1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2013 Atmel Corporation
6 * Bo Shen <voice.shen@atmel.com>
7 *
8 * Links to reference manuals for the supported PWM chips can be found in
9 * Documentation/arm/microchip.rst.
10 *
11 * Limitations:
12 * - Periods start with the inactive level.
13 * - Hardware has to be stopped in general to update settings.
14 *
15 * Software bugs/possible improvements:
16 * - When atmel_pwm_apply() is called with state->enabled=false a change in
17 * state->polarity isn't honored.
18 * - Instead of sleeping to wait for a completed period, the interrupt
19 * functionality could be used.
20 */
21
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pwm.h>
31 #include <linux/slab.h>
32
33 /* The following is global registers for PWM controller */
34 #define PWM_ENA 0x04
35 #define PWM_DIS 0x08
36 #define PWM_SR 0x0C
37 #define PWM_ISR 0x1C
38 /* Bit field in SR */
39 #define PWM_SR_ALL_CH_ON 0x0F
40
41 /* The following register is PWM channel related registers */
42 #define PWM_CH_REG_OFFSET 0x200
43 #define PWM_CH_REG_SIZE 0x20
44
45 #define PWM_CMR 0x0
46 /* Bit field in CMR */
47 #define PWM_CMR_CPOL (1 << 9)
48 #define PWM_CMR_UPD_CDTY (1 << 10)
49 #define PWM_CMR_CPRE_MSK 0xF
50
51 /* The following registers for PWM v1 */
52 #define PWMV1_CDTY 0x04
53 #define PWMV1_CPRD 0x08
54 #define PWMV1_CUPD 0x10
55
56 /* The following registers for PWM v2 */
57 #define PWMV2_CDTY 0x04
58 #define PWMV2_CDTYUPD 0x08
59 #define PWMV2_CPRD 0x0C
60 #define PWMV2_CPRDUPD 0x10
61
62 #define PWM_MAX_PRES 10
63
64 struct atmel_pwm_registers {
65 u8 period;
66 u8 period_upd;
67 u8 duty;
68 u8 duty_upd;
69 };
70
71 struct atmel_pwm_config {
72 u32 period_bits;
73 };
74
75 struct atmel_pwm_data {
76 struct atmel_pwm_registers regs;
77 struct atmel_pwm_config cfg;
78 };
79
80 struct atmel_pwm_chip {
81 struct pwm_chip chip;
82 struct clk *clk;
83 void __iomem *base;
84 const struct atmel_pwm_data *data;
85
86 /*
87 * The hardware supports a mechanism to update a channel's duty cycle at
88 * the end of the currently running period. When such an update is
89 * pending we delay disabling the PWM until the new configuration is
90 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
91 * might not result in an inactive output.
92 * This bitmask tracks for which channels an update is pending in
93 * hardware.
94 */
95 u32 update_pending;
96
97 /* Protects .update_pending */
98 spinlock_t lock;
99 };
100
to_atmel_pwm_chip(struct pwm_chip * chip)101 static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
102 {
103 return container_of(chip, struct atmel_pwm_chip, chip);
104 }
105
atmel_pwm_readl(struct atmel_pwm_chip * chip,unsigned long offset)106 static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
107 unsigned long offset)
108 {
109 return readl_relaxed(chip->base + offset);
110 }
111
atmel_pwm_writel(struct atmel_pwm_chip * chip,unsigned long offset,unsigned long val)112 static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
113 unsigned long offset, unsigned long val)
114 {
115 writel_relaxed(val, chip->base + offset);
116 }
117
atmel_pwm_ch_readl(struct atmel_pwm_chip * chip,unsigned int ch,unsigned long offset)118 static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
119 unsigned int ch, unsigned long offset)
120 {
121 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
122
123 return atmel_pwm_readl(chip, base + offset);
124 }
125
atmel_pwm_ch_writel(struct atmel_pwm_chip * chip,unsigned int ch,unsigned long offset,unsigned long val)126 static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
127 unsigned int ch, unsigned long offset,
128 unsigned long val)
129 {
130 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
131
132 atmel_pwm_writel(chip, base + offset, val);
133 }
134
atmel_pwm_update_pending(struct atmel_pwm_chip * chip)135 static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
136 {
137 /*
138 * Each channel that has its bit in ISR set started a new period since
139 * ISR was cleared and so there is no more update pending. Note that
140 * reading ISR clears it, so this needs to handle all channels to not
141 * loose information.
142 */
143 u32 isr = atmel_pwm_readl(chip, PWM_ISR);
144
145 chip->update_pending &= ~isr;
146 }
147
atmel_pwm_set_pending(struct atmel_pwm_chip * chip,unsigned int ch)148 static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
149 {
150 spin_lock(&chip->lock);
151
152 /*
153 * Clear pending flags in hardware because otherwise there might still
154 * be a stale flag in ISR.
155 */
156 atmel_pwm_update_pending(chip);
157
158 chip->update_pending |= (1 << ch);
159
160 spin_unlock(&chip->lock);
161 }
162
atmel_pwm_test_pending(struct atmel_pwm_chip * chip,unsigned int ch)163 static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
164 {
165 int ret = 0;
166
167 spin_lock(&chip->lock);
168
169 if (chip->update_pending & (1 << ch)) {
170 atmel_pwm_update_pending(chip);
171
172 if (chip->update_pending & (1 << ch))
173 ret = 1;
174 }
175
176 spin_unlock(&chip->lock);
177
178 return ret;
179 }
180
atmel_pwm_wait_nonpending(struct atmel_pwm_chip * chip,unsigned int ch)181 static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
182 {
183 unsigned long timeout = jiffies + 2 * HZ;
184 int ret;
185
186 while ((ret = atmel_pwm_test_pending(chip, ch)) &&
187 time_before(jiffies, timeout))
188 usleep_range(10, 100);
189
190 return ret ? -ETIMEDOUT : 0;
191 }
192
atmel_pwm_calculate_cprd_and_pres(struct pwm_chip * chip,unsigned long clkrate,const struct pwm_state * state,unsigned long * cprd,u32 * pres)193 static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
194 unsigned long clkrate,
195 const struct pwm_state *state,
196 unsigned long *cprd, u32 *pres)
197 {
198 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
199 unsigned long long cycles = state->period;
200 int shift;
201
202 /* Calculate the period cycles and prescale value */
203 cycles *= clkrate;
204 do_div(cycles, NSEC_PER_SEC);
205
206 /*
207 * The register for the period length is cfg.period_bits bits wide.
208 * So for each bit the number of clock cycles is wider divide the input
209 * clock frequency by two using pres and shift cprd accordingly.
210 */
211 shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
212
213 if (shift > PWM_MAX_PRES) {
214 dev_err(chip->dev, "pres exceeds the maximum value\n");
215 return -EINVAL;
216 } else if (shift > 0) {
217 *pres = shift;
218 cycles >>= *pres;
219 } else {
220 *pres = 0;
221 }
222
223 *cprd = cycles;
224
225 return 0;
226 }
227
atmel_pwm_calculate_cdty(const struct pwm_state * state,unsigned long clkrate,unsigned long cprd,u32 pres,unsigned long * cdty)228 static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
229 unsigned long clkrate, unsigned long cprd,
230 u32 pres, unsigned long *cdty)
231 {
232 unsigned long long cycles = state->duty_cycle;
233
234 cycles *= clkrate;
235 do_div(cycles, NSEC_PER_SEC);
236 cycles >>= pres;
237 *cdty = cprd - cycles;
238 }
239
atmel_pwm_update_cdty(struct pwm_chip * chip,struct pwm_device * pwm,unsigned long cdty)240 static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
241 unsigned long cdty)
242 {
243 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
244 u32 val;
245
246 if (atmel_pwm->data->regs.duty_upd ==
247 atmel_pwm->data->regs.period_upd) {
248 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
249 val &= ~PWM_CMR_UPD_CDTY;
250 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
251 }
252
253 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
254 atmel_pwm->data->regs.duty_upd, cdty);
255 atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
256 }
257
atmel_pwm_set_cprd_cdty(struct pwm_chip * chip,struct pwm_device * pwm,unsigned long cprd,unsigned long cdty)258 static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
259 struct pwm_device *pwm,
260 unsigned long cprd, unsigned long cdty)
261 {
262 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
263
264 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
265 atmel_pwm->data->regs.duty, cdty);
266 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
267 atmel_pwm->data->regs.period, cprd);
268 }
269
atmel_pwm_disable(struct pwm_chip * chip,struct pwm_device * pwm,bool disable_clk)270 static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
271 bool disable_clk)
272 {
273 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
274 unsigned long timeout;
275
276 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
277
278 atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
279
280 /*
281 * Wait for the PWM channel disable operation to be effective before
282 * stopping the clock.
283 */
284 timeout = jiffies + 2 * HZ;
285
286 while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
287 time_before(jiffies, timeout))
288 usleep_range(10, 100);
289
290 if (disable_clk)
291 clk_disable(atmel_pwm->clk);
292 }
293
atmel_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)294 static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
295 const struct pwm_state *state)
296 {
297 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
298 struct pwm_state cstate;
299 unsigned long cprd, cdty;
300 u32 pres, val;
301 int ret;
302
303 pwm_get_state(pwm, &cstate);
304
305 if (state->enabled) {
306 unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
307
308 if (cstate.enabled &&
309 cstate.polarity == state->polarity &&
310 cstate.period == state->period) {
311 u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
312
313 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
314 atmel_pwm->data->regs.period);
315 pres = cmr & PWM_CMR_CPRE_MSK;
316
317 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
318 atmel_pwm_update_cdty(chip, pwm, cdty);
319 return 0;
320 }
321
322 ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
323 &pres);
324 if (ret) {
325 dev_err(chip->dev,
326 "failed to calculate cprd and prescaler\n");
327 return ret;
328 }
329
330 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
331
332 if (cstate.enabled) {
333 atmel_pwm_disable(chip, pwm, false);
334 } else {
335 ret = clk_enable(atmel_pwm->clk);
336 if (ret) {
337 dev_err(chip->dev, "failed to enable clock\n");
338 return ret;
339 }
340 }
341
342 /* It is necessary to preserve CPOL, inside CMR */
343 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
344 val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
345 if (state->polarity == PWM_POLARITY_NORMAL)
346 val &= ~PWM_CMR_CPOL;
347 else
348 val |= PWM_CMR_CPOL;
349 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
350 atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
351 atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
352 } else if (cstate.enabled) {
353 atmel_pwm_disable(chip, pwm, true);
354 }
355
356 return 0;
357 }
358
atmel_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)359 static void atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
360 struct pwm_state *state)
361 {
362 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
363 u32 sr, cmr;
364
365 sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
366 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
367
368 if (sr & (1 << pwm->hwpwm)) {
369 unsigned long rate = clk_get_rate(atmel_pwm->clk);
370 u32 cdty, cprd, pres;
371 u64 tmp;
372
373 pres = cmr & PWM_CMR_CPRE_MSK;
374
375 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
376 atmel_pwm->data->regs.period);
377 tmp = (u64)cprd * NSEC_PER_SEC;
378 tmp <<= pres;
379 state->period = DIV64_U64_ROUND_UP(tmp, rate);
380
381 /* Wait for an updated duty_cycle queued in hardware */
382 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
383
384 cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
385 atmel_pwm->data->regs.duty);
386 tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
387 tmp <<= pres;
388 state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
389
390 state->enabled = true;
391 } else {
392 state->enabled = false;
393 }
394
395 if (cmr & PWM_CMR_CPOL)
396 state->polarity = PWM_POLARITY_INVERSED;
397 else
398 state->polarity = PWM_POLARITY_NORMAL;
399 }
400
401 static const struct pwm_ops atmel_pwm_ops = {
402 .apply = atmel_pwm_apply,
403 .get_state = atmel_pwm_get_state,
404 .owner = THIS_MODULE,
405 };
406
407 static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
408 .regs = {
409 .period = PWMV1_CPRD,
410 .period_upd = PWMV1_CUPD,
411 .duty = PWMV1_CDTY,
412 .duty_upd = PWMV1_CUPD,
413 },
414 .cfg = {
415 /* 16 bits to keep period and duty. */
416 .period_bits = 16,
417 },
418 };
419
420 static const struct atmel_pwm_data atmel_sama5_pwm_data = {
421 .regs = {
422 .period = PWMV2_CPRD,
423 .period_upd = PWMV2_CPRDUPD,
424 .duty = PWMV2_CDTY,
425 .duty_upd = PWMV2_CDTYUPD,
426 },
427 .cfg = {
428 /* 16 bits to keep period and duty. */
429 .period_bits = 16,
430 },
431 };
432
433 static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
434 .regs = {
435 .period = PWMV1_CPRD,
436 .period_upd = PWMV1_CUPD,
437 .duty = PWMV1_CDTY,
438 .duty_upd = PWMV1_CUPD,
439 },
440 .cfg = {
441 /* 32 bits to keep period and duty. */
442 .period_bits = 32,
443 },
444 };
445
446 static const struct of_device_id atmel_pwm_dt_ids[] = {
447 {
448 .compatible = "atmel,at91sam9rl-pwm",
449 .data = &atmel_sam9rl_pwm_data,
450 }, {
451 .compatible = "atmel,sama5d3-pwm",
452 .data = &atmel_sama5_pwm_data,
453 }, {
454 .compatible = "atmel,sama5d2-pwm",
455 .data = &atmel_sama5_pwm_data,
456 }, {
457 .compatible = "microchip,sam9x60-pwm",
458 .data = &mchp_sam9x60_pwm_data,
459 }, {
460 /* sentinel */
461 },
462 };
463 MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
464
atmel_pwm_probe(struct platform_device * pdev)465 static int atmel_pwm_probe(struct platform_device *pdev)
466 {
467 struct atmel_pwm_chip *atmel_pwm;
468 int ret;
469
470 atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
471 if (!atmel_pwm)
472 return -ENOMEM;
473
474 atmel_pwm->data = of_device_get_match_data(&pdev->dev);
475
476 atmel_pwm->update_pending = 0;
477 spin_lock_init(&atmel_pwm->lock);
478
479 atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
480 if (IS_ERR(atmel_pwm->base))
481 return PTR_ERR(atmel_pwm->base);
482
483 atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
484 if (IS_ERR(atmel_pwm->clk))
485 return PTR_ERR(atmel_pwm->clk);
486
487 ret = clk_prepare(atmel_pwm->clk);
488 if (ret) {
489 dev_err(&pdev->dev, "failed to prepare PWM clock\n");
490 return ret;
491 }
492
493 atmel_pwm->chip.dev = &pdev->dev;
494 atmel_pwm->chip.ops = &atmel_pwm_ops;
495 atmel_pwm->chip.npwm = 4;
496
497 ret = pwmchip_add(&atmel_pwm->chip);
498 if (ret < 0) {
499 dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
500 goto unprepare_clk;
501 }
502
503 platform_set_drvdata(pdev, atmel_pwm);
504
505 return ret;
506
507 unprepare_clk:
508 clk_unprepare(atmel_pwm->clk);
509 return ret;
510 }
511
atmel_pwm_remove(struct platform_device * pdev)512 static int atmel_pwm_remove(struct platform_device *pdev)
513 {
514 struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);
515
516 pwmchip_remove(&atmel_pwm->chip);
517
518 clk_unprepare(atmel_pwm->clk);
519
520 return 0;
521 }
522
523 static struct platform_driver atmel_pwm_driver = {
524 .driver = {
525 .name = "atmel-pwm",
526 .of_match_table = of_match_ptr(atmel_pwm_dt_ids),
527 },
528 .probe = atmel_pwm_probe,
529 .remove = atmel_pwm_remove,
530 };
531 module_platform_driver(atmel_pwm_driver);
532
533 MODULE_ALIAS("platform:atmel-pwm");
534 MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
535 MODULE_DESCRIPTION("Atmel PWM driver");
536 MODULE_LICENSE("GPL v2");
537