1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17
18 #include "of_private.h"
19
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS 4
22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25 /* Debug utility */
26 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 pr_debug("%s", s);
30 while (na--)
31 pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 pr_cont("\n");
33 }
34 #else
of_dump_addr(const char * s,const __be32 * addr,int na)35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 const char *name;
41 const char *addresses;
42 int (*match)(struct device_node *parent);
43 void (*count_cells)(struct device_node *child,
44 int *addrc, int *sizec);
45 u64 (*map)(__be32 *addr, const __be32 *range,
46 int na, int ns, int pna);
47 int (*translate)(__be32 *addr, u64 offset, int na);
48 bool has_flags;
49 unsigned int (*get_flags)(const __be32 *addr);
50 };
51
52 /*
53 * Default translator (generic bus)
54 */
55
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)56 static void of_bus_default_count_cells(struct device_node *dev,
57 int *addrc, int *sizec)
58 {
59 if (addrc)
60 *addrc = of_n_addr_cells(dev);
61 if (sizec)
62 *sizec = of_n_size_cells(dev);
63 }
64
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66 int na, int ns, int pna)
67 {
68 u64 cp, s, da;
69
70 cp = of_read_number(range, na);
71 s = of_read_number(range + na + pna, ns);
72 da = of_read_number(addr, na);
73
74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75
76 if (da < cp || da >= (cp + s))
77 return OF_BAD_ADDR;
78 return da - cp;
79 }
80
of_bus_default_translate(__be32 * addr,u64 offset,int na)81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82 {
83 u64 a = of_read_number(addr, na);
84 memset(addr, 0, na * 4);
85 a += offset;
86 if (na > 1)
87 addr[na - 2] = cpu_to_be32(a >> 32);
88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89
90 return 0;
91 }
92
of_bus_default_flags_get_flags(const __be32 * addr)93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94 {
95 return of_read_number(addr, 1);
96 }
97
of_bus_default_get_flags(const __be32 * addr)98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 return IORESOURCE_MEM;
101 }
102
103
104 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)105 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
106 {
107 unsigned int flags = 0;
108 u32 w = be32_to_cpup(addr);
109
110 if (!IS_ENABLED(CONFIG_PCI))
111 return 0;
112
113 switch((w >> 24) & 0x03) {
114 case 0x01:
115 flags |= IORESOURCE_IO;
116 break;
117 case 0x02: /* 32 bits */
118 flags |= IORESOURCE_MEM;
119 break;
120
121 case 0x03: /* 64 bits */
122 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
123 break;
124 }
125 if (w & 0x40000000)
126 flags |= IORESOURCE_PREFETCH;
127 return flags;
128 }
129
130 /*
131 * PCI bus specific translator
132 */
133
of_node_is_pcie(struct device_node * np)134 static bool of_node_is_pcie(struct device_node *np)
135 {
136 bool is_pcie = of_node_name_eq(np, "pcie");
137
138 if (is_pcie)
139 pr_warn_once("%pOF: Missing device_type\n", np);
140
141 return is_pcie;
142 }
143
of_bus_pci_match(struct device_node * np)144 static int of_bus_pci_match(struct device_node *np)
145 {
146 /*
147 * "pciex" is PCI Express
148 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
149 * "ht" is hypertransport
150 *
151 * If none of the device_type match, and that the node name is
152 * "pcie", accept the device as PCI (with a warning).
153 */
154 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
155 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
156 of_node_is_pcie(np);
157 }
158
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)159 static void of_bus_pci_count_cells(struct device_node *np,
160 int *addrc, int *sizec)
161 {
162 if (addrc)
163 *addrc = 3;
164 if (sizec)
165 *sizec = 2;
166 }
167
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)168 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
169 int pna)
170 {
171 u64 cp, s, da;
172 unsigned int af, rf;
173
174 af = of_bus_pci_get_flags(addr);
175 rf = of_bus_pci_get_flags(range);
176
177 /* Check address type match */
178 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
179 return OF_BAD_ADDR;
180
181 /* Read address values, skipping high cell */
182 cp = of_read_number(range + 1, na - 1);
183 s = of_read_number(range + na + pna, ns);
184 da = of_read_number(addr + 1, na - 1);
185
186 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
187
188 if (da < cp || da >= (cp + s))
189 return OF_BAD_ADDR;
190 return da - cp;
191 }
192
of_bus_pci_translate(__be32 * addr,u64 offset,int na)193 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
194 {
195 return of_bus_default_translate(addr + 1, offset, na - 1);
196 }
197 #endif /* CONFIG_PCI */
198
199 /*
200 * of_pci_range_to_resource - Create a resource from an of_pci_range
201 * @range: the PCI range that describes the resource
202 * @np: device node where the range belongs to
203 * @res: pointer to a valid resource that will be updated to
204 * reflect the values contained in the range.
205 *
206 * Returns -EINVAL if the range cannot be converted to resource.
207 *
208 * Note that if the range is an IO range, the resource will be converted
209 * using pci_address_to_pio() which can fail if it is called too early or
210 * if the range cannot be matched to any host bridge IO space (our case here).
211 * To guard against that we try to register the IO range first.
212 * If that fails we know that pci_address_to_pio() will do too.
213 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)214 int of_pci_range_to_resource(struct of_pci_range *range,
215 struct device_node *np, struct resource *res)
216 {
217 int err;
218 res->flags = range->flags;
219 res->parent = res->child = res->sibling = NULL;
220 res->name = np->full_name;
221
222 if (res->flags & IORESOURCE_IO) {
223 unsigned long port;
224 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
225 range->size);
226 if (err)
227 goto invalid_range;
228 port = pci_address_to_pio(range->cpu_addr);
229 if (port == (unsigned long)-1) {
230 err = -EINVAL;
231 goto invalid_range;
232 }
233 res->start = port;
234 } else {
235 if ((sizeof(resource_size_t) < 8) &&
236 upper_32_bits(range->cpu_addr)) {
237 err = -EINVAL;
238 goto invalid_range;
239 }
240
241 res->start = range->cpu_addr;
242 }
243 res->end = res->start + range->size - 1;
244 return 0;
245
246 invalid_range:
247 res->start = (resource_size_t)OF_BAD_ADDR;
248 res->end = (resource_size_t)OF_BAD_ADDR;
249 return err;
250 }
251 EXPORT_SYMBOL(of_pci_range_to_resource);
252
253 /*
254 * of_range_to_resource - Create a resource from a ranges entry
255 * @np: device node where the range belongs to
256 * @index: the 'ranges' index to convert to a resource
257 * @res: pointer to a valid resource that will be updated to
258 * reflect the values contained in the range.
259 *
260 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
261 * converted to resource.
262 */
of_range_to_resource(struct device_node * np,int index,struct resource * res)263 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
264 {
265 int ret, i = 0;
266 struct of_range_parser parser;
267 struct of_range range;
268
269 ret = of_range_parser_init(&parser, np);
270 if (ret)
271 return ret;
272
273 for_each_of_range(&parser, &range)
274 if (i++ == index)
275 return of_pci_range_to_resource(&range, np, res);
276
277 return -ENOENT;
278 }
279 EXPORT_SYMBOL(of_range_to_resource);
280
281 /*
282 * ISA bus specific translator
283 */
284
of_bus_isa_match(struct device_node * np)285 static int of_bus_isa_match(struct device_node *np)
286 {
287 return of_node_name_eq(np, "isa");
288 }
289
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)290 static void of_bus_isa_count_cells(struct device_node *child,
291 int *addrc, int *sizec)
292 {
293 if (addrc)
294 *addrc = 2;
295 if (sizec)
296 *sizec = 1;
297 }
298
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)299 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
300 int pna)
301 {
302 u64 cp, s, da;
303
304 /* Check address type match */
305 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
306 return OF_BAD_ADDR;
307
308 /* Read address values, skipping high cell */
309 cp = of_read_number(range + 1, na - 1);
310 s = of_read_number(range + na + pna, ns);
311 da = of_read_number(addr + 1, na - 1);
312
313 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
314
315 if (da < cp || da >= (cp + s))
316 return OF_BAD_ADDR;
317 return da - cp;
318 }
319
of_bus_isa_translate(__be32 * addr,u64 offset,int na)320 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
321 {
322 return of_bus_default_translate(addr + 1, offset, na - 1);
323 }
324
of_bus_isa_get_flags(const __be32 * addr)325 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
326 {
327 unsigned int flags = 0;
328 u32 w = be32_to_cpup(addr);
329
330 if (w & 1)
331 flags |= IORESOURCE_IO;
332 else
333 flags |= IORESOURCE_MEM;
334 return flags;
335 }
336
of_bus_default_flags_match(struct device_node * np)337 static int of_bus_default_flags_match(struct device_node *np)
338 {
339 return of_bus_n_addr_cells(np) == 3;
340 }
341
342 /*
343 * Array of bus specific translators
344 */
345
346 static struct of_bus of_busses[] = {
347 #ifdef CONFIG_PCI
348 /* PCI */
349 {
350 .name = "pci",
351 .addresses = "assigned-addresses",
352 .match = of_bus_pci_match,
353 .count_cells = of_bus_pci_count_cells,
354 .map = of_bus_pci_map,
355 .translate = of_bus_pci_translate,
356 .has_flags = true,
357 .get_flags = of_bus_pci_get_flags,
358 },
359 #endif /* CONFIG_PCI */
360 /* ISA */
361 {
362 .name = "isa",
363 .addresses = "reg",
364 .match = of_bus_isa_match,
365 .count_cells = of_bus_isa_count_cells,
366 .map = of_bus_isa_map,
367 .translate = of_bus_isa_translate,
368 .has_flags = true,
369 .get_flags = of_bus_isa_get_flags,
370 },
371 /* Default with flags cell */
372 {
373 .name = "default-flags",
374 .addresses = "reg",
375 .match = of_bus_default_flags_match,
376 .count_cells = of_bus_default_count_cells,
377 .map = of_bus_default_map,
378 .translate = of_bus_default_translate,
379 .has_flags = true,
380 .get_flags = of_bus_default_flags_get_flags,
381 },
382 /* Default */
383 {
384 .name = "default",
385 .addresses = "reg",
386 .match = NULL,
387 .count_cells = of_bus_default_count_cells,
388 .map = of_bus_default_map,
389 .translate = of_bus_default_translate,
390 .get_flags = of_bus_default_get_flags,
391 },
392 };
393
of_match_bus(struct device_node * np)394 static struct of_bus *of_match_bus(struct device_node *np)
395 {
396 int i;
397
398 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
399 if (!of_busses[i].match || of_busses[i].match(np))
400 return &of_busses[i];
401 BUG();
402 return NULL;
403 }
404
of_empty_ranges_quirk(struct device_node * np)405 static int of_empty_ranges_quirk(struct device_node *np)
406 {
407 if (IS_ENABLED(CONFIG_PPC)) {
408 /* To save cycles, we cache the result for global "Mac" setting */
409 static int quirk_state = -1;
410
411 /* PA-SEMI sdc DT bug */
412 if (of_device_is_compatible(np, "1682m-sdc"))
413 return true;
414
415 /* Make quirk cached */
416 if (quirk_state < 0)
417 quirk_state =
418 of_machine_is_compatible("Power Macintosh") ||
419 of_machine_is_compatible("MacRISC");
420 return quirk_state;
421 }
422 return false;
423 }
424
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)425 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
426 struct of_bus *pbus, __be32 *addr,
427 int na, int ns, int pna, const char *rprop)
428 {
429 const __be32 *ranges;
430 unsigned int rlen;
431 int rone;
432 u64 offset = OF_BAD_ADDR;
433
434 /*
435 * Normally, an absence of a "ranges" property means we are
436 * crossing a non-translatable boundary, and thus the addresses
437 * below the current cannot be converted to CPU physical ones.
438 * Unfortunately, while this is very clear in the spec, it's not
439 * what Apple understood, and they do have things like /uni-n or
440 * /ht nodes with no "ranges" property and a lot of perfectly
441 * useable mapped devices below them. Thus we treat the absence of
442 * "ranges" as equivalent to an empty "ranges" property which means
443 * a 1:1 translation at that level. It's up to the caller not to try
444 * to translate addresses that aren't supposed to be translated in
445 * the first place. --BenH.
446 *
447 * As far as we know, this damage only exists on Apple machines, so
448 * This code is only enabled on powerpc. --gcl
449 *
450 * This quirk also applies for 'dma-ranges' which frequently exist in
451 * child nodes without 'dma-ranges' in the parent nodes. --RobH
452 */
453 ranges = of_get_property(parent, rprop, &rlen);
454 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
455 strcmp(rprop, "dma-ranges")) {
456 pr_debug("no ranges; cannot translate\n");
457 return 1;
458 }
459 if (ranges == NULL || rlen == 0) {
460 offset = of_read_number(addr, na);
461 memset(addr, 0, pna * 4);
462 pr_debug("empty ranges; 1:1 translation\n");
463 goto finish;
464 }
465
466 pr_debug("walking ranges...\n");
467
468 /* Now walk through the ranges */
469 rlen /= 4;
470 rone = na + pna + ns;
471 for (; rlen >= rone; rlen -= rone, ranges += rone) {
472 offset = bus->map(addr, ranges, na, ns, pna);
473 if (offset != OF_BAD_ADDR)
474 break;
475 }
476 if (offset == OF_BAD_ADDR) {
477 pr_debug("not found !\n");
478 return 1;
479 }
480 memcpy(addr, ranges + na, 4 * pna);
481
482 finish:
483 of_dump_addr("parent translation for:", addr, pna);
484 pr_debug("with offset: %llx\n", offset);
485
486 /* Translate it into parent bus space */
487 return pbus->translate(addr, offset, pna);
488 }
489
490 /*
491 * Translate an address from the device-tree into a CPU physical address,
492 * this walks up the tree and applies the various bus mappings on the
493 * way.
494 *
495 * Note: We consider that crossing any level with #size-cells == 0 to mean
496 * that translation is impossible (that is we are not dealing with a value
497 * that can be mapped to a cpu physical address). This is not really specified
498 * that way, but this is traditionally the way IBM at least do things
499 *
500 * Whenever the translation fails, the *host pointer will be set to the
501 * device that had registered logical PIO mapping, and the return code is
502 * relative to that node.
503 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)504 static u64 __of_translate_address(struct device_node *dev,
505 struct device_node *(*get_parent)(const struct device_node *),
506 const __be32 *in_addr, const char *rprop,
507 struct device_node **host)
508 {
509 struct device_node *parent = NULL;
510 struct of_bus *bus, *pbus;
511 __be32 addr[OF_MAX_ADDR_CELLS];
512 int na, ns, pna, pns;
513 u64 result = OF_BAD_ADDR;
514
515 pr_debug("** translation for device %pOF **\n", dev);
516
517 /* Increase refcount at current level */
518 of_node_get(dev);
519
520 *host = NULL;
521 /* Get parent & match bus type */
522 parent = get_parent(dev);
523 if (parent == NULL)
524 goto bail;
525 bus = of_match_bus(parent);
526
527 /* Count address cells & copy address locally */
528 bus->count_cells(dev, &na, &ns);
529 if (!OF_CHECK_COUNTS(na, ns)) {
530 pr_debug("Bad cell count for %pOF\n", dev);
531 goto bail;
532 }
533 memcpy(addr, in_addr, na * 4);
534
535 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
536 bus->name, na, ns, parent);
537 of_dump_addr("translating address:", addr, na);
538
539 /* Translate */
540 for (;;) {
541 struct logic_pio_hwaddr *iorange;
542
543 /* Switch to parent bus */
544 of_node_put(dev);
545 dev = parent;
546 parent = get_parent(dev);
547
548 /* If root, we have finished */
549 if (parent == NULL) {
550 pr_debug("reached root node\n");
551 result = of_read_number(addr, na);
552 break;
553 }
554
555 /*
556 * For indirectIO device which has no ranges property, get
557 * the address from reg directly.
558 */
559 iorange = find_io_range_by_fwnode(&dev->fwnode);
560 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
561 result = of_read_number(addr + 1, na - 1);
562 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
563 dev, result);
564 *host = of_node_get(dev);
565 break;
566 }
567
568 /* Get new parent bus and counts */
569 pbus = of_match_bus(parent);
570 pbus->count_cells(dev, &pna, &pns);
571 if (!OF_CHECK_COUNTS(pna, pns)) {
572 pr_err("Bad cell count for %pOF\n", dev);
573 break;
574 }
575
576 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
577 pbus->name, pna, pns, parent);
578
579 /* Apply bus translation */
580 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
581 break;
582
583 /* Complete the move up one level */
584 na = pna;
585 ns = pns;
586 bus = pbus;
587
588 of_dump_addr("one level translation:", addr, na);
589 }
590 bail:
591 of_node_put(parent);
592 of_node_put(dev);
593
594 return result;
595 }
596
of_translate_address(struct device_node * dev,const __be32 * in_addr)597 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
598 {
599 struct device_node *host;
600 u64 ret;
601
602 ret = __of_translate_address(dev, of_get_parent,
603 in_addr, "ranges", &host);
604 if (host) {
605 of_node_put(host);
606 return OF_BAD_ADDR;
607 }
608
609 return ret;
610 }
611 EXPORT_SYMBOL(of_translate_address);
612
613 #ifdef CONFIG_HAS_DMA
__of_get_dma_parent(const struct device_node * np)614 struct device_node *__of_get_dma_parent(const struct device_node *np)
615 {
616 struct of_phandle_args args;
617 int ret, index;
618
619 index = of_property_match_string(np, "interconnect-names", "dma-mem");
620 if (index < 0)
621 return of_get_parent(np);
622
623 ret = of_parse_phandle_with_args(np, "interconnects",
624 "#interconnect-cells",
625 index, &args);
626 if (ret < 0)
627 return of_get_parent(np);
628
629 return of_node_get(args.np);
630 }
631 #endif
632
of_get_next_dma_parent(struct device_node * np)633 static struct device_node *of_get_next_dma_parent(struct device_node *np)
634 {
635 struct device_node *parent;
636
637 parent = __of_get_dma_parent(np);
638 of_node_put(np);
639
640 return parent;
641 }
642
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)643 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
644 {
645 struct device_node *host;
646 u64 ret;
647
648 ret = __of_translate_address(dev, __of_get_dma_parent,
649 in_addr, "dma-ranges", &host);
650
651 if (host) {
652 of_node_put(host);
653 return OF_BAD_ADDR;
654 }
655
656 return ret;
657 }
658 EXPORT_SYMBOL(of_translate_dma_address);
659
660 /**
661 * of_translate_dma_region - Translate device tree address and size tuple
662 * @dev: device tree node for which to translate
663 * @prop: pointer into array of cells
664 * @start: return value for the start of the DMA range
665 * @length: return value for the length of the DMA range
666 *
667 * Returns a pointer to the cell immediately following the translated DMA region.
668 */
of_translate_dma_region(struct device_node * dev,const __be32 * prop,phys_addr_t * start,size_t * length)669 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
670 phys_addr_t *start, size_t *length)
671 {
672 struct device_node *parent;
673 u64 address, size;
674 int na, ns;
675
676 parent = __of_get_dma_parent(dev);
677 if (!parent)
678 return NULL;
679
680 na = of_bus_n_addr_cells(parent);
681 ns = of_bus_n_size_cells(parent);
682
683 of_node_put(parent);
684
685 address = of_translate_dma_address(dev, prop);
686 if (address == OF_BAD_ADDR)
687 return NULL;
688
689 size = of_read_number(prop + na, ns);
690
691 if (start)
692 *start = address;
693
694 if (length)
695 *length = size;
696
697 return prop + na + ns;
698 }
699 EXPORT_SYMBOL(of_translate_dma_region);
700
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)701 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
702 u64 *size, unsigned int *flags)
703 {
704 const __be32 *prop;
705 unsigned int psize;
706 struct device_node *parent;
707 struct of_bus *bus;
708 int onesize, i, na, ns;
709
710 /* Get parent & match bus type */
711 parent = of_get_parent(dev);
712 if (parent == NULL)
713 return NULL;
714 bus = of_match_bus(parent);
715 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
716 of_node_put(parent);
717 return NULL;
718 }
719 bus->count_cells(dev, &na, &ns);
720 of_node_put(parent);
721 if (!OF_CHECK_ADDR_COUNT(na))
722 return NULL;
723
724 /* Get "reg" or "assigned-addresses" property */
725 prop = of_get_property(dev, bus->addresses, &psize);
726 if (prop == NULL)
727 return NULL;
728 psize /= 4;
729
730 onesize = na + ns;
731 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
732 u32 val = be32_to_cpu(prop[0]);
733 /* PCI bus matches on BAR number instead of index */
734 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
735 ((index >= 0) && (i == index))) {
736 if (size)
737 *size = of_read_number(prop + na, ns);
738 if (flags)
739 *flags = bus->get_flags(prop);
740 return prop;
741 }
742 }
743 return NULL;
744 }
745 EXPORT_SYMBOL(__of_get_address);
746
747 /**
748 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
749 * @np: device tree node for which to retrieve "reg" from
750 * @idx: "reg" entry index to read
751 * @addr: return value for the untranslated address
752 * @size: return value for the entry size
753 *
754 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
755 * size values filled in.
756 */
of_property_read_reg(struct device_node * np,int idx,u64 * addr,u64 * size)757 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
758 {
759 const __be32 *prop = of_get_address(np, idx, size, NULL);
760
761 if (!prop)
762 return -EINVAL;
763
764 *addr = of_read_number(prop, of_n_addr_cells(np));
765
766 return 0;
767 }
768 EXPORT_SYMBOL(of_property_read_reg);
769
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)770 static int parser_init(struct of_pci_range_parser *parser,
771 struct device_node *node, const char *name)
772 {
773 int rlen;
774
775 parser->node = node;
776 parser->pna = of_n_addr_cells(node);
777 parser->na = of_bus_n_addr_cells(node);
778 parser->ns = of_bus_n_size_cells(node);
779 parser->dma = !strcmp(name, "dma-ranges");
780 parser->bus = of_match_bus(node);
781
782 parser->range = of_get_property(node, name, &rlen);
783 if (parser->range == NULL)
784 return -ENOENT;
785
786 parser->end = parser->range + rlen / sizeof(__be32);
787
788 return 0;
789 }
790
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)791 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
792 struct device_node *node)
793 {
794 return parser_init(parser, node, "ranges");
795 }
796 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
797
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)798 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
799 struct device_node *node)
800 {
801 return parser_init(parser, node, "dma-ranges");
802 }
803 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
804 #define of_dma_range_parser_init of_pci_dma_range_parser_init
805
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)806 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
807 struct of_pci_range *range)
808 {
809 int na = parser->na;
810 int ns = parser->ns;
811 int np = parser->pna + na + ns;
812 int busflag_na = 0;
813
814 if (!range)
815 return NULL;
816
817 if (!parser->range || parser->range + np > parser->end)
818 return NULL;
819
820 range->flags = parser->bus->get_flags(parser->range);
821
822 /* A extra cell for resource flags */
823 if (parser->bus->has_flags)
824 busflag_na = 1;
825
826 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
827
828 if (parser->dma)
829 range->cpu_addr = of_translate_dma_address(parser->node,
830 parser->range + na);
831 else
832 range->cpu_addr = of_translate_address(parser->node,
833 parser->range + na);
834 range->size = of_read_number(parser->range + parser->pna + na, ns);
835
836 parser->range += np;
837
838 /* Now consume following elements while they are contiguous */
839 while (parser->range + np <= parser->end) {
840 u32 flags = 0;
841 u64 bus_addr, cpu_addr, size;
842
843 flags = parser->bus->get_flags(parser->range);
844 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
845 if (parser->dma)
846 cpu_addr = of_translate_dma_address(parser->node,
847 parser->range + na);
848 else
849 cpu_addr = of_translate_address(parser->node,
850 parser->range + na);
851 size = of_read_number(parser->range + parser->pna + na, ns);
852
853 if (flags != range->flags)
854 break;
855 if (bus_addr != range->bus_addr + range->size ||
856 cpu_addr != range->cpu_addr + range->size)
857 break;
858
859 range->size += size;
860 parser->range += np;
861 }
862
863 return range;
864 }
865 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
866
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)867 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
868 u64 size)
869 {
870 u64 taddr;
871 unsigned long port;
872 struct device_node *host;
873
874 taddr = __of_translate_address(dev, of_get_parent,
875 in_addr, "ranges", &host);
876 if (host) {
877 /* host-specific port access */
878 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
879 of_node_put(host);
880 } else {
881 /* memory-mapped I/O range */
882 port = pci_address_to_pio(taddr);
883 }
884
885 if (port == (unsigned long)-1)
886 return OF_BAD_ADDR;
887
888 return port;
889 }
890
891 #ifdef CONFIG_HAS_DMA
892 /**
893 * of_dma_get_range - Get DMA range info and put it into a map array
894 * @np: device node to get DMA range info
895 * @map: dma range structure to return
896 *
897 * Look in bottom up direction for the first "dma-ranges" property
898 * and parse it. Put the information into a DMA offset map array.
899 *
900 * dma-ranges format:
901 * DMA addr (dma_addr) : naddr cells
902 * CPU addr (phys_addr_t) : pna cells
903 * size : nsize cells
904 *
905 * It returns -ENODEV if "dma-ranges" property was not found for this
906 * device in the DT.
907 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)908 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
909 {
910 struct device_node *node = of_node_get(np);
911 const __be32 *ranges = NULL;
912 bool found_dma_ranges = false;
913 struct of_range_parser parser;
914 struct of_range range;
915 struct bus_dma_region *r;
916 int len, num_ranges = 0;
917 int ret = 0;
918
919 while (node) {
920 ranges = of_get_property(node, "dma-ranges", &len);
921
922 /* Ignore empty ranges, they imply no translation required */
923 if (ranges && len > 0)
924 break;
925
926 /* Once we find 'dma-ranges', then a missing one is an error */
927 if (found_dma_ranges && !ranges) {
928 ret = -ENODEV;
929 goto out;
930 }
931 found_dma_ranges = true;
932
933 node = of_get_next_dma_parent(node);
934 }
935
936 if (!node || !ranges) {
937 pr_debug("no dma-ranges found for node(%pOF)\n", np);
938 ret = -ENODEV;
939 goto out;
940 }
941
942 of_dma_range_parser_init(&parser, node);
943 for_each_of_range(&parser, &range) {
944 if (range.cpu_addr == OF_BAD_ADDR) {
945 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
946 range.bus_addr, node);
947 continue;
948 }
949 num_ranges++;
950 }
951
952 if (!num_ranges) {
953 ret = -EINVAL;
954 goto out;
955 }
956
957 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
958 if (!r) {
959 ret = -ENOMEM;
960 goto out;
961 }
962
963 /*
964 * Record all info in the generic DMA ranges array for struct device,
965 * returning an error if we don't find any parsable ranges.
966 */
967 *map = r;
968 of_dma_range_parser_init(&parser, node);
969 for_each_of_range(&parser, &range) {
970 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
971 range.bus_addr, range.cpu_addr, range.size);
972 if (range.cpu_addr == OF_BAD_ADDR)
973 continue;
974 r->cpu_start = range.cpu_addr;
975 r->dma_start = range.bus_addr;
976 r->size = range.size;
977 r->offset = range.cpu_addr - range.bus_addr;
978 r++;
979 }
980 out:
981 of_node_put(node);
982 return ret;
983 }
984 #endif /* CONFIG_HAS_DMA */
985
986 /**
987 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
988 * @np: The node to start searching from or NULL to start from the root
989 *
990 * Gets the highest CPU physical address that is addressable by all DMA masters
991 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
992 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
993 */
of_dma_get_max_cpu_address(struct device_node * np)994 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
995 {
996 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
997 struct of_range_parser parser;
998 phys_addr_t subtree_max_addr;
999 struct device_node *child;
1000 struct of_range range;
1001 const __be32 *ranges;
1002 u64 cpu_end = 0;
1003 int len;
1004
1005 if (!np)
1006 np = of_root;
1007
1008 ranges = of_get_property(np, "dma-ranges", &len);
1009 if (ranges && len) {
1010 of_dma_range_parser_init(&parser, np);
1011 for_each_of_range(&parser, &range)
1012 if (range.cpu_addr + range.size > cpu_end)
1013 cpu_end = range.cpu_addr + range.size - 1;
1014
1015 if (max_cpu_addr > cpu_end)
1016 max_cpu_addr = cpu_end;
1017 }
1018
1019 for_each_available_child_of_node(np, child) {
1020 subtree_max_addr = of_dma_get_max_cpu_address(child);
1021 if (max_cpu_addr > subtree_max_addr)
1022 max_cpu_addr = subtree_max_addr;
1023 }
1024
1025 return max_cpu_addr;
1026 }
1027
1028 /**
1029 * of_dma_is_coherent - Check if device is coherent
1030 * @np: device node
1031 *
1032 * It returns true if "dma-coherent" property was found
1033 * for this device in the DT, or if DMA is coherent by
1034 * default for OF devices on the current platform and no
1035 * "dma-noncoherent" property was found for this device.
1036 */
of_dma_is_coherent(struct device_node * np)1037 bool of_dma_is_coherent(struct device_node *np)
1038 {
1039 struct device_node *node;
1040 bool is_coherent = dma_default_coherent;
1041
1042 node = of_node_get(np);
1043
1044 while (node) {
1045 if (of_property_read_bool(node, "dma-coherent")) {
1046 is_coherent = true;
1047 break;
1048 }
1049 if (of_property_read_bool(node, "dma-noncoherent")) {
1050 is_coherent = false;
1051 break;
1052 }
1053 node = of_get_next_dma_parent(node);
1054 }
1055 of_node_put(node);
1056 return is_coherent;
1057 }
1058 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1059
1060 /**
1061 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1062 * @np: device node
1063 *
1064 * Returns true if the "nonposted-mmio" property was found for
1065 * the device's bus.
1066 *
1067 * This is currently only enabled on builds that support Apple ARM devices, as
1068 * an optimization.
1069 */
of_mmio_is_nonposted(struct device_node * np)1070 static bool of_mmio_is_nonposted(struct device_node *np)
1071 {
1072 struct device_node *parent;
1073 bool nonposted;
1074
1075 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1076 return false;
1077
1078 parent = of_get_parent(np);
1079 if (!parent)
1080 return false;
1081
1082 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1083
1084 of_node_put(parent);
1085 return nonposted;
1086 }
1087
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)1088 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1089 struct resource *r)
1090 {
1091 u64 taddr;
1092 const __be32 *addrp;
1093 u64 size;
1094 unsigned int flags;
1095 const char *name = NULL;
1096
1097 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1098 if (addrp == NULL)
1099 return -EINVAL;
1100
1101 /* Get optional "reg-names" property to add a name to a resource */
1102 if (index >= 0)
1103 of_property_read_string_index(dev, "reg-names", index, &name);
1104
1105 if (flags & IORESOURCE_MEM)
1106 taddr = of_translate_address(dev, addrp);
1107 else if (flags & IORESOURCE_IO)
1108 taddr = of_translate_ioport(dev, addrp, size);
1109 else
1110 return -EINVAL;
1111
1112 if (taddr == OF_BAD_ADDR)
1113 return -EINVAL;
1114 memset(r, 0, sizeof(struct resource));
1115
1116 if (of_mmio_is_nonposted(dev))
1117 flags |= IORESOURCE_MEM_NONPOSTED;
1118
1119 r->start = taddr;
1120 r->end = taddr + size - 1;
1121 r->flags = flags;
1122 r->name = name ? name : dev->full_name;
1123
1124 return 0;
1125 }
1126
1127 /**
1128 * of_address_to_resource - Translate device tree address and return as resource
1129 * @dev: Caller's Device Node
1130 * @index: Index into the array
1131 * @r: Pointer to resource array
1132 *
1133 * Returns -EINVAL if the range cannot be converted to resource.
1134 *
1135 * Note that if your address is a PIO address, the conversion will fail if
1136 * the physical address can't be internally converted to an IO token with
1137 * pci_address_to_pio(), that is because it's either called too early or it
1138 * can't be matched to any host bridge IO space
1139 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)1140 int of_address_to_resource(struct device_node *dev, int index,
1141 struct resource *r)
1142 {
1143 return __of_address_to_resource(dev, index, -1, r);
1144 }
1145 EXPORT_SYMBOL_GPL(of_address_to_resource);
1146
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)1147 int of_pci_address_to_resource(struct device_node *dev, int bar,
1148 struct resource *r)
1149 {
1150
1151 if (!IS_ENABLED(CONFIG_PCI))
1152 return -ENOSYS;
1153
1154 return __of_address_to_resource(dev, -1, bar, r);
1155 }
1156 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1157
1158 /**
1159 * of_iomap - Maps the memory mapped IO for a given device_node
1160 * @np: the device whose io range will be mapped
1161 * @index: index of the io range
1162 *
1163 * Returns a pointer to the mapped memory
1164 */
of_iomap(struct device_node * np,int index)1165 void __iomem *of_iomap(struct device_node *np, int index)
1166 {
1167 struct resource res;
1168
1169 if (of_address_to_resource(np, index, &res))
1170 return NULL;
1171
1172 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1173 return ioremap_np(res.start, resource_size(&res));
1174 else
1175 return ioremap(res.start, resource_size(&res));
1176 }
1177 EXPORT_SYMBOL(of_iomap);
1178
1179 /*
1180 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1181 * for a given device_node
1182 * @device: the device whose io range will be mapped
1183 * @index: index of the io range
1184 * @name: name "override" for the memory region request or NULL
1185 *
1186 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1187 * error code on failure. Usage example:
1188 *
1189 * base = of_io_request_and_map(node, 0, "foo");
1190 * if (IS_ERR(base))
1191 * return PTR_ERR(base);
1192 */
of_io_request_and_map(struct device_node * np,int index,const char * name)1193 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1194 const char *name)
1195 {
1196 struct resource res;
1197 void __iomem *mem;
1198
1199 if (of_address_to_resource(np, index, &res))
1200 return IOMEM_ERR_PTR(-EINVAL);
1201
1202 if (!name)
1203 name = res.name;
1204 if (!request_mem_region(res.start, resource_size(&res), name))
1205 return IOMEM_ERR_PTR(-EBUSY);
1206
1207 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1208 mem = ioremap_np(res.start, resource_size(&res));
1209 else
1210 mem = ioremap(res.start, resource_size(&res));
1211
1212 if (!mem) {
1213 release_mem_region(res.start, resource_size(&res));
1214 return IOMEM_ERR_PTR(-ENOMEM);
1215 }
1216
1217 return mem;
1218 }
1219 EXPORT_SYMBOL(of_io_request_and_map);
1220