_word2 =
11112 adv_dvc_varp->cfg->serial2;
11113 ep_3550->serial_number_word3 =
11114 adv_dvc_varp->cfg->serial3;
11115 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11116 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11117
11118 ep_38C0800->adapter_scsi_id =
11119 adv_dvc_varp->chip_scsi_id;
11120 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11121 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11122 ep_38C0800->termination_lvd =
11123 adv_dvc_varp->cfg->termination;
11124 ep_38C0800->disc_enable =
11125 adv_dvc_varp->cfg->disc_enable;
11126 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11127 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11128 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11129 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11130 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11131 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11132 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11133 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11134 ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11135 ep_38C0800->scsi_reset_delay =
11136 adv_dvc_varp->scsi_reset_wait;
11137 ep_38C0800->serial_number_word1 =
11138 adv_dvc_varp->cfg->serial1;
11139 ep_38C0800->serial_number_word2 =
11140 adv_dvc_varp->cfg->serial2;
11141 ep_38C0800->serial_number_word3 =
11142 adv_dvc_varp->cfg->serial3;
11143 } else {
11144 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11145
11146 ep_38C1600->adapter_scsi_id =
11147 adv_dvc_varp->chip_scsi_id;
11148 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11149 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11150 ep_38C1600->termination_lvd =
11151 adv_dvc_varp->cfg->termination;
11152 ep_38C1600->disc_enable =
11153 adv_dvc_varp->cfg->disc_enable;
11154 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11155 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11156 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11157 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11158 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11159 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11160 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11161 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11162 ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11163 ep_38C1600->scsi_reset_delay =
11164 adv_dvc_varp->scsi_reset_wait;
11165 ep_38C1600->serial_number_word1 =
11166 adv_dvc_varp->cfg->serial1;
11167 ep_38C1600->serial_number_word2 =
11168 adv_dvc_varp->cfg->serial2;
11169 ep_38C1600->serial_number_word3 =
11170 adv_dvc_varp->cfg->serial3;
11171 }
11172
11173 /*
11174 * Set the adapter's target id bit in the 'init_tidmask' field.
11175 */
11176 boardp->init_tidmask |=
11177 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11178 }
11179
11180 /*
11181 * Channels are numbered beginning with 0. For AdvanSys one host
11182 * structure supports one channel. Multi-channel boards have a
11183 * separate host structure for each channel.
11184 */
11185 shost->max_channel = 0;
11186 if (ASC_NARROW_BOARD(boardp)) {
11187 shost->max_id = ASC_MAX_TID + 1;
11188 shost->max_lun = ASC_MAX_LUN + 1;
11189 shost->max_cmd_len = ASC_MAX_CDB_LEN;
11190
11191 shost->io_port = asc_dvc_varp->iop_base;
11192 boardp->asc_n_io_port = ASC_IOADR_GAP;
11193 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11194
11195 /* Set maximum number of queues the adapter can handle. */
11196 shost->can_queue = asc_dvc_varp->max_total_qng;
11197 } else {
11198 shost->max_id = ADV_MAX_TID + 1;
11199 shost->max_lun = ADV_MAX_LUN + 1;
11200 shost->max_cmd_len = ADV_MAX_CDB_LEN;
11201
11202 /*
11203 * Save the I/O Port address and length even though
11204 * I/O ports are not used to access Wide boards.
11205 * Instead the Wide boards are accessed with
11206 * PCI Memory Mapped I/O.
11207 */
11208 shost->io_port = iop;
11209
11210 shost->this_id = adv_dvc_varp->chip_scsi_id;
11211
11212 /* Set maximum number of queues the adapter can handle. */
11213 shost->can_queue = adv_dvc_varp->max_host_qng;
11214 }
11215
11216 /*
11217 * Set the maximum number of scatter-gather elements the
11218 * adapter can handle.
11219 */
11220 if (ASC_NARROW_BOARD(boardp)) {
11221 /*
11222 * Allow two commands with 'sg_tablesize' scatter-gather
11223 * elements to be executed simultaneously. This value is
11224 * the theoretical hardware limit. It may be decreased
11225 * below.
11226 */
11227 shost->sg_tablesize =
11228 (((asc_dvc_varp->max_total_qng - 2) / 2) *
11229 ASC_SG_LIST_PER_Q) + 1;
11230 } else {
11231 shost->sg_tablesize = ADV_MAX_SG_LIST;
11232 }
11233
11234 /*
11235 * The value of 'sg_tablesize' can not exceed the SCSI
11236 * mid-level driver definition of SG_ALL. SG_ALL also
11237 * must not be exceeded, because it is used to define the
11238 * size of the scatter-gather table in 'struct asc_sg_head'.
11239 */
11240 if (shost->sg_tablesize > SG_ALL) {
11241 shost->sg_tablesize = SG_ALL;
11242 }
11243
11244 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11245
11246 /* BIOS start address. */
11247 if (ASC_NARROW_BOARD(boardp)) {
11248 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11249 asc_dvc_varp->bus_type);
11250 } else {
11251 /*
11252 * Fill-in BIOS board variables. The Wide BIOS saves
11253 * information in LRAM that is used by the driver.
11254 */
11255 AdvReadWordLram(adv_dvc_varp->iop_base,
11256 BIOS_SIGNATURE, boardp->bios_signature);
11257 AdvReadWordLram(adv_dvc_varp->iop_base,
11258 BIOS_VERSION, boardp->bios_version);
11259 AdvReadWordLram(adv_dvc_varp->iop_base,
11260 BIOS_CODESEG, boardp->bios_codeseg);
11261 AdvReadWordLram(adv_dvc_varp->iop_base,
11262 BIOS_CODELEN, boardp->bios_codelen);
11263
11264 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11265 boardp->bios_signature, boardp->bios_version);
11266
11267 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11268 boardp->bios_codeseg, boardp->bios_codelen);
11269
11270 /*
11271 * If the BIOS saved a valid signature, then fill in
11272 * the BIOS code segment base address.
11273 */
11274 if (boardp->bios_signature == 0x55AA) {
11275 /*
11276 * Convert x86 realmode code segment to a linear
11277 * address by shifting left 4.
11278 */
11279 shost->base = ((ulong)boardp->bios_codeseg << 4);
11280 } else {
11281 shost->base = 0;
11282 }
11283 }
11284
11285 /*
11286 * Register Board Resources - I/O Port, DMA, IRQ
11287 */
11288
11289 /* Register DMA Channel for Narrow boards. */
11290 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */
11291 #ifdef CONFIG_ISA
11292 if (ASC_NARROW_BOARD(boardp)) {
11293 /* Register DMA channel for ISA bus. */
11294 if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11295 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11296 ret = request_dma(shost->dma_channel, DRV_NAME);
11297 if (ret) {
11298 shost_printk(KERN_ERR, shost, "request_dma() "
11299 "%d failed %d\n",
11300 shost->dma_channel, ret);
11301 goto err_unmap;
11302 }
11303 AscEnableIsaDma(shost->dma_channel);
11304 }
11305 }
11306 #endif /* CONFIG_ISA */
11307
11308 /* Register IRQ Number. */
11309 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11310
11311 ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11312 DRV_NAME, shost);
11313
11314 if (ret) {
11315 if (ret == -EBUSY) {
11316 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11317 "already in use\n", boardp->irq);
11318 } else if (ret == -EINVAL) {
11319 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11320 "not valid\n", boardp->irq);
11321 } else {
11322 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11323 "failed with %d\n", boardp->irq, ret);
11324 }
11325 goto err_free_dma;
11326 }
11327
11328 /*
11329 * Initialize board RISC chip and enable interrupts.
11330 */
11331 if (ASC_NARROW_BOARD(boardp)) {
11332 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11333
11334 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11335 if (!asc_dvc_varp->overrun_buf) {
11336 ret = -ENOMEM;
11337 goto err_free_irq;
11338 }
11339 warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11340
11341 if (warn_code || asc_dvc_varp->err_code) {
11342 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11343 "warn 0x%x, error 0x%x\n",
11344 asc_dvc_varp->init_state, warn_code,
11345 asc_dvc_varp->err_code);
11346 if (!asc_dvc_varp->overrun_dma) {
11347 ret = -ENODEV;
11348 goto err_free_mem;
11349 }
11350 }
11351 } else {
11352 if (advansys_wide_init_chip(shost)) {
11353 ret = -ENODEV;
11354 goto err_free_mem;
11355 }
11356 }
11357
11358 ASC_DBG_PRT_SCSI_HOST(2, shost);
11359
11360 ret = scsi_add_host(shost, boardp->dev);
11361 if (ret)
11362 goto err_free_mem;
11363
11364 scsi_scan_host(shost);
11365 return 0;
11366
11367 err_free_mem:
11368 if (ASC_NARROW_BOARD(boardp)) {
11369 if (asc_dvc_varp->overrun_dma)
11370 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11371 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11372 kfree(asc_dvc_varp->overrun_buf);
11373 } else
11374 advansys_wide_free_mem(boardp);
11375 err_free_irq:
11376 free_irq(boardp->irq, shost);
11377 err_free_dma:
11378 #ifdef CONFIG_ISA
11379 if (shost->dma_channel != NO_ISA_DMA)
11380 free_dma(shost->dma_channel);
11381 #endif
11382 err_unmap:
11383 if (boardp->ioremap_addr)
11384 iounmap(boardp->ioremap_addr);
11385 #ifdef CONFIG_PCI
11386 err_shost:
11387 #endif
11388 return ret;
11389 }
11390
11391 /*
11392 * advansys_release()
11393 *
11394 * Release resources allocated for a single AdvanSys adapter.
11395 */
advansys_release(struct Scsi_Host * shost)11396 static int advansys_release(struct Scsi_Host *shost)
11397 {
11398 struct asc_board *board = shost_priv(shost);
11399 ASC_DBG(1, "begin\n");
11400 scsi_remove_host(shost);
11401 free_irq(board->irq, shost);
11402 #ifdef CONFIG_ISA
11403 if (shost->dma_channel != NO_ISA_DMA) {
11404 ASC_DBG(1, "free_dma()\n");
11405 free_dma(shost->dma_channel);
11406 }
11407 #endif
11408 if (ASC_NARROW_BOARD(board)) {
11409 dma_unmap_single(board->dev,
11410 board->dvc_var.asc_dvc_var.overrun_dma,
11411 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11412 kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11413 } else {
11414 iounmap(board->ioremap_addr);
11415 advansys_wide_free_mem(board);
11416 }
11417 scsi_host_put(shost);
11418 ASC_DBG(1, "end\n");
11419 return 0;
11420 }
11421
11422 #define ASC_IOADR_TABLE_MAX_IX 11
11423
11424 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11425 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11426 0x0210, 0x0230, 0x0250, 0x0330
11427 };
11428
11429 /*
11430 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as:
11431 * 00: 10
11432 * 01: 11
11433 * 10: 12
11434 * 11: 15
11435 */
advansys_isa_irq_no(PortAddr iop_base)11436 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11437 {
11438 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11439 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11440 if (chip_irq == 13)
11441 chip_irq = 15;
11442 return chip_irq;
11443 }
11444
advansys_isa_probe(struct device * dev,unsigned int id)11445 static int advansys_isa_probe(struct device *dev, unsigned int id)
11446 {
11447 int err = -ENODEV;
11448 PortAddr iop_base = _asc_def_iop_base[id];
11449 struct Scsi_Host *shost;
11450 struct asc_board *board;
11451
11452 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11453 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11454 return -ENODEV;
11455 }
11456 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11457 if (!AscFindSignature(iop_base))
11458 goto release_region;
11459 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11460 goto release_region;
11461
11462 err = -ENOMEM;
11463 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11464 if (!shost)
11465 goto release_region;
11466
11467 board = shost_priv(shost);
11468 board->irq = advansys_isa_irq_no(iop_base);
11469 board->dev = dev;
11470 board->shost = shost;
11471
11472 err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11473 if (err)
11474 goto free_host;
11475
11476 dev_set_drvdata(dev, shost);
11477 return 0;
11478
11479 free_host:
11480 scsi_host_put(shost);
11481 release_region:
11482 release_region(iop_base, ASC_IOADR_GAP);
11483 return err;
11484 }
11485
advansys_isa_remove(struct device * dev,unsigned int id)11486 static int advansys_isa_remove(struct device *dev, unsigned int id)
11487 {
11488 int ioport = _asc_def_iop_base[id];
11489 advansys_release(dev_get_drvdata(dev));
11490 release_region(ioport, ASC_IOADR_GAP);
11491 return 0;
11492 }
11493
11494 static struct isa_driver advansys_isa_driver = {
11495 .probe = advansys_isa_probe,
11496 .remove = advansys_isa_remove,
11497 .driver = {
11498 .owner = THIS_MODULE,
11499 .name = DRV_NAME,
11500 },
11501 };
11502
11503 /*
11504 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11505 * 000: invalid
11506 * 001: 10
11507 * 010: 11
11508 * 011: 12
11509 * 100: invalid
11510 * 101: 14
11511 * 110: 15
11512 * 111: invalid
11513 */
advansys_vlb_irq_no(PortAddr iop_base)11514 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11515 {
11516 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11517 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11518 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11519 return 0;
11520 return chip_irq;
11521 }
11522
advansys_vlb_probe(struct device * dev,unsigned int id)11523 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11524 {
11525 int err = -ENODEV;
11526 PortAddr iop_base = _asc_def_iop_base[id];
11527 struct Scsi_Host *shost;
11528 struct asc_board *board;
11529
11530 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11531 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11532 return -ENODEV;
11533 }
11534 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11535 if (!AscFindSignature(iop_base))
11536 goto release_region;
11537 /*
11538 * I don't think this condition can actually happen, but the old
11539 * driver did it, and the chances of finding a VLB setup in 2007
11540 * to do testing with is slight to none.
11541 */
11542 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11543 goto release_region;
11544
11545 err = -ENOMEM;
11546 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11547 if (!shost)
11548 goto release_region;
11549
11550 board = shost_priv(shost);
11551 board->irq = advansys_vlb_irq_no(iop_base);
11552 board->dev = dev;
11553 board->shost = shost;
11554
11555 err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11556 if (err)
11557 goto free_host;
11558
11559 dev_set_drvdata(dev, shost);
11560 return 0;
11561
11562 free_host:
11563 scsi_host_put(shost);
11564 release_region:
11565 release_region(iop_base, ASC_IOADR_GAP);
11566 return -ENODEV;
11567 }
11568
11569 static struct isa_driver advansys_vlb_driver = {
11570 .probe = advansys_vlb_probe,
11571 .remove = advansys_isa_remove,
11572 .driver = {
11573 .owner = THIS_MODULE,
11574 .name = "advansys_vlb",
11575 },
11576 };
11577
11578 static struct eisa_device_id advansys_eisa_table[] = {
11579 { "ABP7401" },
11580 { "ABP7501" },
11581 { "" }
11582 };
11583
11584 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11585
11586 /*
11587 * EISA is a little more tricky than PCI; each EISA device may have two
11588 * channels, and this driver is written to make each channel its own Scsi_Host
11589 */
11590 struct eisa_scsi_data {
11591 struct Scsi_Host *host[2];
11592 };
11593
11594 /*
11595 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
11596 * 000: 10
11597 * 001: 11
11598 * 010: 12
11599 * 011: invalid
11600 * 100: 14
11601 * 101: 15
11602 * 110: invalid
11603 * 111: invalid
11604 */
advansys_eisa_irq_no(struct eisa_device * edev)11605 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11606 {
11607 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11608 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11609 if ((chip_irq == 13) || (chip_irq > 15))
11610 return 0;
11611 return chip_irq;
11612 }
11613
advansys_eisa_probe(struct device * dev)11614 static int advansys_eisa_probe(struct device *dev)
11615 {
11616 int i, ioport, irq = 0;
11617 int err;
11618 struct eisa_device *edev = to_eisa_device(dev);
11619 struct eisa_scsi_data *data;
11620
11621 err = -ENOMEM;
11622 data = kzalloc(sizeof(*data), GFP_KERNEL);
11623 if (!data)
11624 goto fail;
11625 ioport = edev->base_addr + 0xc30;
11626
11627 err = -ENODEV;
11628 for (i = 0; i < 2; i++, ioport += 0x20) {
11629 struct asc_board *board;
11630 struct Scsi_Host *shost;
11631 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11632 printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11633 ioport + ASC_IOADR_GAP - 1);
11634 continue;
11635 }
11636 if (!AscFindSignature(ioport)) {
11637 release_region(ioport, ASC_IOADR_GAP);
11638 continue;
11639 }
11640
11641 /*
11642 * I don't know why we need to do this for EISA chips, but
11643 * not for any others. It looks to be equivalent to
11644 * AscGetChipCfgMsw, but I may have overlooked something,
11645 * so I'm not converting it until I get an EISA board to
11646 * test with.
11647 */
11648 inw(ioport + 4);
11649
11650 if (!irq)
11651 irq = advansys_eisa_irq_no(edev);
11652
11653 err = -ENOMEM;
11654 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11655 if (!shost)
11656 goto release_region;
11657
11658 board = shost_priv(shost);
11659 board->irq = irq;
11660 board->dev = dev;
11661 board->shost = shost;
11662
11663 err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11664 if (!err) {
11665 data->host[i] = shost;
11666 continue;
11667 }
11668
11669 scsi_host_put(shost);
11670 release_region:
11671 release_region(ioport, ASC_IOADR_GAP);
11672 break;
11673 }
11674
11675 if (err)
11676 goto free_data;
11677 dev_set_drvdata(dev, data);
11678 return 0;
11679
11680 free_data:
11681 kfree(data->host[0]);
11682 kfree(data->host[1]);
11683 kfree(data);
11684 fail:
11685 return err;
11686 }
11687
advansys_eisa_remove(struct device * dev)11688 static int advansys_eisa_remove(struct device *dev)
11689 {
11690 int i;
11691 struct eisa_scsi_data *data = dev_get_drvdata(dev);
11692
11693 for (i = 0; i < 2; i++) {
11694 int ioport;
11695 struct Scsi_Host *shost = data->host[i];
11696 if (!shost)
11697 continue;
11698 ioport = shost->io_port;
11699 advansys_release(shost);
11700 release_region(ioport, ASC_IOADR_GAP);
11701 }
11702
11703 kfree(data);
11704 return 0;
11705 }
11706
11707 static struct eisa_driver advansys_eisa_driver = {
11708 .id_table = advansys_eisa_table,
11709 .driver = {
11710 .name = DRV_NAME,
11711 .probe = advansys_eisa_probe,
11712 .remove = advansys_eisa_remove,
11713 }
11714 };
11715
11716 /* PCI Devices supported by this driver */
11717 static struct pci_device_id advansys_pci_tbl[] = {
11718 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11719 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11720 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11721 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11722 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11723 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11724 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11725 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11726 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11727 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11728 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11729 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11730 {}
11731 };
11732
11733 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11734
advansys_set_latency(struct pci_dev * pdev)11735 static void advansys_set_latency(struct pci_dev *pdev)
11736 {
11737 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11738 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11739 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11740 } else {
11741 u8 latency;
11742 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11743 if (latency < 0x20)
11744 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11745 }
11746 }
11747
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11748 static int advansys_pci_probe(struct pci_dev *pdev,
11749 const struct pci_device_id *ent)
11750 {
11751 int err, ioport;
11752 struct Scsi_Host *shost;
11753 struct asc_board *board;
11754
11755 err = pci_enable_device(pdev);
11756 if (err)
11757 goto fail;
11758 err = pci_request_regions(pdev, DRV_NAME);
11759 if (err)
11760 goto disable_device;
11761 pci_set_master(pdev);
11762 advansys_set_latency(pdev);
11763
11764 err = -ENODEV;
11765 if (pci_resource_len(pdev, 0) == 0)
11766 goto release_region;
11767
11768 ioport = pci_resource_start(pdev, 0);
11769
11770 err = -ENOMEM;
11771 shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11772 if (!shost)
11773 goto release_region;
11774
11775 board = shost_priv(shost);
11776 board->irq = pdev->irq;
11777 board->dev = &pdev->dev;
11778 board->shost = shost;
11779
11780 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11781 pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11782 pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11783 board->flags |= ASC_IS_WIDE_BOARD;
11784 }
11785
11786 err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11787 if (err)
11788 goto free_host;
11789
11790 pci_set_drvdata(pdev, shost);
11791 return 0;
11792
11793 free_host:
11794 scsi_host_put(shost);
11795 release_region:
11796 pci_release_regions(pdev);
11797 disable_device:
11798 pci_disable_device(pdev);
11799 fail:
11800 return err;
11801 }
11802
advansys_pci_remove(struct pci_dev * pdev)11803 static void advansys_pci_remove(struct pci_dev *pdev)
11804 {
11805 advansys_release(pci_get_drvdata(pdev));
11806 pci_release_regions(pdev);
11807 pci_disable_device(pdev);
11808 }
11809
11810 static struct pci_driver advansys_pci_driver = {
11811 .name = DRV_NAME,
11812 .id_table = advansys_pci_tbl,
11813 .probe = advansys_pci_probe,
11814 .remove = advansys_pci_remove,
11815 };
11816
advansys_init(void)11817 static int __init advansys_init(void)
11818 {
11819 int error;
11820
11821 error = isa_register_driver(&advansys_isa_driver,
11822 ASC_IOADR_TABLE_MAX_IX);
11823 if (error)
11824 goto fail;
11825
11826 error = isa_register_driver(&advansys_vlb_driver,
11827 ASC_IOADR_TABLE_MAX_IX);
11828 if (error)
11829 goto unregister_isa;
11830
11831 error = eisa_driver_register(&advansys_eisa_driver);
11832 if (error)
11833 goto unregister_vlb;
11834
11835 error = pci_register_driver(&advansys_pci_driver);
11836 if (error)
11837 goto unregister_eisa;
11838
11839 return 0;
11840
11841 unregister_eisa:
11842 eisa_driver_unregister(&advansys_eisa_driver);
11843 unregister_vlb:
11844 isa_unregister_driver(&advansys_vlb_driver);
11845 unregister_isa:
11846 isa_unregister_driver(&advansys_isa_driver);
11847 fail:
11848 return error;
11849 }
11850
advansys_exit(void)11851 static void __exit advansys_exit(void)
11852 {
11853 pci_unregister_driver(&advansys_pci_driver);
11854 eisa_driver_unregister(&advansys_eisa_driver);
11855 isa_unregister_driver(&advansys_vlb_driver);
11856 isa_unregister_driver(&advansys_isa_driver);
11857 }
11858
11859 module_init(advansys_init);
11860 module_exit(advansys_exit);
11861
11862 MODULE_LICENSE("GPL");
11863 MODULE_FIRMWARE("advansys/mcode.bin");
11864 MODULE_FIRMWARE("advansys/3550.bin");
11865 MODULE_FIRMWARE("advansys/38C0800.bin");
11866 MODULE_FIRMWARE("advansys/38C1600.bin");
11867