1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53
54 /*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 };
67
68 #define CPU_AFFINITY_ALL -1ULL
69
70 /*
71 * Supported protocol versions in the order of probing - highest go
72 * first.
73 */
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 PCI_PROTOCOL_VERSION_1_2,
76 PCI_PROTOCOL_VERSION_1_1,
77 };
78
79 /*
80 * Protocol version negotiated by hv_pci_protocol_negotiation().
81 */
82 static enum pci_protocol_version_t pci_protocol_version;
83
84 #define PCI_CONFIG_MMIO_LENGTH 0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94
95 /*
96 * Message Types
97 */
98
99 enum pci_message_type {
100 /*
101 * Version 1.1
102 */
103 PCI_MESSAGE_BASE = 0x42490000,
104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
127 PCI_MESSAGE_MAXIMUM
128 };
129
130 /*
131 * Structures defining the virtual PCI Express protocol.
132 */
133
134 union pci_version {
135 struct {
136 u16 minor_version;
137 u16 major_version;
138 } parts;
139 u32 version;
140 } __packed;
141
142 /*
143 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
144 * which is all this driver does. This representation is the one used in
145 * Windows, which is what is expected when sending this back and forth with
146 * the Hyper-V parent partition.
147 */
148 union win_slot_encoding {
149 struct {
150 u32 dev:5;
151 u32 func:3;
152 u32 reserved:24;
153 } bits;
154 u32 slot;
155 } __packed;
156
157 /*
158 * Pretty much as defined in the PCI Specifications.
159 */
160 struct pci_function_description {
161 u16 v_id; /* vendor ID */
162 u16 d_id; /* device ID */
163 u8 rev;
164 u8 prog_intf;
165 u8 subclass;
166 u8 base_class;
167 u32 subsystem_id;
168 union win_slot_encoding win_slot;
169 u32 ser; /* serial number */
170 } __packed;
171
172 /**
173 * struct hv_msi_desc
174 * @vector: IDT entry
175 * @delivery_mode: As defined in Intel's Programmer's
176 * Reference Manual, Volume 3, Chapter 8.
177 * @vector_count: Number of contiguous entries in the
178 * Interrupt Descriptor Table that are
179 * occupied by this Message-Signaled
180 * Interrupt. For "MSI", as first defined
181 * in PCI 2.2, this can be between 1 and
182 * 32. For "MSI-X," as first defined in PCI
183 * 3.0, this must be 1, as each MSI-X table
184 * entry would have its own descriptor.
185 * @reserved: Empty space
186 * @cpu_mask: All the target virtual processors.
187 */
188 struct hv_msi_desc {
189 u8 vector;
190 u8 delivery_mode;
191 u16 vector_count;
192 u32 reserved;
193 u64 cpu_mask;
194 } __packed;
195
196 /**
197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
198 * @vector: IDT entry
199 * @delivery_mode: As defined in Intel's Programmer's
200 * Reference Manual, Volume 3, Chapter 8.
201 * @vector_count: Number of contiguous entries in the
202 * Interrupt Descriptor Table that are
203 * occupied by this Message-Signaled
204 * Interrupt. For "MSI", as first defined
205 * in PCI 2.2, this can be between 1 and
206 * 32. For "MSI-X," as first defined in PCI
207 * 3.0, this must be 1, as each MSI-X table
208 * entry would have its own descriptor.
209 * @processor_count: number of bits enabled in array.
210 * @processor_array: All the target virtual processors.
211 */
212 struct hv_msi_desc2 {
213 u8 vector;
214 u8 delivery_mode;
215 u16 vector_count;
216 u16 processor_count;
217 u16 processor_array[32];
218 } __packed;
219
220 /**
221 * struct tran_int_desc
222 * @reserved: unused, padding
223 * @vector_count: same as in hv_msi_desc
224 * @data: This is the "data payload" value that is
225 * written by the device when it generates
226 * a message-signaled interrupt, either MSI
227 * or MSI-X.
228 * @address: This is the address to which the data
229 * payload is written on interrupt
230 * generation.
231 */
232 struct tran_int_desc {
233 u16 reserved;
234 u16 vector_count;
235 u32 data;
236 u64 address;
237 } __packed;
238
239 /*
240 * A generic message format for virtual PCI.
241 * Specific message formats are defined later in the file.
242 */
243
244 struct pci_message {
245 u32 type;
246 } __packed;
247
248 struct pci_child_message {
249 struct pci_message message_type;
250 union win_slot_encoding wslot;
251 } __packed;
252
253 struct pci_incoming_message {
254 struct vmpacket_descriptor hdr;
255 struct pci_message message_type;
256 } __packed;
257
258 struct pci_response {
259 struct vmpacket_descriptor hdr;
260 s32 status; /* negative values are failures */
261 } __packed;
262
263 struct pci_packet {
264 void (*completion_func)(void *context, struct pci_response *resp,
265 int resp_packet_size);
266 void *compl_ctxt;
267
268 struct pci_message message[0];
269 };
270
271 /*
272 * Specific message types supporting the PCI protocol.
273 */
274
275 /*
276 * Version negotiation message. Sent from the guest to the host.
277 * The guest is free to try different versions until the host
278 * accepts the version.
279 *
280 * pci_version: The protocol version requested.
281 * is_last_attempt: If TRUE, this is the last version guest will request.
282 * reservedz: Reserved field, set to zero.
283 */
284
285 struct pci_version_request {
286 struct pci_message message_type;
287 u32 protocol_version;
288 } __packed;
289
290 /*
291 * Bus D0 Entry. This is sent from the guest to the host when the virtual
292 * bus (PCI Express port) is ready for action.
293 */
294
295 struct pci_bus_d0_entry {
296 struct pci_message message_type;
297 u32 reserved;
298 u64 mmio_base;
299 } __packed;
300
301 struct pci_bus_relations {
302 struct pci_incoming_message incoming;
303 u32 device_count;
304 struct pci_function_description func[0];
305 } __packed;
306
307 struct pci_q_res_req_response {
308 struct vmpacket_descriptor hdr;
309 s32 status; /* negative values are failures */
310 u32 probed_bar[6];
311 } __packed;
312
313 struct pci_set_power {
314 struct pci_message message_type;
315 union win_slot_encoding wslot;
316 u32 power_state; /* In Windows terms */
317 u32 reserved;
318 } __packed;
319
320 struct pci_set_power_response {
321 struct vmpacket_descriptor hdr;
322 s32 status; /* negative values are failures */
323 union win_slot_encoding wslot;
324 u32 resultant_state; /* In Windows terms */
325 u32 reserved;
326 } __packed;
327
328 struct pci_resources_assigned {
329 struct pci_message message_type;
330 union win_slot_encoding wslot;
331 u8 memory_range[0x14][6]; /* not used here */
332 u32 msi_descriptors;
333 u32 reserved[4];
334 } __packed;
335
336 struct pci_resources_assigned2 {
337 struct pci_message message_type;
338 union win_slot_encoding wslot;
339 u8 memory_range[0x14][6]; /* not used here */
340 u32 msi_descriptor_count;
341 u8 reserved[70];
342 } __packed;
343
344 struct pci_create_interrupt {
345 struct pci_message message_type;
346 union win_slot_encoding wslot;
347 struct hv_msi_desc int_desc;
348 } __packed;
349
350 struct pci_create_int_response {
351 struct pci_response response;
352 u32 reserved;
353 struct tran_int_desc int_desc;
354 } __packed;
355
356 struct pci_create_interrupt2 {
357 struct pci_message message_type;
358 union win_slot_encoding wslot;
359 struct hv_msi_desc2 int_desc;
360 } __packed;
361
362 struct pci_delete_interrupt {
363 struct pci_message message_type;
364 union win_slot_encoding wslot;
365 struct tran_int_desc int_desc;
366 } __packed;
367
368 struct pci_dev_incoming {
369 struct pci_incoming_message incoming;
370 union win_slot_encoding wslot;
371 } __packed;
372
373 struct pci_eject_response {
374 struct pci_message message_type;
375 union win_slot_encoding wslot;
376 u32 status;
377 } __packed;
378
379 static int pci_ring_size = (4 * PAGE_SIZE);
380
381 /*
382 * Definitions or interrupt steering hypercall.
383 */
384 #define HV_PARTITION_ID_SELF ((u64)-1)
385 #define HVCALL_RETARGET_INTERRUPT 0x7e
386
387 struct hv_interrupt_entry {
388 u32 source; /* 1 for MSI(-X) */
389 u32 reserved1;
390 u32 address;
391 u32 data;
392 };
393
394 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */
395
396 struct hv_vp_set {
397 u64 format; /* 0 (HvGenericSetSparse4k) */
398 u64 valid_banks;
399 u64 masks[HV_VP_SET_BANK_COUNT_MAX];
400 };
401
402 /*
403 * flags for hv_device_interrupt_target.flags
404 */
405 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1
406 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2
407
408 struct hv_device_interrupt_target {
409 u32 vector;
410 u32 flags;
411 union {
412 u64 vp_mask;
413 struct hv_vp_set vp_set;
414 };
415 };
416
417 struct retarget_msi_interrupt {
418 u64 partition_id; /* use "self" */
419 u64 device_id;
420 struct hv_interrupt_entry int_entry;
421 u64 reserved2;
422 struct hv_device_interrupt_target int_target;
423 } __packed;
424
425 /*
426 * Driver specific state.
427 */
428
429 enum hv_pcibus_state {
430 hv_pcibus_init = 0,
431 hv_pcibus_probed,
432 hv_pcibus_installed,
433 hv_pcibus_removed,
434 hv_pcibus_maximum
435 };
436
437 struct hv_pcibus_device {
438 struct pci_sysdata sysdata;
439 enum hv_pcibus_state state;
440 refcount_t remove_lock;
441 struct hv_device *hdev;
442 resource_size_t low_mmio_space;
443 resource_size_t high_mmio_space;
444 struct resource *mem_config;
445 struct resource *low_mmio_res;
446 struct resource *high_mmio_res;
447 struct completion *survey_event;
448 struct completion remove_event;
449 struct pci_bus *pci_bus;
450 spinlock_t config_lock; /* Avoid two threads writing index page */
451 spinlock_t device_list_lock; /* Protect lists below */
452 void __iomem *cfg_addr;
453
454 struct list_head resources_for_children;
455
456 struct list_head children;
457 struct list_head dr_list;
458
459 struct msi_domain_info msi_info;
460 struct msi_controller msi_chip;
461 struct irq_domain *irq_domain;
462
463 /* hypercall arg, must not cross page boundary */
464 struct retarget_msi_interrupt retarget_msi_interrupt_params;
465
466 spinlock_t retarget_msi_interrupt_lock;
467
468 struct workqueue_struct *wq;
469 };
470
471 /*
472 * Tracks "Device Relations" messages from the host, which must be both
473 * processed in order and deferred so that they don't run in the context
474 * of the incoming packet callback.
475 */
476 struct hv_dr_work {
477 struct work_struct wrk;
478 struct hv_pcibus_device *bus;
479 };
480
481 struct hv_dr_state {
482 struct list_head list_entry;
483 u32 device_count;
484 struct pci_function_description func[0];
485 };
486
487 enum hv_pcichild_state {
488 hv_pcichild_init = 0,
489 hv_pcichild_requirements,
490 hv_pcichild_resourced,
491 hv_pcichild_ejecting,
492 hv_pcichild_maximum
493 };
494
495 struct hv_pci_dev {
496 /* List protected by pci_rescan_remove_lock */
497 struct list_head list_entry;
498 refcount_t refs;
499 enum hv_pcichild_state state;
500 struct pci_slot *pci_slot;
501 struct pci_function_description desc;
502 bool reported_missing;
503 struct hv_pcibus_device *hbus;
504 struct work_struct wrk;
505
506 /*
507 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
508 * read it back, for each of the BAR offsets within config space.
509 */
510 u32 probed_bar[6];
511 };
512
513 struct hv_pci_compl {
514 struct completion host_event;
515 s32 completion_status;
516 };
517
518 static void hv_pci_onchannelcallback(void *context);
519
520 /**
521 * hv_pci_generic_compl() - Invoked for a completion packet
522 * @context: Set up by the sender of the packet.
523 * @resp: The response packet
524 * @resp_packet_size: Size in bytes of the packet
525 *
526 * This function is used to trigger an event and report status
527 * for any message for which the completion packet contains a
528 * status and nothing else.
529 */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)530 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
531 int resp_packet_size)
532 {
533 struct hv_pci_compl *comp_pkt = context;
534
535 if (resp_packet_size >= offsetofend(struct pci_response, status))
536 comp_pkt->completion_status = resp->status;
537 else
538 comp_pkt->completion_status = -1;
539
540 complete(&comp_pkt->host_event);
541 }
542
543 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
544 u32 wslot);
545
get_pcichild(struct hv_pci_dev * hpdev)546 static void get_pcichild(struct hv_pci_dev *hpdev)
547 {
548 refcount_inc(&hpdev->refs);
549 }
550
put_pcichild(struct hv_pci_dev * hpdev)551 static void put_pcichild(struct hv_pci_dev *hpdev)
552 {
553 if (refcount_dec_and_test(&hpdev->refs))
554 kfree(hpdev);
555 }
556
557 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
558 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
559
560 /*
561 * There is no good way to get notified from vmbus_onoffer_rescind(),
562 * so let's use polling here, since this is not a hot path.
563 */
wait_for_response(struct hv_device * hdev,struct completion * comp)564 static int wait_for_response(struct hv_device *hdev,
565 struct completion *comp)
566 {
567 while (true) {
568 if (hdev->channel->rescind) {
569 dev_warn_once(&hdev->device, "The device is gone.\n");
570 return -ENODEV;
571 }
572
573 if (wait_for_completion_timeout(comp, HZ / 10))
574 break;
575 }
576
577 return 0;
578 }
579
580 /**
581 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
582 * @devfn: The Linux representation of PCI slot
583 *
584 * Windows uses a slightly different representation of PCI slot.
585 *
586 * Return: The Windows representation
587 */
devfn_to_wslot(int devfn)588 static u32 devfn_to_wslot(int devfn)
589 {
590 union win_slot_encoding wslot;
591
592 wslot.slot = 0;
593 wslot.bits.dev = PCI_SLOT(devfn);
594 wslot.bits.func = PCI_FUNC(devfn);
595
596 return wslot.slot;
597 }
598
599 /**
600 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
601 * @wslot: The Windows representation of PCI slot
602 *
603 * Windows uses a slightly different representation of PCI slot.
604 *
605 * Return: The Linux representation
606 */
wslot_to_devfn(u32 wslot)607 static int wslot_to_devfn(u32 wslot)
608 {
609 union win_slot_encoding slot_no;
610
611 slot_no.slot = wslot;
612 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
613 }
614
615 /*
616 * PCI Configuration Space for these root PCI buses is implemented as a pair
617 * of pages in memory-mapped I/O space. Writing to the first page chooses
618 * the PCI function being written or read. Once the first page has been
619 * written to, the following page maps in the entire configuration space of
620 * the function.
621 */
622
623 /**
624 * _hv_pcifront_read_config() - Internal PCI config read
625 * @hpdev: The PCI driver's representation of the device
626 * @where: Offset within config space
627 * @size: Size of the transfer
628 * @val: Pointer to the buffer receiving the data
629 */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)630 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
631 int size, u32 *val)
632 {
633 unsigned long flags;
634 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
635
636 /*
637 * If the attempt is to read the IDs or the ROM BAR, simulate that.
638 */
639 if (where + size <= PCI_COMMAND) {
640 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
641 } else if (where >= PCI_CLASS_REVISION && where + size <=
642 PCI_CACHE_LINE_SIZE) {
643 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
644 PCI_CLASS_REVISION, size);
645 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
646 PCI_ROM_ADDRESS) {
647 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
648 PCI_SUBSYSTEM_VENDOR_ID, size);
649 } else if (where >= PCI_ROM_ADDRESS && where + size <=
650 PCI_CAPABILITY_LIST) {
651 /* ROM BARs are unimplemented */
652 *val = 0;
653 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
654 PCI_INTERRUPT_PIN) {
655 /*
656 * Interrupt Line and Interrupt PIN are hard-wired to zero
657 * because this front-end only supports message-signaled
658 * interrupts.
659 */
660 *val = 0;
661 } else if (where + size <= CFG_PAGE_SIZE) {
662 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
663 /* Choose the function to be read. (See comment above) */
664 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
665 /* Make sure the function was chosen before we start reading. */
666 mb();
667 /* Read from that function's config space. */
668 switch (size) {
669 case 1:
670 *val = readb(addr);
671 break;
672 case 2:
673 *val = readw(addr);
674 break;
675 default:
676 *val = readl(addr);
677 break;
678 }
679 /*
680 * Make sure the read was done before we release the spinlock
681 * allowing consecutive reads/writes.
682 */
683 mb();
684 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
685 } else {
686 dev_err(&hpdev->hbus->hdev->device,
687 "Attempt to read beyond a function's config space.\n");
688 }
689 }
690
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)691 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
692 {
693 u16 ret;
694 unsigned long flags;
695 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
696 PCI_VENDOR_ID;
697
698 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
699
700 /* Choose the function to be read. (See comment above) */
701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
702 /* Make sure the function was chosen before we start reading. */
703 mb();
704 /* Read from that function's config space. */
705 ret = readw(addr);
706 /*
707 * mb() is not required here, because the spin_unlock_irqrestore()
708 * is a barrier.
709 */
710
711 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
712
713 return ret;
714 }
715
716 /**
717 * _hv_pcifront_write_config() - Internal PCI config write
718 * @hpdev: The PCI driver's representation of the device
719 * @where: Offset within config space
720 * @size: Size of the transfer
721 * @val: The data being transferred
722 */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)723 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
724 int size, u32 val)
725 {
726 unsigned long flags;
727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
728
729 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
730 where + size <= PCI_CAPABILITY_LIST) {
731 /* SSIDs and ROM BARs are read-only */
732 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
733 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
734 /* Choose the function to be written. (See comment above) */
735 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
736 /* Make sure the function was chosen before we start writing. */
737 wmb();
738 /* Write to that function's config space. */
739 switch (size) {
740 case 1:
741 writeb(val, addr);
742 break;
743 case 2:
744 writew(val, addr);
745 break;
746 default:
747 writel(val, addr);
748 break;
749 }
750 /*
751 * Make sure the write was done before we release the spinlock
752 * allowing consecutive reads/writes.
753 */
754 mb();
755 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
756 } else {
757 dev_err(&hpdev->hbus->hdev->device,
758 "Attempt to write beyond a function's config space.\n");
759 }
760 }
761
762 /**
763 * hv_pcifront_read_config() - Read configuration space
764 * @bus: PCI Bus structure
765 * @devfn: Device/function
766 * @where: Offset from base
767 * @size: Byte/word/dword
768 * @val: Value to be read
769 *
770 * Return: PCIBIOS_SUCCESSFUL on success
771 * PCIBIOS_DEVICE_NOT_FOUND on failure
772 */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)773 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
774 int where, int size, u32 *val)
775 {
776 struct hv_pcibus_device *hbus =
777 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
778 struct hv_pci_dev *hpdev;
779
780 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
781 if (!hpdev)
782 return PCIBIOS_DEVICE_NOT_FOUND;
783
784 _hv_pcifront_read_config(hpdev, where, size, val);
785
786 put_pcichild(hpdev);
787 return PCIBIOS_SUCCESSFUL;
788 }
789
790 /**
791 * hv_pcifront_write_config() - Write configuration space
792 * @bus: PCI Bus structure
793 * @devfn: Device/function
794 * @where: Offset from base
795 * @size: Byte/word/dword
796 * @val: Value to be written to device
797 *
798 * Return: PCIBIOS_SUCCESSFUL on success
799 * PCIBIOS_DEVICE_NOT_FOUND on failure
800 */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)801 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
802 int where, int size, u32 val)
803 {
804 struct hv_pcibus_device *hbus =
805 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
806 struct hv_pci_dev *hpdev;
807
808 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
809 if (!hpdev)
810 return PCIBIOS_DEVICE_NOT_FOUND;
811
812 _hv_pcifront_write_config(hpdev, where, size, val);
813
814 put_pcichild(hpdev);
815 return PCIBIOS_SUCCESSFUL;
816 }
817
818 /* PCIe operations */
819 static struct pci_ops hv_pcifront_ops = {
820 .read = hv_pcifront_read_config,
821 .write = hv_pcifront_write_config,
822 };
823
824 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)825 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
826 struct tran_int_desc *int_desc)
827 {
828 struct pci_delete_interrupt *int_pkt;
829 struct {
830 struct pci_packet pkt;
831 u8 buffer[sizeof(struct pci_delete_interrupt)];
832 } ctxt;
833
834 memset(&ctxt, 0, sizeof(ctxt));
835 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
836 int_pkt->message_type.type =
837 PCI_DELETE_INTERRUPT_MESSAGE;
838 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
839 int_pkt->int_desc = *int_desc;
840 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
841 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
842 kfree(int_desc);
843 }
844
845 /**
846 * hv_msi_free() - Free the MSI.
847 * @domain: The interrupt domain pointer
848 * @info: Extra MSI-related context
849 * @irq: Identifies the IRQ.
850 *
851 * The Hyper-V parent partition and hypervisor are tracking the
852 * messages that are in use, keeping the interrupt redirection
853 * table up to date. This callback sends a message that frees
854 * the IRT entry and related tracking nonsense.
855 */
hv_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)856 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
857 unsigned int irq)
858 {
859 struct hv_pcibus_device *hbus;
860 struct hv_pci_dev *hpdev;
861 struct pci_dev *pdev;
862 struct tran_int_desc *int_desc;
863 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
864 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
865
866 pdev = msi_desc_to_pci_dev(msi);
867 hbus = info->data;
868 int_desc = irq_data_get_irq_chip_data(irq_data);
869 if (!int_desc)
870 return;
871
872 irq_data->chip_data = NULL;
873 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
874 if (!hpdev) {
875 kfree(int_desc);
876 return;
877 }
878
879 hv_int_desc_free(hpdev, int_desc);
880 put_pcichild(hpdev);
881 }
882
hv_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)883 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
884 bool force)
885 {
886 struct irq_data *parent = data->parent_data;
887
888 return parent->chip->irq_set_affinity(parent, dest, force);
889 }
890
hv_irq_mask(struct irq_data * data)891 static void hv_irq_mask(struct irq_data *data)
892 {
893 pci_msi_mask_irq(data);
894 }
895
896 /**
897 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
898 * affinity.
899 * @data: Describes the IRQ
900 *
901 * Build new a destination for the MSI and make a hypercall to
902 * update the Interrupt Redirection Table. "Device Logical ID"
903 * is built out of this PCI bus's instance GUID and the function
904 * number of the device.
905 */
hv_irq_unmask(struct irq_data * data)906 static void hv_irq_unmask(struct irq_data *data)
907 {
908 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
909 struct irq_cfg *cfg = irqd_cfg(data);
910 struct retarget_msi_interrupt *params;
911 struct hv_pcibus_device *hbus;
912 struct cpumask *dest;
913 struct pci_bus *pbus;
914 struct pci_dev *pdev;
915 unsigned long flags;
916 u32 var_size = 0;
917 int cpu_vmbus;
918 int cpu;
919 u64 res;
920
921 dest = irq_data_get_effective_affinity_mask(data);
922 pdev = msi_desc_to_pci_dev(msi_desc);
923 pbus = pdev->bus;
924 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
925
926 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
927
928 params = &hbus->retarget_msi_interrupt_params;
929 memset(params, 0, sizeof(*params));
930 params->partition_id = HV_PARTITION_ID_SELF;
931 params->int_entry.source = 1; /* MSI(-X) */
932 params->int_entry.address = msi_desc->msg.address_lo;
933 params->int_entry.data = msi_desc->msg.data;
934 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
935 (hbus->hdev->dev_instance.b[4] << 16) |
936 (hbus->hdev->dev_instance.b[7] << 8) |
937 (hbus->hdev->dev_instance.b[6] & 0xf8) |
938 PCI_FUNC(pdev->devfn);
939 params->int_target.vector = cfg->vector;
940
941 /*
942 * Honoring apic->irq_delivery_mode set to dest_Fixed by
943 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
944 * spurious interrupt storm. Not doing so does not seem to have a
945 * negative effect (yet?).
946 */
947
948 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
949 /*
950 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
951 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
952 * with >64 VP support.
953 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
954 * is not sufficient for this hypercall.
955 */
956 params->int_target.flags |=
957 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
958 params->int_target.vp_set.valid_banks =
959 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
960
961 /*
962 * var-sized hypercall, var-size starts after vp_mask (thus
963 * vp_set.format does not count, but vp_set.valid_banks does).
964 */
965 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
966
967 for_each_cpu_and(cpu, dest, cpu_online_mask) {
968 cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
969
970 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
971 dev_err(&hbus->hdev->device,
972 "too high CPU %d", cpu_vmbus);
973 res = 1;
974 goto exit_unlock;
975 }
976
977 params->int_target.vp_set.masks[cpu_vmbus / 64] |=
978 (1ULL << (cpu_vmbus & 63));
979 }
980 } else {
981 for_each_cpu_and(cpu, dest, cpu_online_mask) {
982 params->int_target.vp_mask |=
983 (1ULL << hv_cpu_number_to_vp_number(cpu));
984 }
985 }
986
987 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
988 params, NULL);
989
990 exit_unlock:
991 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
992
993 if (res) {
994 dev_err(&hbus->hdev->device,
995 "%s() failed: %#llx", __func__, res);
996 return;
997 }
998
999 pci_msi_unmask_irq(data);
1000 }
1001
1002 struct compose_comp_ctxt {
1003 struct hv_pci_compl comp_pkt;
1004 struct tran_int_desc int_desc;
1005 };
1006
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1007 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1008 int resp_packet_size)
1009 {
1010 struct compose_comp_ctxt *comp_pkt = context;
1011 struct pci_create_int_response *int_resp =
1012 (struct pci_create_int_response *)resp;
1013
1014 comp_pkt->comp_pkt.completion_status = resp->status;
1015 comp_pkt->int_desc = int_resp->int_desc;
1016 complete(&comp_pkt->comp_pkt.host_event);
1017 }
1018
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1019 static u32 hv_compose_msi_req_v1(
1020 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1021 u32 slot, u8 vector)
1022 {
1023 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1024 int_pkt->wslot.slot = slot;
1025 int_pkt->int_desc.vector = vector;
1026 int_pkt->int_desc.vector_count = 1;
1027 int_pkt->int_desc.delivery_mode = dest_Fixed;
1028
1029 /*
1030 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1031 * hv_irq_unmask().
1032 */
1033 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1034
1035 return sizeof(*int_pkt);
1036 }
1037
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1038 static u32 hv_compose_msi_req_v2(
1039 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1040 u32 slot, u8 vector)
1041 {
1042 int cpu;
1043
1044 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1045 int_pkt->wslot.slot = slot;
1046 int_pkt->int_desc.vector = vector;
1047 int_pkt->int_desc.vector_count = 1;
1048 int_pkt->int_desc.delivery_mode = dest_Fixed;
1049
1050 /*
1051 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1052 * by subsequent retarget in hv_irq_unmask().
1053 */
1054 cpu = cpumask_first_and(affinity, cpu_online_mask);
1055 int_pkt->int_desc.processor_array[0] =
1056 hv_cpu_number_to_vp_number(cpu);
1057 int_pkt->int_desc.processor_count = 1;
1058
1059 return sizeof(*int_pkt);
1060 }
1061
1062 /**
1063 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1064 * @data: Everything about this MSI
1065 * @msg: Buffer that is filled in by this function
1066 *
1067 * This function unpacks the IRQ looking for target CPU set, IDT
1068 * vector and mode and sends a message to the parent partition
1069 * asking for a mapping for that tuple in this partition. The
1070 * response supplies a data value and address to which that data
1071 * should be written to trigger that interrupt.
1072 */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1073 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1074 {
1075 struct irq_cfg *cfg = irqd_cfg(data);
1076 struct hv_pcibus_device *hbus;
1077 struct hv_pci_dev *hpdev;
1078 struct pci_bus *pbus;
1079 struct pci_dev *pdev;
1080 struct cpumask *dest;
1081 unsigned long flags;
1082 struct compose_comp_ctxt comp;
1083 struct tran_int_desc *int_desc;
1084 struct {
1085 struct pci_packet pci_pkt;
1086 union {
1087 struct pci_create_interrupt v1;
1088 struct pci_create_interrupt2 v2;
1089 } int_pkts;
1090 } __packed ctxt;
1091
1092 u32 size;
1093 int ret;
1094
1095 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1096 dest = irq_data_get_effective_affinity_mask(data);
1097 pbus = pdev->bus;
1098 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1100 if (!hpdev)
1101 goto return_null_message;
1102
1103 /* Free any previous message that might have already been composed. */
1104 if (data->chip_data) {
1105 int_desc = data->chip_data;
1106 data->chip_data = NULL;
1107 hv_int_desc_free(hpdev, int_desc);
1108 }
1109
1110 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1111 if (!int_desc)
1112 goto drop_reference;
1113
1114 memset(&ctxt, 0, sizeof(ctxt));
1115 init_completion(&comp.comp_pkt.host_event);
1116 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1117 ctxt.pci_pkt.compl_ctxt = ∁
1118
1119 switch (pci_protocol_version) {
1120 case PCI_PROTOCOL_VERSION_1_1:
1121 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1122 dest,
1123 hpdev->desc.win_slot.slot,
1124 cfg->vector);
1125 break;
1126
1127 case PCI_PROTOCOL_VERSION_1_2:
1128 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1129 dest,
1130 hpdev->desc.win_slot.slot,
1131 cfg->vector);
1132 break;
1133
1134 default:
1135 /* As we only negotiate protocol versions known to this driver,
1136 * this path should never hit. However, this is it not a hot
1137 * path so we print a message to aid future updates.
1138 */
1139 dev_err(&hbus->hdev->device,
1140 "Unexpected vPCI protocol, update driver.");
1141 goto free_int_desc;
1142 }
1143
1144 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1145 size, (unsigned long)&ctxt.pci_pkt,
1146 VM_PKT_DATA_INBAND,
1147 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1148 if (ret) {
1149 dev_err(&hbus->hdev->device,
1150 "Sending request for interrupt failed: 0x%x",
1151 comp.comp_pkt.completion_status);
1152 goto free_int_desc;
1153 }
1154
1155 /*
1156 * Since this function is called with IRQ locks held, can't
1157 * do normal wait for completion; instead poll.
1158 */
1159 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1160 /* 0xFFFF means an invalid PCI VENDOR ID. */
1161 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1162 dev_err_once(&hbus->hdev->device,
1163 "the device has gone\n");
1164 goto free_int_desc;
1165 }
1166
1167 /*
1168 * When the higher level interrupt code calls us with
1169 * interrupt disabled, we must poll the channel by calling
1170 * the channel callback directly when channel->target_cpu is
1171 * the current CPU. When the higher level interrupt code
1172 * calls us with interrupt enabled, let's add the
1173 * local_irq_save()/restore() to avoid race:
1174 * hv_pci_onchannelcallback() can also run in tasklet.
1175 */
1176 local_irq_save(flags);
1177
1178 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1179 hv_pci_onchannelcallback(hbus);
1180
1181 local_irq_restore(flags);
1182
1183 if (hpdev->state == hv_pcichild_ejecting) {
1184 dev_err_once(&hbus->hdev->device,
1185 "the device is being ejected\n");
1186 goto free_int_desc;
1187 }
1188
1189 udelay(100);
1190 }
1191
1192 if (comp.comp_pkt.completion_status < 0) {
1193 dev_err(&hbus->hdev->device,
1194 "Request for interrupt failed: 0x%x",
1195 comp.comp_pkt.completion_status);
1196 goto free_int_desc;
1197 }
1198
1199 /*
1200 * Record the assignment so that this can be unwound later. Using
1201 * irq_set_chip_data() here would be appropriate, but the lock it takes
1202 * is already held.
1203 */
1204 *int_desc = comp.int_desc;
1205 data->chip_data = int_desc;
1206
1207 /* Pass up the result. */
1208 msg->address_hi = comp.int_desc.address >> 32;
1209 msg->address_lo = comp.int_desc.address & 0xffffffff;
1210 msg->data = comp.int_desc.data;
1211
1212 put_pcichild(hpdev);
1213 return;
1214
1215 free_int_desc:
1216 kfree(int_desc);
1217 drop_reference:
1218 put_pcichild(hpdev);
1219 return_null_message:
1220 msg->address_hi = 0;
1221 msg->address_lo = 0;
1222 msg->data = 0;
1223 }
1224
1225 /* HW Interrupt Chip Descriptor */
1226 static struct irq_chip hv_msi_irq_chip = {
1227 .name = "Hyper-V PCIe MSI",
1228 .irq_compose_msi_msg = hv_compose_msi_msg,
1229 .irq_set_affinity = hv_set_affinity,
1230 .irq_ack = irq_chip_ack_parent,
1231 .irq_mask = hv_irq_mask,
1232 .irq_unmask = hv_irq_unmask,
1233 };
1234
hv_msi_domain_ops_get_hwirq(struct msi_domain_info * info,msi_alloc_info_t * arg)1235 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1236 msi_alloc_info_t *arg)
1237 {
1238 return arg->msi_hwirq;
1239 }
1240
1241 static struct msi_domain_ops hv_msi_ops = {
1242 .get_hwirq = hv_msi_domain_ops_get_hwirq,
1243 .msi_prepare = pci_msi_prepare,
1244 .set_desc = pci_msi_set_desc,
1245 .msi_free = hv_msi_free,
1246 };
1247
1248 /**
1249 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1250 * @hbus: The root PCI bus
1251 *
1252 * This function creates an IRQ domain which will be used for
1253 * interrupts from devices that have been passed through. These
1254 * devices only support MSI and MSI-X, not line-based interrupts
1255 * or simulations of line-based interrupts through PCIe's
1256 * fabric-layer messages. Because interrupts are remapped, we
1257 * can support multi-message MSI here.
1258 *
1259 * Return: '0' on success and error value on failure
1260 */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)1261 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1262 {
1263 hbus->msi_info.chip = &hv_msi_irq_chip;
1264 hbus->msi_info.ops = &hv_msi_ops;
1265 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1266 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1267 MSI_FLAG_PCI_MSIX);
1268 hbus->msi_info.handler = handle_edge_irq;
1269 hbus->msi_info.handler_name = "edge";
1270 hbus->msi_info.data = hbus;
1271 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1272 &hbus->msi_info,
1273 x86_vector_domain);
1274 if (!hbus->irq_domain) {
1275 dev_err(&hbus->hdev->device,
1276 "Failed to build an MSI IRQ domain\n");
1277 return -ENODEV;
1278 }
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * get_bar_size() - Get the address space consumed by a BAR
1285 * @bar_val: Value that a BAR returned after -1 was written
1286 * to it.
1287 *
1288 * This function returns the size of the BAR, rounded up to 1
1289 * page. It has to be rounded up because the hypervisor's page
1290 * table entry that maps the BAR into the VM can't specify an
1291 * offset within a page. The invariant is that the hypervisor
1292 * must place any BARs of smaller than page length at the
1293 * beginning of a page.
1294 *
1295 * Return: Size in bytes of the consumed MMIO space.
1296 */
get_bar_size(u64 bar_val)1297 static u64 get_bar_size(u64 bar_val)
1298 {
1299 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1300 PAGE_SIZE);
1301 }
1302
1303 /**
1304 * survey_child_resources() - Total all MMIO requirements
1305 * @hbus: Root PCI bus, as understood by this driver
1306 */
survey_child_resources(struct hv_pcibus_device * hbus)1307 static void survey_child_resources(struct hv_pcibus_device *hbus)
1308 {
1309 struct hv_pci_dev *hpdev;
1310 resource_size_t bar_size = 0;
1311 unsigned long flags;
1312 struct completion *event;
1313 u64 bar_val;
1314 int i;
1315
1316 /* If nobody is waiting on the answer, don't compute it. */
1317 event = xchg(&hbus->survey_event, NULL);
1318 if (!event)
1319 return;
1320
1321 /* If the answer has already been computed, go with it. */
1322 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1323 complete(event);
1324 return;
1325 }
1326
1327 spin_lock_irqsave(&hbus->device_list_lock, flags);
1328
1329 /*
1330 * Due to an interesting quirk of the PCI spec, all memory regions
1331 * for a child device are a power of 2 in size and aligned in memory,
1332 * so it's sufficient to just add them up without tracking alignment.
1333 */
1334 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1335 for (i = 0; i < 6; i++) {
1336 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1337 dev_err(&hbus->hdev->device,
1338 "There's an I/O BAR in this list!\n");
1339
1340 if (hpdev->probed_bar[i] != 0) {
1341 /*
1342 * A probed BAR has all the upper bits set that
1343 * can be changed.
1344 */
1345
1346 bar_val = hpdev->probed_bar[i];
1347 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1348 bar_val |=
1349 ((u64)hpdev->probed_bar[++i] << 32);
1350 else
1351 bar_val |= 0xffffffff00000000ULL;
1352
1353 bar_size = get_bar_size(bar_val);
1354
1355 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1356 hbus->high_mmio_space += bar_size;
1357 else
1358 hbus->low_mmio_space += bar_size;
1359 }
1360 }
1361 }
1362
1363 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1364 complete(event);
1365 }
1366
1367 /**
1368 * prepopulate_bars() - Fill in BARs with defaults
1369 * @hbus: Root PCI bus, as understood by this driver
1370 *
1371 * The core PCI driver code seems much, much happier if the BARs
1372 * for a device have values upon first scan. So fill them in.
1373 * The algorithm below works down from large sizes to small,
1374 * attempting to pack the assignments optimally. The assumption,
1375 * enforced in other parts of the code, is that the beginning of
1376 * the memory-mapped I/O space will be aligned on the largest
1377 * BAR size.
1378 */
prepopulate_bars(struct hv_pcibus_device * hbus)1379 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1380 {
1381 resource_size_t high_size = 0;
1382 resource_size_t low_size = 0;
1383 resource_size_t high_base = 0;
1384 resource_size_t low_base = 0;
1385 resource_size_t bar_size;
1386 struct hv_pci_dev *hpdev;
1387 unsigned long flags;
1388 u64 bar_val;
1389 u32 command;
1390 bool high;
1391 int i;
1392
1393 if (hbus->low_mmio_space) {
1394 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1395 low_base = hbus->low_mmio_res->start;
1396 }
1397
1398 if (hbus->high_mmio_space) {
1399 high_size = 1ULL <<
1400 (63 - __builtin_clzll(hbus->high_mmio_space));
1401 high_base = hbus->high_mmio_res->start;
1402 }
1403
1404 spin_lock_irqsave(&hbus->device_list_lock, flags);
1405
1406 /* Pick addresses for the BARs. */
1407 do {
1408 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1409 for (i = 0; i < 6; i++) {
1410 bar_val = hpdev->probed_bar[i];
1411 if (bar_val == 0)
1412 continue;
1413 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1414 if (high) {
1415 bar_val |=
1416 ((u64)hpdev->probed_bar[i + 1]
1417 << 32);
1418 } else {
1419 bar_val |= 0xffffffffULL << 32;
1420 }
1421 bar_size = get_bar_size(bar_val);
1422 if (high) {
1423 if (high_size != bar_size) {
1424 i++;
1425 continue;
1426 }
1427 _hv_pcifront_write_config(hpdev,
1428 PCI_BASE_ADDRESS_0 + (4 * i),
1429 4,
1430 (u32)(high_base & 0xffffff00));
1431 i++;
1432 _hv_pcifront_write_config(hpdev,
1433 PCI_BASE_ADDRESS_0 + (4 * i),
1434 4, (u32)(high_base >> 32));
1435 high_base += bar_size;
1436 } else {
1437 if (low_size != bar_size)
1438 continue;
1439 _hv_pcifront_write_config(hpdev,
1440 PCI_BASE_ADDRESS_0 + (4 * i),
1441 4,
1442 (u32)(low_base & 0xffffff00));
1443 low_base += bar_size;
1444 }
1445 }
1446 if (high_size <= 1 && low_size <= 1) {
1447 /* Set the memory enable bit. */
1448 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1449 &command);
1450 command |= PCI_COMMAND_MEMORY;
1451 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1452 command);
1453 break;
1454 }
1455 }
1456
1457 high_size >>= 1;
1458 low_size >>= 1;
1459 } while (high_size || low_size);
1460
1461 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1462 }
1463
1464 /*
1465 * Assign entries in sysfs pci slot directory.
1466 *
1467 * Note that this function does not need to lock the children list
1468 * because it is called from pci_devices_present_work which
1469 * is serialized with hv_eject_device_work because they are on the
1470 * same ordered workqueue. Therefore hbus->children list will not change
1471 * even when pci_create_slot sleeps.
1472 */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)1473 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1474 {
1475 struct hv_pci_dev *hpdev;
1476 char name[SLOT_NAME_SIZE];
1477 int slot_nr;
1478
1479 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1480 if (hpdev->pci_slot)
1481 continue;
1482
1483 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1484 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1485 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1486 name, NULL);
1487 if (IS_ERR(hpdev->pci_slot)) {
1488 pr_warn("pci_create slot %s failed\n", name);
1489 hpdev->pci_slot = NULL;
1490 }
1491 }
1492 }
1493
1494 /**
1495 * create_root_hv_pci_bus() - Expose a new root PCI bus
1496 * @hbus: Root PCI bus, as understood by this driver
1497 *
1498 * Return: 0 on success, -errno on failure
1499 */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)1500 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1501 {
1502 /* Register the device */
1503 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1504 0, /* bus number is always zero */
1505 &hv_pcifront_ops,
1506 &hbus->sysdata,
1507 &hbus->resources_for_children);
1508 if (!hbus->pci_bus)
1509 return -ENODEV;
1510
1511 hbus->pci_bus->msi = &hbus->msi_chip;
1512 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1513
1514 pci_lock_rescan_remove();
1515 pci_scan_child_bus(hbus->pci_bus);
1516 pci_bus_assign_resources(hbus->pci_bus);
1517 hv_pci_assign_slots(hbus);
1518 pci_bus_add_devices(hbus->pci_bus);
1519 pci_unlock_rescan_remove();
1520 hbus->state = hv_pcibus_installed;
1521 return 0;
1522 }
1523
1524 struct q_res_req_compl {
1525 struct completion host_event;
1526 struct hv_pci_dev *hpdev;
1527 };
1528
1529 /**
1530 * q_resource_requirements() - Query Resource Requirements
1531 * @context: The completion context.
1532 * @resp: The response that came from the host.
1533 * @resp_packet_size: The size in bytes of resp.
1534 *
1535 * This function is invoked on completion of a Query Resource
1536 * Requirements packet.
1537 */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)1538 static void q_resource_requirements(void *context, struct pci_response *resp,
1539 int resp_packet_size)
1540 {
1541 struct q_res_req_compl *completion = context;
1542 struct pci_q_res_req_response *q_res_req =
1543 (struct pci_q_res_req_response *)resp;
1544 int i;
1545
1546 if (resp->status < 0) {
1547 dev_err(&completion->hpdev->hbus->hdev->device,
1548 "query resource requirements failed: %x\n",
1549 resp->status);
1550 } else {
1551 for (i = 0; i < 6; i++) {
1552 completion->hpdev->probed_bar[i] =
1553 q_res_req->probed_bar[i];
1554 }
1555 }
1556
1557 complete(&completion->host_event);
1558 }
1559
1560 /**
1561 * new_pcichild_device() - Create a new child device
1562 * @hbus: The internal struct tracking this root PCI bus.
1563 * @desc: The information supplied so far from the host
1564 * about the device.
1565 *
1566 * This function creates the tracking structure for a new child
1567 * device and kicks off the process of figuring out what it is.
1568 *
1569 * Return: Pointer to the new tracking struct
1570 */
new_pcichild_device(struct hv_pcibus_device * hbus,struct pci_function_description * desc)1571 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1572 struct pci_function_description *desc)
1573 {
1574 struct hv_pci_dev *hpdev;
1575 struct pci_child_message *res_req;
1576 struct q_res_req_compl comp_pkt;
1577 struct {
1578 struct pci_packet init_packet;
1579 u8 buffer[sizeof(struct pci_child_message)];
1580 } pkt;
1581 unsigned long flags;
1582 int ret;
1583
1584 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1585 if (!hpdev)
1586 return NULL;
1587
1588 hpdev->hbus = hbus;
1589
1590 memset(&pkt, 0, sizeof(pkt));
1591 init_completion(&comp_pkt.host_event);
1592 comp_pkt.hpdev = hpdev;
1593 pkt.init_packet.compl_ctxt = &comp_pkt;
1594 pkt.init_packet.completion_func = q_resource_requirements;
1595 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1596 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1597 res_req->wslot.slot = desc->win_slot.slot;
1598
1599 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1600 sizeof(struct pci_child_message),
1601 (unsigned long)&pkt.init_packet,
1602 VM_PKT_DATA_INBAND,
1603 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1604 if (ret)
1605 goto error;
1606
1607 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1608 goto error;
1609
1610 hpdev->desc = *desc;
1611 refcount_set(&hpdev->refs, 1);
1612 get_pcichild(hpdev);
1613 spin_lock_irqsave(&hbus->device_list_lock, flags);
1614
1615 list_add_tail(&hpdev->list_entry, &hbus->children);
1616 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1617 return hpdev;
1618
1619 error:
1620 kfree(hpdev);
1621 return NULL;
1622 }
1623
1624 /**
1625 * get_pcichild_wslot() - Find device from slot
1626 * @hbus: Root PCI bus, as understood by this driver
1627 * @wslot: Location on the bus
1628 *
1629 * This function looks up a PCI device and returns the internal
1630 * representation of it. It acquires a reference on it, so that
1631 * the device won't be deleted while somebody is using it. The
1632 * caller is responsible for calling put_pcichild() to release
1633 * this reference.
1634 *
1635 * Return: Internal representation of a PCI device
1636 */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)1637 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1638 u32 wslot)
1639 {
1640 unsigned long flags;
1641 struct hv_pci_dev *iter, *hpdev = NULL;
1642
1643 spin_lock_irqsave(&hbus->device_list_lock, flags);
1644 list_for_each_entry(iter, &hbus->children, list_entry) {
1645 if (iter->desc.win_slot.slot == wslot) {
1646 hpdev = iter;
1647 get_pcichild(hpdev);
1648 break;
1649 }
1650 }
1651 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1652
1653 return hpdev;
1654 }
1655
1656 /**
1657 * pci_devices_present_work() - Handle new list of child devices
1658 * @work: Work struct embedded in struct hv_dr_work
1659 *
1660 * "Bus Relations" is the Windows term for "children of this
1661 * bus." The terminology is preserved here for people trying to
1662 * debug the interaction between Hyper-V and Linux. This
1663 * function is called when the parent partition reports a list
1664 * of functions that should be observed under this PCI Express
1665 * port (bus).
1666 *
1667 * This function updates the list, and must tolerate being
1668 * called multiple times with the same information. The typical
1669 * number of child devices is one, with very atypical cases
1670 * involving three or four, so the algorithms used here can be
1671 * simple and inefficient.
1672 *
1673 * It must also treat the omission of a previously observed device as
1674 * notification that the device no longer exists.
1675 *
1676 * Note that this function is serialized with hv_eject_device_work(),
1677 * because both are pushed to the ordered workqueue hbus->wq.
1678 */
pci_devices_present_work(struct work_struct * work)1679 static void pci_devices_present_work(struct work_struct *work)
1680 {
1681 u32 child_no;
1682 bool found;
1683 struct pci_function_description *new_desc;
1684 struct hv_pci_dev *hpdev;
1685 struct hv_pcibus_device *hbus;
1686 struct list_head removed;
1687 struct hv_dr_work *dr_wrk;
1688 struct hv_dr_state *dr = NULL;
1689 unsigned long flags;
1690
1691 dr_wrk = container_of(work, struct hv_dr_work, wrk);
1692 hbus = dr_wrk->bus;
1693 kfree(dr_wrk);
1694
1695 INIT_LIST_HEAD(&removed);
1696
1697 /* Pull this off the queue and process it if it was the last one. */
1698 spin_lock_irqsave(&hbus->device_list_lock, flags);
1699 while (!list_empty(&hbus->dr_list)) {
1700 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1701 list_entry);
1702 list_del(&dr->list_entry);
1703
1704 /* Throw this away if the list still has stuff in it. */
1705 if (!list_empty(&hbus->dr_list)) {
1706 kfree(dr);
1707 continue;
1708 }
1709 }
1710 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1711
1712 if (!dr) {
1713 put_hvpcibus(hbus);
1714 return;
1715 }
1716
1717 /* First, mark all existing children as reported missing. */
1718 spin_lock_irqsave(&hbus->device_list_lock, flags);
1719 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1720 hpdev->reported_missing = true;
1721 }
1722 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1723
1724 /* Next, add back any reported devices. */
1725 for (child_no = 0; child_no < dr->device_count; child_no++) {
1726 found = false;
1727 new_desc = &dr->func[child_no];
1728
1729 spin_lock_irqsave(&hbus->device_list_lock, flags);
1730 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1731 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1732 (hpdev->desc.v_id == new_desc->v_id) &&
1733 (hpdev->desc.d_id == new_desc->d_id) &&
1734 (hpdev->desc.ser == new_desc->ser)) {
1735 hpdev->reported_missing = false;
1736 found = true;
1737 }
1738 }
1739 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740
1741 if (!found) {
1742 hpdev = new_pcichild_device(hbus, new_desc);
1743 if (!hpdev)
1744 dev_err(&hbus->hdev->device,
1745 "couldn't record a child device.\n");
1746 }
1747 }
1748
1749 /* Move missing children to a list on the stack. */
1750 spin_lock_irqsave(&hbus->device_list_lock, flags);
1751 do {
1752 found = false;
1753 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1754 if (hpdev->reported_missing) {
1755 found = true;
1756 put_pcichild(hpdev);
1757 list_move_tail(&hpdev->list_entry, &removed);
1758 break;
1759 }
1760 }
1761 } while (found);
1762 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1763
1764 /* Delete everything that should no longer exist. */
1765 while (!list_empty(&removed)) {
1766 hpdev = list_first_entry(&removed, struct hv_pci_dev,
1767 list_entry);
1768 list_del(&hpdev->list_entry);
1769 put_pcichild(hpdev);
1770 }
1771
1772 switch (hbus->state) {
1773 case hv_pcibus_installed:
1774 /*
1775 * Tell the core to rescan bus
1776 * because there may have been changes.
1777 */
1778 pci_lock_rescan_remove();
1779 pci_scan_child_bus(hbus->pci_bus);
1780 hv_pci_assign_slots(hbus);
1781 pci_unlock_rescan_remove();
1782 break;
1783
1784 case hv_pcibus_init:
1785 case hv_pcibus_probed:
1786 survey_child_resources(hbus);
1787 break;
1788
1789 default:
1790 break;
1791 }
1792
1793 put_hvpcibus(hbus);
1794 kfree(dr);
1795 }
1796
1797 /**
1798 * hv_pci_devices_present() - Handles list of new children
1799 * @hbus: Root PCI bus, as understood by this driver
1800 * @relations: Packet from host listing children
1801 *
1802 * This function is invoked whenever a new list of devices for
1803 * this bus appears.
1804 */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)1805 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1806 struct pci_bus_relations *relations)
1807 {
1808 struct hv_dr_state *dr;
1809 struct hv_dr_work *dr_wrk;
1810 unsigned long flags;
1811 bool pending_dr;
1812
1813 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1814 if (!dr_wrk)
1815 return;
1816
1817 dr = kzalloc(offsetof(struct hv_dr_state, func) +
1818 (sizeof(struct pci_function_description) *
1819 (relations->device_count)), GFP_NOWAIT);
1820 if (!dr) {
1821 kfree(dr_wrk);
1822 return;
1823 }
1824
1825 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1826 dr_wrk->bus = hbus;
1827 dr->device_count = relations->device_count;
1828 if (dr->device_count != 0) {
1829 memcpy(dr->func, relations->func,
1830 sizeof(struct pci_function_description) *
1831 dr->device_count);
1832 }
1833
1834 spin_lock_irqsave(&hbus->device_list_lock, flags);
1835 /*
1836 * If pending_dr is true, we have already queued a work,
1837 * which will see the new dr. Otherwise, we need to
1838 * queue a new work.
1839 */
1840 pending_dr = !list_empty(&hbus->dr_list);
1841 list_add_tail(&dr->list_entry, &hbus->dr_list);
1842 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1843
1844 if (pending_dr) {
1845 kfree(dr_wrk);
1846 } else {
1847 get_hvpcibus(hbus);
1848 queue_work(hbus->wq, &dr_wrk->wrk);
1849 }
1850 }
1851
1852 /**
1853 * hv_eject_device_work() - Asynchronously handles ejection
1854 * @work: Work struct embedded in internal device struct
1855 *
1856 * This function handles ejecting a device. Windows will
1857 * attempt to gracefully eject a device, waiting 60 seconds to
1858 * hear back from the guest OS that this completed successfully.
1859 * If this timer expires, the device will be forcibly removed.
1860 */
hv_eject_device_work(struct work_struct * work)1861 static void hv_eject_device_work(struct work_struct *work)
1862 {
1863 struct pci_eject_response *ejct_pkt;
1864 struct hv_pci_dev *hpdev;
1865 struct pci_dev *pdev;
1866 unsigned long flags;
1867 int wslot;
1868 struct {
1869 struct pci_packet pkt;
1870 u8 buffer[sizeof(struct pci_eject_response)];
1871 } ctxt;
1872
1873 hpdev = container_of(work, struct hv_pci_dev, wrk);
1874
1875 WARN_ON(hpdev->state != hv_pcichild_ejecting);
1876
1877 /*
1878 * Ejection can come before or after the PCI bus has been set up, so
1879 * attempt to find it and tear down the bus state, if it exists. This
1880 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1881 * because hbus->pci_bus may not exist yet.
1882 */
1883 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1884 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1885 wslot);
1886 if (pdev) {
1887 pci_lock_rescan_remove();
1888 pci_stop_and_remove_bus_device(pdev);
1889 pci_dev_put(pdev);
1890 pci_unlock_rescan_remove();
1891 }
1892
1893 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1894 list_del(&hpdev->list_entry);
1895 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1896
1897 if (hpdev->pci_slot)
1898 pci_destroy_slot(hpdev->pci_slot);
1899
1900 memset(&ctxt, 0, sizeof(ctxt));
1901 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1902 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1903 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1904 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1905 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1906 VM_PKT_DATA_INBAND, 0);
1907
1908 put_pcichild(hpdev);
1909 put_pcichild(hpdev);
1910 put_hvpcibus(hpdev->hbus);
1911 }
1912
1913 /**
1914 * hv_pci_eject_device() - Handles device ejection
1915 * @hpdev: Internal device tracking struct
1916 *
1917 * This function is invoked when an ejection packet arrives. It
1918 * just schedules work so that we don't re-enter the packet
1919 * delivery code handling the ejection.
1920 */
hv_pci_eject_device(struct hv_pci_dev * hpdev)1921 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1922 {
1923 hpdev->state = hv_pcichild_ejecting;
1924 get_pcichild(hpdev);
1925 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1926 get_hvpcibus(hpdev->hbus);
1927 queue_work(hpdev->hbus->wq, &hpdev->wrk);
1928 }
1929
1930 /**
1931 * hv_pci_onchannelcallback() - Handles incoming packets
1932 * @context: Internal bus tracking struct
1933 *
1934 * This function is invoked whenever the host sends a packet to
1935 * this channel (which is private to this root PCI bus).
1936 */
hv_pci_onchannelcallback(void * context)1937 static void hv_pci_onchannelcallback(void *context)
1938 {
1939 const int packet_size = 0x100;
1940 int ret;
1941 struct hv_pcibus_device *hbus = context;
1942 u32 bytes_recvd;
1943 u64 req_id;
1944 struct vmpacket_descriptor *desc;
1945 unsigned char *buffer;
1946 int bufferlen = packet_size;
1947 struct pci_packet *comp_packet;
1948 struct pci_response *response;
1949 struct pci_incoming_message *new_message;
1950 struct pci_bus_relations *bus_rel;
1951 struct pci_dev_incoming *dev_message;
1952 struct hv_pci_dev *hpdev;
1953
1954 buffer = kmalloc(bufferlen, GFP_ATOMIC);
1955 if (!buffer)
1956 return;
1957
1958 while (1) {
1959 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1960 bufferlen, &bytes_recvd, &req_id);
1961
1962 if (ret == -ENOBUFS) {
1963 kfree(buffer);
1964 /* Handle large packet */
1965 bufferlen = bytes_recvd;
1966 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1967 if (!buffer)
1968 return;
1969 continue;
1970 }
1971
1972 /* Zero length indicates there are no more packets. */
1973 if (ret || !bytes_recvd)
1974 break;
1975
1976 /*
1977 * All incoming packets must be at least as large as a
1978 * response.
1979 */
1980 if (bytes_recvd <= sizeof(struct pci_response))
1981 continue;
1982 desc = (struct vmpacket_descriptor *)buffer;
1983
1984 switch (desc->type) {
1985 case VM_PKT_COMP:
1986
1987 /*
1988 * The host is trusted, and thus it's safe to interpret
1989 * this transaction ID as a pointer.
1990 */
1991 comp_packet = (struct pci_packet *)req_id;
1992 response = (struct pci_response *)buffer;
1993 comp_packet->completion_func(comp_packet->compl_ctxt,
1994 response,
1995 bytes_recvd);
1996 break;
1997
1998 case VM_PKT_DATA_INBAND:
1999
2000 new_message = (struct pci_incoming_message *)buffer;
2001 switch (new_message->message_type.type) {
2002 case PCI_BUS_RELATIONS:
2003
2004 bus_rel = (struct pci_bus_relations *)buffer;
2005 if (bytes_recvd <
2006 offsetof(struct pci_bus_relations, func) +
2007 (sizeof(struct pci_function_description) *
2008 (bus_rel->device_count))) {
2009 dev_err(&hbus->hdev->device,
2010 "bus relations too small\n");
2011 break;
2012 }
2013
2014 hv_pci_devices_present(hbus, bus_rel);
2015 break;
2016
2017 case PCI_EJECT:
2018
2019 dev_message = (struct pci_dev_incoming *)buffer;
2020 hpdev = get_pcichild_wslot(hbus,
2021 dev_message->wslot.slot);
2022 if (hpdev) {
2023 hv_pci_eject_device(hpdev);
2024 put_pcichild(hpdev);
2025 }
2026 break;
2027
2028 default:
2029 dev_warn(&hbus->hdev->device,
2030 "Unimplemented protocol message %x\n",
2031 new_message->message_type.type);
2032 break;
2033 }
2034 break;
2035
2036 default:
2037 dev_err(&hbus->hdev->device,
2038 "unhandled packet type %d, tid %llx len %d\n",
2039 desc->type, req_id, bytes_recvd);
2040 break;
2041 }
2042 }
2043
2044 kfree(buffer);
2045 }
2046
2047 /**
2048 * hv_pci_protocol_negotiation() - Set up protocol
2049 * @hdev: VMBus's tracking struct for this root PCI bus
2050 *
2051 * This driver is intended to support running on Windows 10
2052 * (server) and later versions. It will not run on earlier
2053 * versions, as they assume that many of the operations which
2054 * Linux needs accomplished with a spinlock held were done via
2055 * asynchronous messaging via VMBus. Windows 10 increases the
2056 * surface area of PCI emulation so that these actions can take
2057 * place by suspending a virtual processor for their duration.
2058 *
2059 * This function negotiates the channel protocol version,
2060 * failing if the host doesn't support the necessary protocol
2061 * level.
2062 */
hv_pci_protocol_negotiation(struct hv_device * hdev)2063 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2064 {
2065 struct pci_version_request *version_req;
2066 struct hv_pci_compl comp_pkt;
2067 struct pci_packet *pkt;
2068 int ret;
2069 int i;
2070
2071 /*
2072 * Initiate the handshake with the host and negotiate
2073 * a version that the host can support. We start with the
2074 * highest version number and go down if the host cannot
2075 * support it.
2076 */
2077 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2078 if (!pkt)
2079 return -ENOMEM;
2080
2081 init_completion(&comp_pkt.host_event);
2082 pkt->completion_func = hv_pci_generic_compl;
2083 pkt->compl_ctxt = &comp_pkt;
2084 version_req = (struct pci_version_request *)&pkt->message;
2085 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2086
2087 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2088 version_req->protocol_version = pci_protocol_versions[i];
2089 ret = vmbus_sendpacket(hdev->channel, version_req,
2090 sizeof(struct pci_version_request),
2091 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2092 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2093 if (!ret)
2094 ret = wait_for_response(hdev, &comp_pkt.host_event);
2095
2096 if (ret) {
2097 dev_err(&hdev->device,
2098 "PCI Pass-through VSP failed to request version: %d",
2099 ret);
2100 goto exit;
2101 }
2102
2103 if (comp_pkt.completion_status >= 0) {
2104 pci_protocol_version = pci_protocol_versions[i];
2105 dev_info(&hdev->device,
2106 "PCI VMBus probing: Using version %#x\n",
2107 pci_protocol_version);
2108 goto exit;
2109 }
2110
2111 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2112 dev_err(&hdev->device,
2113 "PCI Pass-through VSP failed version request: %#x",
2114 comp_pkt.completion_status);
2115 ret = -EPROTO;
2116 goto exit;
2117 }
2118
2119 reinit_completion(&comp_pkt.host_event);
2120 }
2121
2122 dev_err(&hdev->device,
2123 "PCI pass-through VSP failed to find supported version");
2124 ret = -EPROTO;
2125
2126 exit:
2127 kfree(pkt);
2128 return ret;
2129 }
2130
2131 /**
2132 * hv_pci_free_bridge_windows() - Release memory regions for the
2133 * bus
2134 * @hbus: Root PCI bus, as understood by this driver
2135 */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)2136 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2137 {
2138 /*
2139 * Set the resources back to the way they looked when they
2140 * were allocated by setting IORESOURCE_BUSY again.
2141 */
2142
2143 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2144 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2145 vmbus_free_mmio(hbus->low_mmio_res->start,
2146 resource_size(hbus->low_mmio_res));
2147 }
2148
2149 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2150 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2151 vmbus_free_mmio(hbus->high_mmio_res->start,
2152 resource_size(hbus->high_mmio_res));
2153 }
2154 }
2155
2156 /**
2157 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2158 * for the bus
2159 * @hbus: Root PCI bus, as understood by this driver
2160 *
2161 * This function calls vmbus_allocate_mmio(), which is itself a
2162 * bit of a compromise. Ideally, we might change the pnp layer
2163 * in the kernel such that it comprehends either PCI devices
2164 * which are "grandchildren of ACPI," with some intermediate bus
2165 * node (in this case, VMBus) or change it such that it
2166 * understands VMBus. The pnp layer, however, has been declared
2167 * deprecated, and not subject to change.
2168 *
2169 * The workaround, implemented here, is to ask VMBus to allocate
2170 * MMIO space for this bus. VMBus itself knows which ranges are
2171 * appropriate by looking at its own ACPI objects. Then, after
2172 * these ranges are claimed, they're modified to look like they
2173 * would have looked if the ACPI and pnp code had allocated
2174 * bridge windows. These descriptors have to exist in this form
2175 * in order to satisfy the code which will get invoked when the
2176 * endpoint PCI function driver calls request_mem_region() or
2177 * request_mem_region_exclusive().
2178 *
2179 * Return: 0 on success, -errno on failure
2180 */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)2181 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2182 {
2183 resource_size_t align;
2184 int ret;
2185
2186 if (hbus->low_mmio_space) {
2187 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2188 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2189 (u64)(u32)0xffffffff,
2190 hbus->low_mmio_space,
2191 align, false);
2192 if (ret) {
2193 dev_err(&hbus->hdev->device,
2194 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2195 hbus->low_mmio_space);
2196 return ret;
2197 }
2198
2199 /* Modify this resource to become a bridge window. */
2200 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2201 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2202 pci_add_resource(&hbus->resources_for_children,
2203 hbus->low_mmio_res);
2204 }
2205
2206 if (hbus->high_mmio_space) {
2207 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2208 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2209 0x100000000, -1,
2210 hbus->high_mmio_space, align,
2211 false);
2212 if (ret) {
2213 dev_err(&hbus->hdev->device,
2214 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2215 hbus->high_mmio_space);
2216 goto release_low_mmio;
2217 }
2218
2219 /* Modify this resource to become a bridge window. */
2220 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2221 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2222 pci_add_resource(&hbus->resources_for_children,
2223 hbus->high_mmio_res);
2224 }
2225
2226 return 0;
2227
2228 release_low_mmio:
2229 if (hbus->low_mmio_res) {
2230 vmbus_free_mmio(hbus->low_mmio_res->start,
2231 resource_size(hbus->low_mmio_res));
2232 }
2233
2234 return ret;
2235 }
2236
2237 /**
2238 * hv_allocate_config_window() - Find MMIO space for PCI Config
2239 * @hbus: Root PCI bus, as understood by this driver
2240 *
2241 * This function claims memory-mapped I/O space for accessing
2242 * configuration space for the functions on this bus.
2243 *
2244 * Return: 0 on success, -errno on failure
2245 */
hv_allocate_config_window(struct hv_pcibus_device * hbus)2246 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2247 {
2248 int ret;
2249
2250 /*
2251 * Set up a region of MMIO space to use for accessing configuration
2252 * space.
2253 */
2254 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2255 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2256 if (ret)
2257 return ret;
2258
2259 /*
2260 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2261 * resource claims (those which cannot be overlapped) and the ranges
2262 * which are valid for the children of this bus, which are intended
2263 * to be overlapped by those children. Set the flag on this claim
2264 * meaning that this region can't be overlapped.
2265 */
2266
2267 hbus->mem_config->flags |= IORESOURCE_BUSY;
2268
2269 return 0;
2270 }
2271
hv_free_config_window(struct hv_pcibus_device * hbus)2272 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2273 {
2274 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2275 }
2276
2277 /**
2278 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2279 * @hdev: VMBus's tracking struct for this root PCI bus
2280 *
2281 * Return: 0 on success, -errno on failure
2282 */
hv_pci_enter_d0(struct hv_device * hdev)2283 static int hv_pci_enter_d0(struct hv_device *hdev)
2284 {
2285 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2286 struct pci_bus_d0_entry *d0_entry;
2287 struct hv_pci_compl comp_pkt;
2288 struct pci_packet *pkt;
2289 int ret;
2290
2291 /*
2292 * Tell the host that the bus is ready to use, and moved into the
2293 * powered-on state. This includes telling the host which region
2294 * of memory-mapped I/O space has been chosen for configuration space
2295 * access.
2296 */
2297 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2298 if (!pkt)
2299 return -ENOMEM;
2300
2301 init_completion(&comp_pkt.host_event);
2302 pkt->completion_func = hv_pci_generic_compl;
2303 pkt->compl_ctxt = &comp_pkt;
2304 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2305 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2306 d0_entry->mmio_base = hbus->mem_config->start;
2307
2308 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2309 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2310 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2311 if (!ret)
2312 ret = wait_for_response(hdev, &comp_pkt.host_event);
2313
2314 if (ret)
2315 goto exit;
2316
2317 if (comp_pkt.completion_status < 0) {
2318 dev_err(&hdev->device,
2319 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2320 comp_pkt.completion_status);
2321 ret = -EPROTO;
2322 goto exit;
2323 }
2324
2325 ret = 0;
2326
2327 exit:
2328 kfree(pkt);
2329 return ret;
2330 }
2331
2332 /**
2333 * hv_pci_query_relations() - Ask host to send list of child
2334 * devices
2335 * @hdev: VMBus's tracking struct for this root PCI bus
2336 *
2337 * Return: 0 on success, -errno on failure
2338 */
hv_pci_query_relations(struct hv_device * hdev)2339 static int hv_pci_query_relations(struct hv_device *hdev)
2340 {
2341 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2342 struct pci_message message;
2343 struct completion comp;
2344 int ret;
2345
2346 /* Ask the host to send along the list of child devices */
2347 init_completion(&comp);
2348 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2349 return -ENOTEMPTY;
2350
2351 memset(&message, 0, sizeof(message));
2352 message.type = PCI_QUERY_BUS_RELATIONS;
2353
2354 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2355 0, VM_PKT_DATA_INBAND, 0);
2356 if (!ret)
2357 ret = wait_for_response(hdev, &comp);
2358
2359 return ret;
2360 }
2361
2362 /**
2363 * hv_send_resources_allocated() - Report local resource choices
2364 * @hdev: VMBus's tracking struct for this root PCI bus
2365 *
2366 * The host OS is expecting to be sent a request as a message
2367 * which contains all the resources that the device will use.
2368 * The response contains those same resources, "translated"
2369 * which is to say, the values which should be used by the
2370 * hardware, when it delivers an interrupt. (MMIO resources are
2371 * used in local terms.) This is nice for Windows, and lines up
2372 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2373 * is deeply expecting to scan an emulated PCI configuration
2374 * space. So this message is sent here only to drive the state
2375 * machine on the host forward.
2376 *
2377 * Return: 0 on success, -errno on failure
2378 */
hv_send_resources_allocated(struct hv_device * hdev)2379 static int hv_send_resources_allocated(struct hv_device *hdev)
2380 {
2381 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2382 struct pci_resources_assigned *res_assigned;
2383 struct pci_resources_assigned2 *res_assigned2;
2384 struct hv_pci_compl comp_pkt;
2385 struct hv_pci_dev *hpdev;
2386 struct pci_packet *pkt;
2387 size_t size_res;
2388 u32 wslot;
2389 int ret;
2390
2391 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2392 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2393
2394 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2395 if (!pkt)
2396 return -ENOMEM;
2397
2398 ret = 0;
2399
2400 for (wslot = 0; wslot < 256; wslot++) {
2401 hpdev = get_pcichild_wslot(hbus, wslot);
2402 if (!hpdev)
2403 continue;
2404
2405 memset(pkt, 0, sizeof(*pkt) + size_res);
2406 init_completion(&comp_pkt.host_event);
2407 pkt->completion_func = hv_pci_generic_compl;
2408 pkt->compl_ctxt = &comp_pkt;
2409
2410 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2411 res_assigned =
2412 (struct pci_resources_assigned *)&pkt->message;
2413 res_assigned->message_type.type =
2414 PCI_RESOURCES_ASSIGNED;
2415 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2416 } else {
2417 res_assigned2 =
2418 (struct pci_resources_assigned2 *)&pkt->message;
2419 res_assigned2->message_type.type =
2420 PCI_RESOURCES_ASSIGNED2;
2421 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2422 }
2423 put_pcichild(hpdev);
2424
2425 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2426 size_res, (unsigned long)pkt,
2427 VM_PKT_DATA_INBAND,
2428 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2429 if (!ret)
2430 ret = wait_for_response(hdev, &comp_pkt.host_event);
2431 if (ret)
2432 break;
2433
2434 if (comp_pkt.completion_status < 0) {
2435 ret = -EPROTO;
2436 dev_err(&hdev->device,
2437 "resource allocated returned 0x%x",
2438 comp_pkt.completion_status);
2439 break;
2440 }
2441 }
2442
2443 kfree(pkt);
2444 return ret;
2445 }
2446
2447 /**
2448 * hv_send_resources_released() - Report local resources
2449 * released
2450 * @hdev: VMBus's tracking struct for this root PCI bus
2451 *
2452 * Return: 0 on success, -errno on failure
2453 */
hv_send_resources_released(struct hv_device * hdev)2454 static int hv_send_resources_released(struct hv_device *hdev)
2455 {
2456 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2457 struct pci_child_message pkt;
2458 struct hv_pci_dev *hpdev;
2459 u32 wslot;
2460 int ret;
2461
2462 for (wslot = 0; wslot < 256; wslot++) {
2463 hpdev = get_pcichild_wslot(hbus, wslot);
2464 if (!hpdev)
2465 continue;
2466
2467 memset(&pkt, 0, sizeof(pkt));
2468 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2469 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2470
2471 put_pcichild(hpdev);
2472
2473 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2474 VM_PKT_DATA_INBAND, 0);
2475 if (ret)
2476 return ret;
2477 }
2478
2479 return 0;
2480 }
2481
get_hvpcibus(struct hv_pcibus_device * hbus)2482 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2483 {
2484 refcount_inc(&hbus->remove_lock);
2485 }
2486
put_hvpcibus(struct hv_pcibus_device * hbus)2487 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2488 {
2489 if (refcount_dec_and_test(&hbus->remove_lock))
2490 complete(&hbus->remove_event);
2491 }
2492
2493 /**
2494 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2495 * @hdev: VMBus's tracking struct for this root PCI bus
2496 * @dev_id: Identifies the device itself
2497 *
2498 * Return: 0 on success, -errno on failure
2499 */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)2500 static int hv_pci_probe(struct hv_device *hdev,
2501 const struct hv_vmbus_device_id *dev_id)
2502 {
2503 struct hv_pcibus_device *hbus;
2504 int ret;
2505
2506 /*
2507 * hv_pcibus_device contains the hypercall arguments for retargeting in
2508 * hv_irq_unmask(). Those must not cross a page boundary.
2509 */
2510 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2511
2512 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2513 if (!hbus)
2514 return -ENOMEM;
2515 hbus->state = hv_pcibus_init;
2516
2517 /*
2518 * The PCI bus "domain" is what is called "segment" in ACPI and
2519 * other specs. Pull it from the instance ID, to get something
2520 * unique. Bytes 8 and 9 are what is used in Windows guests, so
2521 * do the same thing for consistency. Note that, since this code
2522 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2523 * that (1) the only domain in use for something that looks like
2524 * a physical PCI bus (which is actually emulated by the
2525 * hypervisor) is domain 0 and (2) there will be no overlap
2526 * between domains derived from these instance IDs in the same
2527 * VM.
2528 */
2529 hbus->sysdata.domain = hdev->dev_instance.b[9] |
2530 hdev->dev_instance.b[8] << 8;
2531
2532 hbus->hdev = hdev;
2533 refcount_set(&hbus->remove_lock, 1);
2534 INIT_LIST_HEAD(&hbus->children);
2535 INIT_LIST_HEAD(&hbus->dr_list);
2536 INIT_LIST_HEAD(&hbus->resources_for_children);
2537 spin_lock_init(&hbus->config_lock);
2538 spin_lock_init(&hbus->device_list_lock);
2539 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2540 init_completion(&hbus->remove_event);
2541 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2542 hbus->sysdata.domain);
2543 if (!hbus->wq) {
2544 ret = -ENOMEM;
2545 goto free_bus;
2546 }
2547
2548 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2549 hv_pci_onchannelcallback, hbus);
2550 if (ret)
2551 goto destroy_wq;
2552
2553 hv_set_drvdata(hdev, hbus);
2554
2555 ret = hv_pci_protocol_negotiation(hdev);
2556 if (ret)
2557 goto close;
2558
2559 ret = hv_allocate_config_window(hbus);
2560 if (ret)
2561 goto close;
2562
2563 hbus->cfg_addr = ioremap(hbus->mem_config->start,
2564 PCI_CONFIG_MMIO_LENGTH);
2565 if (!hbus->cfg_addr) {
2566 dev_err(&hdev->device,
2567 "Unable to map a virtual address for config space\n");
2568 ret = -ENOMEM;
2569 goto free_config;
2570 }
2571
2572 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2573 if (!hbus->sysdata.fwnode) {
2574 ret = -ENOMEM;
2575 goto unmap;
2576 }
2577
2578 ret = hv_pcie_init_irq_domain(hbus);
2579 if (ret)
2580 goto free_fwnode;
2581
2582 ret = hv_pci_query_relations(hdev);
2583 if (ret)
2584 goto free_irq_domain;
2585
2586 ret = hv_pci_enter_d0(hdev);
2587 if (ret)
2588 goto free_irq_domain;
2589
2590 ret = hv_pci_allocate_bridge_windows(hbus);
2591 if (ret)
2592 goto free_irq_domain;
2593
2594 ret = hv_send_resources_allocated(hdev);
2595 if (ret)
2596 goto free_windows;
2597
2598 prepopulate_bars(hbus);
2599
2600 hbus->state = hv_pcibus_probed;
2601
2602 ret = create_root_hv_pci_bus(hbus);
2603 if (ret)
2604 goto free_windows;
2605
2606 return 0;
2607
2608 free_windows:
2609 hv_pci_free_bridge_windows(hbus);
2610 free_irq_domain:
2611 irq_domain_remove(hbus->irq_domain);
2612 free_fwnode:
2613 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2614 unmap:
2615 iounmap(hbus->cfg_addr);
2616 free_config:
2617 hv_free_config_window(hbus);
2618 close:
2619 vmbus_close(hdev->channel);
2620 destroy_wq:
2621 destroy_workqueue(hbus->wq);
2622 free_bus:
2623 free_page((unsigned long)hbus);
2624 return ret;
2625 }
2626
hv_pci_bus_exit(struct hv_device * hdev)2627 static void hv_pci_bus_exit(struct hv_device *hdev)
2628 {
2629 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2630 struct {
2631 struct pci_packet teardown_packet;
2632 u8 buffer[sizeof(struct pci_message)];
2633 } pkt;
2634 struct pci_bus_relations relations;
2635 struct hv_pci_compl comp_pkt;
2636 int ret;
2637
2638 /*
2639 * After the host sends the RESCIND_CHANNEL message, it doesn't
2640 * access the per-channel ringbuffer any longer.
2641 */
2642 if (hdev->channel->rescind)
2643 return;
2644
2645 /* Delete any children which might still exist. */
2646 memset(&relations, 0, sizeof(relations));
2647 hv_pci_devices_present(hbus, &relations);
2648
2649 ret = hv_send_resources_released(hdev);
2650 if (ret)
2651 dev_err(&hdev->device,
2652 "Couldn't send resources released packet(s)\n");
2653
2654 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2655 init_completion(&comp_pkt.host_event);
2656 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2657 pkt.teardown_packet.compl_ctxt = &comp_pkt;
2658 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2659
2660 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2661 sizeof(struct pci_message),
2662 (unsigned long)&pkt.teardown_packet,
2663 VM_PKT_DATA_INBAND,
2664 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2665 if (!ret)
2666 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2667 }
2668
2669 /**
2670 * hv_pci_remove() - Remove routine for this VMBus channel
2671 * @hdev: VMBus's tracking struct for this root PCI bus
2672 *
2673 * Return: 0 on success, -errno on failure
2674 */
hv_pci_remove(struct hv_device * hdev)2675 static int hv_pci_remove(struct hv_device *hdev)
2676 {
2677 struct hv_pcibus_device *hbus;
2678
2679 hbus = hv_get_drvdata(hdev);
2680 if (hbus->state == hv_pcibus_installed) {
2681 /* Remove the bus from PCI's point of view. */
2682 pci_lock_rescan_remove();
2683 pci_stop_root_bus(hbus->pci_bus);
2684 pci_remove_root_bus(hbus->pci_bus);
2685 pci_unlock_rescan_remove();
2686 hbus->state = hv_pcibus_removed;
2687 }
2688
2689 hv_pci_bus_exit(hdev);
2690
2691 vmbus_close(hdev->channel);
2692
2693 iounmap(hbus->cfg_addr);
2694 hv_free_config_window(hbus);
2695 pci_free_resource_list(&hbus->resources_for_children);
2696 hv_pci_free_bridge_windows(hbus);
2697 irq_domain_remove(hbus->irq_domain);
2698 irq_domain_free_fwnode(hbus->sysdata.fwnode);
2699 put_hvpcibus(hbus);
2700 wait_for_completion(&hbus->remove_event);
2701 destroy_workqueue(hbus->wq);
2702 free_page((unsigned long)hbus);
2703 return 0;
2704 }
2705
2706 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2707 /* PCI Pass-through Class ID */
2708 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2709 { HV_PCIE_GUID, },
2710 { },
2711 };
2712
2713 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2714
2715 static struct hv_driver hv_pci_drv = {
2716 .name = "hv_pci",
2717 .id_table = hv_pci_id_table,
2718 .probe = hv_pci_probe,
2719 .remove = hv_pci_remove,
2720 };
2721
exit_hv_pci_drv(void)2722 static void __exit exit_hv_pci_drv(void)
2723 {
2724 vmbus_driver_unregister(&hv_pci_drv);
2725 }
2726
init_hv_pci_drv(void)2727 static int __init init_hv_pci_drv(void)
2728 {
2729 return vmbus_driver_register(&hv_pci_drv);
2730 }
2731
2732 module_init(init_hv_pci_drv);
2733 module_exit(exit_hv_pci_drv);
2734
2735 MODULE_DESCRIPTION("Hyper-V PCI");
2736 MODULE_LICENSE("GPL v2");
2737