1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/ptp_clock_kernel.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/xilinx_spi.h>
19 #include <net/devlink.h>
20 #include <linux/i2c.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/nvmem-consumer.h>
23 #include <linux/crc16.h>
24
25 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
26 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
27
28 #define PCI_VENDOR_ID_CELESTICA 0x18d4
29 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
30
31 static struct class timecard_class = {
32 .owner = THIS_MODULE,
33 .name = "timecard",
34 };
35
36 struct ocp_reg {
37 u32 ctrl;
38 u32 status;
39 u32 select;
40 u32 version;
41 u32 time_ns;
42 u32 time_sec;
43 u32 __pad0[2];
44 u32 adjust_ns;
45 u32 adjust_sec;
46 u32 __pad1[2];
47 u32 offset_ns;
48 u32 offset_window_ns;
49 u32 __pad2[2];
50 u32 drift_ns;
51 u32 drift_window_ns;
52 u32 __pad3[6];
53 u32 servo_offset_p;
54 u32 servo_offset_i;
55 u32 servo_drift_p;
56 u32 servo_drift_i;
57 u32 status_offset;
58 u32 status_drift;
59 };
60
61 #define OCP_CTRL_ENABLE BIT(0)
62 #define OCP_CTRL_ADJUST_TIME BIT(1)
63 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
64 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
65 #define OCP_CTRL_ADJUST_SERVO BIT(8)
66 #define OCP_CTRL_READ_TIME_REQ BIT(30)
67 #define OCP_CTRL_READ_TIME_DONE BIT(31)
68
69 #define OCP_STATUS_IN_SYNC BIT(0)
70 #define OCP_STATUS_IN_HOLDOVER BIT(1)
71
72 #define OCP_SELECT_CLK_NONE 0
73 #define OCP_SELECT_CLK_REG 0xfe
74
75 struct tod_reg {
76 u32 ctrl;
77 u32 status;
78 u32 uart_polarity;
79 u32 version;
80 u32 adj_sec;
81 u32 __pad0[3];
82 u32 uart_baud;
83 u32 __pad1[3];
84 u32 utc_status;
85 u32 leap;
86 };
87
88 #define TOD_CTRL_PROTOCOL BIT(28)
89 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
90 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
91 #define TOD_CTRL_ENABLE BIT(0)
92 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
93 #define TOD_CTRL_GNSS_SHIFT 24
94
95 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
96 #define TOD_STATUS_UTC_VALID BIT(8)
97 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
98 #define TOD_STATUS_LEAP_VALID BIT(16)
99
100 struct ts_reg {
101 u32 enable;
102 u32 error;
103 u32 polarity;
104 u32 version;
105 u32 __pad0[4];
106 u32 cable_delay;
107 u32 __pad1[3];
108 u32 intr;
109 u32 intr_mask;
110 u32 event_count;
111 u32 __pad2[1];
112 u32 ts_count;
113 u32 time_ns;
114 u32 time_sec;
115 u32 data_width;
116 u32 data;
117 };
118
119 struct pps_reg {
120 u32 ctrl;
121 u32 status;
122 u32 __pad0[6];
123 u32 cable_delay;
124 };
125
126 #define PPS_STATUS_FILTER_ERR BIT(0)
127 #define PPS_STATUS_SUPERV_ERR BIT(1)
128
129 struct img_reg {
130 u32 version;
131 };
132
133 struct gpio_reg {
134 u32 gpio1;
135 u32 __pad0;
136 u32 gpio2;
137 u32 __pad1;
138 };
139
140 struct irig_master_reg {
141 u32 ctrl;
142 u32 status;
143 u32 __pad0;
144 u32 version;
145 u32 adj_sec;
146 u32 mode_ctrl;
147 };
148
149 #define IRIG_M_CTRL_ENABLE BIT(0)
150
151 struct irig_slave_reg {
152 u32 ctrl;
153 u32 status;
154 u32 __pad0;
155 u32 version;
156 u32 adj_sec;
157 u32 mode_ctrl;
158 };
159
160 #define IRIG_S_CTRL_ENABLE BIT(0)
161
162 struct dcf_master_reg {
163 u32 ctrl;
164 u32 status;
165 u32 __pad0;
166 u32 version;
167 u32 adj_sec;
168 };
169
170 #define DCF_M_CTRL_ENABLE BIT(0)
171
172 struct dcf_slave_reg {
173 u32 ctrl;
174 u32 status;
175 u32 __pad0;
176 u32 version;
177 u32 adj_sec;
178 };
179
180 #define DCF_S_CTRL_ENABLE BIT(0)
181
182 struct signal_reg {
183 u32 enable;
184 u32 status;
185 u32 polarity;
186 u32 version;
187 u32 __pad0[4];
188 u32 cable_delay;
189 u32 __pad1[3];
190 u32 intr;
191 u32 intr_mask;
192 u32 __pad2[2];
193 u32 start_ns;
194 u32 start_sec;
195 u32 pulse_ns;
196 u32 pulse_sec;
197 u32 period_ns;
198 u32 period_sec;
199 u32 repeat_count;
200 };
201
202 struct frequency_reg {
203 u32 ctrl;
204 u32 status;
205 };
206 #define FREQ_STATUS_VALID BIT(31)
207 #define FREQ_STATUS_ERROR BIT(30)
208 #define FREQ_STATUS_OVERRUN BIT(29)
209 #define FREQ_STATUS_MASK GENMASK(23, 0)
210
211 struct ptp_ocp_flash_info {
212 const char *name;
213 int pci_offset;
214 int data_size;
215 void *data;
216 };
217
218 struct ptp_ocp_firmware_header {
219 char magic[4];
220 __be16 pci_vendor_id;
221 __be16 pci_device_id;
222 __be32 image_size;
223 __be16 hw_revision;
224 __be16 crc;
225 };
226
227 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
228
229 struct ptp_ocp_i2c_info {
230 const char *name;
231 unsigned long fixed_rate;
232 size_t data_size;
233 void *data;
234 };
235
236 struct ptp_ocp_ext_info {
237 int index;
238 irqreturn_t (*irq_fcn)(int irq, void *priv);
239 int (*enable)(void *priv, u32 req, bool enable);
240 };
241
242 struct ptp_ocp_ext_src {
243 void __iomem *mem;
244 struct ptp_ocp *bp;
245 struct ptp_ocp_ext_info *info;
246 int irq_vec;
247 };
248
249 enum ptp_ocp_sma_mode {
250 SMA_MODE_IN,
251 SMA_MODE_OUT,
252 };
253
254 struct ptp_ocp_sma_connector {
255 enum ptp_ocp_sma_mode mode;
256 bool fixed_fcn;
257 bool fixed_dir;
258 bool disabled;
259 u8 default_fcn;
260 };
261
262 struct ocp_attr_group {
263 u64 cap;
264 const struct attribute_group *group;
265 };
266
267 #define OCP_CAP_BASIC BIT(0)
268 #define OCP_CAP_SIGNAL BIT(1)
269 #define OCP_CAP_FREQ BIT(2)
270
271 struct ptp_ocp_signal {
272 ktime_t period;
273 ktime_t pulse;
274 ktime_t phase;
275 ktime_t start;
276 int duty;
277 bool polarity;
278 bool running;
279 };
280
281 #define OCP_BOARD_ID_LEN 13
282 #define OCP_SERIAL_LEN 6
283
284 struct ptp_ocp {
285 struct pci_dev *pdev;
286 struct device dev;
287 spinlock_t lock;
288 struct ocp_reg __iomem *reg;
289 struct tod_reg __iomem *tod;
290 struct pps_reg __iomem *pps_to_ext;
291 struct pps_reg __iomem *pps_to_clk;
292 struct gpio_reg __iomem *pps_select;
293 struct gpio_reg __iomem *sma_map1;
294 struct gpio_reg __iomem *sma_map2;
295 struct irig_master_reg __iomem *irig_out;
296 struct irig_slave_reg __iomem *irig_in;
297 struct dcf_master_reg __iomem *dcf_out;
298 struct dcf_slave_reg __iomem *dcf_in;
299 struct tod_reg __iomem *nmea_out;
300 struct frequency_reg __iomem *freq_in[4];
301 struct ptp_ocp_ext_src *signal_out[4];
302 struct ptp_ocp_ext_src *pps;
303 struct ptp_ocp_ext_src *ts0;
304 struct ptp_ocp_ext_src *ts1;
305 struct ptp_ocp_ext_src *ts2;
306 struct ptp_ocp_ext_src *ts3;
307 struct ptp_ocp_ext_src *ts4;
308 struct img_reg __iomem *image;
309 struct ptp_clock *ptp;
310 struct ptp_clock_info ptp_info;
311 struct platform_device *i2c_ctrl;
312 struct platform_device *spi_flash;
313 struct clk_hw *i2c_clk;
314 struct timer_list watchdog;
315 const struct attribute_group **attr_group;
316 const struct ptp_ocp_eeprom_map *eeprom_map;
317 struct dentry *debug_root;
318 time64_t gnss_lost;
319 int id;
320 int n_irqs;
321 int gnss_port;
322 int gnss2_port;
323 int mac_port; /* miniature atomic clock */
324 int nmea_port;
325 bool fw_loader;
326 u8 fw_tag;
327 u16 fw_version;
328 u8 board_id[OCP_BOARD_ID_LEN];
329 u8 serial[OCP_SERIAL_LEN];
330 bool has_eeprom_data;
331 u32 pps_req_map;
332 int flash_start;
333 u32 utc_tai_offset;
334 u32 ts_window_adjust;
335 u64 fw_cap;
336 struct ptp_ocp_signal signal[4];
337 struct ptp_ocp_sma_connector sma[4];
338 const struct ocp_sma_op *sma_op;
339 };
340
341 #define OCP_REQ_TIMESTAMP BIT(0)
342 #define OCP_REQ_PPS BIT(1)
343
344 struct ocp_resource {
345 unsigned long offset;
346 int size;
347 int irq_vec;
348 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
349 void *extra;
350 unsigned long bp_offset;
351 const char * const name;
352 };
353
354 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
355 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
356 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
357 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
358 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
359 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
360 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
361 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
362 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
363 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
364 struct ptp_perout_request *req);
365 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
366 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
367
368 static const struct ocp_attr_group fb_timecard_groups[];
369
370 struct ptp_ocp_eeprom_map {
371 u16 off;
372 u16 len;
373 u32 bp_offset;
374 const void * const tag;
375 };
376
377 #define EEPROM_ENTRY(addr, member) \
378 .off = addr, \
379 .len = sizeof_field(struct ptp_ocp, member), \
380 .bp_offset = offsetof(struct ptp_ocp, member)
381
382 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
383 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
384 })
385
386 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
387 { EEPROM_ENTRY(0x43, board_id) },
388 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
389 { }
390 };
391
392 #define bp_assign_entry(bp, res, val) ({ \
393 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
394 *(typeof(val) *)addr = val; \
395 })
396
397 #define OCP_RES_LOCATION(member) \
398 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
399
400 #define OCP_MEM_RESOURCE(member) \
401 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
402
403 #define OCP_SERIAL_RESOURCE(member) \
404 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
405
406 #define OCP_I2C_RESOURCE(member) \
407 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
408
409 #define OCP_SPI_RESOURCE(member) \
410 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
411
412 #define OCP_EXT_RESOURCE(member) \
413 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
414
415 /* This is the MSI vector mapping used.
416 * 0: PPS (TS5)
417 * 1: TS0
418 * 2: TS1
419 * 3: GNSS1
420 * 4: GNSS2
421 * 5: MAC
422 * 6: TS2
423 * 7: I2C controller
424 * 8: HWICAP (notused)
425 * 9: SPI Flash
426 * 10: NMEA
427 * 11: Signal Generator 1
428 * 12: Signal Generator 2
429 * 13: Signal Generator 3
430 * 14: Signal Generator 4
431 * 15: TS3
432 * 16: TS4
433 */
434
435 static struct ocp_resource ocp_fb_resource[] = {
436 {
437 OCP_MEM_RESOURCE(reg),
438 .offset = 0x01000000, .size = 0x10000,
439 },
440 {
441 OCP_EXT_RESOURCE(ts0),
442 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
443 .extra = &(struct ptp_ocp_ext_info) {
444 .index = 0,
445 .irq_fcn = ptp_ocp_ts_irq,
446 .enable = ptp_ocp_ts_enable,
447 },
448 },
449 {
450 OCP_EXT_RESOURCE(ts1),
451 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
452 .extra = &(struct ptp_ocp_ext_info) {
453 .index = 1,
454 .irq_fcn = ptp_ocp_ts_irq,
455 .enable = ptp_ocp_ts_enable,
456 },
457 },
458 {
459 OCP_EXT_RESOURCE(ts2),
460 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
461 .extra = &(struct ptp_ocp_ext_info) {
462 .index = 2,
463 .irq_fcn = ptp_ocp_ts_irq,
464 .enable = ptp_ocp_ts_enable,
465 },
466 },
467 {
468 OCP_EXT_RESOURCE(ts3),
469 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
470 .extra = &(struct ptp_ocp_ext_info) {
471 .index = 3,
472 .irq_fcn = ptp_ocp_ts_irq,
473 .enable = ptp_ocp_ts_enable,
474 },
475 },
476 {
477 OCP_EXT_RESOURCE(ts4),
478 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
479 .extra = &(struct ptp_ocp_ext_info) {
480 .index = 4,
481 .irq_fcn = ptp_ocp_ts_irq,
482 .enable = ptp_ocp_ts_enable,
483 },
484 },
485 /* Timestamp for PHC and/or PPS generator */
486 {
487 OCP_EXT_RESOURCE(pps),
488 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
489 .extra = &(struct ptp_ocp_ext_info) {
490 .index = 5,
491 .irq_fcn = ptp_ocp_ts_irq,
492 .enable = ptp_ocp_ts_enable,
493 },
494 },
495 {
496 OCP_EXT_RESOURCE(signal_out[0]),
497 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
498 .extra = &(struct ptp_ocp_ext_info) {
499 .index = 1,
500 .irq_fcn = ptp_ocp_signal_irq,
501 .enable = ptp_ocp_signal_enable,
502 },
503 },
504 {
505 OCP_EXT_RESOURCE(signal_out[1]),
506 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
507 .extra = &(struct ptp_ocp_ext_info) {
508 .index = 2,
509 .irq_fcn = ptp_ocp_signal_irq,
510 .enable = ptp_ocp_signal_enable,
511 },
512 },
513 {
514 OCP_EXT_RESOURCE(signal_out[2]),
515 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
516 .extra = &(struct ptp_ocp_ext_info) {
517 .index = 3,
518 .irq_fcn = ptp_ocp_signal_irq,
519 .enable = ptp_ocp_signal_enable,
520 },
521 },
522 {
523 OCP_EXT_RESOURCE(signal_out[3]),
524 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
525 .extra = &(struct ptp_ocp_ext_info) {
526 .index = 4,
527 .irq_fcn = ptp_ocp_signal_irq,
528 .enable = ptp_ocp_signal_enable,
529 },
530 },
531 {
532 OCP_MEM_RESOURCE(pps_to_ext),
533 .offset = 0x01030000, .size = 0x10000,
534 },
535 {
536 OCP_MEM_RESOURCE(pps_to_clk),
537 .offset = 0x01040000, .size = 0x10000,
538 },
539 {
540 OCP_MEM_RESOURCE(tod),
541 .offset = 0x01050000, .size = 0x10000,
542 },
543 {
544 OCP_MEM_RESOURCE(irig_in),
545 .offset = 0x01070000, .size = 0x10000,
546 },
547 {
548 OCP_MEM_RESOURCE(irig_out),
549 .offset = 0x01080000, .size = 0x10000,
550 },
551 {
552 OCP_MEM_RESOURCE(dcf_in),
553 .offset = 0x01090000, .size = 0x10000,
554 },
555 {
556 OCP_MEM_RESOURCE(dcf_out),
557 .offset = 0x010A0000, .size = 0x10000,
558 },
559 {
560 OCP_MEM_RESOURCE(nmea_out),
561 .offset = 0x010B0000, .size = 0x10000,
562 },
563 {
564 OCP_MEM_RESOURCE(image),
565 .offset = 0x00020000, .size = 0x1000,
566 },
567 {
568 OCP_MEM_RESOURCE(pps_select),
569 .offset = 0x00130000, .size = 0x1000,
570 },
571 {
572 OCP_MEM_RESOURCE(sma_map1),
573 .offset = 0x00140000, .size = 0x1000,
574 },
575 {
576 OCP_MEM_RESOURCE(sma_map2),
577 .offset = 0x00220000, .size = 0x1000,
578 },
579 {
580 OCP_I2C_RESOURCE(i2c_ctrl),
581 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
582 .extra = &(struct ptp_ocp_i2c_info) {
583 .name = "xiic-i2c",
584 .fixed_rate = 50000000,
585 .data_size = sizeof(struct xiic_i2c_platform_data),
586 .data = &(struct xiic_i2c_platform_data) {
587 .num_devices = 2,
588 .devices = (struct i2c_board_info[]) {
589 { I2C_BOARD_INFO("24c02", 0x50) },
590 { I2C_BOARD_INFO("24mac402", 0x58),
591 .platform_data = "mac" },
592 },
593 },
594 },
595 },
596 {
597 OCP_SERIAL_RESOURCE(gnss_port),
598 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
599 },
600 {
601 OCP_SERIAL_RESOURCE(gnss2_port),
602 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
603 },
604 {
605 OCP_SERIAL_RESOURCE(mac_port),
606 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
607 },
608 {
609 OCP_SERIAL_RESOURCE(nmea_port),
610 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
611 },
612 {
613 OCP_SPI_RESOURCE(spi_flash),
614 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
615 .extra = &(struct ptp_ocp_flash_info) {
616 .name = "xilinx_spi", .pci_offset = 0,
617 .data_size = sizeof(struct xspi_platform_data),
618 .data = &(struct xspi_platform_data) {
619 .num_chipselect = 1,
620 .bits_per_word = 8,
621 .num_devices = 1,
622 .devices = &(struct spi_board_info) {
623 .modalias = "spi-nor",
624 },
625 },
626 },
627 },
628 {
629 OCP_MEM_RESOURCE(freq_in[0]),
630 .offset = 0x01200000, .size = 0x10000,
631 },
632 {
633 OCP_MEM_RESOURCE(freq_in[1]),
634 .offset = 0x01210000, .size = 0x10000,
635 },
636 {
637 OCP_MEM_RESOURCE(freq_in[2]),
638 .offset = 0x01220000, .size = 0x10000,
639 },
640 {
641 OCP_MEM_RESOURCE(freq_in[3]),
642 .offset = 0x01230000, .size = 0x10000,
643 },
644 {
645 .setup = ptp_ocp_fb_board_init,
646 },
647 { }
648 };
649
650 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
651 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
652 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
653 { }
654 };
655 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
656
657 static DEFINE_MUTEX(ptp_ocp_lock);
658 static DEFINE_IDR(ptp_ocp_idr);
659
660 struct ocp_selector {
661 const char *name;
662 int value;
663 };
664
665 static const struct ocp_selector ptp_ocp_clock[] = {
666 { .name = "NONE", .value = 0 },
667 { .name = "TOD", .value = 1 },
668 { .name = "IRIG", .value = 2 },
669 { .name = "PPS", .value = 3 },
670 { .name = "PTP", .value = 4 },
671 { .name = "RTC", .value = 5 },
672 { .name = "DCF", .value = 6 },
673 { .name = "REGS", .value = 0xfe },
674 { .name = "EXT", .value = 0xff },
675 { }
676 };
677
678 #define SMA_DISABLE BIT(16)
679 #define SMA_ENABLE BIT(15)
680 #define SMA_SELECT_MASK GENMASK(14, 0)
681
682 static const struct ocp_selector ptp_ocp_sma_in[] = {
683 { .name = "10Mhz", .value = 0x0000 },
684 { .name = "PPS1", .value = 0x0001 },
685 { .name = "PPS2", .value = 0x0002 },
686 { .name = "TS1", .value = 0x0004 },
687 { .name = "TS2", .value = 0x0008 },
688 { .name = "IRIG", .value = 0x0010 },
689 { .name = "DCF", .value = 0x0020 },
690 { .name = "TS3", .value = 0x0040 },
691 { .name = "TS4", .value = 0x0080 },
692 { .name = "FREQ1", .value = 0x0100 },
693 { .name = "FREQ2", .value = 0x0200 },
694 { .name = "FREQ3", .value = 0x0400 },
695 { .name = "FREQ4", .value = 0x0800 },
696 { .name = "None", .value = SMA_DISABLE },
697 { }
698 };
699
700 static const struct ocp_selector ptp_ocp_sma_out[] = {
701 { .name = "10Mhz", .value = 0x0000 },
702 { .name = "PHC", .value = 0x0001 },
703 { .name = "MAC", .value = 0x0002 },
704 { .name = "GNSS1", .value = 0x0004 },
705 { .name = "GNSS2", .value = 0x0008 },
706 { .name = "IRIG", .value = 0x0010 },
707 { .name = "DCF", .value = 0x0020 },
708 { .name = "GEN1", .value = 0x0040 },
709 { .name = "GEN2", .value = 0x0080 },
710 { .name = "GEN3", .value = 0x0100 },
711 { .name = "GEN4", .value = 0x0200 },
712 { .name = "GND", .value = 0x2000 },
713 { .name = "VCC", .value = 0x4000 },
714 { }
715 };
716
717 struct ocp_sma_op {
718 const struct ocp_selector *tbl[2];
719 void (*init)(struct ptp_ocp *bp);
720 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
721 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
722 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
723 };
724
725 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)726 ptp_ocp_sma_init(struct ptp_ocp *bp)
727 {
728 return bp->sma_op->init(bp);
729 }
730
731 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)732 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
733 {
734 return bp->sma_op->get(bp, sma_nr);
735 }
736
737 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)738 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
739 {
740 return bp->sma_op->set_inputs(bp, sma_nr, val);
741 }
742
743 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)744 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
745 {
746 return bp->sma_op->set_output(bp, sma_nr, val);
747 }
748
749 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)750 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
751 {
752 int i;
753
754 for (i = 0; tbl[i].name; i++)
755 if (tbl[i].value == val)
756 return tbl[i].name;
757 return NULL;
758 }
759
760 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)761 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
762 {
763 const char *select;
764 int i;
765
766 for (i = 0; tbl[i].name; i++) {
767 select = tbl[i].name;
768 if (!strncasecmp(name, select, strlen(select)))
769 return tbl[i].value;
770 }
771 return -EINVAL;
772 }
773
774 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)775 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
776 {
777 ssize_t count;
778 int i;
779
780 count = 0;
781 for (i = 0; tbl[i].name; i++)
782 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
783 if (count)
784 count--;
785 count += sysfs_emit_at(buf, count, "\n");
786 return count;
787 }
788
789 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)790 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
791 struct ptp_system_timestamp *sts)
792 {
793 u32 ctrl, time_sec, time_ns;
794 int i;
795
796 ptp_read_system_prets(sts);
797
798 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
799 iowrite32(ctrl, &bp->reg->ctrl);
800
801 for (i = 0; i < 100; i++) {
802 ctrl = ioread32(&bp->reg->ctrl);
803 if (ctrl & OCP_CTRL_READ_TIME_DONE)
804 break;
805 }
806 ptp_read_system_postts(sts);
807
808 if (sts && bp->ts_window_adjust) {
809 s64 ns = timespec64_to_ns(&sts->post_ts);
810
811 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
812 }
813
814 time_ns = ioread32(&bp->reg->time_ns);
815 time_sec = ioread32(&bp->reg->time_sec);
816
817 ts->tv_sec = time_sec;
818 ts->tv_nsec = time_ns;
819
820 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
821 }
822
823 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)824 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
825 struct ptp_system_timestamp *sts)
826 {
827 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
828 unsigned long flags;
829 int err;
830
831 spin_lock_irqsave(&bp->lock, flags);
832 err = __ptp_ocp_gettime_locked(bp, ts, sts);
833 spin_unlock_irqrestore(&bp->lock, flags);
834
835 return err;
836 }
837
838 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)839 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
840 {
841 u32 ctrl, time_sec, time_ns;
842 u32 select;
843
844 time_ns = ts->tv_nsec;
845 time_sec = ts->tv_sec;
846
847 select = ioread32(&bp->reg->select);
848 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
849
850 iowrite32(time_ns, &bp->reg->adjust_ns);
851 iowrite32(time_sec, &bp->reg->adjust_sec);
852
853 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
854 iowrite32(ctrl, &bp->reg->ctrl);
855
856 /* restore clock selection */
857 iowrite32(select >> 16, &bp->reg->select);
858 }
859
860 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)861 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
862 {
863 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
864 unsigned long flags;
865
866 spin_lock_irqsave(&bp->lock, flags);
867 __ptp_ocp_settime_locked(bp, ts);
868 spin_unlock_irqrestore(&bp->lock, flags);
869
870 return 0;
871 }
872
873 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)874 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
875 {
876 u32 select, ctrl;
877
878 select = ioread32(&bp->reg->select);
879 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
880
881 iowrite32(adj_val, &bp->reg->offset_ns);
882 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
883
884 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
885 iowrite32(ctrl, &bp->reg->ctrl);
886
887 /* restore clock selection */
888 iowrite32(select >> 16, &bp->reg->select);
889 }
890
891 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)892 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
893 {
894 struct timespec64 ts;
895 unsigned long flags;
896 int err;
897
898 spin_lock_irqsave(&bp->lock, flags);
899 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
900 if (likely(!err)) {
901 set_normalized_timespec64(&ts, ts.tv_sec,
902 ts.tv_nsec + delta_ns);
903 __ptp_ocp_settime_locked(bp, &ts);
904 }
905 spin_unlock_irqrestore(&bp->lock, flags);
906 }
907
908 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)909 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
910 {
911 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
912 unsigned long flags;
913 u32 adj_ns, sign;
914
915 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
916 ptp_ocp_adjtime_coarse(bp, delta_ns);
917 return 0;
918 }
919
920 sign = delta_ns < 0 ? BIT(31) : 0;
921 adj_ns = sign ? -delta_ns : delta_ns;
922
923 spin_lock_irqsave(&bp->lock, flags);
924 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
925 spin_unlock_irqrestore(&bp->lock, flags);
926
927 return 0;
928 }
929
930 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)931 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
932 {
933 if (scaled_ppm == 0)
934 return 0;
935
936 return -EOPNOTSUPP;
937 }
938
939 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)940 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
941 {
942 return -EOPNOTSUPP;
943 }
944
945 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)946 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
947 int on)
948 {
949 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
950 struct ptp_ocp_ext_src *ext = NULL;
951 u32 req;
952 int err;
953
954 switch (rq->type) {
955 case PTP_CLK_REQ_EXTTS:
956 req = OCP_REQ_TIMESTAMP;
957 switch (rq->extts.index) {
958 case 0:
959 ext = bp->ts0;
960 break;
961 case 1:
962 ext = bp->ts1;
963 break;
964 case 2:
965 ext = bp->ts2;
966 break;
967 case 3:
968 ext = bp->ts3;
969 break;
970 case 4:
971 ext = bp->ts4;
972 break;
973 case 5:
974 ext = bp->pps;
975 break;
976 }
977 break;
978 case PTP_CLK_REQ_PPS:
979 req = OCP_REQ_PPS;
980 ext = bp->pps;
981 break;
982 case PTP_CLK_REQ_PEROUT:
983 switch (rq->perout.index) {
984 case 0:
985 /* This is a request for 1PPS on an output SMA.
986 * Allow, but assume manual configuration.
987 */
988 if (on && (rq->perout.period.sec != 1 ||
989 rq->perout.period.nsec != 0))
990 return -EINVAL;
991 return 0;
992 case 1:
993 case 2:
994 case 3:
995 case 4:
996 req = rq->perout.index - 1;
997 ext = bp->signal_out[req];
998 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
999 if (err)
1000 return err;
1001 break;
1002 }
1003 break;
1004 default:
1005 return -EOPNOTSUPP;
1006 }
1007
1008 err = -ENXIO;
1009 if (ext)
1010 err = ext->info->enable(ext, req, on);
1011
1012 return err;
1013 }
1014
1015 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1016 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1017 enum ptp_pin_function func, unsigned chan)
1018 {
1019 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1020 char buf[16];
1021
1022 switch (func) {
1023 case PTP_PF_NONE:
1024 snprintf(buf, sizeof(buf), "IN: None");
1025 break;
1026 case PTP_PF_EXTTS:
1027 /* Allow timestamps, but require sysfs configuration. */
1028 return 0;
1029 case PTP_PF_PEROUT:
1030 /* channel 0 is 1PPS from PHC.
1031 * channels 1..4 are the frequency generators.
1032 */
1033 if (chan)
1034 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1035 else
1036 snprintf(buf, sizeof(buf), "OUT: PHC");
1037 break;
1038 default:
1039 return -EOPNOTSUPP;
1040 }
1041
1042 return ptp_ocp_sma_store(bp, buf, pin + 1);
1043 }
1044
1045 static const struct ptp_clock_info ptp_ocp_clock_info = {
1046 .owner = THIS_MODULE,
1047 .name = KBUILD_MODNAME,
1048 .max_adj = 100000000,
1049 .gettimex64 = ptp_ocp_gettimex,
1050 .settime64 = ptp_ocp_settime,
1051 .adjtime = ptp_ocp_adjtime,
1052 .adjfine = ptp_ocp_null_adjfine,
1053 .adjphase = ptp_ocp_null_adjphase,
1054 .enable = ptp_ocp_enable,
1055 .verify = ptp_ocp_verify,
1056 .pps = true,
1057 .n_ext_ts = 6,
1058 .n_per_out = 5,
1059 };
1060
1061 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1062 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1063 {
1064 u32 ctrl, select;
1065
1066 select = ioread32(&bp->reg->select);
1067 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068
1069 iowrite32(0, &bp->reg->drift_ns);
1070
1071 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1072 iowrite32(ctrl, &bp->reg->ctrl);
1073
1074 /* restore clock selection */
1075 iowrite32(select >> 16, &bp->reg->select);
1076 }
1077
1078 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1079 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1080 {
1081 unsigned long flags;
1082
1083 spin_lock_irqsave(&bp->lock, flags);
1084
1085 bp->utc_tai_offset = val;
1086
1087 if (bp->irig_out)
1088 iowrite32(val, &bp->irig_out->adj_sec);
1089 if (bp->dcf_out)
1090 iowrite32(val, &bp->dcf_out->adj_sec);
1091 if (bp->nmea_out)
1092 iowrite32(val, &bp->nmea_out->adj_sec);
1093
1094 spin_unlock_irqrestore(&bp->lock, flags);
1095 }
1096
1097 static void
ptp_ocp_watchdog(struct timer_list * t)1098 ptp_ocp_watchdog(struct timer_list *t)
1099 {
1100 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1101 unsigned long flags;
1102 u32 status, utc_offset;
1103
1104 status = ioread32(&bp->pps_to_clk->status);
1105
1106 if (status & PPS_STATUS_SUPERV_ERR) {
1107 iowrite32(status, &bp->pps_to_clk->status);
1108 if (!bp->gnss_lost) {
1109 spin_lock_irqsave(&bp->lock, flags);
1110 __ptp_ocp_clear_drift_locked(bp);
1111 spin_unlock_irqrestore(&bp->lock, flags);
1112 bp->gnss_lost = ktime_get_real_seconds();
1113 }
1114
1115 } else if (bp->gnss_lost) {
1116 bp->gnss_lost = 0;
1117 }
1118
1119 /* if GNSS provides correct data we can rely on
1120 * it to get leap second information
1121 */
1122 if (bp->tod) {
1123 status = ioread32(&bp->tod->utc_status);
1124 utc_offset = status & TOD_STATUS_UTC_MASK;
1125 if (status & TOD_STATUS_UTC_VALID &&
1126 utc_offset != bp->utc_tai_offset)
1127 ptp_ocp_utc_distribute(bp, utc_offset);
1128 }
1129
1130 mod_timer(&bp->watchdog, jiffies + HZ);
1131 }
1132
1133 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1134 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1135 {
1136 ktime_t start, end;
1137 ktime_t delay;
1138 u32 ctrl;
1139
1140 ctrl = ioread32(&bp->reg->ctrl);
1141 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1142
1143 iowrite32(ctrl, &bp->reg->ctrl);
1144
1145 start = ktime_get_ns();
1146
1147 ctrl = ioread32(&bp->reg->ctrl);
1148
1149 end = ktime_get_ns();
1150
1151 delay = end - start;
1152 bp->ts_window_adjust = (delay >> 5) * 3;
1153 }
1154
1155 static int
ptp_ocp_init_clock(struct ptp_ocp * bp)1156 ptp_ocp_init_clock(struct ptp_ocp *bp)
1157 {
1158 struct timespec64 ts;
1159 bool sync;
1160 u32 ctrl;
1161
1162 ctrl = OCP_CTRL_ENABLE;
1163 iowrite32(ctrl, &bp->reg->ctrl);
1164
1165 /* NO DRIFT Correction */
1166 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1167 iowrite32(0x2000, &bp->reg->servo_offset_p);
1168 iowrite32(0x1000, &bp->reg->servo_offset_i);
1169 iowrite32(0, &bp->reg->servo_drift_p);
1170 iowrite32(0, &bp->reg->servo_drift_i);
1171
1172 /* latch servo values */
1173 ctrl |= OCP_CTRL_ADJUST_SERVO;
1174 iowrite32(ctrl, &bp->reg->ctrl);
1175
1176 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1177 dev_err(&bp->pdev->dev, "clock not enabled\n");
1178 return -ENODEV;
1179 }
1180
1181 ptp_ocp_estimate_pci_timing(bp);
1182
1183 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1184 if (!sync) {
1185 ktime_get_clocktai_ts64(&ts);
1186 ptp_ocp_settime(&bp->ptp_info, &ts);
1187 }
1188
1189 /* If there is a clock supervisor, then enable the watchdog */
1190 if (bp->pps_to_clk) {
1191 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1192 mod_timer(&bp->watchdog, jiffies + HZ);
1193 }
1194
1195 return 0;
1196 }
1197
1198 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1199 ptp_ocp_tod_init(struct ptp_ocp *bp)
1200 {
1201 u32 ctrl, reg;
1202
1203 ctrl = ioread32(&bp->tod->ctrl);
1204 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1205 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1206 iowrite32(ctrl, &bp->tod->ctrl);
1207
1208 reg = ioread32(&bp->tod->utc_status);
1209 if (reg & TOD_STATUS_UTC_VALID)
1210 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1211 }
1212
1213 static const char *
ptp_ocp_tod_proto_name(const int idx)1214 ptp_ocp_tod_proto_name(const int idx)
1215 {
1216 static const char * const proto_name[] = {
1217 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1218 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1219 };
1220 return proto_name[idx];
1221 }
1222
1223 static const char *
ptp_ocp_tod_gnss_name(int idx)1224 ptp_ocp_tod_gnss_name(int idx)
1225 {
1226 static const char * const gnss_name[] = {
1227 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1228 "Unknown"
1229 };
1230 if (idx >= ARRAY_SIZE(gnss_name))
1231 idx = ARRAY_SIZE(gnss_name) - 1;
1232 return gnss_name[idx];
1233 }
1234
1235 struct ptp_ocp_nvmem_match_info {
1236 struct ptp_ocp *bp;
1237 const void * const tag;
1238 };
1239
1240 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1241 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1242 {
1243 const struct ptp_ocp_nvmem_match_info *info = data;
1244
1245 dev = dev->parent;
1246 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1247 return 0;
1248
1249 while ((dev = dev->parent))
1250 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1251 return info->bp == dev_get_drvdata(dev);
1252 return 0;
1253 }
1254
1255 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1256 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1257 {
1258 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1259
1260 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1261 }
1262
1263 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1264 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1265 {
1266 if (!IS_ERR_OR_NULL(*nvmemp))
1267 nvmem_device_put(*nvmemp);
1268 *nvmemp = NULL;
1269 }
1270
1271 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1272 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1273 {
1274 const struct ptp_ocp_eeprom_map *map;
1275 struct nvmem_device *nvmem;
1276 const void *tag;
1277 int ret;
1278
1279 if (!bp->i2c_ctrl)
1280 return;
1281
1282 tag = NULL;
1283 nvmem = NULL;
1284
1285 for (map = bp->eeprom_map; map->len; map++) {
1286 if (map->tag != tag) {
1287 tag = map->tag;
1288 ptp_ocp_nvmem_device_put(&nvmem);
1289 }
1290 if (!nvmem) {
1291 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1292 if (IS_ERR(nvmem)) {
1293 ret = PTR_ERR(nvmem);
1294 goto fail;
1295 }
1296 }
1297 ret = nvmem_device_read(nvmem, map->off, map->len,
1298 BP_MAP_ENTRY_ADDR(bp, map));
1299 if (ret != map->len)
1300 goto fail;
1301 }
1302
1303 bp->has_eeprom_data = true;
1304
1305 out:
1306 ptp_ocp_nvmem_device_put(&nvmem);
1307 return;
1308
1309 fail:
1310 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1311 goto out;
1312 }
1313
1314 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1315 ptp_ocp_find_flash(struct ptp_ocp *bp)
1316 {
1317 struct device *dev, *last;
1318
1319 last = NULL;
1320 dev = &bp->spi_flash->dev;
1321
1322 while ((dev = device_find_any_child(dev))) {
1323 if (!strcmp("mtd", dev_bus_name(dev)))
1324 break;
1325 put_device(last);
1326 last = dev;
1327 }
1328 put_device(last);
1329
1330 return dev;
1331 }
1332
1333 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1334 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1335 const u8 **data, size_t *size)
1336 {
1337 struct ptp_ocp *bp = devlink_priv(devlink);
1338 const struct ptp_ocp_firmware_header *hdr;
1339 size_t offset, length;
1340 u16 crc;
1341
1342 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1343 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1344 devlink_flash_update_status_notify(devlink,
1345 "No firmware header found, flashing raw image",
1346 NULL, 0, 0);
1347 offset = 0;
1348 length = fw->size;
1349 goto out;
1350 }
1351
1352 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1353 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1354 devlink_flash_update_status_notify(devlink,
1355 "Firmware image compatibility check failed",
1356 NULL, 0, 0);
1357 return -EINVAL;
1358 }
1359
1360 offset = sizeof(*hdr);
1361 length = be32_to_cpu(hdr->image_size);
1362 if (length != (fw->size - offset)) {
1363 devlink_flash_update_status_notify(devlink,
1364 "Firmware image size check failed",
1365 NULL, 0, 0);
1366 return -EINVAL;
1367 }
1368
1369 crc = crc16(0xffff, &fw->data[offset], length);
1370 if (be16_to_cpu(hdr->crc) != crc) {
1371 devlink_flash_update_status_notify(devlink,
1372 "Firmware image CRC check failed",
1373 NULL, 0, 0);
1374 return -EINVAL;
1375 }
1376
1377 out:
1378 *data = &fw->data[offset];
1379 *size = length;
1380
1381 return 0;
1382 }
1383
1384 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1385 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1386 const struct firmware *fw)
1387 {
1388 struct mtd_info *mtd = dev_get_drvdata(dev);
1389 struct ptp_ocp *bp = devlink_priv(devlink);
1390 size_t off, len, size, resid, wrote;
1391 struct erase_info erase;
1392 size_t base, blksz;
1393 const u8 *data;
1394 int err;
1395
1396 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1397 if (err)
1398 goto out;
1399
1400 off = 0;
1401 base = bp->flash_start;
1402 blksz = 4096;
1403 resid = size;
1404
1405 while (resid) {
1406 devlink_flash_update_status_notify(devlink, "Flashing",
1407 NULL, off, size);
1408
1409 len = min_t(size_t, resid, blksz);
1410 erase.addr = base + off;
1411 erase.len = blksz;
1412
1413 err = mtd_erase(mtd, &erase);
1414 if (err)
1415 goto out;
1416
1417 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1418 if (err)
1419 goto out;
1420
1421 off += blksz;
1422 resid -= len;
1423 }
1424 out:
1425 return err;
1426 }
1427
1428 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1429 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1430 struct devlink_flash_update_params *params,
1431 struct netlink_ext_ack *extack)
1432 {
1433 struct ptp_ocp *bp = devlink_priv(devlink);
1434 struct device *dev;
1435 const char *msg;
1436 int err;
1437
1438 dev = ptp_ocp_find_flash(bp);
1439 if (!dev) {
1440 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1441 return -ENODEV;
1442 }
1443
1444 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1445 NULL, 0, 0);
1446
1447 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1448
1449 msg = err ? "Flash error" : "Flash complete";
1450 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1451
1452 put_device(dev);
1453 return err;
1454 }
1455
1456 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1457 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1458 struct netlink_ext_ack *extack)
1459 {
1460 struct ptp_ocp *bp = devlink_priv(devlink);
1461 const char *fw_image;
1462 char buf[32];
1463 int err;
1464
1465 err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
1466 if (err)
1467 return err;
1468
1469 fw_image = bp->fw_loader ? "loader" : "fw";
1470 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1471 err = devlink_info_version_running_put(req, fw_image, buf);
1472 if (err)
1473 return err;
1474
1475 if (!bp->has_eeprom_data) {
1476 ptp_ocp_read_eeprom(bp);
1477 if (!bp->has_eeprom_data)
1478 return 0;
1479 }
1480
1481 sprintf(buf, "%pM", bp->serial);
1482 err = devlink_info_serial_number_put(req, buf);
1483 if (err)
1484 return err;
1485
1486 err = devlink_info_version_fixed_put(req,
1487 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1488 bp->board_id);
1489 if (err)
1490 return err;
1491
1492 return 0;
1493 }
1494
1495 static const struct devlink_ops ptp_ocp_devlink_ops = {
1496 .flash_update = ptp_ocp_devlink_flash_update,
1497 .info_get = ptp_ocp_devlink_info_get,
1498 };
1499
1500 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1501 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1502 {
1503 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1504
1505 return devm_ioremap_resource(&bp->pdev->dev, &res);
1506 }
1507
1508 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1509 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1510 {
1511 resource_size_t start;
1512
1513 start = pci_resource_start(bp->pdev, 0) + r->offset;
1514 return __ptp_ocp_get_mem(bp, start, r->size);
1515 }
1516
1517 static void
ptp_ocp_set_irq_resource(struct resource * res,int irq)1518 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1519 {
1520 struct resource r = DEFINE_RES_IRQ(irq);
1521 *res = r;
1522 }
1523
1524 static void
ptp_ocp_set_mem_resource(struct resource * res,resource_size_t start,int size)1525 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1526 {
1527 struct resource r = DEFINE_RES_MEM(start, size);
1528 *res = r;
1529 }
1530
1531 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1532 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1533 {
1534 struct ptp_ocp_flash_info *info;
1535 struct pci_dev *pdev = bp->pdev;
1536 struct platform_device *p;
1537 struct resource res[2];
1538 resource_size_t start;
1539 int id;
1540
1541 start = pci_resource_start(pdev, 0) + r->offset;
1542 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1543 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1544
1545 info = r->extra;
1546 id = pci_dev_id(pdev) << 1;
1547 id += info->pci_offset;
1548
1549 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1550 res, 2, info->data,
1551 info->data_size);
1552 if (IS_ERR(p))
1553 return PTR_ERR(p);
1554
1555 bp_assign_entry(bp, r, p);
1556
1557 return 0;
1558 }
1559
1560 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1561 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1562 {
1563 struct ptp_ocp_i2c_info *info;
1564 struct resource res[2];
1565 resource_size_t start;
1566
1567 info = r->extra;
1568 start = pci_resource_start(pdev, 0) + r->offset;
1569 ptp_ocp_set_mem_resource(&res[0], start, r->size);
1570 ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1571
1572 return platform_device_register_resndata(&pdev->dev, info->name,
1573 id, res, 2,
1574 info->data, info->data_size);
1575 }
1576
1577 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1578 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1579 {
1580 struct pci_dev *pdev = bp->pdev;
1581 struct ptp_ocp_i2c_info *info;
1582 struct platform_device *p;
1583 struct clk_hw *clk;
1584 char buf[32];
1585 int id;
1586
1587 info = r->extra;
1588 id = pci_dev_id(bp->pdev);
1589
1590 sprintf(buf, "AXI.%d", id);
1591 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1592 info->fixed_rate);
1593 if (IS_ERR(clk))
1594 return PTR_ERR(clk);
1595 bp->i2c_clk = clk;
1596
1597 sprintf(buf, "%s.%d", info->name, id);
1598 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1599 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1600 if (IS_ERR(p))
1601 return PTR_ERR(p);
1602
1603 bp_assign_entry(bp, r, p);
1604
1605 return 0;
1606 }
1607
1608 /* The expectation is that this is triggered only on error. */
1609 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)1610 ptp_ocp_signal_irq(int irq, void *priv)
1611 {
1612 struct ptp_ocp_ext_src *ext = priv;
1613 struct signal_reg __iomem *reg = ext->mem;
1614 struct ptp_ocp *bp = ext->bp;
1615 u32 enable, status;
1616 int gen;
1617
1618 gen = ext->info->index - 1;
1619
1620 enable = ioread32(®->enable);
1621 status = ioread32(®->status);
1622
1623 /* disable generator on error */
1624 if (status || !enable) {
1625 iowrite32(0, ®->intr_mask);
1626 iowrite32(0, ®->enable);
1627 bp->signal[gen].running = false;
1628 }
1629
1630 iowrite32(0, ®->intr); /* ack interrupt */
1631
1632 return IRQ_HANDLED;
1633 }
1634
1635 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)1636 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1637 {
1638 struct ptp_system_timestamp sts;
1639 struct timespec64 ts;
1640 ktime_t start_ns;
1641 int err;
1642
1643 if (!s->period)
1644 return 0;
1645
1646 if (!s->pulse)
1647 s->pulse = ktime_divns(s->period * s->duty, 100);
1648
1649 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1650 if (err)
1651 return err;
1652
1653 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1654 if (!s->start) {
1655 /* roundup() does not work on 32-bit systems */
1656 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1657 s->start = ktime_add(s->start, s->phase);
1658 }
1659
1660 if (s->duty < 1 || s->duty > 99)
1661 return -EINVAL;
1662
1663 if (s->pulse < 1 || s->pulse > s->period)
1664 return -EINVAL;
1665
1666 if (s->start < start_ns)
1667 return -EINVAL;
1668
1669 bp->signal[gen] = *s;
1670
1671 return 0;
1672 }
1673
1674 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)1675 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1676 struct ptp_perout_request *req)
1677 {
1678 struct ptp_ocp_signal s = { };
1679
1680 s.polarity = bp->signal[gen].polarity;
1681 s.period = ktime_set(req->period.sec, req->period.nsec);
1682 if (!s.period)
1683 return 0;
1684
1685 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1686 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1687 s.duty = ktime_divns(s.pulse * 100, s.period);
1688 }
1689
1690 if (req->flags & PTP_PEROUT_PHASE)
1691 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1692 else
1693 s.start = ktime_set(req->start.sec, req->start.nsec);
1694
1695 return ptp_ocp_signal_set(bp, gen, &s);
1696 }
1697
1698 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)1699 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1700 {
1701 struct ptp_ocp_ext_src *ext = priv;
1702 struct signal_reg __iomem *reg = ext->mem;
1703 struct ptp_ocp *bp = ext->bp;
1704 struct timespec64 ts;
1705 int gen;
1706
1707 gen = ext->info->index - 1;
1708
1709 iowrite32(0, ®->intr_mask);
1710 iowrite32(0, ®->enable);
1711 bp->signal[gen].running = false;
1712 if (!enable)
1713 return 0;
1714
1715 ts = ktime_to_timespec64(bp->signal[gen].start);
1716 iowrite32(ts.tv_sec, ®->start_sec);
1717 iowrite32(ts.tv_nsec, ®->start_ns);
1718
1719 ts = ktime_to_timespec64(bp->signal[gen].period);
1720 iowrite32(ts.tv_sec, ®->period_sec);
1721 iowrite32(ts.tv_nsec, ®->period_ns);
1722
1723 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1724 iowrite32(ts.tv_sec, ®->pulse_sec);
1725 iowrite32(ts.tv_nsec, ®->pulse_ns);
1726
1727 iowrite32(bp->signal[gen].polarity, ®->polarity);
1728 iowrite32(0, ®->repeat_count);
1729
1730 iowrite32(0, ®->intr); /* clear interrupt state */
1731 iowrite32(1, ®->intr_mask); /* enable interrupt */
1732 iowrite32(3, ®->enable); /* valid & enable */
1733
1734 bp->signal[gen].running = true;
1735
1736 return 0;
1737 }
1738
1739 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)1740 ptp_ocp_ts_irq(int irq, void *priv)
1741 {
1742 struct ptp_ocp_ext_src *ext = priv;
1743 struct ts_reg __iomem *reg = ext->mem;
1744 struct ptp_clock_event ev;
1745 u32 sec, nsec;
1746
1747 if (ext == ext->bp->pps) {
1748 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1749 ev.type = PTP_CLOCK_PPS;
1750 ptp_clock_event(ext->bp->ptp, &ev);
1751 }
1752
1753 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1754 goto out;
1755 }
1756
1757 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1758 sec = ioread32(®->time_sec);
1759 nsec = ioread32(®->time_ns);
1760
1761 ev.type = PTP_CLOCK_EXTTS;
1762 ev.index = ext->info->index;
1763 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1764
1765 ptp_clock_event(ext->bp->ptp, &ev);
1766
1767 out:
1768 iowrite32(1, ®->intr); /* write 1 to ack */
1769
1770 return IRQ_HANDLED;
1771 }
1772
1773 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)1774 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1775 {
1776 struct ptp_ocp_ext_src *ext = priv;
1777 struct ts_reg __iomem *reg = ext->mem;
1778 struct ptp_ocp *bp = ext->bp;
1779
1780 if (ext == bp->pps) {
1781 u32 old_map = bp->pps_req_map;
1782
1783 if (enable)
1784 bp->pps_req_map |= req;
1785 else
1786 bp->pps_req_map &= ~req;
1787
1788 /* if no state change, just return */
1789 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1790 return 0;
1791 }
1792
1793 if (enable) {
1794 iowrite32(1, ®->enable);
1795 iowrite32(1, ®->intr_mask);
1796 iowrite32(1, ®->intr);
1797 } else {
1798 iowrite32(0, ®->intr_mask);
1799 iowrite32(0, ®->enable);
1800 }
1801
1802 return 0;
1803 }
1804
1805 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)1806 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1807 {
1808 ext->info->enable(ext, ~0, false);
1809 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1810 kfree(ext);
1811 }
1812
1813 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)1814 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
1815 {
1816 struct pci_dev *pdev = bp->pdev;
1817 struct ptp_ocp_ext_src *ext;
1818 int err;
1819
1820 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
1821 if (!ext)
1822 return -ENOMEM;
1823
1824 ext->mem = ptp_ocp_get_mem(bp, r);
1825 if (IS_ERR(ext->mem)) {
1826 err = PTR_ERR(ext->mem);
1827 goto out;
1828 }
1829
1830 ext->bp = bp;
1831 ext->info = r->extra;
1832 ext->irq_vec = r->irq_vec;
1833
1834 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
1835 ext, "ocp%d.%s", bp->id, r->name);
1836 if (err) {
1837 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
1838 goto out;
1839 }
1840
1841 bp_assign_entry(bp, r, ext);
1842
1843 return 0;
1844
1845 out:
1846 kfree(ext);
1847 return err;
1848 }
1849
1850 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)1851 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
1852 {
1853 struct pci_dev *pdev = bp->pdev;
1854 struct uart_8250_port uart;
1855
1856 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
1857 * the serial port device claim and release the pci resource.
1858 */
1859 memset(&uart, 0, sizeof(uart));
1860 uart.port.dev = &pdev->dev;
1861 uart.port.iotype = UPIO_MEM;
1862 uart.port.regshift = 2;
1863 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
1864 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
1865 uart.port.uartclk = 50000000;
1866 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
1867 uart.port.type = PORT_16550A;
1868
1869 return serial8250_register_8250_port(&uart);
1870 }
1871
1872 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)1873 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
1874 {
1875 int port;
1876
1877 port = ptp_ocp_serial_line(bp, r);
1878 if (port < 0)
1879 return port;
1880
1881 bp_assign_entry(bp, r, port);
1882
1883 return 0;
1884 }
1885
1886 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)1887 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1888 {
1889 void __iomem *mem;
1890
1891 mem = ptp_ocp_get_mem(bp, r);
1892 if (IS_ERR(mem))
1893 return PTR_ERR(mem);
1894
1895 bp_assign_entry(bp, r, mem);
1896
1897 return 0;
1898 }
1899
1900 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)1901 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
1902 {
1903 if (!bp->nmea_out)
1904 return;
1905
1906 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
1907 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
1908 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
1909 }
1910
1911 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)1912 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
1913 {
1914 u32 val;
1915
1916 iowrite32(0, ®->enable); /* disable */
1917
1918 val = ioread32(®->polarity);
1919 s->polarity = val ? true : false;
1920 s->duty = 50;
1921 }
1922
1923 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)1924 ptp_ocp_signal_init(struct ptp_ocp *bp)
1925 {
1926 int i;
1927
1928 for (i = 0; i < 4; i++)
1929 if (bp->signal_out[i])
1930 _ptp_ocp_signal_init(&bp->signal[i],
1931 bp->signal_out[i]->mem);
1932 }
1933
1934 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)1935 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
1936 {
1937 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
1938 kfree(bp->attr_group);
1939 }
1940
1941 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)1942 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
1943 const struct ocp_attr_group *attr_tbl)
1944 {
1945 int count, i;
1946 int err;
1947
1948 count = 0;
1949 for (i = 0; attr_tbl[i].cap; i++)
1950 if (attr_tbl[i].cap & bp->fw_cap)
1951 count++;
1952
1953 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
1954 GFP_KERNEL);
1955 if (!bp->attr_group)
1956 return -ENOMEM;
1957
1958 count = 0;
1959 for (i = 0; attr_tbl[i].cap; i++)
1960 if (attr_tbl[i].cap & bp->fw_cap)
1961 bp->attr_group[count++] = attr_tbl[i].group;
1962
1963 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
1964 if (err)
1965 bp->attr_group[0] = NULL;
1966
1967 return err;
1968 }
1969
1970 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)1971 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
1972 {
1973 u32 ctrl;
1974 bool on;
1975
1976 ctrl = ioread32(reg);
1977 on = ctrl & bit;
1978 if (on ^ enable) {
1979 ctrl &= ~bit;
1980 ctrl |= enable ? bit : 0;
1981 iowrite32(ctrl, reg);
1982 }
1983 }
1984
1985 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)1986 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
1987 {
1988 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
1989 IRIG_M_CTRL_ENABLE, enable);
1990 }
1991
1992 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)1993 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
1994 {
1995 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
1996 IRIG_S_CTRL_ENABLE, enable);
1997 }
1998
1999 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2000 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2001 {
2002 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2003 DCF_M_CTRL_ENABLE, enable);
2004 }
2005
2006 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2007 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2008 {
2009 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2010 DCF_S_CTRL_ENABLE, enable);
2011 }
2012
2013 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2014 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2015 {
2016 ptp_ocp_irig_out(bp, val & 0x00100010);
2017 ptp_ocp_dcf_out(bp, val & 0x00200020);
2018 }
2019
2020 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2021 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2022 {
2023 ptp_ocp_irig_in(bp, val & 0x00100010);
2024 ptp_ocp_dcf_in(bp, val & 0x00200020);
2025 }
2026
2027 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2028 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2029 {
2030 u32 __iomem *gpio;
2031 u32 shift;
2032
2033 if (bp->sma[sma_nr - 1].fixed_fcn)
2034 return (sma_nr - 1) & 1;
2035
2036 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2037 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2038 else
2039 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2040 shift = sma_nr & 1 ? 0 : 16;
2041
2042 return (ioread32(gpio) >> shift) & 0xffff;
2043 }
2044
2045 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2046 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2047 {
2048 u32 reg, mask, shift;
2049 unsigned long flags;
2050 u32 __iomem *gpio;
2051
2052 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2053 shift = sma_nr & 1 ? 0 : 16;
2054
2055 mask = 0xffff << (16 - shift);
2056
2057 spin_lock_irqsave(&bp->lock, flags);
2058
2059 reg = ioread32(gpio);
2060 reg = (reg & mask) | (val << shift);
2061
2062 __handle_signal_outputs(bp, reg);
2063
2064 iowrite32(reg, gpio);
2065
2066 spin_unlock_irqrestore(&bp->lock, flags);
2067
2068 return 0;
2069 }
2070
2071 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2072 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2073 {
2074 u32 reg, mask, shift;
2075 unsigned long flags;
2076 u32 __iomem *gpio;
2077
2078 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2079 shift = sma_nr & 1 ? 0 : 16;
2080
2081 mask = 0xffff << (16 - shift);
2082
2083 spin_lock_irqsave(&bp->lock, flags);
2084
2085 reg = ioread32(gpio);
2086 reg = (reg & mask) | (val << shift);
2087
2088 __handle_signal_inputs(bp, reg);
2089
2090 iowrite32(reg, gpio);
2091
2092 spin_unlock_irqrestore(&bp->lock, flags);
2093
2094 return 0;
2095 }
2096
2097 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2098 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2099 {
2100 u32 reg;
2101 int i;
2102
2103 /* defaults */
2104 bp->sma[0].mode = SMA_MODE_IN;
2105 bp->sma[1].mode = SMA_MODE_IN;
2106 bp->sma[2].mode = SMA_MODE_OUT;
2107 bp->sma[3].mode = SMA_MODE_OUT;
2108 for (i = 0; i < 4; i++)
2109 bp->sma[i].default_fcn = i & 1;
2110
2111 /* If no SMA1 map, the pin functions and directions are fixed. */
2112 if (!bp->sma_map1) {
2113 for (i = 0; i < 4; i++) {
2114 bp->sma[i].fixed_fcn = true;
2115 bp->sma[i].fixed_dir = true;
2116 }
2117 return;
2118 }
2119
2120 /* If SMA2 GPIO output map is all 1, it is not present.
2121 * This indicates the firmware has fixed direction SMA pins.
2122 */
2123 reg = ioread32(&bp->sma_map2->gpio2);
2124 if (reg == 0xffffffff) {
2125 for (i = 0; i < 4; i++)
2126 bp->sma[i].fixed_dir = true;
2127 } else {
2128 reg = ioread32(&bp->sma_map1->gpio1);
2129 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2130 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2131
2132 reg = ioread32(&bp->sma_map1->gpio2);
2133 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2134 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2135 }
2136 }
2137
2138 static const struct ocp_sma_op ocp_fb_sma_op = {
2139 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2140 .init = ptp_ocp_sma_fb_init,
2141 .get = ptp_ocp_sma_fb_get,
2142 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2143 .set_output = ptp_ocp_sma_fb_set_output,
2144 };
2145
2146 static int
ptp_ocp_fb_set_pins(struct ptp_ocp * bp)2147 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2148 {
2149 struct ptp_pin_desc *config;
2150 int i;
2151
2152 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2153 if (!config)
2154 return -ENOMEM;
2155
2156 for (i = 0; i < 4; i++) {
2157 sprintf(config[i].name, "sma%d", i + 1);
2158 config[i].index = i;
2159 }
2160
2161 bp->ptp_info.n_pins = 4;
2162 bp->ptp_info.pin_config = config;
2163
2164 return 0;
2165 }
2166
2167 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2168 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2169 {
2170 u64 cap = OCP_CAP_BASIC;
2171 u32 version;
2172
2173 version = ioread32(&bp->image->version);
2174
2175 /* if lower 16 bits are empty, this is the fw loader. */
2176 if ((version & 0xffff) == 0) {
2177 version = version >> 16;
2178 bp->fw_loader = true;
2179 }
2180
2181 bp->fw_tag = version >> 15;
2182 bp->fw_version = version & 0x7fff;
2183
2184 if (bp->fw_tag) {
2185 /* FPGA firmware */
2186 if (version >= 5)
2187 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2188 } else {
2189 /* SOM firmware */
2190 if (version >= 19)
2191 cap |= OCP_CAP_SIGNAL;
2192 if (version >= 20)
2193 cap |= OCP_CAP_FREQ;
2194 }
2195
2196 bp->fw_cap = cap;
2197 }
2198
2199 /* FB specific board initializers; last "resource" registered. */
2200 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2201 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2202 {
2203 int err;
2204
2205 bp->flash_start = 1024 * 4096;
2206 bp->eeprom_map = fb_eeprom_map;
2207 bp->fw_version = ioread32(&bp->image->version);
2208 bp->sma_op = &ocp_fb_sma_op;
2209
2210 ptp_ocp_fb_set_version(bp);
2211
2212 ptp_ocp_tod_init(bp);
2213 ptp_ocp_nmea_out_init(bp);
2214 ptp_ocp_sma_init(bp);
2215 ptp_ocp_signal_init(bp);
2216
2217 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2218 if (err)
2219 return err;
2220
2221 err = ptp_ocp_fb_set_pins(bp);
2222 if (err)
2223 return err;
2224
2225 return ptp_ocp_init_clock(bp);
2226 }
2227
2228 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2229 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2230 {
2231 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2232
2233 if (!allow)
2234 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2235 r->irq_vec, r->name);
2236 return allow;
2237 }
2238
2239 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2240 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2241 {
2242 struct ocp_resource *r, *table;
2243 int err = 0;
2244
2245 table = (struct ocp_resource *)driver_data;
2246 for (r = table; r->setup; r++) {
2247 if (!ptp_ocp_allow_irq(bp, r))
2248 continue;
2249 err = r->setup(bp, r);
2250 if (err) {
2251 dev_err(&bp->pdev->dev,
2252 "Could not register %s: err %d\n",
2253 r->name, err);
2254 break;
2255 }
2256 }
2257 return err;
2258 }
2259
2260 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2261 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2262 int def_val)
2263 {
2264 const char *name;
2265 ssize_t count;
2266
2267 count = sysfs_emit(buf, "OUT: ");
2268 name = ptp_ocp_select_name_from_val(tbl, val);
2269 if (!name)
2270 name = ptp_ocp_select_name_from_val(tbl, def_val);
2271 count += sysfs_emit_at(buf, count, "%s\n", name);
2272 return count;
2273 }
2274
2275 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2276 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2277 int def_val)
2278 {
2279 const char *name;
2280 ssize_t count;
2281 int i;
2282
2283 count = sysfs_emit(buf, "IN: ");
2284 for (i = 0; tbl[i].name; i++) {
2285 if (val & tbl[i].value) {
2286 name = tbl[i].name;
2287 count += sysfs_emit_at(buf, count, "%s ", name);
2288 }
2289 }
2290 if (!val && def_val >= 0) {
2291 name = ptp_ocp_select_name_from_val(tbl, def_val);
2292 count += sysfs_emit_at(buf, count, "%s ", name);
2293 }
2294 if (count)
2295 count--;
2296 count += sysfs_emit_at(buf, count, "\n");
2297 return count;
2298 }
2299
2300 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2301 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2302 enum ptp_ocp_sma_mode *mode)
2303 {
2304 int idx, count, dir;
2305 char **argv;
2306 int ret;
2307
2308 argv = argv_split(GFP_KERNEL, buf, &count);
2309 if (!argv)
2310 return -ENOMEM;
2311
2312 ret = -EINVAL;
2313 if (!count)
2314 goto out;
2315
2316 idx = 0;
2317 dir = *mode == SMA_MODE_IN ? 0 : 1;
2318 if (!strcasecmp("IN:", argv[0])) {
2319 dir = 0;
2320 idx++;
2321 }
2322 if (!strcasecmp("OUT:", argv[0])) {
2323 dir = 1;
2324 idx++;
2325 }
2326 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2327
2328 ret = 0;
2329 for (; idx < count; idx++)
2330 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2331 if (ret < 0)
2332 ret = -EINVAL;
2333
2334 out:
2335 argv_free(argv);
2336 return ret;
2337 }
2338
2339 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)2340 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2341 int default_in_val, int default_out_val)
2342 {
2343 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2344 const struct ocp_selector * const *tbl;
2345 u32 val;
2346
2347 tbl = bp->sma_op->tbl;
2348 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2349
2350 if (sma->mode == SMA_MODE_IN) {
2351 if (sma->disabled)
2352 val = SMA_DISABLE;
2353 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2354 }
2355
2356 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2357 }
2358
2359 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)2360 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2361 {
2362 struct ptp_ocp *bp = dev_get_drvdata(dev);
2363
2364 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2365 }
2366
2367 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)2368 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2369 {
2370 struct ptp_ocp *bp = dev_get_drvdata(dev);
2371
2372 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2373 }
2374
2375 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)2376 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2377 {
2378 struct ptp_ocp *bp = dev_get_drvdata(dev);
2379
2380 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2381 }
2382
2383 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)2384 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2385 {
2386 struct ptp_ocp *bp = dev_get_drvdata(dev);
2387
2388 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2389 }
2390
2391 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)2392 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2393 {
2394 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2395 enum ptp_ocp_sma_mode mode;
2396 int val;
2397
2398 mode = sma->mode;
2399 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2400 if (val < 0)
2401 return val;
2402
2403 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2404 return -EOPNOTSUPP;
2405
2406 if (sma->fixed_fcn) {
2407 if (val != sma->default_fcn)
2408 return -EOPNOTSUPP;
2409 return 0;
2410 }
2411
2412 sma->disabled = !!(val & SMA_DISABLE);
2413
2414 if (mode != sma->mode) {
2415 if (mode == SMA_MODE_IN)
2416 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2417 else
2418 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2419 sma->mode = mode;
2420 }
2421
2422 if (!sma->fixed_dir)
2423 val |= SMA_ENABLE; /* add enable bit */
2424
2425 if (sma->disabled)
2426 val = 0;
2427
2428 if (mode == SMA_MODE_IN)
2429 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2430 else
2431 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2432
2433 return val;
2434 }
2435
2436 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2437 sma1_store(struct device *dev, struct device_attribute *attr,
2438 const char *buf, size_t count)
2439 {
2440 struct ptp_ocp *bp = dev_get_drvdata(dev);
2441 int err;
2442
2443 err = ptp_ocp_sma_store(bp, buf, 1);
2444 return err ? err : count;
2445 }
2446
2447 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2448 sma2_store(struct device *dev, struct device_attribute *attr,
2449 const char *buf, size_t count)
2450 {
2451 struct ptp_ocp *bp = dev_get_drvdata(dev);
2452 int err;
2453
2454 err = ptp_ocp_sma_store(bp, buf, 2);
2455 return err ? err : count;
2456 }
2457
2458 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2459 sma3_store(struct device *dev, struct device_attribute *attr,
2460 const char *buf, size_t count)
2461 {
2462 struct ptp_ocp *bp = dev_get_drvdata(dev);
2463 int err;
2464
2465 err = ptp_ocp_sma_store(bp, buf, 3);
2466 return err ? err : count;
2467 }
2468
2469 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2470 sma4_store(struct device *dev, struct device_attribute *attr,
2471 const char *buf, size_t count)
2472 {
2473 struct ptp_ocp *bp = dev_get_drvdata(dev);
2474 int err;
2475
2476 err = ptp_ocp_sma_store(bp, buf, 4);
2477 return err ? err : count;
2478 }
2479 static DEVICE_ATTR_RW(sma1);
2480 static DEVICE_ATTR_RW(sma2);
2481 static DEVICE_ATTR_RW(sma3);
2482 static DEVICE_ATTR_RW(sma4);
2483
2484 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)2485 available_sma_inputs_show(struct device *dev,
2486 struct device_attribute *attr, char *buf)
2487 {
2488 struct ptp_ocp *bp = dev_get_drvdata(dev);
2489
2490 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2491 }
2492 static DEVICE_ATTR_RO(available_sma_inputs);
2493
2494 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)2495 available_sma_outputs_show(struct device *dev,
2496 struct device_attribute *attr, char *buf)
2497 {
2498 struct ptp_ocp *bp = dev_get_drvdata(dev);
2499
2500 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2501 }
2502 static DEVICE_ATTR_RO(available_sma_outputs);
2503
2504 #define EXT_ATTR_RO(_group, _name, _val) \
2505 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2506 { __ATTR_RO(_name), (void *)_val }
2507 #define EXT_ATTR_RW(_group, _name, _val) \
2508 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2509 { __ATTR_RW(_name), (void *)_val }
2510 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2511
2512 /* period [duty [phase [polarity]]] */
2513 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2514 signal_store(struct device *dev, struct device_attribute *attr,
2515 const char *buf, size_t count)
2516 {
2517 struct dev_ext_attribute *ea = to_ext_attr(attr);
2518 struct ptp_ocp *bp = dev_get_drvdata(dev);
2519 struct ptp_ocp_signal s = { };
2520 int gen = (uintptr_t)ea->var;
2521 int argc, err;
2522 char **argv;
2523
2524 argv = argv_split(GFP_KERNEL, buf, &argc);
2525 if (!argv)
2526 return -ENOMEM;
2527
2528 err = -EINVAL;
2529 s.duty = bp->signal[gen].duty;
2530 s.phase = bp->signal[gen].phase;
2531 s.period = bp->signal[gen].period;
2532 s.polarity = bp->signal[gen].polarity;
2533
2534 switch (argc) {
2535 case 4:
2536 argc--;
2537 err = kstrtobool(argv[argc], &s.polarity);
2538 if (err)
2539 goto out;
2540 fallthrough;
2541 case 3:
2542 argc--;
2543 err = kstrtou64(argv[argc], 0, &s.phase);
2544 if (err)
2545 goto out;
2546 fallthrough;
2547 case 2:
2548 argc--;
2549 err = kstrtoint(argv[argc], 0, &s.duty);
2550 if (err)
2551 goto out;
2552 fallthrough;
2553 case 1:
2554 argc--;
2555 err = kstrtou64(argv[argc], 0, &s.period);
2556 if (err)
2557 goto out;
2558 break;
2559 default:
2560 goto out;
2561 }
2562
2563 err = ptp_ocp_signal_set(bp, gen, &s);
2564 if (err)
2565 goto out;
2566
2567 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2568
2569 out:
2570 argv_free(argv);
2571 return err ? err : count;
2572 }
2573
2574 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)2575 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2576 {
2577 struct dev_ext_attribute *ea = to_ext_attr(attr);
2578 struct ptp_ocp *bp = dev_get_drvdata(dev);
2579 struct ptp_ocp_signal *signal;
2580 struct timespec64 ts;
2581 ssize_t count;
2582 int i;
2583
2584 i = (uintptr_t)ea->var;
2585 signal = &bp->signal[i];
2586
2587 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2588 signal->duty, signal->phase, signal->polarity);
2589
2590 ts = ktime_to_timespec64(signal->start);
2591 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2592
2593 return count;
2594 }
2595 static EXT_ATTR_RW(signal, signal, 0);
2596 static EXT_ATTR_RW(signal, signal, 1);
2597 static EXT_ATTR_RW(signal, signal, 2);
2598 static EXT_ATTR_RW(signal, signal, 3);
2599
2600 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)2601 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2602 {
2603 struct dev_ext_attribute *ea = to_ext_attr(attr);
2604 struct ptp_ocp *bp = dev_get_drvdata(dev);
2605 int i = (uintptr_t)ea->var;
2606
2607 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2608 }
2609 static EXT_ATTR_RO(signal, duty, 0);
2610 static EXT_ATTR_RO(signal, duty, 1);
2611 static EXT_ATTR_RO(signal, duty, 2);
2612 static EXT_ATTR_RO(signal, duty, 3);
2613
2614 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)2615 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2616 {
2617 struct dev_ext_attribute *ea = to_ext_attr(attr);
2618 struct ptp_ocp *bp = dev_get_drvdata(dev);
2619 int i = (uintptr_t)ea->var;
2620
2621 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2622 }
2623 static EXT_ATTR_RO(signal, period, 0);
2624 static EXT_ATTR_RO(signal, period, 1);
2625 static EXT_ATTR_RO(signal, period, 2);
2626 static EXT_ATTR_RO(signal, period, 3);
2627
2628 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)2629 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2630 {
2631 struct dev_ext_attribute *ea = to_ext_attr(attr);
2632 struct ptp_ocp *bp = dev_get_drvdata(dev);
2633 int i = (uintptr_t)ea->var;
2634
2635 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2636 }
2637 static EXT_ATTR_RO(signal, phase, 0);
2638 static EXT_ATTR_RO(signal, phase, 1);
2639 static EXT_ATTR_RO(signal, phase, 2);
2640 static EXT_ATTR_RO(signal, phase, 3);
2641
2642 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)2643 polarity_show(struct device *dev, struct device_attribute *attr,
2644 char *buf)
2645 {
2646 struct dev_ext_attribute *ea = to_ext_attr(attr);
2647 struct ptp_ocp *bp = dev_get_drvdata(dev);
2648 int i = (uintptr_t)ea->var;
2649
2650 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2651 }
2652 static EXT_ATTR_RO(signal, polarity, 0);
2653 static EXT_ATTR_RO(signal, polarity, 1);
2654 static EXT_ATTR_RO(signal, polarity, 2);
2655 static EXT_ATTR_RO(signal, polarity, 3);
2656
2657 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)2658 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2659 {
2660 struct dev_ext_attribute *ea = to_ext_attr(attr);
2661 struct ptp_ocp *bp = dev_get_drvdata(dev);
2662 int i = (uintptr_t)ea->var;
2663
2664 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2665 }
2666 static EXT_ATTR_RO(signal, running, 0);
2667 static EXT_ATTR_RO(signal, running, 1);
2668 static EXT_ATTR_RO(signal, running, 2);
2669 static EXT_ATTR_RO(signal, running, 3);
2670
2671 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)2672 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2673 {
2674 struct dev_ext_attribute *ea = to_ext_attr(attr);
2675 struct ptp_ocp *bp = dev_get_drvdata(dev);
2676 int i = (uintptr_t)ea->var;
2677 struct timespec64 ts;
2678
2679 ts = ktime_to_timespec64(bp->signal[i].start);
2680 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2681 }
2682 static EXT_ATTR_RO(signal, start, 0);
2683 static EXT_ATTR_RO(signal, start, 1);
2684 static EXT_ATTR_RO(signal, start, 2);
2685 static EXT_ATTR_RO(signal, start, 3);
2686
2687 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2688 seconds_store(struct device *dev, struct device_attribute *attr,
2689 const char *buf, size_t count)
2690 {
2691 struct dev_ext_attribute *ea = to_ext_attr(attr);
2692 struct ptp_ocp *bp = dev_get_drvdata(dev);
2693 int idx = (uintptr_t)ea->var;
2694 u32 val;
2695 int err;
2696
2697 err = kstrtou32(buf, 0, &val);
2698 if (err)
2699 return err;
2700 if (val > 0xff)
2701 return -EINVAL;
2702
2703 if (val)
2704 val = (val << 8) | 0x1;
2705
2706 iowrite32(val, &bp->freq_in[idx]->ctrl);
2707
2708 return count;
2709 }
2710
2711 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)2712 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
2713 {
2714 struct dev_ext_attribute *ea = to_ext_attr(attr);
2715 struct ptp_ocp *bp = dev_get_drvdata(dev);
2716 int idx = (uintptr_t)ea->var;
2717 u32 val;
2718
2719 val = ioread32(&bp->freq_in[idx]->ctrl);
2720 if (val & 1)
2721 val = (val >> 8) & 0xff;
2722 else
2723 val = 0;
2724
2725 return sysfs_emit(buf, "%u\n", val);
2726 }
2727 static EXT_ATTR_RW(freq, seconds, 0);
2728 static EXT_ATTR_RW(freq, seconds, 1);
2729 static EXT_ATTR_RW(freq, seconds, 2);
2730 static EXT_ATTR_RW(freq, seconds, 3);
2731
2732 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)2733 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
2734 {
2735 struct dev_ext_attribute *ea = to_ext_attr(attr);
2736 struct ptp_ocp *bp = dev_get_drvdata(dev);
2737 int idx = (uintptr_t)ea->var;
2738 u32 val;
2739
2740 val = ioread32(&bp->freq_in[idx]->status);
2741 if (val & FREQ_STATUS_ERROR)
2742 return sysfs_emit(buf, "error\n");
2743 if (val & FREQ_STATUS_OVERRUN)
2744 return sysfs_emit(buf, "overrun\n");
2745 if (val & FREQ_STATUS_VALID)
2746 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
2747 return 0;
2748 }
2749 static EXT_ATTR_RO(freq, frequency, 0);
2750 static EXT_ATTR_RO(freq, frequency, 1);
2751 static EXT_ATTR_RO(freq, frequency, 2);
2752 static EXT_ATTR_RO(freq, frequency, 3);
2753
2754 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)2755 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
2756 {
2757 struct ptp_ocp *bp = dev_get_drvdata(dev);
2758
2759 if (!bp->has_eeprom_data)
2760 ptp_ocp_read_eeprom(bp);
2761
2762 return sysfs_emit(buf, "%pM\n", bp->serial);
2763 }
2764 static DEVICE_ATTR_RO(serialnum);
2765
2766 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)2767 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
2768 {
2769 struct ptp_ocp *bp = dev_get_drvdata(dev);
2770 ssize_t ret;
2771
2772 if (bp->gnss_lost)
2773 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
2774 else
2775 ret = sysfs_emit(buf, "SYNC\n");
2776
2777 return ret;
2778 }
2779 static DEVICE_ATTR_RO(gnss_sync);
2780
2781 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)2782 utc_tai_offset_show(struct device *dev,
2783 struct device_attribute *attr, char *buf)
2784 {
2785 struct ptp_ocp *bp = dev_get_drvdata(dev);
2786
2787 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
2788 }
2789
2790 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2791 utc_tai_offset_store(struct device *dev,
2792 struct device_attribute *attr,
2793 const char *buf, size_t count)
2794 {
2795 struct ptp_ocp *bp = dev_get_drvdata(dev);
2796 int err;
2797 u32 val;
2798
2799 err = kstrtou32(buf, 0, &val);
2800 if (err)
2801 return err;
2802
2803 ptp_ocp_utc_distribute(bp, val);
2804
2805 return count;
2806 }
2807 static DEVICE_ATTR_RW(utc_tai_offset);
2808
2809 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)2810 ts_window_adjust_show(struct device *dev,
2811 struct device_attribute *attr, char *buf)
2812 {
2813 struct ptp_ocp *bp = dev_get_drvdata(dev);
2814
2815 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
2816 }
2817
2818 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2819 ts_window_adjust_store(struct device *dev,
2820 struct device_attribute *attr,
2821 const char *buf, size_t count)
2822 {
2823 struct ptp_ocp *bp = dev_get_drvdata(dev);
2824 int err;
2825 u32 val;
2826
2827 err = kstrtou32(buf, 0, &val);
2828 if (err)
2829 return err;
2830
2831 bp->ts_window_adjust = val;
2832
2833 return count;
2834 }
2835 static DEVICE_ATTR_RW(ts_window_adjust);
2836
2837 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)2838 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
2839 {
2840 struct ptp_ocp *bp = dev_get_drvdata(dev);
2841 u32 val;
2842
2843 val = ioread32(&bp->irig_out->ctrl);
2844 val = (val >> 16) & 0x07;
2845 return sysfs_emit(buf, "%d\n", val);
2846 }
2847
2848 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2849 irig_b_mode_store(struct device *dev,
2850 struct device_attribute *attr,
2851 const char *buf, size_t count)
2852 {
2853 struct ptp_ocp *bp = dev_get_drvdata(dev);
2854 unsigned long flags;
2855 int err;
2856 u32 reg;
2857 u8 val;
2858
2859 err = kstrtou8(buf, 0, &val);
2860 if (err)
2861 return err;
2862 if (val > 7)
2863 return -EINVAL;
2864
2865 reg = ((val & 0x7) << 16);
2866
2867 spin_lock_irqsave(&bp->lock, flags);
2868 iowrite32(0, &bp->irig_out->ctrl); /* disable */
2869 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
2870 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
2871 spin_unlock_irqrestore(&bp->lock, flags);
2872
2873 return count;
2874 }
2875 static DEVICE_ATTR_RW(irig_b_mode);
2876
2877 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)2878 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
2879 {
2880 struct ptp_ocp *bp = dev_get_drvdata(dev);
2881 const char *p;
2882 u32 select;
2883
2884 select = ioread32(&bp->reg->select);
2885 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
2886
2887 return sysfs_emit(buf, "%s\n", p);
2888 }
2889
2890 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2891 clock_source_store(struct device *dev, struct device_attribute *attr,
2892 const char *buf, size_t count)
2893 {
2894 struct ptp_ocp *bp = dev_get_drvdata(dev);
2895 unsigned long flags;
2896 int val;
2897
2898 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
2899 if (val < 0)
2900 return val;
2901
2902 spin_lock_irqsave(&bp->lock, flags);
2903 iowrite32(val, &bp->reg->select);
2904 spin_unlock_irqrestore(&bp->lock, flags);
2905
2906 return count;
2907 }
2908 static DEVICE_ATTR_RW(clock_source);
2909
2910 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)2911 available_clock_sources_show(struct device *dev,
2912 struct device_attribute *attr, char *buf)
2913 {
2914 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
2915 }
2916 static DEVICE_ATTR_RO(available_clock_sources);
2917
2918 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)2919 clock_status_drift_show(struct device *dev,
2920 struct device_attribute *attr, char *buf)
2921 {
2922 struct ptp_ocp *bp = dev_get_drvdata(dev);
2923 u32 val;
2924 int res;
2925
2926 val = ioread32(&bp->reg->status_drift);
2927 res = (val & ~INT_MAX) ? -1 : 1;
2928 res *= (val & INT_MAX);
2929 return sysfs_emit(buf, "%d\n", res);
2930 }
2931 static DEVICE_ATTR_RO(clock_status_drift);
2932
2933 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)2934 clock_status_offset_show(struct device *dev,
2935 struct device_attribute *attr, char *buf)
2936 {
2937 struct ptp_ocp *bp = dev_get_drvdata(dev);
2938 u32 val;
2939 int res;
2940
2941 val = ioread32(&bp->reg->status_offset);
2942 res = (val & ~INT_MAX) ? -1 : 1;
2943 res *= (val & INT_MAX);
2944 return sysfs_emit(buf, "%d\n", res);
2945 }
2946 static DEVICE_ATTR_RO(clock_status_offset);
2947
2948 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)2949 tod_correction_show(struct device *dev,
2950 struct device_attribute *attr, char *buf)
2951 {
2952 struct ptp_ocp *bp = dev_get_drvdata(dev);
2953 u32 val;
2954 int res;
2955
2956 val = ioread32(&bp->tod->adj_sec);
2957 res = (val & ~INT_MAX) ? -1 : 1;
2958 res *= (val & INT_MAX);
2959 return sysfs_emit(buf, "%d\n", res);
2960 }
2961
2962 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2963 tod_correction_store(struct device *dev, struct device_attribute *attr,
2964 const char *buf, size_t count)
2965 {
2966 struct ptp_ocp *bp = dev_get_drvdata(dev);
2967 unsigned long flags;
2968 int err, res;
2969 u32 val = 0;
2970
2971 err = kstrtos32(buf, 0, &res);
2972 if (err)
2973 return err;
2974 if (res < 0) {
2975 res *= -1;
2976 val |= BIT(31);
2977 }
2978 val |= res;
2979
2980 spin_lock_irqsave(&bp->lock, flags);
2981 iowrite32(val, &bp->tod->adj_sec);
2982 spin_unlock_irqrestore(&bp->lock, flags);
2983
2984 return count;
2985 }
2986 static DEVICE_ATTR_RW(tod_correction);
2987
2988 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
2989 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
2990 &dev_attr_signal##_nr##_signal.attr.attr, \
2991 &dev_attr_signal##_nr##_duty.attr.attr, \
2992 &dev_attr_signal##_nr##_phase.attr.attr, \
2993 &dev_attr_signal##_nr##_period.attr.attr, \
2994 &dev_attr_signal##_nr##_polarity.attr.attr, \
2995 &dev_attr_signal##_nr##_running.attr.attr, \
2996 &dev_attr_signal##_nr##_start.attr.attr, \
2997 NULL, \
2998 }
2999
3000 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3001 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3002 static const struct attribute_group \
3003 fb_timecard_signal##_nr##_group = { \
3004 .name = #_name, \
3005 .attrs = fb_timecard_signal##_nr##_attrs, \
3006 }
3007
3008 DEVICE_SIGNAL_GROUP(gen1, 0);
3009 DEVICE_SIGNAL_GROUP(gen2, 1);
3010 DEVICE_SIGNAL_GROUP(gen3, 2);
3011 DEVICE_SIGNAL_GROUP(gen4, 3);
3012
3013 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3014 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3015 &dev_attr_freq##_nr##_seconds.attr.attr, \
3016 &dev_attr_freq##_nr##_frequency.attr.attr, \
3017 NULL, \
3018 }
3019
3020 #define DEVICE_FREQ_GROUP(_name, _nr) \
3021 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3022 static const struct attribute_group \
3023 fb_timecard_freq##_nr##_group = { \
3024 .name = #_name, \
3025 .attrs = fb_timecard_freq##_nr##_attrs, \
3026 }
3027
3028 DEVICE_FREQ_GROUP(freq1, 0);
3029 DEVICE_FREQ_GROUP(freq2, 1);
3030 DEVICE_FREQ_GROUP(freq3, 2);
3031 DEVICE_FREQ_GROUP(freq4, 3);
3032
3033 static struct attribute *fb_timecard_attrs[] = {
3034 &dev_attr_serialnum.attr,
3035 &dev_attr_gnss_sync.attr,
3036 &dev_attr_clock_source.attr,
3037 &dev_attr_available_clock_sources.attr,
3038 &dev_attr_sma1.attr,
3039 &dev_attr_sma2.attr,
3040 &dev_attr_sma3.attr,
3041 &dev_attr_sma4.attr,
3042 &dev_attr_available_sma_inputs.attr,
3043 &dev_attr_available_sma_outputs.attr,
3044 &dev_attr_clock_status_drift.attr,
3045 &dev_attr_clock_status_offset.attr,
3046 &dev_attr_irig_b_mode.attr,
3047 &dev_attr_utc_tai_offset.attr,
3048 &dev_attr_ts_window_adjust.attr,
3049 &dev_attr_tod_correction.attr,
3050 NULL,
3051 };
3052 static const struct attribute_group fb_timecard_group = {
3053 .attrs = fb_timecard_attrs,
3054 };
3055 static const struct ocp_attr_group fb_timecard_groups[] = {
3056 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3057 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3058 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3059 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3060 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3061 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3062 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3063 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3064 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3065 { },
3066 };
3067
3068 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3069 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3070 const char *def)
3071 {
3072 int i;
3073
3074 for (i = 0; i < 4; i++) {
3075 if (bp->sma[i].mode != SMA_MODE_IN)
3076 continue;
3077 if (map[i][0] & (1 << bit)) {
3078 sprintf(buf, "sma%d", i + 1);
3079 return;
3080 }
3081 }
3082 if (!def)
3083 def = "----";
3084 strcpy(buf, def);
3085 }
3086
3087 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)3088 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3089 {
3090 char *ans = buf;
3091 int i;
3092
3093 strcpy(ans, "----");
3094 for (i = 0; i < 4; i++) {
3095 if (bp->sma[i].mode != SMA_MODE_OUT)
3096 continue;
3097 if (map[i][1] & (1 << bit))
3098 ans += sprintf(ans, "sma%d ", i + 1);
3099 }
3100 }
3101
3102 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)3103 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3104 {
3105 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3106 struct ptp_ocp_signal *signal = &bp->signal[nr];
3107 char label[8];
3108 bool on;
3109 u32 val;
3110
3111 if (!signal)
3112 return;
3113
3114 on = signal->running;
3115 sprintf(label, "GEN%d", nr + 1);
3116 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3117 label, on ? " ON" : "OFF",
3118 signal->period, signal->duty, signal->phase,
3119 signal->polarity);
3120
3121 val = ioread32(®->enable);
3122 seq_printf(s, " [%x", val);
3123 val = ioread32(®->status);
3124 seq_printf(s, " %x]", val);
3125
3126 seq_printf(s, " start:%llu\n", signal->start);
3127 }
3128
3129 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)3130 _frequency_summary_show(struct seq_file *s, int nr,
3131 struct frequency_reg __iomem *reg)
3132 {
3133 char label[8];
3134 bool on;
3135 u32 val;
3136
3137 if (!reg)
3138 return;
3139
3140 sprintf(label, "FREQ%d", nr + 1);
3141 val = ioread32(®->ctrl);
3142 on = val & 1;
3143 val = (val >> 8) & 0xff;
3144 seq_printf(s, "%7s: %s, sec:%u",
3145 label,
3146 on ? " ON" : "OFF",
3147 val);
3148
3149 val = ioread32(®->status);
3150 if (val & FREQ_STATUS_ERROR)
3151 seq_printf(s, ", error");
3152 if (val & FREQ_STATUS_OVERRUN)
3153 seq_printf(s, ", overrun");
3154 if (val & FREQ_STATUS_VALID)
3155 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3156 seq_printf(s, " reg:%x\n", val);
3157 }
3158
3159 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)3160 ptp_ocp_summary_show(struct seq_file *s, void *data)
3161 {
3162 struct device *dev = s->private;
3163 struct ptp_system_timestamp sts;
3164 struct ts_reg __iomem *ts_reg;
3165 char *buf, *src, *mac_src;
3166 struct timespec64 ts;
3167 struct ptp_ocp *bp;
3168 u16 sma_val[4][2];
3169 u32 ctrl, val;
3170 bool on, map;
3171 int i;
3172
3173 buf = (char *)__get_free_page(GFP_KERNEL);
3174 if (!buf)
3175 return -ENOMEM;
3176
3177 bp = dev_get_drvdata(dev);
3178
3179 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3180 if (bp->gnss_port != -1)
3181 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
3182 if (bp->gnss2_port != -1)
3183 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
3184 if (bp->mac_port != -1)
3185 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
3186 if (bp->nmea_port != -1)
3187 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
3188
3189 memset(sma_val, 0xff, sizeof(sma_val));
3190 if (bp->sma_map1) {
3191 u32 reg;
3192
3193 reg = ioread32(&bp->sma_map1->gpio1);
3194 sma_val[0][0] = reg & 0xffff;
3195 sma_val[1][0] = reg >> 16;
3196
3197 reg = ioread32(&bp->sma_map1->gpio2);
3198 sma_val[2][1] = reg & 0xffff;
3199 sma_val[3][1] = reg >> 16;
3200
3201 reg = ioread32(&bp->sma_map2->gpio1);
3202 sma_val[2][0] = reg & 0xffff;
3203 sma_val[3][0] = reg >> 16;
3204
3205 reg = ioread32(&bp->sma_map2->gpio2);
3206 sma_val[0][1] = reg & 0xffff;
3207 sma_val[1][1] = reg >> 16;
3208 }
3209
3210 sma1_show(dev, NULL, buf);
3211 seq_printf(s, " sma1: %04x,%04x %s",
3212 sma_val[0][0], sma_val[0][1], buf);
3213
3214 sma2_show(dev, NULL, buf);
3215 seq_printf(s, " sma2: %04x,%04x %s",
3216 sma_val[1][0], sma_val[1][1], buf);
3217
3218 sma3_show(dev, NULL, buf);
3219 seq_printf(s, " sma3: %04x,%04x %s",
3220 sma_val[2][0], sma_val[2][1], buf);
3221
3222 sma4_show(dev, NULL, buf);
3223 seq_printf(s, " sma4: %04x,%04x %s",
3224 sma_val[3][0], sma_val[3][1], buf);
3225
3226 if (bp->ts0) {
3227 ts_reg = bp->ts0->mem;
3228 on = ioread32(&ts_reg->enable);
3229 src = "GNSS1";
3230 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3231 on ? " ON" : "OFF", src);
3232 }
3233
3234 if (bp->ts1) {
3235 ts_reg = bp->ts1->mem;
3236 on = ioread32(&ts_reg->enable);
3237 gpio_input_map(buf, bp, sma_val, 2, NULL);
3238 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3239 on ? " ON" : "OFF", buf);
3240 }
3241
3242 if (bp->ts2) {
3243 ts_reg = bp->ts2->mem;
3244 on = ioread32(&ts_reg->enable);
3245 gpio_input_map(buf, bp, sma_val, 3, NULL);
3246 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3247 on ? " ON" : "OFF", buf);
3248 }
3249
3250 if (bp->ts3) {
3251 ts_reg = bp->ts3->mem;
3252 on = ioread32(&ts_reg->enable);
3253 gpio_input_map(buf, bp, sma_val, 6, NULL);
3254 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3255 on ? " ON" : "OFF", buf);
3256 }
3257
3258 if (bp->ts4) {
3259 ts_reg = bp->ts4->mem;
3260 on = ioread32(&ts_reg->enable);
3261 gpio_input_map(buf, bp, sma_val, 7, NULL);
3262 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3263 on ? " ON" : "OFF", buf);
3264 }
3265
3266 if (bp->pps) {
3267 ts_reg = bp->pps->mem;
3268 src = "PHC";
3269 on = ioread32(&ts_reg->enable);
3270 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3271 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3272 on && map ? " ON" : "OFF", src);
3273
3274 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3275 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3276 on && map ? " ON" : "OFF", src);
3277 }
3278
3279 if (bp->fw_cap & OCP_CAP_SIGNAL)
3280 for (i = 0; i < 4; i++)
3281 _signal_summary_show(s, bp, i);
3282
3283 if (bp->fw_cap & OCP_CAP_FREQ)
3284 for (i = 0; i < 4; i++)
3285 _frequency_summary_show(s, i, bp->freq_in[i]);
3286
3287 if (bp->irig_out) {
3288 ctrl = ioread32(&bp->irig_out->ctrl);
3289 on = ctrl & IRIG_M_CTRL_ENABLE;
3290 val = ioread32(&bp->irig_out->status);
3291 gpio_output_map(buf, bp, sma_val, 4);
3292 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3293 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3294 }
3295
3296 if (bp->irig_in) {
3297 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3298 val = ioread32(&bp->irig_in->status);
3299 gpio_input_map(buf, bp, sma_val, 4, NULL);
3300 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3301 on ? " ON" : "OFF", val, buf);
3302 }
3303
3304 if (bp->dcf_out) {
3305 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3306 val = ioread32(&bp->dcf_out->status);
3307 gpio_output_map(buf, bp, sma_val, 5);
3308 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3309 on ? " ON" : "OFF", val, buf);
3310 }
3311
3312 if (bp->dcf_in) {
3313 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3314 val = ioread32(&bp->dcf_in->status);
3315 gpio_input_map(buf, bp, sma_val, 5, NULL);
3316 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3317 on ? " ON" : "OFF", val, buf);
3318 }
3319
3320 if (bp->nmea_out) {
3321 on = ioread32(&bp->nmea_out->ctrl) & 1;
3322 val = ioread32(&bp->nmea_out->status);
3323 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3324 on ? " ON" : "OFF", val);
3325 }
3326
3327 /* compute src for PPS1, used below. */
3328 if (bp->pps_select) {
3329 val = ioread32(&bp->pps_select->gpio1);
3330 src = &buf[80];
3331 mac_src = "GNSS1";
3332 if (val & 0x01) {
3333 gpio_input_map(src, bp, sma_val, 0, NULL);
3334 mac_src = src;
3335 } else if (val & 0x02) {
3336 src = "MAC";
3337 } else if (val & 0x04) {
3338 src = "GNSS1";
3339 } else {
3340 src = "----";
3341 mac_src = src;
3342 }
3343 } else {
3344 src = "?";
3345 mac_src = src;
3346 }
3347 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3348
3349 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3350 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3351
3352 /* assumes automatic switchover/selection */
3353 val = ioread32(&bp->reg->select);
3354 switch (val >> 16) {
3355 case 0:
3356 sprintf(buf, "----");
3357 break;
3358 case 2:
3359 sprintf(buf, "IRIG");
3360 break;
3361 case 3:
3362 sprintf(buf, "%s via PPS1", src);
3363 break;
3364 case 6:
3365 sprintf(buf, "DCF");
3366 break;
3367 default:
3368 strcpy(buf, "unknown");
3369 break;
3370 }
3371 val = ioread32(&bp->reg->status);
3372 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3373 val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3374
3375 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3376 struct timespec64 sys_ts;
3377 s64 pre_ns, post_ns, ns;
3378
3379 pre_ns = timespec64_to_ns(&sts.pre_ts);
3380 post_ns = timespec64_to_ns(&sts.post_ts);
3381 ns = (pre_ns + post_ns) / 2;
3382 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3383 sys_ts = ns_to_timespec64(ns);
3384
3385 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3386 ts.tv_sec, ts.tv_nsec, &ts);
3387 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3388 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3389 bp->utc_tai_offset);
3390 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3391 timespec64_to_ns(&ts) - ns,
3392 post_ns - pre_ns);
3393 }
3394
3395 free_page((unsigned long)buf);
3396 return 0;
3397 }
3398 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3399
3400 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)3401 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3402 {
3403 struct device *dev = s->private;
3404 struct ptp_ocp *bp;
3405 u32 val;
3406 int idx;
3407
3408 bp = dev_get_drvdata(dev);
3409
3410 val = ioread32(&bp->tod->ctrl);
3411 if (!(val & TOD_CTRL_ENABLE)) {
3412 seq_printf(s, "TOD Slave disabled\n");
3413 return 0;
3414 }
3415 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3416
3417 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3418 idx += (val >> 16) & 3;
3419 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3420
3421 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3422 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3423
3424 val = ioread32(&bp->tod->version);
3425 seq_printf(s, "TOD Version %d.%d.%d\n",
3426 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3427
3428 val = ioread32(&bp->tod->status);
3429 seq_printf(s, "Status register: 0x%08X\n", val);
3430
3431 val = ioread32(&bp->tod->adj_sec);
3432 idx = (val & ~INT_MAX) ? -1 : 1;
3433 idx *= (val & INT_MAX);
3434 seq_printf(s, "Correction seconds: %d\n", idx);
3435
3436 val = ioread32(&bp->tod->utc_status);
3437 seq_printf(s, "UTC status register: 0x%08X\n", val);
3438 seq_printf(s, "UTC offset: %ld valid:%d\n",
3439 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3440 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3441 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3442 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3443
3444 val = ioread32(&bp->tod->leap);
3445 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3446
3447 return 0;
3448 }
3449 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3450
3451 static struct dentry *ptp_ocp_debugfs_root;
3452
3453 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)3454 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3455 {
3456 struct dentry *d;
3457
3458 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3459 bp->debug_root = d;
3460 debugfs_create_file("summary", 0444, bp->debug_root,
3461 &bp->dev, &ptp_ocp_summary_fops);
3462 if (bp->tod)
3463 debugfs_create_file("tod_status", 0444, bp->debug_root,
3464 &bp->dev, &ptp_ocp_tod_status_fops);
3465 }
3466
3467 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)3468 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3469 {
3470 debugfs_remove_recursive(bp->debug_root);
3471 }
3472
3473 static void
ptp_ocp_debugfs_init(void)3474 ptp_ocp_debugfs_init(void)
3475 {
3476 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3477 }
3478
3479 static void
ptp_ocp_debugfs_fini(void)3480 ptp_ocp_debugfs_fini(void)
3481 {
3482 debugfs_remove_recursive(ptp_ocp_debugfs_root);
3483 }
3484
3485 static void
ptp_ocp_dev_release(struct device * dev)3486 ptp_ocp_dev_release(struct device *dev)
3487 {
3488 struct ptp_ocp *bp = dev_get_drvdata(dev);
3489
3490 mutex_lock(&ptp_ocp_lock);
3491 idr_remove(&ptp_ocp_idr, bp->id);
3492 mutex_unlock(&ptp_ocp_lock);
3493 }
3494
3495 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)3496 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3497 {
3498 int err;
3499
3500 mutex_lock(&ptp_ocp_lock);
3501 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3502 mutex_unlock(&ptp_ocp_lock);
3503 if (err < 0) {
3504 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3505 return err;
3506 }
3507 bp->id = err;
3508
3509 bp->ptp_info = ptp_ocp_clock_info;
3510 spin_lock_init(&bp->lock);
3511 bp->gnss_port = -1;
3512 bp->gnss2_port = -1;
3513 bp->mac_port = -1;
3514 bp->nmea_port = -1;
3515 bp->pdev = pdev;
3516
3517 device_initialize(&bp->dev);
3518 dev_set_name(&bp->dev, "ocp%d", bp->id);
3519 bp->dev.class = &timecard_class;
3520 bp->dev.parent = &pdev->dev;
3521 bp->dev.release = ptp_ocp_dev_release;
3522 dev_set_drvdata(&bp->dev, bp);
3523
3524 err = device_add(&bp->dev);
3525 if (err) {
3526 dev_err(&bp->dev, "device add failed: %d\n", err);
3527 goto out;
3528 }
3529
3530 pci_set_drvdata(pdev, bp);
3531
3532 return 0;
3533
3534 out:
3535 ptp_ocp_dev_release(&bp->dev);
3536 put_device(&bp->dev);
3537 return err;
3538 }
3539
3540 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)3541 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
3542 {
3543 struct device *dev = &bp->dev;
3544
3545 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
3546 dev_err(dev, "%s symlink failed\n", link);
3547 }
3548
3549 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)3550 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
3551 {
3552 struct device *dev, *child;
3553
3554 dev = &bp->pdev->dev;
3555
3556 child = device_find_child_by_name(dev, name);
3557 if (!child) {
3558 dev_err(dev, "Could not find device %s\n", name);
3559 return;
3560 }
3561
3562 ptp_ocp_symlink(bp, child, link);
3563 put_device(child);
3564 }
3565
3566 static int
ptp_ocp_complete(struct ptp_ocp * bp)3567 ptp_ocp_complete(struct ptp_ocp *bp)
3568 {
3569 struct pps_device *pps;
3570 char buf[32];
3571
3572 if (bp->gnss_port != -1) {
3573 sprintf(buf, "ttyS%d", bp->gnss_port);
3574 ptp_ocp_link_child(bp, buf, "ttyGNSS");
3575 }
3576 if (bp->gnss2_port != -1) {
3577 sprintf(buf, "ttyS%d", bp->gnss2_port);
3578 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
3579 }
3580 if (bp->mac_port != -1) {
3581 sprintf(buf, "ttyS%d", bp->mac_port);
3582 ptp_ocp_link_child(bp, buf, "ttyMAC");
3583 }
3584 if (bp->nmea_port != -1) {
3585 sprintf(buf, "ttyS%d", bp->nmea_port);
3586 ptp_ocp_link_child(bp, buf, "ttyNMEA");
3587 }
3588 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
3589 ptp_ocp_link_child(bp, buf, "ptp");
3590
3591 pps = pps_lookup_dev(bp->ptp);
3592 if (pps)
3593 ptp_ocp_symlink(bp, pps->dev, "pps");
3594
3595 ptp_ocp_debugfs_add_device(bp);
3596
3597 return 0;
3598 }
3599
3600 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)3601 ptp_ocp_phc_info(struct ptp_ocp *bp)
3602 {
3603 struct timespec64 ts;
3604 u32 version, select;
3605 bool sync;
3606
3607 version = ioread32(&bp->reg->version);
3608 select = ioread32(&bp->reg->select);
3609 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
3610 version >> 24, (version >> 16) & 0xff, version & 0xffff,
3611 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
3612 ptp_clock_index(bp->ptp));
3613
3614 sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
3615 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
3616 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
3617 ts.tv_sec, ts.tv_nsec,
3618 sync ? "in-sync" : "UNSYNCED");
3619 }
3620
3621 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)3622 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
3623 {
3624 if (port != -1)
3625 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
3626 }
3627
3628 static void
ptp_ocp_info(struct ptp_ocp * bp)3629 ptp_ocp_info(struct ptp_ocp *bp)
3630 {
3631 static int nmea_baud[] = {
3632 1200, 2400, 4800, 9600, 19200, 38400,
3633 57600, 115200, 230400, 460800, 921600,
3634 1000000, 2000000
3635 };
3636 struct device *dev = &bp->pdev->dev;
3637 u32 reg;
3638
3639 ptp_ocp_phc_info(bp);
3640
3641 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
3642 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
3643 ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
3644 if (bp->nmea_out && bp->nmea_port != -1) {
3645 int baud = -1;
3646
3647 reg = ioread32(&bp->nmea_out->uart_baud);
3648 if (reg < ARRAY_SIZE(nmea_baud))
3649 baud = nmea_baud[reg];
3650 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
3651 }
3652 }
3653
3654 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)3655 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
3656 {
3657 struct device *dev = &bp->dev;
3658
3659 sysfs_remove_link(&dev->kobj, "ttyGNSS");
3660 sysfs_remove_link(&dev->kobj, "ttyGNSS2");
3661 sysfs_remove_link(&dev->kobj, "ttyMAC");
3662 sysfs_remove_link(&dev->kobj, "ptp");
3663 sysfs_remove_link(&dev->kobj, "pps");
3664 }
3665
3666 static void
ptp_ocp_detach(struct ptp_ocp * bp)3667 ptp_ocp_detach(struct ptp_ocp *bp)
3668 {
3669 int i;
3670
3671 ptp_ocp_debugfs_remove_device(bp);
3672 ptp_ocp_detach_sysfs(bp);
3673 ptp_ocp_attr_group_del(bp);
3674 if (timer_pending(&bp->watchdog))
3675 del_timer_sync(&bp->watchdog);
3676 if (bp->ts0)
3677 ptp_ocp_unregister_ext(bp->ts0);
3678 if (bp->ts1)
3679 ptp_ocp_unregister_ext(bp->ts1);
3680 if (bp->ts2)
3681 ptp_ocp_unregister_ext(bp->ts2);
3682 if (bp->ts3)
3683 ptp_ocp_unregister_ext(bp->ts3);
3684 if (bp->ts4)
3685 ptp_ocp_unregister_ext(bp->ts4);
3686 if (bp->pps)
3687 ptp_ocp_unregister_ext(bp->pps);
3688 for (i = 0; i < 4; i++)
3689 if (bp->signal_out[i])
3690 ptp_ocp_unregister_ext(bp->signal_out[i]);
3691 if (bp->gnss_port != -1)
3692 serial8250_unregister_port(bp->gnss_port);
3693 if (bp->gnss2_port != -1)
3694 serial8250_unregister_port(bp->gnss2_port);
3695 if (bp->mac_port != -1)
3696 serial8250_unregister_port(bp->mac_port);
3697 if (bp->nmea_port != -1)
3698 serial8250_unregister_port(bp->nmea_port);
3699 platform_device_unregister(bp->spi_flash);
3700 platform_device_unregister(bp->i2c_ctrl);
3701 if (bp->i2c_clk)
3702 clk_hw_unregister_fixed_rate(bp->i2c_clk);
3703 if (bp->n_irqs)
3704 pci_free_irq_vectors(bp->pdev);
3705 if (bp->ptp)
3706 ptp_clock_unregister(bp->ptp);
3707 kfree(bp->ptp_info.pin_config);
3708 device_unregister(&bp->dev);
3709 }
3710
3711 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)3712 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3713 {
3714 struct devlink *devlink;
3715 struct ptp_ocp *bp;
3716 int err;
3717
3718 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
3719 if (!devlink) {
3720 dev_err(&pdev->dev, "devlink_alloc failed\n");
3721 return -ENOMEM;
3722 }
3723
3724 err = pci_enable_device(pdev);
3725 if (err) {
3726 dev_err(&pdev->dev, "pci_enable_device\n");
3727 goto out_free;
3728 }
3729
3730 bp = devlink_priv(devlink);
3731 err = ptp_ocp_device_init(bp, pdev);
3732 if (err)
3733 goto out_disable;
3734
3735 /* compat mode.
3736 * Older FPGA firmware only returns 2 irq's.
3737 * allow this - if not all of the IRQ's are returned, skip the
3738 * extra devices and just register the clock.
3739 */
3740 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
3741 if (err < 0) {
3742 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
3743 goto out;
3744 }
3745 bp->n_irqs = err;
3746 pci_set_master(pdev);
3747
3748 err = ptp_ocp_register_resources(bp, id->driver_data);
3749 if (err)
3750 goto out;
3751
3752 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
3753 if (IS_ERR(bp->ptp)) {
3754 err = PTR_ERR(bp->ptp);
3755 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
3756 bp->ptp = NULL;
3757 goto out;
3758 }
3759
3760 err = ptp_ocp_complete(bp);
3761 if (err)
3762 goto out;
3763
3764 ptp_ocp_info(bp);
3765 devlink_register(devlink);
3766 return 0;
3767
3768 out:
3769 ptp_ocp_detach(bp);
3770 out_disable:
3771 pci_disable_device(pdev);
3772 out_free:
3773 devlink_free(devlink);
3774 return err;
3775 }
3776
3777 static void
ptp_ocp_remove(struct pci_dev * pdev)3778 ptp_ocp_remove(struct pci_dev *pdev)
3779 {
3780 struct ptp_ocp *bp = pci_get_drvdata(pdev);
3781 struct devlink *devlink = priv_to_devlink(bp);
3782
3783 devlink_unregister(devlink);
3784 ptp_ocp_detach(bp);
3785 pci_disable_device(pdev);
3786
3787 devlink_free(devlink);
3788 }
3789
3790 static struct pci_driver ptp_ocp_driver = {
3791 .name = KBUILD_MODNAME,
3792 .id_table = ptp_ocp_pcidev_id,
3793 .probe = ptp_ocp_probe,
3794 .remove = ptp_ocp_remove,
3795 };
3796
3797 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)3798 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
3799 unsigned long action, void *data)
3800 {
3801 struct device *dev, *child = data;
3802 struct ptp_ocp *bp;
3803 bool add;
3804
3805 switch (action) {
3806 case BUS_NOTIFY_ADD_DEVICE:
3807 case BUS_NOTIFY_DEL_DEVICE:
3808 add = action == BUS_NOTIFY_ADD_DEVICE;
3809 break;
3810 default:
3811 return 0;
3812 }
3813
3814 if (!i2c_verify_adapter(child))
3815 return 0;
3816
3817 dev = child;
3818 while ((dev = dev->parent))
3819 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
3820 goto found;
3821 return 0;
3822
3823 found:
3824 bp = dev_get_drvdata(dev);
3825 if (add)
3826 ptp_ocp_symlink(bp, child, "i2c");
3827 else
3828 sysfs_remove_link(&bp->dev.kobj, "i2c");
3829
3830 return 0;
3831 }
3832
3833 static struct notifier_block ptp_ocp_i2c_notifier = {
3834 .notifier_call = ptp_ocp_i2c_notifier_call,
3835 };
3836
3837 static int __init
ptp_ocp_init(void)3838 ptp_ocp_init(void)
3839 {
3840 const char *what;
3841 int err;
3842
3843 ptp_ocp_debugfs_init();
3844
3845 what = "timecard class";
3846 err = class_register(&timecard_class);
3847 if (err)
3848 goto out;
3849
3850 what = "i2c notifier";
3851 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3852 if (err)
3853 goto out_notifier;
3854
3855 what = "ptp_ocp driver";
3856 err = pci_register_driver(&ptp_ocp_driver);
3857 if (err)
3858 goto out_register;
3859
3860 return 0;
3861
3862 out_register:
3863 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3864 out_notifier:
3865 class_unregister(&timecard_class);
3866 out:
3867 ptp_ocp_debugfs_fini();
3868 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
3869 return err;
3870 }
3871
3872 static void __exit
ptp_ocp_fini(void)3873 ptp_ocp_fini(void)
3874 {
3875 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
3876 pci_unregister_driver(&ptp_ocp_driver);
3877 class_unregister(&timecard_class);
3878 ptp_ocp_debugfs_fini();
3879 }
3880
3881 module_init(ptp_ocp_init);
3882 module_exit(ptp_ocp_fini);
3883
3884 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
3885 MODULE_LICENSE("GPL v2");
3886