1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21
22 #define VMD_CFGBAR 0
23 #define VMD_MEMBAR1 2
24 #define VMD_MEMBAR2 4
25
26 #define PCI_REG_VMCAP 0x40
27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28 #define PCI_REG_VMCONFIG 0x44
29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP 0x2
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET 0x2000
35 #define MB2_SHADOW_SIZE 16
36
37 enum vmd_features {
38 /*
39 * Device may contain registers which hint the physical location of the
40 * membars, in order to allow proper address translation during
41 * resource assignment to enable guest virtualization
42 */
43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
44
45 /*
46 * Device may provide root port configuration information which limits
47 * bus numbering
48 */
49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
50
51 /*
52 * Device contains physical location shadow registers in
53 * vendor-specific capability space
54 */
55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
56
57 /*
58 * Device may use MSI-X vector 0 for software triggering and will not
59 * be used for MSI remapping
60 */
61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
62
63 /*
64 * Device can bypass remapping MSI-X transactions into its MSI-X table,
65 * avoiding the requirement of a VMD MSI domain for child device
66 * interrupt handling.
67 */
68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
69
70 /*
71 * Enable ASPM on the PCIE root ports and set the default LTR of the
72 * storage devices on platforms where these values are not configured by
73 * BIOS. This is needed for laptops, which require these settings for
74 * proper power management of the SoC.
75 */
76 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
77 };
78
79 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
80
81 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
82 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
83 VMD_FEAT_OFFSET_FIRST_VECTOR | \
84 VMD_FEAT_BIOS_PM_QUIRK)
85
86 static DEFINE_IDA(vmd_instance_ida);
87
88 /*
89 * Lock for manipulating VMD IRQ lists.
90 */
91 static DEFINE_RAW_SPINLOCK(list_lock);
92
93 /**
94 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95 * @node: list item for parent traversal.
96 * @irq: back pointer to parent.
97 * @enabled: true if driver enabled IRQ
98 * @virq: the virtual IRQ value provided to the requesting driver.
99 *
100 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101 * a VMD IRQ using this structure.
102 */
103 struct vmd_irq {
104 struct list_head node;
105 struct vmd_irq_list *irq;
106 bool enabled;
107 unsigned int virq;
108 };
109
110 /**
111 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112 * @irq_list: the list of irq's the VMD one demuxes to.
113 * @srcu: SRCU struct for local synchronization.
114 * @count: number of child IRQs assigned to this vector; used to track
115 * sharing.
116 * @virq: The underlying VMD Linux interrupt number
117 */
118 struct vmd_irq_list {
119 struct list_head irq_list;
120 struct srcu_struct srcu;
121 unsigned int count;
122 unsigned int virq;
123 };
124
125 struct vmd_dev {
126 struct pci_dev *dev;
127
128 spinlock_t cfg_lock;
129 void __iomem *cfgbar;
130
131 int msix_count;
132 struct vmd_irq_list *irqs;
133
134 struct pci_sysdata sysdata;
135 struct resource resources[3];
136 struct irq_domain *irq_domain;
137 struct pci_bus *bus;
138 u8 busn_start;
139 u8 first_vec;
140 char *name;
141 int instance;
142 };
143
vmd_from_bus(struct pci_bus * bus)144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145 {
146 return container_of(bus->sysdata, struct vmd_dev, sysdata);
147 }
148
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150 struct vmd_irq_list *irqs)
151 {
152 return irqs - vmd->irqs;
153 }
154
155 /*
156 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157 * but the MSI entry for the hardware it's driving will be programmed with a
158 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
159 * domain into one of its own, and the VMD driver de-muxes these for the
160 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
161 * and irq_chip to set this up.
162 */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164 {
165 struct vmd_irq *vmdirq = data->chip_data;
166 struct vmd_irq_list *irq = vmdirq->irq;
167 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169 memset(msg, 0, sizeof(*msg));
170 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173 }
174
175 /*
176 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177 */
vmd_irq_enable(struct irq_data * data)178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 struct vmd_irq *vmdirq = data->chip_data;
181 unsigned long flags;
182
183 raw_spin_lock_irqsave(&list_lock, flags);
184 WARN_ON(vmdirq->enabled);
185 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186 vmdirq->enabled = true;
187 raw_spin_unlock_irqrestore(&list_lock, flags);
188
189 data->chip->irq_unmask(data);
190 }
191
vmd_irq_disable(struct irq_data * data)192 static void vmd_irq_disable(struct irq_data *data)
193 {
194 struct vmd_irq *vmdirq = data->chip_data;
195 unsigned long flags;
196
197 data->chip->irq_mask(data);
198
199 raw_spin_lock_irqsave(&list_lock, flags);
200 if (vmdirq->enabled) {
201 list_del_rcu(&vmdirq->node);
202 vmdirq->enabled = false;
203 }
204 raw_spin_unlock_irqrestore(&list_lock, flags);
205 }
206
207 /*
208 * XXX: Stubbed until we develop acceptable way to not create conflicts with
209 * other devices sharing the same vector.
210 */
vmd_irq_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)211 static int vmd_irq_set_affinity(struct irq_data *data,
212 const struct cpumask *dest, bool force)
213 {
214 return -EINVAL;
215 }
216
217 static struct irq_chip vmd_msi_controller = {
218 .name = "VMD-MSI",
219 .irq_enable = vmd_irq_enable,
220 .irq_disable = vmd_irq_disable,
221 .irq_compose_msi_msg = vmd_compose_msi_msg,
222 .irq_set_affinity = vmd_irq_set_affinity,
223 };
224
vmd_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)225 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
226 msi_alloc_info_t *arg)
227 {
228 return 0;
229 }
230
231 /*
232 * XXX: We can be even smarter selecting the best IRQ once we solve the
233 * affinity problem.
234 */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)235 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
236 {
237 unsigned long flags;
238 int i, best;
239
240 if (vmd->msix_count == 1 + vmd->first_vec)
241 return &vmd->irqs[vmd->first_vec];
242
243 /*
244 * White list for fast-interrupt handlers. All others will share the
245 * "slow" interrupt vector.
246 */
247 switch (msi_desc_to_pci_dev(desc)->class) {
248 case PCI_CLASS_STORAGE_EXPRESS:
249 break;
250 default:
251 return &vmd->irqs[vmd->first_vec];
252 }
253
254 raw_spin_lock_irqsave(&list_lock, flags);
255 best = vmd->first_vec + 1;
256 for (i = best; i < vmd->msix_count; i++)
257 if (vmd->irqs[i].count < vmd->irqs[best].count)
258 best = i;
259 vmd->irqs[best].count++;
260 raw_spin_unlock_irqrestore(&list_lock, flags);
261
262 return &vmd->irqs[best];
263 }
264
vmd_msi_init(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq,irq_hw_number_t hwirq,msi_alloc_info_t * arg)265 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
266 unsigned int virq, irq_hw_number_t hwirq,
267 msi_alloc_info_t *arg)
268 {
269 struct msi_desc *desc = arg->desc;
270 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
271 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
272
273 if (!vmdirq)
274 return -ENOMEM;
275
276 INIT_LIST_HEAD(&vmdirq->node);
277 vmdirq->irq = vmd_next_irq(vmd, desc);
278 vmdirq->virq = virq;
279
280 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
281 handle_untracked_irq, vmd, NULL);
282 return 0;
283 }
284
vmd_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int virq)285 static void vmd_msi_free(struct irq_domain *domain,
286 struct msi_domain_info *info, unsigned int virq)
287 {
288 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
289 unsigned long flags;
290
291 synchronize_srcu(&vmdirq->irq->srcu);
292
293 /* XXX: Potential optimization to rebalance */
294 raw_spin_lock_irqsave(&list_lock, flags);
295 vmdirq->irq->count--;
296 raw_spin_unlock_irqrestore(&list_lock, flags);
297
298 kfree(vmdirq);
299 }
300
vmd_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * arg)301 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
302 int nvec, msi_alloc_info_t *arg)
303 {
304 struct pci_dev *pdev = to_pci_dev(dev);
305 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306
307 if (nvec > vmd->msix_count)
308 return vmd->msix_count;
309
310 memset(arg, 0, sizeof(*arg));
311 return 0;
312 }
313
vmd_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)314 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
315 {
316 arg->desc = desc;
317 }
318
319 static struct msi_domain_ops vmd_msi_domain_ops = {
320 .get_hwirq = vmd_get_hwirq,
321 .msi_init = vmd_msi_init,
322 .msi_free = vmd_msi_free,
323 .msi_prepare = vmd_msi_prepare,
324 .set_desc = vmd_set_desc,
325 };
326
327 static struct msi_domain_info vmd_msi_domain_info = {
328 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
329 MSI_FLAG_PCI_MSIX,
330 .ops = &vmd_msi_domain_ops,
331 .chip = &vmd_msi_controller,
332 };
333
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)334 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
335 {
336 u16 reg;
337
338 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
339 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
340 (reg | VMCONFIG_MSI_REMAP);
341 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
342 }
343
vmd_create_irq_domain(struct vmd_dev * vmd)344 static int vmd_create_irq_domain(struct vmd_dev *vmd)
345 {
346 struct fwnode_handle *fn;
347
348 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
349 if (!fn)
350 return -ENODEV;
351
352 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
353 if (!vmd->irq_domain) {
354 irq_domain_free_fwnode(fn);
355 return -ENODEV;
356 }
357
358 return 0;
359 }
360
vmd_remove_irq_domain(struct vmd_dev * vmd)361 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
362 {
363 /*
364 * Some production BIOS won't enable remapping between soft reboots.
365 * Ensure remapping is restored before unloading the driver.
366 */
367 if (!vmd->msix_count)
368 vmd_set_msi_remapping(vmd, true);
369
370 if (vmd->irq_domain) {
371 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
372
373 irq_domain_remove(vmd->irq_domain);
374 irq_domain_free_fwnode(fn);
375 }
376 }
377
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)378 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
379 unsigned int devfn, int reg, int len)
380 {
381 unsigned int busnr_ecam = bus->number - vmd->busn_start;
382 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
383
384 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
385 return NULL;
386
387 return vmd->cfgbar + offset;
388 }
389
390 /*
391 * CPU may deadlock if config space is not serialized on some versions of this
392 * hardware, so all config space access is done under a spinlock.
393 */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)394 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
395 int len, u32 *value)
396 {
397 struct vmd_dev *vmd = vmd_from_bus(bus);
398 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
399 unsigned long flags;
400 int ret = 0;
401
402 if (!addr)
403 return -EFAULT;
404
405 spin_lock_irqsave(&vmd->cfg_lock, flags);
406 switch (len) {
407 case 1:
408 *value = readb(addr);
409 break;
410 case 2:
411 *value = readw(addr);
412 break;
413 case 4:
414 *value = readl(addr);
415 break;
416 default:
417 ret = -EINVAL;
418 break;
419 }
420 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
421 return ret;
422 }
423
424 /*
425 * VMD h/w converts non-posted config writes to posted memory writes. The
426 * read-back in this function forces the completion so it returns only after
427 * the config space was written, as expected.
428 */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)429 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
430 int len, u32 value)
431 {
432 struct vmd_dev *vmd = vmd_from_bus(bus);
433 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
434 unsigned long flags;
435 int ret = 0;
436
437 if (!addr)
438 return -EFAULT;
439
440 spin_lock_irqsave(&vmd->cfg_lock, flags);
441 switch (len) {
442 case 1:
443 writeb(value, addr);
444 readb(addr);
445 break;
446 case 2:
447 writew(value, addr);
448 readw(addr);
449 break;
450 case 4:
451 writel(value, addr);
452 readl(addr);
453 break;
454 default:
455 ret = -EINVAL;
456 break;
457 }
458 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
459 return ret;
460 }
461
462 static struct pci_ops vmd_ops = {
463 .read = vmd_pci_read,
464 .write = vmd_pci_write,
465 };
466
467 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)468 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
469 {
470 struct pci_host_bridge *bridge;
471 u32 busnr, addr;
472
473 if (pci_dev->bus->ops != &vmd_ops)
474 return NULL;
475
476 bridge = pci_find_host_bridge(pci_dev->bus);
477 busnr = pci_dev->bus->number - bridge->bus->number;
478 /*
479 * The address computation below is only applicable to relative bus
480 * numbers below 32.
481 */
482 if (busnr > 31)
483 return NULL;
484
485 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
486
487 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
488 addr);
489
490 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
491 false);
492 }
493
494 static bool hook_installed;
495
vmd_acpi_begin(void)496 static void vmd_acpi_begin(void)
497 {
498 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
499 return;
500
501 hook_installed = true;
502 }
503
vmd_acpi_end(void)504 static void vmd_acpi_end(void)
505 {
506 if (!hook_installed)
507 return;
508
509 pci_acpi_clear_companion_lookup_hook();
510 hook_installed = false;
511 }
512 #else
vmd_acpi_begin(void)513 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)514 static inline void vmd_acpi_end(void) { }
515 #endif /* CONFIG_ACPI */
516
vmd_domain_reset(struct vmd_dev * vmd)517 static void vmd_domain_reset(struct vmd_dev *vmd)
518 {
519 u16 bus, max_buses = resource_size(&vmd->resources[0]);
520 u8 dev, functions, fn, hdr_type;
521 char __iomem *base;
522
523 for (bus = 0; bus < max_buses; bus++) {
524 for (dev = 0; dev < 32; dev++) {
525 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
526 PCI_DEVFN(dev, 0), 0);
527
528 hdr_type = readb(base + PCI_HEADER_TYPE) &
529 PCI_HEADER_TYPE_MASK;
530
531 functions = (hdr_type & 0x80) ? 8 : 1;
532 for (fn = 0; fn < functions; fn++) {
533 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
534 PCI_DEVFN(dev, fn), 0);
535
536 hdr_type = readb(base + PCI_HEADER_TYPE) &
537 PCI_HEADER_TYPE_MASK;
538
539 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
540 (readw(base + PCI_CLASS_DEVICE) !=
541 PCI_CLASS_BRIDGE_PCI))
542 continue;
543
544 /*
545 * Temporarily disable the I/O range before updating
546 * PCI_IO_BASE.
547 */
548 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
549 /* Update lower 16 bits of I/O base/limit */
550 writew(0x00f0, base + PCI_IO_BASE);
551 /* Update upper 16 bits of I/O base/limit */
552 writel(0, base + PCI_IO_BASE_UPPER16);
553
554 /* MMIO Base/Limit */
555 writel(0x0000fff0, base + PCI_MEMORY_BASE);
556
557 /* Prefetchable MMIO Base/Limit */
558 writel(0, base + PCI_PREF_LIMIT_UPPER32);
559 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
560 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
561 }
562 }
563 }
564 }
565
vmd_attach_resources(struct vmd_dev * vmd)566 static void vmd_attach_resources(struct vmd_dev *vmd)
567 {
568 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
569 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
570 }
571
vmd_detach_resources(struct vmd_dev * vmd)572 static void vmd_detach_resources(struct vmd_dev *vmd)
573 {
574 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
575 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
576 }
577
578 /*
579 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
580 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
581 * 16 bits are the PCI Segment Group (domain) number. Other bits are
582 * currently reserved.
583 */
vmd_find_free_domain(void)584 static int vmd_find_free_domain(void)
585 {
586 int domain = 0xffff;
587 struct pci_bus *bus = NULL;
588
589 while ((bus = pci_find_next_bus(bus)) != NULL)
590 domain = max_t(int, domain, pci_domain_nr(bus));
591 return domain + 1;
592 }
593
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)594 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
595 resource_size_t *offset1,
596 resource_size_t *offset2)
597 {
598 struct pci_dev *dev = vmd->dev;
599 u64 phys1, phys2;
600
601 if (native_hint) {
602 u32 vmlock;
603 int ret;
604
605 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
606 if (ret || PCI_POSSIBLE_ERROR(vmlock))
607 return -ENODEV;
608
609 if (MB2_SHADOW_EN(vmlock)) {
610 void __iomem *membar2;
611
612 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
613 if (!membar2)
614 return -ENOMEM;
615 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
616 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
617 pci_iounmap(dev, membar2);
618 } else
619 return 0;
620 } else {
621 /* Hypervisor-Emulated Vendor-Specific Capability */
622 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
623 u32 reg, regu;
624
625 pci_read_config_dword(dev, pos + 4, ®);
626
627 /* "SHDW" */
628 if (pos && reg == 0x53484457) {
629 pci_read_config_dword(dev, pos + 8, ®);
630 pci_read_config_dword(dev, pos + 12, ®u);
631 phys1 = (u64) regu << 32 | reg;
632
633 pci_read_config_dword(dev, pos + 16, ®);
634 pci_read_config_dword(dev, pos + 20, ®u);
635 phys2 = (u64) regu << 32 | reg;
636 } else
637 return 0;
638 }
639
640 *offset1 = dev->resource[VMD_MEMBAR1].start -
641 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
642 *offset2 = dev->resource[VMD_MEMBAR2].start -
643 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
644
645 return 0;
646 }
647
vmd_get_bus_number_start(struct vmd_dev * vmd)648 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
649 {
650 struct pci_dev *dev = vmd->dev;
651 u16 reg;
652
653 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
654 if (BUS_RESTRICT_CAP(reg)) {
655 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
656
657 switch (BUS_RESTRICT_CFG(reg)) {
658 case 0:
659 vmd->busn_start = 0;
660 break;
661 case 1:
662 vmd->busn_start = 128;
663 break;
664 case 2:
665 vmd->busn_start = 224;
666 break;
667 default:
668 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
669 BUS_RESTRICT_CFG(reg));
670 return -ENODEV;
671 }
672 }
673
674 return 0;
675 }
676
vmd_irq(int irq,void * data)677 static irqreturn_t vmd_irq(int irq, void *data)
678 {
679 struct vmd_irq_list *irqs = data;
680 struct vmd_irq *vmdirq;
681 int idx;
682
683 idx = srcu_read_lock(&irqs->srcu);
684 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
685 generic_handle_irq(vmdirq->virq);
686 srcu_read_unlock(&irqs->srcu, idx);
687
688 return IRQ_HANDLED;
689 }
690
vmd_alloc_irqs(struct vmd_dev * vmd)691 static int vmd_alloc_irqs(struct vmd_dev *vmd)
692 {
693 struct pci_dev *dev = vmd->dev;
694 int i, err;
695
696 vmd->msix_count = pci_msix_vec_count(dev);
697 if (vmd->msix_count < 0)
698 return -ENODEV;
699
700 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
701 vmd->msix_count, PCI_IRQ_MSIX);
702 if (vmd->msix_count < 0)
703 return vmd->msix_count;
704
705 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
706 GFP_KERNEL);
707 if (!vmd->irqs)
708 return -ENOMEM;
709
710 for (i = 0; i < vmd->msix_count; i++) {
711 err = init_srcu_struct(&vmd->irqs[i].srcu);
712 if (err)
713 return err;
714
715 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
716 vmd->irqs[i].virq = pci_irq_vector(dev, i);
717 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
718 vmd_irq, IRQF_NO_THREAD,
719 vmd->name, &vmd->irqs[i]);
720 if (err)
721 return err;
722 }
723
724 return 0;
725 }
726
727 /*
728 * Since VMD is an aperture to regular PCIe root ports, only allow it to
729 * control features that the OS is allowed to control on the physical PCI bus.
730 */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)731 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
732 struct pci_host_bridge *vmd_bridge)
733 {
734 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
735 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
736 vmd_bridge->native_aer = root_bridge->native_aer;
737 vmd_bridge->native_pme = root_bridge->native_pme;
738 vmd_bridge->native_ltr = root_bridge->native_ltr;
739 vmd_bridge->native_dpc = root_bridge->native_dpc;
740 }
741
742 /*
743 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
744 */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)745 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
746 {
747 unsigned long features = *(unsigned long *)userdata;
748 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
749 u32 ltr_reg;
750 int pos;
751
752 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
753 return 0;
754
755 pci_enable_link_state(pdev, PCIE_LINK_STATE_ALL);
756
757 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
758 if (!pos)
759 return 0;
760
761 /*
762 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
763 * so the LTR quirk is not needed.
764 */
765 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
766 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
767 return 0;
768
769 /*
770 * Set the default values to the maximum required by the platform to
771 * allow the deepest power management savings. Write as a DWORD where
772 * the lower word is the max snoop latency and the upper word is the
773 * max non-snoop latency.
774 */
775 ltr_reg = (ltr << 16) | ltr;
776 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
777 pci_info(pdev, "VMD: Default LTR value set by driver\n");
778
779 return 0;
780 }
781
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)782 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
783 {
784 struct pci_sysdata *sd = &vmd->sysdata;
785 struct resource *res;
786 u32 upper_bits;
787 unsigned long flags;
788 LIST_HEAD(resources);
789 resource_size_t offset[2] = {0};
790 resource_size_t membar2_offset = 0x2000;
791 struct pci_bus *child;
792 struct pci_dev *dev;
793 int ret;
794
795 /*
796 * Shadow registers may exist in certain VMD device ids which allow
797 * guests to correctly assign host physical addresses to the root ports
798 * and child devices. These registers will either return the host value
799 * or 0, depending on an enable bit in the VMD device.
800 */
801 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
802 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
803 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
804 if (ret)
805 return ret;
806 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
807 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
808 if (ret)
809 return ret;
810 }
811
812 /*
813 * Certain VMD devices may have a root port configuration option which
814 * limits the bus range to between 0-127, 128-255, or 224-255
815 */
816 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
817 ret = vmd_get_bus_number_start(vmd);
818 if (ret)
819 return ret;
820 }
821
822 res = &vmd->dev->resource[VMD_CFGBAR];
823 vmd->resources[0] = (struct resource) {
824 .name = "VMD CFGBAR",
825 .start = vmd->busn_start,
826 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
827 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
828 };
829
830 /*
831 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
832 * put 32-bit resources in the window.
833 *
834 * There's no hardware reason why a 64-bit window *couldn't*
835 * contain a 32-bit resource, but pbus_size_mem() computes the
836 * bridge window size assuming a 64-bit window will contain no
837 * 32-bit resources. __pci_assign_resource() enforces that
838 * artificial restriction to make sure everything will fit.
839 *
840 * The only way we could use a 64-bit non-prefetchable MEMBAR is
841 * if its address is <4GB so that we can convert it to a 32-bit
842 * resource. To be visible to the host OS, all VMD endpoints must
843 * be initially configured by platform BIOS, which includes setting
844 * up these resources. We can assume the device is configured
845 * according to the platform needs.
846 */
847 res = &vmd->dev->resource[VMD_MEMBAR1];
848 upper_bits = upper_32_bits(res->end);
849 flags = res->flags & ~IORESOURCE_SIZEALIGN;
850 if (!upper_bits)
851 flags &= ~IORESOURCE_MEM_64;
852 vmd->resources[1] = (struct resource) {
853 .name = "VMD MEMBAR1",
854 .start = res->start,
855 .end = res->end,
856 .flags = flags,
857 .parent = res,
858 };
859
860 res = &vmd->dev->resource[VMD_MEMBAR2];
861 upper_bits = upper_32_bits(res->end);
862 flags = res->flags & ~IORESOURCE_SIZEALIGN;
863 if (!upper_bits)
864 flags &= ~IORESOURCE_MEM_64;
865 vmd->resources[2] = (struct resource) {
866 .name = "VMD MEMBAR2",
867 .start = res->start + membar2_offset,
868 .end = res->end,
869 .flags = flags,
870 .parent = res,
871 };
872
873 sd->vmd_dev = vmd->dev;
874 sd->domain = vmd_find_free_domain();
875 if (sd->domain < 0)
876 return sd->domain;
877
878 sd->node = pcibus_to_node(vmd->dev->bus);
879
880 /*
881 * Currently MSI remapping must be enabled in guest passthrough mode
882 * due to some missing interrupt remapping plumbing. This is probably
883 * acceptable because the guest is usually CPU-limited and MSI
884 * remapping doesn't become a performance bottleneck.
885 */
886 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
887 offset[0] || offset[1]) {
888 ret = vmd_alloc_irqs(vmd);
889 if (ret)
890 return ret;
891
892 vmd_set_msi_remapping(vmd, true);
893
894 ret = vmd_create_irq_domain(vmd);
895 if (ret)
896 return ret;
897
898 /*
899 * Override the IRQ domain bus token so the domain can be
900 * distinguished from a regular PCI/MSI domain.
901 */
902 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
903 } else {
904 vmd_set_msi_remapping(vmd, false);
905 }
906
907 pci_add_resource(&resources, &vmd->resources[0]);
908 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
909 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
910
911 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
912 &vmd_ops, sd, &resources);
913 if (!vmd->bus) {
914 pci_free_resource_list(&resources);
915 vmd_remove_irq_domain(vmd);
916 return -ENODEV;
917 }
918
919 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
920 to_pci_host_bridge(vmd->bus->bridge));
921
922 vmd_attach_resources(vmd);
923 if (vmd->irq_domain)
924 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
925 else
926 dev_set_msi_domain(&vmd->bus->dev,
927 dev_get_msi_domain(&vmd->dev->dev));
928
929 vmd_acpi_begin();
930
931 pci_scan_child_bus(vmd->bus);
932 vmd_domain_reset(vmd);
933
934 /* When Intel VMD is enabled, the OS does not discover the Root Ports
935 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
936 * a reset to the parent of the PCI device supplied as argument. This
937 * is why we pass a child device, so the reset can be triggered at
938 * the Intel bridge level and propagated to all the children in the
939 * hierarchy.
940 */
941 list_for_each_entry(child, &vmd->bus->children, node) {
942 if (!list_empty(&child->devices)) {
943 dev = list_first_entry(&child->devices,
944 struct pci_dev, bus_list);
945 ret = pci_reset_bus(dev);
946 if (ret)
947 pci_warn(dev, "can't reset device: %d\n", ret);
948
949 break;
950 }
951 }
952
953 pci_assign_unassigned_bus_resources(vmd->bus);
954
955 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
956
957 /*
958 * VMD root buses are virtual and don't return true on pci_is_pcie()
959 * and will fail pcie_bus_configure_settings() early. It can instead be
960 * run on each of the real root ports.
961 */
962 list_for_each_entry(child, &vmd->bus->children, node)
963 pcie_bus_configure_settings(child);
964
965 pci_bus_add_devices(vmd->bus);
966
967 vmd_acpi_end();
968
969 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
970 "domain"), "Can't create symlink to domain\n");
971 return 0;
972 }
973
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)974 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
975 {
976 unsigned long features = (unsigned long) id->driver_data;
977 struct vmd_dev *vmd;
978 int err;
979
980 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
981 return -ENOMEM;
982
983 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
984 if (!vmd)
985 return -ENOMEM;
986
987 vmd->dev = dev;
988 vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL);
989 if (vmd->instance < 0)
990 return vmd->instance;
991
992 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
993 vmd->instance);
994 if (!vmd->name) {
995 err = -ENOMEM;
996 goto out_release_instance;
997 }
998
999 err = pcim_enable_device(dev);
1000 if (err < 0)
1001 goto out_release_instance;
1002
1003 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1004 if (!vmd->cfgbar) {
1005 err = -ENOMEM;
1006 goto out_release_instance;
1007 }
1008
1009 pci_set_master(dev);
1010 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1011 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1012 err = -ENODEV;
1013 goto out_release_instance;
1014 }
1015
1016 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1017 vmd->first_vec = 1;
1018
1019 spin_lock_init(&vmd->cfg_lock);
1020 pci_set_drvdata(dev, vmd);
1021 err = vmd_enable_domain(vmd, features);
1022 if (err)
1023 goto out_release_instance;
1024
1025 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1026 vmd->sysdata.domain);
1027 return 0;
1028
1029 out_release_instance:
1030 ida_simple_remove(&vmd_instance_ida, vmd->instance);
1031 return err;
1032 }
1033
vmd_cleanup_srcu(struct vmd_dev * vmd)1034 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1035 {
1036 int i;
1037
1038 for (i = 0; i < vmd->msix_count; i++)
1039 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1040 }
1041
vmd_remove(struct pci_dev * dev)1042 static void vmd_remove(struct pci_dev *dev)
1043 {
1044 struct vmd_dev *vmd = pci_get_drvdata(dev);
1045
1046 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1047 pci_stop_root_bus(vmd->bus);
1048 pci_remove_root_bus(vmd->bus);
1049 vmd_cleanup_srcu(vmd);
1050 vmd_detach_resources(vmd);
1051 vmd_remove_irq_domain(vmd);
1052 ida_simple_remove(&vmd_instance_ida, vmd->instance);
1053 }
1054
vmd_shutdown(struct pci_dev * dev)1055 static void vmd_shutdown(struct pci_dev *dev)
1056 {
1057 struct vmd_dev *vmd = pci_get_drvdata(dev);
1058
1059 vmd_remove_irq_domain(vmd);
1060 }
1061
1062 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1063 static int vmd_suspend(struct device *dev)
1064 {
1065 struct pci_dev *pdev = to_pci_dev(dev);
1066 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1067 int i;
1068
1069 for (i = 0; i < vmd->msix_count; i++)
1070 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1071
1072 return 0;
1073 }
1074
vmd_resume(struct device * dev)1075 static int vmd_resume(struct device *dev)
1076 {
1077 struct pci_dev *pdev = to_pci_dev(dev);
1078 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1079 int err, i;
1080
1081 if (vmd->irq_domain)
1082 vmd_set_msi_remapping(vmd, true);
1083 else
1084 vmd_set_msi_remapping(vmd, false);
1085
1086 for (i = 0; i < vmd->msix_count; i++) {
1087 err = devm_request_irq(dev, vmd->irqs[i].virq,
1088 vmd_irq, IRQF_NO_THREAD,
1089 vmd->name, &vmd->irqs[i]);
1090 if (err)
1091 return err;
1092 }
1093
1094 return 0;
1095 }
1096 #endif
1097 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1098
1099 static const struct pci_device_id vmd_ids[] = {
1100 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1101 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1102 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1103 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1104 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1105 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1106 {PCI_VDEVICE(INTEL, 0x467f),
1107 .driver_data = VMD_FEATS_CLIENT,},
1108 {PCI_VDEVICE(INTEL, 0x4c3d),
1109 .driver_data = VMD_FEATS_CLIENT,},
1110 {PCI_VDEVICE(INTEL, 0xa77f),
1111 .driver_data = VMD_FEATS_CLIENT,},
1112 {PCI_VDEVICE(INTEL, 0x7d0b),
1113 .driver_data = VMD_FEATS_CLIENT,},
1114 {PCI_VDEVICE(INTEL, 0xad0b),
1115 .driver_data = VMD_FEATS_CLIENT,},
1116 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1117 .driver_data = VMD_FEATS_CLIENT,},
1118 {0,}
1119 };
1120 MODULE_DEVICE_TABLE(pci, vmd_ids);
1121
1122 static struct pci_driver vmd_drv = {
1123 .name = "vmd",
1124 .id_table = vmd_ids,
1125 .probe = vmd_probe,
1126 .remove = vmd_remove,
1127 .shutdown = vmd_shutdown,
1128 .driver = {
1129 .pm = &vmd_dev_pm_ops,
1130 },
1131 };
1132 module_pci_driver(vmd_drv);
1133
1134 MODULE_AUTHOR("Intel Corporation");
1135 MODULE_LICENSE("GPL v2");
1136 MODULE_VERSION("0.6");
1137