1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * The Netronix embedded controller is a microcontroller found in some
4 * e-book readers designed by the original design manufacturer Netronix, Inc.
5 * It contains RTC, battery monitoring, system power management, and PWM
6 * functionality.
7 *
8 * This driver implements PWM output.
9 *
10 * Copyright 2020 Jonathan Neuschäfer <j.neuschaefer@gmx.net>
11 *
12 * Limitations:
13 * - The get_state callback is not implemented, because the current state of
14 * the PWM output can't be read back from the hardware.
15 * - The hardware can only generate normal polarity output.
16 * - The period and duty cycle can't be changed together in one atomic action.
17 */
18
19 #include <linux/mfd/ntxec.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pwm.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25
26 struct ntxec_pwm {
27 struct ntxec *ec;
28 struct pwm_chip chip;
29 };
30
ntxec_pwm_from_chip(struct pwm_chip * chip)31 static struct ntxec_pwm *ntxec_pwm_from_chip(struct pwm_chip *chip)
32 {
33 return container_of(chip, struct ntxec_pwm, chip);
34 }
35
36 #define NTXEC_REG_AUTO_OFF_HI 0xa1
37 #define NTXEC_REG_AUTO_OFF_LO 0xa2
38 #define NTXEC_REG_ENABLE 0xa3
39 #define NTXEC_REG_PERIOD_LOW 0xa4
40 #define NTXEC_REG_PERIOD_HIGH 0xa5
41 #define NTXEC_REG_DUTY_LOW 0xa6
42 #define NTXEC_REG_DUTY_HIGH 0xa7
43
44 /*
45 * The time base used in the EC is 8MHz, or 125ns. Period and duty cycle are
46 * measured in this unit.
47 */
48 #define TIME_BASE_NS 125
49
50 /*
51 * The maximum input value (in nanoseconds) is determined by the time base and
52 * the range of the hardware registers that hold the converted value.
53 * It fits into 32 bits, so we can do our calculations in 32 bits as well.
54 */
55 #define MAX_PERIOD_NS (TIME_BASE_NS * 0xffff)
56
ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip * chip,int period,int duty)57 static int ntxec_pwm_set_raw_period_and_duty_cycle(struct pwm_chip *chip,
58 int period, int duty)
59 {
60 struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
61
62 /*
63 * Changes to the period and duty cycle take effect as soon as the
64 * corresponding low byte is written, so the hardware may be configured
65 * to an inconsistent state after the period is written and before the
66 * duty cycle is fully written. If, in such a case, the old duty cycle
67 * is longer than the new period, the EC may output 100% for a moment.
68 *
69 * To minimize the time between the changes to period and duty cycle
70 * taking effect, the writes are interleaved.
71 */
72
73 struct reg_sequence regs[] = {
74 { NTXEC_REG_PERIOD_HIGH, ntxec_reg8(period >> 8) },
75 { NTXEC_REG_DUTY_HIGH, ntxec_reg8(duty >> 8) },
76 { NTXEC_REG_PERIOD_LOW, ntxec_reg8(period) },
77 { NTXEC_REG_DUTY_LOW, ntxec_reg8(duty) },
78 };
79
80 return regmap_multi_reg_write(priv->ec->regmap, regs, ARRAY_SIZE(regs));
81 }
82
ntxec_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm_dev,const struct pwm_state * state)83 static int ntxec_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm_dev,
84 const struct pwm_state *state)
85 {
86 struct ntxec_pwm *priv = ntxec_pwm_from_chip(chip);
87 unsigned int period, duty;
88 int res;
89
90 if (state->polarity != PWM_POLARITY_NORMAL)
91 return -EINVAL;
92
93 period = min_t(u64, state->period, MAX_PERIOD_NS);
94 duty = min_t(u64, state->duty_cycle, period);
95
96 period /= TIME_BASE_NS;
97 duty /= TIME_BASE_NS;
98
99 /*
100 * Writing a duty cycle of zero puts the device into a state where
101 * writing a higher duty cycle doesn't result in the brightness that it
102 * usually results in. This can be fixed by cycling the ENABLE register.
103 *
104 * As a workaround, write ENABLE=0 when the duty cycle is zero.
105 * The case that something has previously set the duty cycle to zero
106 * but ENABLE=1, is not handled.
107 */
108 if (state->enabled && duty != 0) {
109 res = ntxec_pwm_set_raw_period_and_duty_cycle(chip, period, duty);
110 if (res)
111 return res;
112
113 res = regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(1));
114 if (res)
115 return res;
116
117 /* Disable the auto-off timer */
118 res = regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_HI, ntxec_reg8(0xff));
119 if (res)
120 return res;
121
122 return regmap_write(priv->ec->regmap, NTXEC_REG_AUTO_OFF_LO, ntxec_reg8(0xff));
123 } else {
124 return regmap_write(priv->ec->regmap, NTXEC_REG_ENABLE, ntxec_reg8(0));
125 }
126 }
127
128 static const struct pwm_ops ntxec_pwm_ops = {
129 .owner = THIS_MODULE,
130 .apply = ntxec_pwm_apply,
131 /*
132 * No .get_state callback, because the current state cannot be read
133 * back from the hardware.
134 */
135 };
136
ntxec_pwm_probe(struct platform_device * pdev)137 static int ntxec_pwm_probe(struct platform_device *pdev)
138 {
139 struct ntxec *ec = dev_get_drvdata(pdev->dev.parent);
140 struct ntxec_pwm *priv;
141 struct pwm_chip *chip;
142
143 device_set_of_node_from_dev(&pdev->dev, pdev->dev.parent);
144
145 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
146 if (!priv)
147 return -ENOMEM;
148
149 priv->ec = ec;
150
151 chip = &priv->chip;
152 chip->dev = &pdev->dev;
153 chip->ops = &ntxec_pwm_ops;
154 chip->npwm = 1;
155
156 return devm_pwmchip_add(&pdev->dev, chip);
157 }
158
159 static struct platform_driver ntxec_pwm_driver = {
160 .driver = {
161 .name = "ntxec-pwm",
162 },
163 .probe = ntxec_pwm_probe,
164 };
165 module_platform_driver(ntxec_pwm_driver);
166
167 MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
168 MODULE_DESCRIPTION("PWM driver for Netronix EC");
169 MODULE_LICENSE("GPL");
170 MODULE_ALIAS("platform:ntxec-pwm");
171