1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT 256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod { /* for an LS RQST RCV */
29 struct nvmefc_ls_rsp *lsrsp;
30 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
31
32 struct list_head ls_rcv_list; /* tgtport->ls_rcv_list */
33
34 struct nvmet_fc_tgtport *tgtport;
35 struct nvmet_fc_tgt_assoc *assoc;
36 void *hosthandle;
37
38 union nvmefc_ls_requests *rqstbuf;
39 union nvmefc_ls_responses *rspbuf;
40 u16 rqstdatalen;
41 dma_addr_t rspdma;
42
43 struct scatterlist sg[2];
44
45 struct work_struct work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op { /* for an LS RQST XMT */
49 struct nvmefc_ls_req ls_req;
50
51 struct nvmet_fc_tgtport *tgtport;
52 void *hosthandle;
53
54 int ls_error;
55 struct list_head lsreq_list; /* tgtport->ls_req_list */
56 bool req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64 NVMET_FCP_NODATA,
65 NVMET_FCP_WRITE,
66 NVMET_FCP_READ,
67 NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71 struct nvmefc_tgt_fcp_req *fcpreq;
72
73 struct nvme_fc_cmd_iu cmdiubuf;
74 struct nvme_fc_ersp_iu rspiubuf;
75 dma_addr_t rspdma;
76 struct scatterlist *next_sg;
77 struct scatterlist *data_sg;
78 int data_sg_cnt;
79 u32 offset;
80 enum nvmet_fcp_datadir io_dir;
81 bool active;
82 bool abort;
83 bool aborted;
84 bool writedataactive;
85 spinlock_t flock;
86
87 struct nvmet_req req;
88 struct work_struct defer_work;
89
90 struct nvmet_fc_tgtport *tgtport;
91 struct nvmet_fc_tgt_queue *queue;
92
93 struct list_head fcp_list; /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97 struct nvmet_fc_target_port fc_target_port;
98
99 struct list_head tgt_list; /* nvmet_fc_target_list */
100 struct device *dev; /* dev for dma mapping */
101 struct nvmet_fc_target_template *ops;
102
103 struct nvmet_fc_ls_iod *iod;
104 spinlock_t lock;
105 struct list_head ls_rcv_list;
106 struct list_head ls_req_list;
107 struct list_head ls_busylist;
108 struct list_head assoc_list;
109 struct list_head host_list;
110 struct ida assoc_cnt;
111 struct nvmet_fc_port_entry *pe;
112 struct kref ref;
113 u32 max_sg_cnt;
114 };
115
116 struct nvmet_fc_port_entry {
117 struct nvmet_fc_tgtport *tgtport;
118 struct nvmet_port *port;
119 u64 node_name;
120 u64 port_name;
121 struct list_head pe_list;
122 };
123
124 struct nvmet_fc_defer_fcp_req {
125 struct list_head req_list;
126 struct nvmefc_tgt_fcp_req *fcp_req;
127 };
128
129 struct nvmet_fc_tgt_queue {
130 bool ninetypercent;
131 u16 qid;
132 u16 sqsize;
133 u16 ersp_ratio;
134 __le16 sqhd;
135 atomic_t connected;
136 atomic_t sqtail;
137 atomic_t zrspcnt;
138 atomic_t rsn;
139 spinlock_t qlock;
140 struct nvmet_cq nvme_cq;
141 struct nvmet_sq nvme_sq;
142 struct nvmet_fc_tgt_assoc *assoc;
143 struct list_head fod_list;
144 struct list_head pending_cmd_list;
145 struct list_head avail_defer_list;
146 struct workqueue_struct *work_q;
147 struct kref ref;
148 struct rcu_head rcu;
149 struct nvmet_fc_fcp_iod fod[]; /* array of fcp_iods */
150 } __aligned(sizeof(unsigned long long));
151
152 struct nvmet_fc_hostport {
153 struct nvmet_fc_tgtport *tgtport;
154 void *hosthandle;
155 struct list_head host_list;
156 struct kref ref;
157 u8 invalid;
158 };
159
160 struct nvmet_fc_tgt_assoc {
161 u64 association_id;
162 u32 a_id;
163 atomic_t terminating;
164 struct nvmet_fc_tgtport *tgtport;
165 struct nvmet_fc_hostport *hostport;
166 struct nvmet_fc_ls_iod *rcv_disconn;
167 struct list_head a_list;
168 struct nvmet_fc_tgt_queue __rcu *queues[NVMET_NR_QUEUES + 1];
169 struct kref ref;
170 struct work_struct del_work;
171 struct rcu_head rcu;
172 };
173
174
175 static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod * iodptr)176 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
177 {
178 return (iodptr - iodptr->tgtport->iod);
179 }
180
181 static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod * fodptr)182 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
183 {
184 return (fodptr - fodptr->queue->fod);
185 }
186
187
188 /*
189 * Association and Connection IDs:
190 *
191 * Association ID will have random number in upper 6 bytes and zero
192 * in lower 2 bytes
193 *
194 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
195 *
196 * note: Association ID = Connection ID for queue 0
197 */
198 #define BYTES_FOR_QID sizeof(u16)
199 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
200 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
201
202 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)203 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
204 {
205 return (assoc->association_id | qid);
206 }
207
208 static inline u64
nvmet_fc_getassociationid(u64 connectionid)209 nvmet_fc_getassociationid(u64 connectionid)
210 {
211 return connectionid & ~NVMET_FC_QUEUEID_MASK;
212 }
213
214 static inline u16
nvmet_fc_getqueueid(u64 connectionid)215 nvmet_fc_getqueueid(u64 connectionid)
216 {
217 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
218 }
219
220 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)221 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
222 {
223 return container_of(targetport, struct nvmet_fc_tgtport,
224 fc_target_port);
225 }
226
227 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)228 nvmet_req_to_fod(struct nvmet_req *nvme_req)
229 {
230 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
231 }
232
233
234 /* *************************** Globals **************************** */
235
236
237 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
238
239 static LIST_HEAD(nvmet_fc_target_list);
240 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
241 static LIST_HEAD(nvmet_fc_portentry_list);
242
243
244 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
245 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
246 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
247 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
248 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
249 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
250 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
251 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
253 struct nvmet_fc_fcp_iod *fod);
254 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
255 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
256 struct nvmet_fc_ls_iod *iod);
257
258
259 /* *********************** FC-NVME DMA Handling **************************** */
260
261 /*
262 * The fcloop device passes in a NULL device pointer. Real LLD's will
263 * pass in a valid device pointer. If NULL is passed to the dma mapping
264 * routines, depending on the platform, it may or may not succeed, and
265 * may crash.
266 *
267 * As such:
268 * Wrapper all the dma routines and check the dev pointer.
269 *
270 * If simple mappings (return just a dma address, we'll noop them,
271 * returning a dma address of 0.
272 *
273 * On more complex mappings (dma_map_sg), a pseudo routine fills
274 * in the scatter list, setting all dma addresses to 0.
275 */
276
277 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)278 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
279 enum dma_data_direction dir)
280 {
281 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
282 }
283
284 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)285 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
286 {
287 return dev ? dma_mapping_error(dev, dma_addr) : 0;
288 }
289
290 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)291 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
292 enum dma_data_direction dir)
293 {
294 if (dev)
295 dma_unmap_single(dev, addr, size, dir);
296 }
297
298 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)299 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
300 enum dma_data_direction dir)
301 {
302 if (dev)
303 dma_sync_single_for_cpu(dev, addr, size, dir);
304 }
305
306 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)307 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
308 enum dma_data_direction dir)
309 {
310 if (dev)
311 dma_sync_single_for_device(dev, addr, size, dir);
312 }
313
314 /* pseudo dma_map_sg call */
315 static int
fc_map_sg(struct scatterlist * sg,int nents)316 fc_map_sg(struct scatterlist *sg, int nents)
317 {
318 struct scatterlist *s;
319 int i;
320
321 WARN_ON(nents == 0 || sg[0].length == 0);
322
323 for_each_sg(sg, s, nents, i) {
324 s->dma_address = 0L;
325 #ifdef CONFIG_NEED_SG_DMA_LENGTH
326 s->dma_length = s->length;
327 #endif
328 }
329 return nents;
330 }
331
332 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)333 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
334 enum dma_data_direction dir)
335 {
336 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
337 }
338
339 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)340 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
341 enum dma_data_direction dir)
342 {
343 if (dev)
344 dma_unmap_sg(dev, sg, nents, dir);
345 }
346
347
348 /* ********************** FC-NVME LS XMT Handling ************************* */
349
350
351 static void
__nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op * lsop)352 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
353 {
354 struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
355 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
356 unsigned long flags;
357
358 spin_lock_irqsave(&tgtport->lock, flags);
359
360 if (!lsop->req_queued) {
361 spin_unlock_irqrestore(&tgtport->lock, flags);
362 return;
363 }
364
365 list_del(&lsop->lsreq_list);
366
367 lsop->req_queued = false;
368
369 spin_unlock_irqrestore(&tgtport->lock, flags);
370
371 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
372 (lsreq->rqstlen + lsreq->rsplen),
373 DMA_BIDIRECTIONAL);
374
375 nvmet_fc_tgtport_put(tgtport);
376 }
377
378 static int
__nvmet_fc_send_ls_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))379 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
380 struct nvmet_fc_ls_req_op *lsop,
381 void (*done)(struct nvmefc_ls_req *req, int status))
382 {
383 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
384 unsigned long flags;
385 int ret = 0;
386
387 if (!tgtport->ops->ls_req)
388 return -EOPNOTSUPP;
389
390 if (!nvmet_fc_tgtport_get(tgtport))
391 return -ESHUTDOWN;
392
393 lsreq->done = done;
394 lsop->req_queued = false;
395 INIT_LIST_HEAD(&lsop->lsreq_list);
396
397 lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
398 lsreq->rqstlen + lsreq->rsplen,
399 DMA_BIDIRECTIONAL);
400 if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
401 ret = -EFAULT;
402 goto out_puttgtport;
403 }
404 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
405
406 spin_lock_irqsave(&tgtport->lock, flags);
407
408 list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
409
410 lsop->req_queued = true;
411
412 spin_unlock_irqrestore(&tgtport->lock, flags);
413
414 ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
415 lsreq);
416 if (ret)
417 goto out_unlink;
418
419 return 0;
420
421 out_unlink:
422 lsop->ls_error = ret;
423 spin_lock_irqsave(&tgtport->lock, flags);
424 lsop->req_queued = false;
425 list_del(&lsop->lsreq_list);
426 spin_unlock_irqrestore(&tgtport->lock, flags);
427 fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
428 (lsreq->rqstlen + lsreq->rsplen),
429 DMA_BIDIRECTIONAL);
430 out_puttgtport:
431 nvmet_fc_tgtport_put(tgtport);
432
433 return ret;
434 }
435
436 static int
nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))437 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
438 struct nvmet_fc_ls_req_op *lsop,
439 void (*done)(struct nvmefc_ls_req *req, int status))
440 {
441 /* don't wait for completion */
442
443 return __nvmet_fc_send_ls_req(tgtport, lsop, done);
444 }
445
446 static void
nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)447 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
448 {
449 struct nvmet_fc_ls_req_op *lsop =
450 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
451
452 __nvmet_fc_finish_ls_req(lsop);
453
454 /* fc-nvme target doesn't care about success or failure of cmd */
455
456 kfree(lsop);
457 }
458
459 /*
460 * This routine sends a FC-NVME LS to disconnect (aka terminate)
461 * the FC-NVME Association. Terminating the association also
462 * terminates the FC-NVME connections (per queue, both admin and io
463 * queues) that are part of the association. E.g. things are torn
464 * down, and the related FC-NVME Association ID and Connection IDs
465 * become invalid.
466 *
467 * The behavior of the fc-nvme target is such that it's
468 * understanding of the association and connections will implicitly
469 * be torn down. The action is implicit as it may be due to a loss of
470 * connectivity with the fc-nvme host, so the target may never get a
471 * response even if it tried. As such, the action of this routine
472 * is to asynchronously send the LS, ignore any results of the LS, and
473 * continue on with terminating the association. If the fc-nvme host
474 * is present and receives the LS, it too can tear down.
475 */
476 static void
nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc * assoc)477 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
478 {
479 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
480 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
481 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
482 struct nvmet_fc_ls_req_op *lsop;
483 struct nvmefc_ls_req *lsreq;
484 int ret;
485
486 /*
487 * If ls_req is NULL or no hosthandle, it's an older lldd and no
488 * message is normal. Otherwise, send unless the hostport has
489 * already been invalidated by the lldd.
490 */
491 if (!tgtport->ops->ls_req || !assoc->hostport ||
492 assoc->hostport->invalid)
493 return;
494
495 lsop = kzalloc((sizeof(*lsop) +
496 sizeof(*discon_rqst) + sizeof(*discon_acc) +
497 tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
498 if (!lsop) {
499 dev_info(tgtport->dev,
500 "{%d:%d} send Disconnect Association failed: ENOMEM\n",
501 tgtport->fc_target_port.port_num, assoc->a_id);
502 return;
503 }
504
505 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
506 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
507 lsreq = &lsop->ls_req;
508 if (tgtport->ops->lsrqst_priv_sz)
509 lsreq->private = (void *)&discon_acc[1];
510 else
511 lsreq->private = NULL;
512
513 lsop->tgtport = tgtport;
514 lsop->hosthandle = assoc->hostport->hosthandle;
515
516 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
517 assoc->association_id);
518
519 ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
520 nvmet_fc_disconnect_assoc_done);
521 if (ret) {
522 dev_info(tgtport->dev,
523 "{%d:%d} XMT Disconnect Association failed: %d\n",
524 tgtport->fc_target_port.port_num, assoc->a_id, ret);
525 kfree(lsop);
526 }
527 }
528
529
530 /* *********************** FC-NVME Port Management ************************ */
531
532
533 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)534 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
535 {
536 struct nvmet_fc_ls_iod *iod;
537 int i;
538
539 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
540 GFP_KERNEL);
541 if (!iod)
542 return -ENOMEM;
543
544 tgtport->iod = iod;
545
546 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
547 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
548 iod->tgtport = tgtport;
549 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
550
551 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
552 sizeof(union nvmefc_ls_responses),
553 GFP_KERNEL);
554 if (!iod->rqstbuf)
555 goto out_fail;
556
557 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
558
559 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
560 sizeof(*iod->rspbuf),
561 DMA_TO_DEVICE);
562 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
563 goto out_fail;
564 }
565
566 return 0;
567
568 out_fail:
569 kfree(iod->rqstbuf);
570 list_del(&iod->ls_rcv_list);
571 for (iod--, i--; i >= 0; iod--, i--) {
572 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
573 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
574 kfree(iod->rqstbuf);
575 list_del(&iod->ls_rcv_list);
576 }
577
578 kfree(iod);
579
580 return -EFAULT;
581 }
582
583 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)584 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
585 {
586 struct nvmet_fc_ls_iod *iod = tgtport->iod;
587 int i;
588
589 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
590 fc_dma_unmap_single(tgtport->dev,
591 iod->rspdma, sizeof(*iod->rspbuf),
592 DMA_TO_DEVICE);
593 kfree(iod->rqstbuf);
594 list_del(&iod->ls_rcv_list);
595 }
596 kfree(tgtport->iod);
597 }
598
599 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)600 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
601 {
602 struct nvmet_fc_ls_iod *iod;
603 unsigned long flags;
604
605 spin_lock_irqsave(&tgtport->lock, flags);
606 iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
607 struct nvmet_fc_ls_iod, ls_rcv_list);
608 if (iod)
609 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
610 spin_unlock_irqrestore(&tgtport->lock, flags);
611 return iod;
612 }
613
614
615 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)616 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
617 struct nvmet_fc_ls_iod *iod)
618 {
619 unsigned long flags;
620
621 spin_lock_irqsave(&tgtport->lock, flags);
622 list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
623 spin_unlock_irqrestore(&tgtport->lock, flags);
624 }
625
626 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)627 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
628 struct nvmet_fc_tgt_queue *queue)
629 {
630 struct nvmet_fc_fcp_iod *fod = queue->fod;
631 int i;
632
633 for (i = 0; i < queue->sqsize; fod++, i++) {
634 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
635 fod->tgtport = tgtport;
636 fod->queue = queue;
637 fod->active = false;
638 fod->abort = false;
639 fod->aborted = false;
640 fod->fcpreq = NULL;
641 list_add_tail(&fod->fcp_list, &queue->fod_list);
642 spin_lock_init(&fod->flock);
643
644 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
645 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
646 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
647 list_del(&fod->fcp_list);
648 for (fod--, i--; i >= 0; fod--, i--) {
649 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
650 sizeof(fod->rspiubuf),
651 DMA_TO_DEVICE);
652 fod->rspdma = 0L;
653 list_del(&fod->fcp_list);
654 }
655
656 return;
657 }
658 }
659 }
660
661 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)662 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
663 struct nvmet_fc_tgt_queue *queue)
664 {
665 struct nvmet_fc_fcp_iod *fod = queue->fod;
666 int i;
667
668 for (i = 0; i < queue->sqsize; fod++, i++) {
669 if (fod->rspdma)
670 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
671 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
672 }
673 }
674
675 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)676 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
677 {
678 struct nvmet_fc_fcp_iod *fod;
679
680 lockdep_assert_held(&queue->qlock);
681
682 fod = list_first_entry_or_null(&queue->fod_list,
683 struct nvmet_fc_fcp_iod, fcp_list);
684 if (fod) {
685 list_del(&fod->fcp_list);
686 fod->active = true;
687 /*
688 * no queue reference is taken, as it was taken by the
689 * queue lookup just prior to the allocation. The iod
690 * will "inherit" that reference.
691 */
692 }
693 return fod;
694 }
695
696
697 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)698 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
699 struct nvmet_fc_tgt_queue *queue,
700 struct nvmefc_tgt_fcp_req *fcpreq)
701 {
702 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
703
704 /*
705 * put all admin cmds on hw queue id 0. All io commands go to
706 * the respective hw queue based on a modulo basis
707 */
708 fcpreq->hwqid = queue->qid ?
709 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
710
711 nvmet_fc_handle_fcp_rqst(tgtport, fod);
712 }
713
714 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)715 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
716 {
717 struct nvmet_fc_fcp_iod *fod =
718 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
719
720 /* Submit deferred IO for processing */
721 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
722
723 }
724
725 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)726 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
727 struct nvmet_fc_fcp_iod *fod)
728 {
729 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
730 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
731 struct nvmet_fc_defer_fcp_req *deferfcp;
732 unsigned long flags;
733
734 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
735 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
736
737 fcpreq->nvmet_fc_private = NULL;
738
739 fod->active = false;
740 fod->abort = false;
741 fod->aborted = false;
742 fod->writedataactive = false;
743 fod->fcpreq = NULL;
744
745 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
746
747 /* release the queue lookup reference on the completed IO */
748 nvmet_fc_tgt_q_put(queue);
749
750 spin_lock_irqsave(&queue->qlock, flags);
751 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
752 struct nvmet_fc_defer_fcp_req, req_list);
753 if (!deferfcp) {
754 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
755 spin_unlock_irqrestore(&queue->qlock, flags);
756 return;
757 }
758
759 /* Re-use the fod for the next pending cmd that was deferred */
760 list_del(&deferfcp->req_list);
761
762 fcpreq = deferfcp->fcp_req;
763
764 /* deferfcp can be reused for another IO at a later date */
765 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
766
767 spin_unlock_irqrestore(&queue->qlock, flags);
768
769 /* Save NVME CMD IO in fod */
770 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
771
772 /* Setup new fcpreq to be processed */
773 fcpreq->rspaddr = NULL;
774 fcpreq->rsplen = 0;
775 fcpreq->nvmet_fc_private = fod;
776 fod->fcpreq = fcpreq;
777 fod->active = true;
778
779 /* inform LLDD IO is now being processed */
780 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
781
782 /*
783 * Leave the queue lookup get reference taken when
784 * fod was originally allocated.
785 */
786
787 queue_work(queue->work_q, &fod->defer_work);
788 }
789
790 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)791 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
792 u16 qid, u16 sqsize)
793 {
794 struct nvmet_fc_tgt_queue *queue;
795 int ret;
796
797 if (qid > NVMET_NR_QUEUES)
798 return NULL;
799
800 queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
801 if (!queue)
802 return NULL;
803
804 if (!nvmet_fc_tgt_a_get(assoc))
805 goto out_free_queue;
806
807 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
808 assoc->tgtport->fc_target_port.port_num,
809 assoc->a_id, qid);
810 if (!queue->work_q)
811 goto out_a_put;
812
813 queue->qid = qid;
814 queue->sqsize = sqsize;
815 queue->assoc = assoc;
816 INIT_LIST_HEAD(&queue->fod_list);
817 INIT_LIST_HEAD(&queue->avail_defer_list);
818 INIT_LIST_HEAD(&queue->pending_cmd_list);
819 atomic_set(&queue->connected, 0);
820 atomic_set(&queue->sqtail, 0);
821 atomic_set(&queue->rsn, 1);
822 atomic_set(&queue->zrspcnt, 0);
823 spin_lock_init(&queue->qlock);
824 kref_init(&queue->ref);
825
826 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
827
828 ret = nvmet_sq_init(&queue->nvme_sq);
829 if (ret)
830 goto out_fail_iodlist;
831
832 WARN_ON(assoc->queues[qid]);
833 rcu_assign_pointer(assoc->queues[qid], queue);
834
835 return queue;
836
837 out_fail_iodlist:
838 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
839 destroy_workqueue(queue->work_q);
840 out_a_put:
841 nvmet_fc_tgt_a_put(assoc);
842 out_free_queue:
843 kfree(queue);
844 return NULL;
845 }
846
847
848 static void
nvmet_fc_tgt_queue_free(struct kref * ref)849 nvmet_fc_tgt_queue_free(struct kref *ref)
850 {
851 struct nvmet_fc_tgt_queue *queue =
852 container_of(ref, struct nvmet_fc_tgt_queue, ref);
853
854 rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
855
856 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
857
858 nvmet_fc_tgt_a_put(queue->assoc);
859
860 destroy_workqueue(queue->work_q);
861
862 kfree_rcu(queue, rcu);
863 }
864
865 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)866 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
867 {
868 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
869 }
870
871 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)872 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
873 {
874 return kref_get_unless_zero(&queue->ref);
875 }
876
877
878 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)879 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
880 {
881 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
882 struct nvmet_fc_fcp_iod *fod = queue->fod;
883 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
884 unsigned long flags;
885 int i;
886 bool disconnect;
887
888 disconnect = atomic_xchg(&queue->connected, 0);
889
890 /* if not connected, nothing to do */
891 if (!disconnect)
892 return;
893
894 spin_lock_irqsave(&queue->qlock, flags);
895 /* abort outstanding io's */
896 for (i = 0; i < queue->sqsize; fod++, i++) {
897 if (fod->active) {
898 spin_lock(&fod->flock);
899 fod->abort = true;
900 /*
901 * only call lldd abort routine if waiting for
902 * writedata. other outstanding ops should finish
903 * on their own.
904 */
905 if (fod->writedataactive) {
906 fod->aborted = true;
907 spin_unlock(&fod->flock);
908 tgtport->ops->fcp_abort(
909 &tgtport->fc_target_port, fod->fcpreq);
910 } else
911 spin_unlock(&fod->flock);
912 }
913 }
914
915 /* Cleanup defer'ed IOs in queue */
916 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
917 req_list) {
918 list_del(&deferfcp->req_list);
919 kfree(deferfcp);
920 }
921
922 for (;;) {
923 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
924 struct nvmet_fc_defer_fcp_req, req_list);
925 if (!deferfcp)
926 break;
927
928 list_del(&deferfcp->req_list);
929 spin_unlock_irqrestore(&queue->qlock, flags);
930
931 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
932 deferfcp->fcp_req);
933
934 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
935 deferfcp->fcp_req);
936
937 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
938 deferfcp->fcp_req);
939
940 /* release the queue lookup reference */
941 nvmet_fc_tgt_q_put(queue);
942
943 kfree(deferfcp);
944
945 spin_lock_irqsave(&queue->qlock, flags);
946 }
947 spin_unlock_irqrestore(&queue->qlock, flags);
948
949 flush_workqueue(queue->work_q);
950
951 nvmet_sq_destroy(&queue->nvme_sq);
952
953 nvmet_fc_tgt_q_put(queue);
954 }
955
956 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)957 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
958 u64 connection_id)
959 {
960 struct nvmet_fc_tgt_assoc *assoc;
961 struct nvmet_fc_tgt_queue *queue;
962 u64 association_id = nvmet_fc_getassociationid(connection_id);
963 u16 qid = nvmet_fc_getqueueid(connection_id);
964
965 if (qid > NVMET_NR_QUEUES)
966 return NULL;
967
968 rcu_read_lock();
969 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
970 if (association_id == assoc->association_id) {
971 queue = rcu_dereference(assoc->queues[qid]);
972 if (queue &&
973 (!atomic_read(&queue->connected) ||
974 !nvmet_fc_tgt_q_get(queue)))
975 queue = NULL;
976 rcu_read_unlock();
977 return queue;
978 }
979 }
980 rcu_read_unlock();
981 return NULL;
982 }
983
984 static void
nvmet_fc_hostport_free(struct kref * ref)985 nvmet_fc_hostport_free(struct kref *ref)
986 {
987 struct nvmet_fc_hostport *hostport =
988 container_of(ref, struct nvmet_fc_hostport, ref);
989 struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
990 unsigned long flags;
991
992 spin_lock_irqsave(&tgtport->lock, flags);
993 list_del(&hostport->host_list);
994 spin_unlock_irqrestore(&tgtport->lock, flags);
995 if (tgtport->ops->host_release && hostport->invalid)
996 tgtport->ops->host_release(hostport->hosthandle);
997 kfree(hostport);
998 nvmet_fc_tgtport_put(tgtport);
999 }
1000
1001 static void
nvmet_fc_hostport_put(struct nvmet_fc_hostport * hostport)1002 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1003 {
1004 kref_put(&hostport->ref, nvmet_fc_hostport_free);
1005 }
1006
1007 static int
nvmet_fc_hostport_get(struct nvmet_fc_hostport * hostport)1008 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1009 {
1010 return kref_get_unless_zero(&hostport->ref);
1011 }
1012
1013 static void
nvmet_fc_free_hostport(struct nvmet_fc_hostport * hostport)1014 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1015 {
1016 /* if LLDD not implemented, leave as NULL */
1017 if (!hostport || !hostport->hosthandle)
1018 return;
1019
1020 nvmet_fc_hostport_put(hostport);
1021 }
1022
1023 static struct nvmet_fc_hostport *
nvmet_fc_match_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1024 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1025 {
1026 struct nvmet_fc_hostport *host;
1027
1028 lockdep_assert_held(&tgtport->lock);
1029
1030 list_for_each_entry(host, &tgtport->host_list, host_list) {
1031 if (host->hosthandle == hosthandle && !host->invalid) {
1032 if (nvmet_fc_hostport_get(host))
1033 return (host);
1034 }
1035 }
1036
1037 return NULL;
1038 }
1039
1040 static struct nvmet_fc_hostport *
nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1041 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1042 {
1043 struct nvmet_fc_hostport *newhost, *match = NULL;
1044 unsigned long flags;
1045
1046 /* if LLDD not implemented, leave as NULL */
1047 if (!hosthandle)
1048 return NULL;
1049
1050 /*
1051 * take reference for what will be the newly allocated hostport if
1052 * we end up using a new allocation
1053 */
1054 if (!nvmet_fc_tgtport_get(tgtport))
1055 return ERR_PTR(-EINVAL);
1056
1057 spin_lock_irqsave(&tgtport->lock, flags);
1058 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1059 spin_unlock_irqrestore(&tgtport->lock, flags);
1060
1061 if (match) {
1062 /* no new allocation - release reference */
1063 nvmet_fc_tgtport_put(tgtport);
1064 return match;
1065 }
1066
1067 newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1068 if (!newhost) {
1069 /* no new allocation - release reference */
1070 nvmet_fc_tgtport_put(tgtport);
1071 return ERR_PTR(-ENOMEM);
1072 }
1073
1074 spin_lock_irqsave(&tgtport->lock, flags);
1075 match = nvmet_fc_match_hostport(tgtport, hosthandle);
1076 if (match) {
1077 /* new allocation not needed */
1078 kfree(newhost);
1079 newhost = match;
1080 /* no new allocation - release reference */
1081 nvmet_fc_tgtport_put(tgtport);
1082 } else {
1083 newhost->tgtport = tgtport;
1084 newhost->hosthandle = hosthandle;
1085 INIT_LIST_HEAD(&newhost->host_list);
1086 kref_init(&newhost->ref);
1087
1088 list_add_tail(&newhost->host_list, &tgtport->host_list);
1089 }
1090 spin_unlock_irqrestore(&tgtport->lock, flags);
1091
1092 return newhost;
1093 }
1094
1095 static void
nvmet_fc_delete_assoc(struct work_struct * work)1096 nvmet_fc_delete_assoc(struct work_struct *work)
1097 {
1098 struct nvmet_fc_tgt_assoc *assoc =
1099 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1100
1101 nvmet_fc_delete_target_assoc(assoc);
1102 nvmet_fc_tgt_a_put(assoc);
1103 }
1104
1105 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport,void * hosthandle)1106 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1107 {
1108 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1109 unsigned long flags;
1110 u64 ran;
1111 int idx;
1112 bool needrandom = true;
1113
1114 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1115 if (!assoc)
1116 return NULL;
1117
1118 idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1119 if (idx < 0)
1120 goto out_free_assoc;
1121
1122 if (!nvmet_fc_tgtport_get(tgtport))
1123 goto out_ida;
1124
1125 assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1126 if (IS_ERR(assoc->hostport))
1127 goto out_put;
1128
1129 assoc->tgtport = tgtport;
1130 assoc->a_id = idx;
1131 INIT_LIST_HEAD(&assoc->a_list);
1132 kref_init(&assoc->ref);
1133 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1134 atomic_set(&assoc->terminating, 0);
1135
1136 while (needrandom) {
1137 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1138 ran = ran << BYTES_FOR_QID_SHIFT;
1139
1140 spin_lock_irqsave(&tgtport->lock, flags);
1141 needrandom = false;
1142 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1143 if (ran == tmpassoc->association_id) {
1144 needrandom = true;
1145 break;
1146 }
1147 }
1148 if (!needrandom) {
1149 assoc->association_id = ran;
1150 list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1151 }
1152 spin_unlock_irqrestore(&tgtport->lock, flags);
1153 }
1154
1155 return assoc;
1156
1157 out_put:
1158 nvmet_fc_tgtport_put(tgtport);
1159 out_ida:
1160 ida_free(&tgtport->assoc_cnt, idx);
1161 out_free_assoc:
1162 kfree(assoc);
1163 return NULL;
1164 }
1165
1166 static void
nvmet_fc_target_assoc_free(struct kref * ref)1167 nvmet_fc_target_assoc_free(struct kref *ref)
1168 {
1169 struct nvmet_fc_tgt_assoc *assoc =
1170 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1171 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1172 struct nvmet_fc_ls_iod *oldls;
1173 unsigned long flags;
1174
1175 /* Send Disconnect now that all i/o has completed */
1176 nvmet_fc_xmt_disconnect_assoc(assoc);
1177
1178 nvmet_fc_free_hostport(assoc->hostport);
1179 spin_lock_irqsave(&tgtport->lock, flags);
1180 list_del_rcu(&assoc->a_list);
1181 oldls = assoc->rcv_disconn;
1182 spin_unlock_irqrestore(&tgtport->lock, flags);
1183 /* if pending Rcv Disconnect Association LS, send rsp now */
1184 if (oldls)
1185 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1186 ida_free(&tgtport->assoc_cnt, assoc->a_id);
1187 dev_info(tgtport->dev,
1188 "{%d:%d} Association freed\n",
1189 tgtport->fc_target_port.port_num, assoc->a_id);
1190 kfree_rcu(assoc, rcu);
1191 nvmet_fc_tgtport_put(tgtport);
1192 }
1193
1194 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)1195 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1196 {
1197 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1198 }
1199
1200 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)1201 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1202 {
1203 return kref_get_unless_zero(&assoc->ref);
1204 }
1205
1206 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)1207 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1208 {
1209 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1210 struct nvmet_fc_tgt_queue *queue;
1211 int i, terminating;
1212
1213 terminating = atomic_xchg(&assoc->terminating, 1);
1214
1215 /* if already terminating, do nothing */
1216 if (terminating)
1217 return;
1218
1219
1220 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1221 rcu_read_lock();
1222 queue = rcu_dereference(assoc->queues[i]);
1223 if (!queue) {
1224 rcu_read_unlock();
1225 continue;
1226 }
1227
1228 if (!nvmet_fc_tgt_q_get(queue)) {
1229 rcu_read_unlock();
1230 continue;
1231 }
1232 rcu_read_unlock();
1233 nvmet_fc_delete_target_queue(queue);
1234 nvmet_fc_tgt_q_put(queue);
1235 }
1236
1237 dev_info(tgtport->dev,
1238 "{%d:%d} Association deleted\n",
1239 tgtport->fc_target_port.port_num, assoc->a_id);
1240
1241 nvmet_fc_tgt_a_put(assoc);
1242 }
1243
1244 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)1245 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1246 u64 association_id)
1247 {
1248 struct nvmet_fc_tgt_assoc *assoc;
1249 struct nvmet_fc_tgt_assoc *ret = NULL;
1250
1251 rcu_read_lock();
1252 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1253 if (association_id == assoc->association_id) {
1254 ret = assoc;
1255 if (!nvmet_fc_tgt_a_get(assoc))
1256 ret = NULL;
1257 break;
1258 }
1259 }
1260 rcu_read_unlock();
1261
1262 return ret;
1263 }
1264
1265 static void
nvmet_fc_portentry_bind(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_port_entry * pe,struct nvmet_port * port)1266 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1267 struct nvmet_fc_port_entry *pe,
1268 struct nvmet_port *port)
1269 {
1270 lockdep_assert_held(&nvmet_fc_tgtlock);
1271
1272 pe->tgtport = tgtport;
1273 tgtport->pe = pe;
1274
1275 pe->port = port;
1276 port->priv = pe;
1277
1278 pe->node_name = tgtport->fc_target_port.node_name;
1279 pe->port_name = tgtport->fc_target_port.port_name;
1280 INIT_LIST_HEAD(&pe->pe_list);
1281
1282 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1283 }
1284
1285 static void
nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry * pe)1286 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1287 {
1288 unsigned long flags;
1289
1290 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1291 if (pe->tgtport)
1292 pe->tgtport->pe = NULL;
1293 list_del(&pe->pe_list);
1294 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1295 }
1296
1297 /*
1298 * called when a targetport deregisters. Breaks the relationship
1299 * with the nvmet port, but leaves the port_entry in place so that
1300 * re-registration can resume operation.
1301 */
1302 static void
nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport * tgtport)1303 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1304 {
1305 struct nvmet_fc_port_entry *pe;
1306 unsigned long flags;
1307
1308 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1309 pe = tgtport->pe;
1310 if (pe)
1311 pe->tgtport = NULL;
1312 tgtport->pe = NULL;
1313 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1314 }
1315
1316 /*
1317 * called when a new targetport is registered. Looks in the
1318 * existing nvmet port_entries to see if the nvmet layer is
1319 * configured for the targetport's wwn's. (the targetport existed,
1320 * nvmet configured, the lldd unregistered the tgtport, and is now
1321 * reregistering the same targetport). If so, set the nvmet port
1322 * port entry on the targetport.
1323 */
1324 static void
nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport * tgtport)1325 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1326 {
1327 struct nvmet_fc_port_entry *pe;
1328 unsigned long flags;
1329
1330 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1331 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1332 if (tgtport->fc_target_port.node_name == pe->node_name &&
1333 tgtport->fc_target_port.port_name == pe->port_name) {
1334 WARN_ON(pe->tgtport);
1335 tgtport->pe = pe;
1336 pe->tgtport = tgtport;
1337 break;
1338 }
1339 }
1340 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1341 }
1342
1343 /**
1344 * nvmet_fc_register_targetport - transport entry point called by an
1345 * LLDD to register the existence of a local
1346 * NVME subystem FC port.
1347 * @pinfo: pointer to information about the port to be registered
1348 * @template: LLDD entrypoints and operational parameters for the port
1349 * @dev: physical hardware device node port corresponds to. Will be
1350 * used for DMA mappings
1351 * @portptr: pointer to a local port pointer. Upon success, the routine
1352 * will allocate a nvme_fc_local_port structure and place its
1353 * address in the local port pointer. Upon failure, local port
1354 * pointer will be set to NULL.
1355 *
1356 * Returns:
1357 * a completion status. Must be 0 upon success; a negative errno
1358 * (ex: -ENXIO) upon failure.
1359 */
1360 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)1361 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1362 struct nvmet_fc_target_template *template,
1363 struct device *dev,
1364 struct nvmet_fc_target_port **portptr)
1365 {
1366 struct nvmet_fc_tgtport *newrec;
1367 unsigned long flags;
1368 int ret, idx;
1369
1370 if (!template->xmt_ls_rsp || !template->fcp_op ||
1371 !template->fcp_abort ||
1372 !template->fcp_req_release || !template->targetport_delete ||
1373 !template->max_hw_queues || !template->max_sgl_segments ||
1374 !template->max_dif_sgl_segments || !template->dma_boundary) {
1375 ret = -EINVAL;
1376 goto out_regtgt_failed;
1377 }
1378
1379 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1380 GFP_KERNEL);
1381 if (!newrec) {
1382 ret = -ENOMEM;
1383 goto out_regtgt_failed;
1384 }
1385
1386 idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1387 if (idx < 0) {
1388 ret = -ENOSPC;
1389 goto out_fail_kfree;
1390 }
1391
1392 if (!get_device(dev) && dev) {
1393 ret = -ENODEV;
1394 goto out_ida_put;
1395 }
1396
1397 newrec->fc_target_port.node_name = pinfo->node_name;
1398 newrec->fc_target_port.port_name = pinfo->port_name;
1399 if (template->target_priv_sz)
1400 newrec->fc_target_port.private = &newrec[1];
1401 else
1402 newrec->fc_target_port.private = NULL;
1403 newrec->fc_target_port.port_id = pinfo->port_id;
1404 newrec->fc_target_port.port_num = idx;
1405 INIT_LIST_HEAD(&newrec->tgt_list);
1406 newrec->dev = dev;
1407 newrec->ops = template;
1408 spin_lock_init(&newrec->lock);
1409 INIT_LIST_HEAD(&newrec->ls_rcv_list);
1410 INIT_LIST_HEAD(&newrec->ls_req_list);
1411 INIT_LIST_HEAD(&newrec->ls_busylist);
1412 INIT_LIST_HEAD(&newrec->assoc_list);
1413 INIT_LIST_HEAD(&newrec->host_list);
1414 kref_init(&newrec->ref);
1415 ida_init(&newrec->assoc_cnt);
1416 newrec->max_sg_cnt = template->max_sgl_segments;
1417
1418 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1419 if (ret) {
1420 ret = -ENOMEM;
1421 goto out_free_newrec;
1422 }
1423
1424 nvmet_fc_portentry_rebind_tgt(newrec);
1425
1426 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1427 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1428 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1429
1430 *portptr = &newrec->fc_target_port;
1431 return 0;
1432
1433 out_free_newrec:
1434 put_device(dev);
1435 out_ida_put:
1436 ida_free(&nvmet_fc_tgtport_cnt, idx);
1437 out_fail_kfree:
1438 kfree(newrec);
1439 out_regtgt_failed:
1440 *portptr = NULL;
1441 return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1444
1445
1446 static void
nvmet_fc_free_tgtport(struct kref * ref)1447 nvmet_fc_free_tgtport(struct kref *ref)
1448 {
1449 struct nvmet_fc_tgtport *tgtport =
1450 container_of(ref, struct nvmet_fc_tgtport, ref);
1451 struct device *dev = tgtport->dev;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1455 list_del(&tgtport->tgt_list);
1456 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1457
1458 nvmet_fc_free_ls_iodlist(tgtport);
1459
1460 /* let the LLDD know we've finished tearing it down */
1461 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1462
1463 ida_free(&nvmet_fc_tgtport_cnt,
1464 tgtport->fc_target_port.port_num);
1465
1466 ida_destroy(&tgtport->assoc_cnt);
1467
1468 kfree(tgtport);
1469
1470 put_device(dev);
1471 }
1472
1473 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1474 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1475 {
1476 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1477 }
1478
1479 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1480 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1481 {
1482 return kref_get_unless_zero(&tgtport->ref);
1483 }
1484
1485 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1486 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1487 {
1488 struct nvmet_fc_tgt_assoc *assoc;
1489
1490 rcu_read_lock();
1491 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1492 if (!nvmet_fc_tgt_a_get(assoc))
1493 continue;
1494 if (!queue_work(nvmet_wq, &assoc->del_work))
1495 /* already deleting - release local reference */
1496 nvmet_fc_tgt_a_put(assoc);
1497 }
1498 rcu_read_unlock();
1499 }
1500
1501 /**
1502 * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1503 * to remove references to a hosthandle for LS's.
1504 *
1505 * The nvmet-fc layer ensures that any references to the hosthandle
1506 * on the targetport are forgotten (set to NULL). The LLDD will
1507 * typically call this when a login with a remote host port has been
1508 * lost, thus LS's for the remote host port are no longer possible.
1509 *
1510 * If an LS request is outstanding to the targetport/hosthandle (or
1511 * issued concurrently with the call to invalidate the host), the
1512 * LLDD is responsible for terminating/aborting the LS and completing
1513 * the LS request. It is recommended that these terminations/aborts
1514 * occur after calling to invalidate the host handle to avoid additional
1515 * retries by the nvmet-fc transport. The nvmet-fc transport may
1516 * continue to reference host handle while it cleans up outstanding
1517 * NVME associations. The nvmet-fc transport will call the
1518 * ops->host_release() callback to notify the LLDD that all references
1519 * are complete and the related host handle can be recovered.
1520 * Note: if there are no references, the callback may be called before
1521 * the invalidate host call returns.
1522 *
1523 * @target_port: pointer to the (registered) target port that a prior
1524 * LS was received on and which supplied the transport the
1525 * hosthandle.
1526 * @hosthandle: the handle (pointer) that represents the host port
1527 * that no longer has connectivity and that LS's should
1528 * no longer be directed to.
1529 */
1530 void
nvmet_fc_invalidate_host(struct nvmet_fc_target_port * target_port,void * hosthandle)1531 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1532 void *hosthandle)
1533 {
1534 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1535 struct nvmet_fc_tgt_assoc *assoc, *next;
1536 unsigned long flags;
1537 bool noassoc = true;
1538
1539 spin_lock_irqsave(&tgtport->lock, flags);
1540 list_for_each_entry_safe(assoc, next,
1541 &tgtport->assoc_list, a_list) {
1542 if (!assoc->hostport ||
1543 assoc->hostport->hosthandle != hosthandle)
1544 continue;
1545 if (!nvmet_fc_tgt_a_get(assoc))
1546 continue;
1547 assoc->hostport->invalid = 1;
1548 noassoc = false;
1549 if (!queue_work(nvmet_wq, &assoc->del_work))
1550 /* already deleting - release local reference */
1551 nvmet_fc_tgt_a_put(assoc);
1552 }
1553 spin_unlock_irqrestore(&tgtport->lock, flags);
1554
1555 /* if there's nothing to wait for - call the callback */
1556 if (noassoc && tgtport->ops->host_release)
1557 tgtport->ops->host_release(hosthandle);
1558 }
1559 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1560
1561 /*
1562 * nvmet layer has called to terminate an association
1563 */
1564 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1565 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1566 {
1567 struct nvmet_fc_tgtport *tgtport, *next;
1568 struct nvmet_fc_tgt_assoc *assoc;
1569 struct nvmet_fc_tgt_queue *queue;
1570 unsigned long flags;
1571 bool found_ctrl = false;
1572
1573 /* this is a bit ugly, but don't want to make locks layered */
1574 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1575 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1576 tgt_list) {
1577 if (!nvmet_fc_tgtport_get(tgtport))
1578 continue;
1579 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1580
1581 rcu_read_lock();
1582 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1583 queue = rcu_dereference(assoc->queues[0]);
1584 if (queue && queue->nvme_sq.ctrl == ctrl) {
1585 if (nvmet_fc_tgt_a_get(assoc))
1586 found_ctrl = true;
1587 break;
1588 }
1589 }
1590 rcu_read_unlock();
1591
1592 nvmet_fc_tgtport_put(tgtport);
1593
1594 if (found_ctrl) {
1595 if (!queue_work(nvmet_wq, &assoc->del_work))
1596 /* already deleting - release local reference */
1597 nvmet_fc_tgt_a_put(assoc);
1598 return;
1599 }
1600
1601 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1602 }
1603 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1604 }
1605
1606 /**
1607 * nvmet_fc_unregister_targetport - transport entry point called by an
1608 * LLDD to deregister/remove a previously
1609 * registered a local NVME subsystem FC port.
1610 * @target_port: pointer to the (registered) target port that is to be
1611 * deregistered.
1612 *
1613 * Returns:
1614 * a completion status. Must be 0 upon success; a negative errno
1615 * (ex: -ENXIO) upon failure.
1616 */
1617 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1618 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1619 {
1620 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1621
1622 nvmet_fc_portentry_unbind_tgt(tgtport);
1623
1624 /* terminate any outstanding associations */
1625 __nvmet_fc_free_assocs(tgtport);
1626
1627 /*
1628 * should terminate LS's as well. However, LS's will be generated
1629 * at the tail end of association termination, so they likely don't
1630 * exist yet. And even if they did, it's worthwhile to just let
1631 * them finish and targetport ref counting will clean things up.
1632 */
1633
1634 nvmet_fc_tgtport_put(tgtport);
1635
1636 return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1639
1640
1641 /* ********************** FC-NVME LS RCV Handling ************************* */
1642
1643
1644 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1645 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1646 struct nvmet_fc_ls_iod *iod)
1647 {
1648 struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1649 struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1650 struct nvmet_fc_tgt_queue *queue;
1651 int ret = 0;
1652
1653 memset(acc, 0, sizeof(*acc));
1654
1655 /*
1656 * FC-NVME spec changes. There are initiators sending different
1657 * lengths as padding sizes for Create Association Cmd descriptor
1658 * was incorrect.
1659 * Accept anything of "minimum" length. Assume format per 1.15
1660 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1661 * trailing pad length is.
1662 */
1663 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1664 ret = VERR_CR_ASSOC_LEN;
1665 else if (be32_to_cpu(rqst->desc_list_len) <
1666 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1667 ret = VERR_CR_ASSOC_RQST_LEN;
1668 else if (rqst->assoc_cmd.desc_tag !=
1669 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1670 ret = VERR_CR_ASSOC_CMD;
1671 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1672 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1673 ret = VERR_CR_ASSOC_CMD_LEN;
1674 else if (!rqst->assoc_cmd.ersp_ratio ||
1675 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1676 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1677 ret = VERR_ERSP_RATIO;
1678
1679 else {
1680 /* new association w/ admin queue */
1681 iod->assoc = nvmet_fc_alloc_target_assoc(
1682 tgtport, iod->hosthandle);
1683 if (!iod->assoc)
1684 ret = VERR_ASSOC_ALLOC_FAIL;
1685 else {
1686 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1687 be16_to_cpu(rqst->assoc_cmd.sqsize));
1688 if (!queue) {
1689 ret = VERR_QUEUE_ALLOC_FAIL;
1690 nvmet_fc_tgt_a_put(iod->assoc);
1691 }
1692 }
1693 }
1694
1695 if (ret) {
1696 dev_err(tgtport->dev,
1697 "Create Association LS failed: %s\n",
1698 validation_errors[ret]);
1699 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1700 sizeof(*acc), rqst->w0.ls_cmd,
1701 FCNVME_RJT_RC_LOGIC,
1702 FCNVME_RJT_EXP_NONE, 0);
1703 return;
1704 }
1705
1706 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1707 atomic_set(&queue->connected, 1);
1708 queue->sqhd = 0; /* best place to init value */
1709
1710 dev_info(tgtport->dev,
1711 "{%d:%d} Association created\n",
1712 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1713
1714 /* format a response */
1715
1716 iod->lsrsp->rsplen = sizeof(*acc);
1717
1718 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1719 fcnvme_lsdesc_len(
1720 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1721 FCNVME_LS_CREATE_ASSOCIATION);
1722 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1723 acc->associd.desc_len =
1724 fcnvme_lsdesc_len(
1725 sizeof(struct fcnvme_lsdesc_assoc_id));
1726 acc->associd.association_id =
1727 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1728 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1729 acc->connectid.desc_len =
1730 fcnvme_lsdesc_len(
1731 sizeof(struct fcnvme_lsdesc_conn_id));
1732 acc->connectid.connection_id = acc->associd.association_id;
1733 }
1734
1735 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1736 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1737 struct nvmet_fc_ls_iod *iod)
1738 {
1739 struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1740 struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1741 struct nvmet_fc_tgt_queue *queue;
1742 int ret = 0;
1743
1744 memset(acc, 0, sizeof(*acc));
1745
1746 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1747 ret = VERR_CR_CONN_LEN;
1748 else if (rqst->desc_list_len !=
1749 fcnvme_lsdesc_len(
1750 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1751 ret = VERR_CR_CONN_RQST_LEN;
1752 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1753 ret = VERR_ASSOC_ID;
1754 else if (rqst->associd.desc_len !=
1755 fcnvme_lsdesc_len(
1756 sizeof(struct fcnvme_lsdesc_assoc_id)))
1757 ret = VERR_ASSOC_ID_LEN;
1758 else if (rqst->connect_cmd.desc_tag !=
1759 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1760 ret = VERR_CR_CONN_CMD;
1761 else if (rqst->connect_cmd.desc_len !=
1762 fcnvme_lsdesc_len(
1763 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1764 ret = VERR_CR_CONN_CMD_LEN;
1765 else if (!rqst->connect_cmd.ersp_ratio ||
1766 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1767 be16_to_cpu(rqst->connect_cmd.sqsize)))
1768 ret = VERR_ERSP_RATIO;
1769
1770 else {
1771 /* new io queue */
1772 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1773 be64_to_cpu(rqst->associd.association_id));
1774 if (!iod->assoc)
1775 ret = VERR_NO_ASSOC;
1776 else {
1777 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1778 be16_to_cpu(rqst->connect_cmd.qid),
1779 be16_to_cpu(rqst->connect_cmd.sqsize));
1780 if (!queue)
1781 ret = VERR_QUEUE_ALLOC_FAIL;
1782
1783 /* release get taken in nvmet_fc_find_target_assoc */
1784 nvmet_fc_tgt_a_put(iod->assoc);
1785 }
1786 }
1787
1788 if (ret) {
1789 dev_err(tgtport->dev,
1790 "Create Connection LS failed: %s\n",
1791 validation_errors[ret]);
1792 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1793 sizeof(*acc), rqst->w0.ls_cmd,
1794 (ret == VERR_NO_ASSOC) ?
1795 FCNVME_RJT_RC_INV_ASSOC :
1796 FCNVME_RJT_RC_LOGIC,
1797 FCNVME_RJT_EXP_NONE, 0);
1798 return;
1799 }
1800
1801 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1802 atomic_set(&queue->connected, 1);
1803 queue->sqhd = 0; /* best place to init value */
1804
1805 /* format a response */
1806
1807 iod->lsrsp->rsplen = sizeof(*acc);
1808
1809 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1810 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1811 FCNVME_LS_CREATE_CONNECTION);
1812 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1813 acc->connectid.desc_len =
1814 fcnvme_lsdesc_len(
1815 sizeof(struct fcnvme_lsdesc_conn_id));
1816 acc->connectid.connection_id =
1817 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1818 be16_to_cpu(rqst->connect_cmd.qid)));
1819 }
1820
1821 /*
1822 * Returns true if the LS response is to be transmit
1823 * Returns false if the LS response is to be delayed
1824 */
1825 static int
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1826 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1827 struct nvmet_fc_ls_iod *iod)
1828 {
1829 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1830 &iod->rqstbuf->rq_dis_assoc;
1831 struct fcnvme_ls_disconnect_assoc_acc *acc =
1832 &iod->rspbuf->rsp_dis_assoc;
1833 struct nvmet_fc_tgt_assoc *assoc = NULL;
1834 struct nvmet_fc_ls_iod *oldls = NULL;
1835 unsigned long flags;
1836 int ret = 0;
1837
1838 memset(acc, 0, sizeof(*acc));
1839
1840 ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1841 if (!ret) {
1842 /* match an active association - takes an assoc ref if !NULL */
1843 assoc = nvmet_fc_find_target_assoc(tgtport,
1844 be64_to_cpu(rqst->associd.association_id));
1845 iod->assoc = assoc;
1846 if (!assoc)
1847 ret = VERR_NO_ASSOC;
1848 }
1849
1850 if (ret || !assoc) {
1851 dev_err(tgtport->dev,
1852 "Disconnect LS failed: %s\n",
1853 validation_errors[ret]);
1854 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1855 sizeof(*acc), rqst->w0.ls_cmd,
1856 (ret == VERR_NO_ASSOC) ?
1857 FCNVME_RJT_RC_INV_ASSOC :
1858 FCNVME_RJT_RC_LOGIC,
1859 FCNVME_RJT_EXP_NONE, 0);
1860 return true;
1861 }
1862
1863 /* format a response */
1864
1865 iod->lsrsp->rsplen = sizeof(*acc);
1866
1867 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1868 fcnvme_lsdesc_len(
1869 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1870 FCNVME_LS_DISCONNECT_ASSOC);
1871
1872 /* release get taken in nvmet_fc_find_target_assoc */
1873 nvmet_fc_tgt_a_put(assoc);
1874
1875 /*
1876 * The rules for LS response says the response cannot
1877 * go back until ABTS's have been sent for all outstanding
1878 * I/O and a Disconnect Association LS has been sent.
1879 * So... save off the Disconnect LS to send the response
1880 * later. If there was a prior LS already saved, replace
1881 * it with the newer one and send a can't perform reject
1882 * on the older one.
1883 */
1884 spin_lock_irqsave(&tgtport->lock, flags);
1885 oldls = assoc->rcv_disconn;
1886 assoc->rcv_disconn = iod;
1887 spin_unlock_irqrestore(&tgtport->lock, flags);
1888
1889 nvmet_fc_delete_target_assoc(assoc);
1890
1891 if (oldls) {
1892 dev_info(tgtport->dev,
1893 "{%d:%d} Multiple Disconnect Association LS's "
1894 "received\n",
1895 tgtport->fc_target_port.port_num, assoc->a_id);
1896 /* overwrite good response with bogus failure */
1897 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1898 sizeof(*iod->rspbuf),
1899 /* ok to use rqst, LS is same */
1900 rqst->w0.ls_cmd,
1901 FCNVME_RJT_RC_UNAB,
1902 FCNVME_RJT_EXP_NONE, 0);
1903 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1904 }
1905
1906 return false;
1907 }
1908
1909
1910 /* *********************** NVME Ctrl Routines **************************** */
1911
1912
1913 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1914
1915 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1916
1917 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1918 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1919 {
1920 struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1921 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1922
1923 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1924 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1925 nvmet_fc_free_ls_iod(tgtport, iod);
1926 nvmet_fc_tgtport_put(tgtport);
1927 }
1928
1929 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1930 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1931 struct nvmet_fc_ls_iod *iod)
1932 {
1933 int ret;
1934
1935 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1936 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1937
1938 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1939 if (ret)
1940 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1941 }
1942
1943 /*
1944 * Actual processing routine for received FC-NVME LS Requests from the LLD
1945 */
1946 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1947 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1948 struct nvmet_fc_ls_iod *iod)
1949 {
1950 struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1951 bool sendrsp = true;
1952
1953 iod->lsrsp->nvme_fc_private = iod;
1954 iod->lsrsp->rspbuf = iod->rspbuf;
1955 iod->lsrsp->rspdma = iod->rspdma;
1956 iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1957 /* Be preventative. handlers will later set to valid length */
1958 iod->lsrsp->rsplen = 0;
1959
1960 iod->assoc = NULL;
1961
1962 /*
1963 * handlers:
1964 * parse request input, execute the request, and format the
1965 * LS response
1966 */
1967 switch (w0->ls_cmd) {
1968 case FCNVME_LS_CREATE_ASSOCIATION:
1969 /* Creates Association and initial Admin Queue/Connection */
1970 nvmet_fc_ls_create_association(tgtport, iod);
1971 break;
1972 case FCNVME_LS_CREATE_CONNECTION:
1973 /* Creates an IO Queue/Connection */
1974 nvmet_fc_ls_create_connection(tgtport, iod);
1975 break;
1976 case FCNVME_LS_DISCONNECT_ASSOC:
1977 /* Terminate a Queue/Connection or the Association */
1978 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1979 break;
1980 default:
1981 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1982 sizeof(*iod->rspbuf), w0->ls_cmd,
1983 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1984 }
1985
1986 if (sendrsp)
1987 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1988 }
1989
1990 /*
1991 * Actual processing routine for received FC-NVME LS Requests from the LLD
1992 */
1993 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1994 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1995 {
1996 struct nvmet_fc_ls_iod *iod =
1997 container_of(work, struct nvmet_fc_ls_iod, work);
1998 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1999
2000 nvmet_fc_handle_ls_rqst(tgtport, iod);
2001 }
2002
2003
2004 /**
2005 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2006 * upon the reception of a NVME LS request.
2007 *
2008 * The nvmet-fc layer will copy payload to an internal structure for
2009 * processing. As such, upon completion of the routine, the LLDD may
2010 * immediately free/reuse the LS request buffer passed in the call.
2011 *
2012 * If this routine returns error, the LLDD should abort the exchange.
2013 *
2014 * @target_port: pointer to the (registered) target port the LS was
2015 * received on.
2016 * @hosthandle: pointer to the host specific data, gets stored in iod.
2017 * @lsrsp: pointer to a lsrsp structure to be used to reference
2018 * the exchange corresponding to the LS.
2019 * @lsreqbuf: pointer to the buffer containing the LS Request
2020 * @lsreqbuf_len: length, in bytes, of the received LS request
2021 */
2022 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,void * hosthandle,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)2023 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2024 void *hosthandle,
2025 struct nvmefc_ls_rsp *lsrsp,
2026 void *lsreqbuf, u32 lsreqbuf_len)
2027 {
2028 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2029 struct nvmet_fc_ls_iod *iod;
2030 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2031
2032 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2033 dev_info(tgtport->dev,
2034 "RCV %s LS failed: payload too large (%d)\n",
2035 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2036 nvmefc_ls_names[w0->ls_cmd] : "",
2037 lsreqbuf_len);
2038 return -E2BIG;
2039 }
2040
2041 if (!nvmet_fc_tgtport_get(tgtport)) {
2042 dev_info(tgtport->dev,
2043 "RCV %s LS failed: target deleting\n",
2044 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2045 nvmefc_ls_names[w0->ls_cmd] : "");
2046 return -ESHUTDOWN;
2047 }
2048
2049 iod = nvmet_fc_alloc_ls_iod(tgtport);
2050 if (!iod) {
2051 dev_info(tgtport->dev,
2052 "RCV %s LS failed: context allocation failed\n",
2053 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2054 nvmefc_ls_names[w0->ls_cmd] : "");
2055 nvmet_fc_tgtport_put(tgtport);
2056 return -ENOENT;
2057 }
2058
2059 iod->lsrsp = lsrsp;
2060 iod->fcpreq = NULL;
2061 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2062 iod->rqstdatalen = lsreqbuf_len;
2063 iod->hosthandle = hosthandle;
2064
2065 queue_work(nvmet_wq, &iod->work);
2066
2067 return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2070
2071
2072 /*
2073 * **********************
2074 * Start of FCP handling
2075 * **********************
2076 */
2077
2078 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2079 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2080 {
2081 struct scatterlist *sg;
2082 unsigned int nent;
2083
2084 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2085 if (!sg)
2086 goto out;
2087
2088 fod->data_sg = sg;
2089 fod->data_sg_cnt = nent;
2090 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2091 ((fod->io_dir == NVMET_FCP_WRITE) ?
2092 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2093 /* note: write from initiator perspective */
2094 fod->next_sg = fod->data_sg;
2095
2096 return 0;
2097
2098 out:
2099 return NVME_SC_INTERNAL;
2100 }
2101
2102 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)2103 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2104 {
2105 if (!fod->data_sg || !fod->data_sg_cnt)
2106 return;
2107
2108 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2109 ((fod->io_dir == NVMET_FCP_WRITE) ?
2110 DMA_FROM_DEVICE : DMA_TO_DEVICE));
2111 sgl_free(fod->data_sg);
2112 fod->data_sg = NULL;
2113 fod->data_sg_cnt = 0;
2114 }
2115
2116
2117 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)2118 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2119 {
2120 u32 sqtail, used;
2121
2122 /* egad, this is ugly. And sqtail is just a best guess */
2123 sqtail = atomic_read(&q->sqtail) % q->sqsize;
2124
2125 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2126 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2127 }
2128
2129 /*
2130 * Prep RSP payload.
2131 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2132 */
2133 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2134 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2135 struct nvmet_fc_fcp_iod *fod)
2136 {
2137 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2138 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2139 struct nvme_completion *cqe = &ersp->cqe;
2140 u32 *cqewd = (u32 *)cqe;
2141 bool send_ersp = false;
2142 u32 rsn, rspcnt, xfr_length;
2143
2144 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2145 xfr_length = fod->req.transfer_len;
2146 else
2147 xfr_length = fod->offset;
2148
2149 /*
2150 * check to see if we can send a 0's rsp.
2151 * Note: to send a 0's response, the NVME-FC host transport will
2152 * recreate the CQE. The host transport knows: sq id, SQHD (last
2153 * seen in an ersp), and command_id. Thus it will create a
2154 * zero-filled CQE with those known fields filled in. Transport
2155 * must send an ersp for any condition where the cqe won't match
2156 * this.
2157 *
2158 * Here are the FC-NVME mandated cases where we must send an ersp:
2159 * every N responses, where N=ersp_ratio
2160 * force fabric commands to send ersp's (not in FC-NVME but good
2161 * practice)
2162 * normal cmds: any time status is non-zero, or status is zero
2163 * but words 0 or 1 are non-zero.
2164 * the SQ is 90% or more full
2165 * the cmd is a fused command
2166 * transferred data length not equal to cmd iu length
2167 */
2168 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2169 if (!(rspcnt % fod->queue->ersp_ratio) ||
2170 nvme_is_fabrics((struct nvme_command *) sqe) ||
2171 xfr_length != fod->req.transfer_len ||
2172 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2173 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2174 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2175 send_ersp = true;
2176
2177 /* re-set the fields */
2178 fod->fcpreq->rspaddr = ersp;
2179 fod->fcpreq->rspdma = fod->rspdma;
2180
2181 if (!send_ersp) {
2182 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2183 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2184 } else {
2185 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2186 rsn = atomic_inc_return(&fod->queue->rsn);
2187 ersp->rsn = cpu_to_be32(rsn);
2188 ersp->xfrd_len = cpu_to_be32(xfr_length);
2189 fod->fcpreq->rsplen = sizeof(*ersp);
2190 }
2191
2192 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2193 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2194 }
2195
2196 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2197
2198 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2199 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2200 struct nvmet_fc_fcp_iod *fod)
2201 {
2202 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2203
2204 /* data no longer needed */
2205 nvmet_fc_free_tgt_pgs(fod);
2206
2207 /*
2208 * if an ABTS was received or we issued the fcp_abort early
2209 * don't call abort routine again.
2210 */
2211 /* no need to take lock - lock was taken earlier to get here */
2212 if (!fod->aborted)
2213 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2214
2215 nvmet_fc_free_fcp_iod(fod->queue, fod);
2216 }
2217
2218 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2219 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2220 struct nvmet_fc_fcp_iod *fod)
2221 {
2222 int ret;
2223
2224 fod->fcpreq->op = NVMET_FCOP_RSP;
2225 fod->fcpreq->timeout = 0;
2226
2227 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2228
2229 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2230 if (ret)
2231 nvmet_fc_abort_op(tgtport, fod);
2232 }
2233
2234 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)2235 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2236 struct nvmet_fc_fcp_iod *fod, u8 op)
2237 {
2238 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2239 struct scatterlist *sg = fod->next_sg;
2240 unsigned long flags;
2241 u32 remaininglen = fod->req.transfer_len - fod->offset;
2242 u32 tlen = 0;
2243 int ret;
2244
2245 fcpreq->op = op;
2246 fcpreq->offset = fod->offset;
2247 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2248
2249 /*
2250 * for next sequence:
2251 * break at a sg element boundary
2252 * attempt to keep sequence length capped at
2253 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2254 * be longer if a single sg element is larger
2255 * than that amount. This is done to avoid creating
2256 * a new sg list to use for the tgtport api.
2257 */
2258 fcpreq->sg = sg;
2259 fcpreq->sg_cnt = 0;
2260 while (tlen < remaininglen &&
2261 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2262 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2263 fcpreq->sg_cnt++;
2264 tlen += sg_dma_len(sg);
2265 sg = sg_next(sg);
2266 }
2267 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2268 fcpreq->sg_cnt++;
2269 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2270 sg = sg_next(sg);
2271 }
2272 if (tlen < remaininglen)
2273 fod->next_sg = sg;
2274 else
2275 fod->next_sg = NULL;
2276
2277 fcpreq->transfer_length = tlen;
2278 fcpreq->transferred_length = 0;
2279 fcpreq->fcp_error = 0;
2280 fcpreq->rsplen = 0;
2281
2282 /*
2283 * If the last READDATA request: check if LLDD supports
2284 * combined xfr with response.
2285 */
2286 if ((op == NVMET_FCOP_READDATA) &&
2287 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2288 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2289 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2290 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2291 }
2292
2293 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2294 if (ret) {
2295 /*
2296 * should be ok to set w/o lock as its in the thread of
2297 * execution (not an async timer routine) and doesn't
2298 * contend with any clearing action
2299 */
2300 fod->abort = true;
2301
2302 if (op == NVMET_FCOP_WRITEDATA) {
2303 spin_lock_irqsave(&fod->flock, flags);
2304 fod->writedataactive = false;
2305 spin_unlock_irqrestore(&fod->flock, flags);
2306 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2307 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2308 fcpreq->fcp_error = ret;
2309 fcpreq->transferred_length = 0;
2310 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2311 }
2312 }
2313 }
2314
2315 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)2316 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2317 {
2318 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2319 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2320
2321 /* if in the middle of an io and we need to tear down */
2322 if (abort) {
2323 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2324 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2325 return true;
2326 }
2327
2328 nvmet_fc_abort_op(tgtport, fod);
2329 return true;
2330 }
2331
2332 return false;
2333 }
2334
2335 /*
2336 * actual done handler for FCP operations when completed by the lldd
2337 */
2338 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)2339 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2340 {
2341 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2342 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2343 unsigned long flags;
2344 bool abort;
2345
2346 spin_lock_irqsave(&fod->flock, flags);
2347 abort = fod->abort;
2348 fod->writedataactive = false;
2349 spin_unlock_irqrestore(&fod->flock, flags);
2350
2351 switch (fcpreq->op) {
2352
2353 case NVMET_FCOP_WRITEDATA:
2354 if (__nvmet_fc_fod_op_abort(fod, abort))
2355 return;
2356 if (fcpreq->fcp_error ||
2357 fcpreq->transferred_length != fcpreq->transfer_length) {
2358 spin_lock_irqsave(&fod->flock, flags);
2359 fod->abort = true;
2360 spin_unlock_irqrestore(&fod->flock, flags);
2361
2362 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2363 return;
2364 }
2365
2366 fod->offset += fcpreq->transferred_length;
2367 if (fod->offset != fod->req.transfer_len) {
2368 spin_lock_irqsave(&fod->flock, flags);
2369 fod->writedataactive = true;
2370 spin_unlock_irqrestore(&fod->flock, flags);
2371
2372 /* transfer the next chunk */
2373 nvmet_fc_transfer_fcp_data(tgtport, fod,
2374 NVMET_FCOP_WRITEDATA);
2375 return;
2376 }
2377
2378 /* data transfer complete, resume with nvmet layer */
2379 fod->req.execute(&fod->req);
2380 break;
2381
2382 case NVMET_FCOP_READDATA:
2383 case NVMET_FCOP_READDATA_RSP:
2384 if (__nvmet_fc_fod_op_abort(fod, abort))
2385 return;
2386 if (fcpreq->fcp_error ||
2387 fcpreq->transferred_length != fcpreq->transfer_length) {
2388 nvmet_fc_abort_op(tgtport, fod);
2389 return;
2390 }
2391
2392 /* success */
2393
2394 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2395 /* data no longer needed */
2396 nvmet_fc_free_tgt_pgs(fod);
2397 nvmet_fc_free_fcp_iod(fod->queue, fod);
2398 return;
2399 }
2400
2401 fod->offset += fcpreq->transferred_length;
2402 if (fod->offset != fod->req.transfer_len) {
2403 /* transfer the next chunk */
2404 nvmet_fc_transfer_fcp_data(tgtport, fod,
2405 NVMET_FCOP_READDATA);
2406 return;
2407 }
2408
2409 /* data transfer complete, send response */
2410
2411 /* data no longer needed */
2412 nvmet_fc_free_tgt_pgs(fod);
2413
2414 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2415
2416 break;
2417
2418 case NVMET_FCOP_RSP:
2419 if (__nvmet_fc_fod_op_abort(fod, abort))
2420 return;
2421 nvmet_fc_free_fcp_iod(fod->queue, fod);
2422 break;
2423
2424 default:
2425 break;
2426 }
2427 }
2428
2429 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2430 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2431 {
2432 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2433
2434 nvmet_fc_fod_op_done(fod);
2435 }
2436
2437 /*
2438 * actual completion handler after execution by the nvmet layer
2439 */
2440 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2441 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2442 struct nvmet_fc_fcp_iod *fod, int status)
2443 {
2444 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2445 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2446 unsigned long flags;
2447 bool abort;
2448
2449 spin_lock_irqsave(&fod->flock, flags);
2450 abort = fod->abort;
2451 spin_unlock_irqrestore(&fod->flock, flags);
2452
2453 /* if we have a CQE, snoop the last sq_head value */
2454 if (!status)
2455 fod->queue->sqhd = cqe->sq_head;
2456
2457 if (abort) {
2458 nvmet_fc_abort_op(tgtport, fod);
2459 return;
2460 }
2461
2462 /* if an error handling the cmd post initial parsing */
2463 if (status) {
2464 /* fudge up a failed CQE status for our transport error */
2465 memset(cqe, 0, sizeof(*cqe));
2466 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2467 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2468 cqe->command_id = sqe->command_id;
2469 cqe->status = cpu_to_le16(status);
2470 } else {
2471
2472 /*
2473 * try to push the data even if the SQE status is non-zero.
2474 * There may be a status where data still was intended to
2475 * be moved
2476 */
2477 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2478 /* push the data over before sending rsp */
2479 nvmet_fc_transfer_fcp_data(tgtport, fod,
2480 NVMET_FCOP_READDATA);
2481 return;
2482 }
2483
2484 /* writes & no data - fall thru */
2485 }
2486
2487 /* data no longer needed */
2488 nvmet_fc_free_tgt_pgs(fod);
2489
2490 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2491 }
2492
2493
2494 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2495 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2496 {
2497 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2498 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2499
2500 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2501 }
2502
2503
2504 /*
2505 * Actual processing routine for received FC-NVME I/O Requests from the LLD
2506 */
2507 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2508 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2509 struct nvmet_fc_fcp_iod *fod)
2510 {
2511 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2512 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2513 int ret;
2514
2515 /*
2516 * Fused commands are currently not supported in the linux
2517 * implementation.
2518 *
2519 * As such, the implementation of the FC transport does not
2520 * look at the fused commands and order delivery to the upper
2521 * layer until we have both based on csn.
2522 */
2523
2524 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2525
2526 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2527 fod->io_dir = NVMET_FCP_WRITE;
2528 if (!nvme_is_write(&cmdiu->sqe))
2529 goto transport_error;
2530 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2531 fod->io_dir = NVMET_FCP_READ;
2532 if (nvme_is_write(&cmdiu->sqe))
2533 goto transport_error;
2534 } else {
2535 fod->io_dir = NVMET_FCP_NODATA;
2536 if (xfrlen)
2537 goto transport_error;
2538 }
2539
2540 fod->req.cmd = &fod->cmdiubuf.sqe;
2541 fod->req.cqe = &fod->rspiubuf.cqe;
2542 if (tgtport->pe)
2543 fod->req.port = tgtport->pe->port;
2544
2545 /* clear any response payload */
2546 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2547
2548 fod->data_sg = NULL;
2549 fod->data_sg_cnt = 0;
2550
2551 ret = nvmet_req_init(&fod->req,
2552 &fod->queue->nvme_cq,
2553 &fod->queue->nvme_sq,
2554 &nvmet_fc_tgt_fcp_ops);
2555 if (!ret) {
2556 /* bad SQE content or invalid ctrl state */
2557 /* nvmet layer has already called op done to send rsp. */
2558 return;
2559 }
2560
2561 fod->req.transfer_len = xfrlen;
2562
2563 /* keep a running counter of tail position */
2564 atomic_inc(&fod->queue->sqtail);
2565
2566 if (fod->req.transfer_len) {
2567 ret = nvmet_fc_alloc_tgt_pgs(fod);
2568 if (ret) {
2569 nvmet_req_complete(&fod->req, ret);
2570 return;
2571 }
2572 }
2573 fod->req.sg = fod->data_sg;
2574 fod->req.sg_cnt = fod->data_sg_cnt;
2575 fod->offset = 0;
2576
2577 if (fod->io_dir == NVMET_FCP_WRITE) {
2578 /* pull the data over before invoking nvmet layer */
2579 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2580 return;
2581 }
2582
2583 /*
2584 * Reads or no data:
2585 *
2586 * can invoke the nvmet_layer now. If read data, cmd completion will
2587 * push the data
2588 */
2589 fod->req.execute(&fod->req);
2590 return;
2591
2592 transport_error:
2593 nvmet_fc_abort_op(tgtport, fod);
2594 }
2595
2596 /**
2597 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2598 * upon the reception of a NVME FCP CMD IU.
2599 *
2600 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2601 * layer for processing.
2602 *
2603 * The nvmet_fc layer allocates a local job structure (struct
2604 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2605 * CMD IU buffer to the job structure. As such, on a successful
2606 * completion (returns 0), the LLDD may immediately free/reuse
2607 * the CMD IU buffer passed in the call.
2608 *
2609 * However, in some circumstances, due to the packetized nature of FC
2610 * and the api of the FC LLDD which may issue a hw command to send the
2611 * response, but the LLDD may not get the hw completion for that command
2612 * and upcall the nvmet_fc layer before a new command may be
2613 * asynchronously received - its possible for a command to be received
2614 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2615 * the appearance of more commands received than fits in the sq.
2616 * To alleviate this scenario, a temporary queue is maintained in the
2617 * transport for pending LLDD requests waiting for a queue job structure.
2618 * In these "overrun" cases, a temporary queue element is allocated
2619 * the LLDD request and CMD iu buffer information remembered, and the
2620 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2621 * structure is freed, it is immediately reallocated for anything on the
2622 * pending request list. The LLDDs defer_rcv() callback is called,
2623 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2624 * is then started normally with the transport.
2625 *
2626 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2627 * the completion as successful but must not reuse the CMD IU buffer
2628 * until the LLDD's defer_rcv() callback has been called for the
2629 * corresponding struct nvmefc_tgt_fcp_req pointer.
2630 *
2631 * If there is any other condition in which an error occurs, the
2632 * transport will return a non-zero status indicating the error.
2633 * In all cases other than -EOVERFLOW, the transport has not accepted the
2634 * request and the LLDD should abort the exchange.
2635 *
2636 * @target_port: pointer to the (registered) target port the FCP CMD IU
2637 * was received on.
2638 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2639 * the exchange corresponding to the FCP Exchange.
2640 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2641 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2642 */
2643 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2644 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2645 struct nvmefc_tgt_fcp_req *fcpreq,
2646 void *cmdiubuf, u32 cmdiubuf_len)
2647 {
2648 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2649 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2650 struct nvmet_fc_tgt_queue *queue;
2651 struct nvmet_fc_fcp_iod *fod;
2652 struct nvmet_fc_defer_fcp_req *deferfcp;
2653 unsigned long flags;
2654
2655 /* validate iu, so the connection id can be used to find the queue */
2656 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2657 (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2658 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2659 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2660 return -EIO;
2661
2662 queue = nvmet_fc_find_target_queue(tgtport,
2663 be64_to_cpu(cmdiu->connection_id));
2664 if (!queue)
2665 return -ENOTCONN;
2666
2667 /*
2668 * note: reference taken by find_target_queue
2669 * After successful fod allocation, the fod will inherit the
2670 * ownership of that reference and will remove the reference
2671 * when the fod is freed.
2672 */
2673
2674 spin_lock_irqsave(&queue->qlock, flags);
2675
2676 fod = nvmet_fc_alloc_fcp_iod(queue);
2677 if (fod) {
2678 spin_unlock_irqrestore(&queue->qlock, flags);
2679
2680 fcpreq->nvmet_fc_private = fod;
2681 fod->fcpreq = fcpreq;
2682
2683 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2684
2685 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2686
2687 return 0;
2688 }
2689
2690 if (!tgtport->ops->defer_rcv) {
2691 spin_unlock_irqrestore(&queue->qlock, flags);
2692 /* release the queue lookup reference */
2693 nvmet_fc_tgt_q_put(queue);
2694 return -ENOENT;
2695 }
2696
2697 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2698 struct nvmet_fc_defer_fcp_req, req_list);
2699 if (deferfcp) {
2700 /* Just re-use one that was previously allocated */
2701 list_del(&deferfcp->req_list);
2702 } else {
2703 spin_unlock_irqrestore(&queue->qlock, flags);
2704
2705 /* Now we need to dynamically allocate one */
2706 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2707 if (!deferfcp) {
2708 /* release the queue lookup reference */
2709 nvmet_fc_tgt_q_put(queue);
2710 return -ENOMEM;
2711 }
2712 spin_lock_irqsave(&queue->qlock, flags);
2713 }
2714
2715 /* For now, use rspaddr / rsplen to save payload information */
2716 fcpreq->rspaddr = cmdiubuf;
2717 fcpreq->rsplen = cmdiubuf_len;
2718 deferfcp->fcp_req = fcpreq;
2719
2720 /* defer processing till a fod becomes available */
2721 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2722
2723 /* NOTE: the queue lookup reference is still valid */
2724
2725 spin_unlock_irqrestore(&queue->qlock, flags);
2726
2727 return -EOVERFLOW;
2728 }
2729 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2730
2731 /**
2732 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2733 * upon the reception of an ABTS for a FCP command
2734 *
2735 * Notify the transport that an ABTS has been received for a FCP command
2736 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2737 * LLDD believes the command is still being worked on
2738 * (template_ops->fcp_req_release() has not been called).
2739 *
2740 * The transport will wait for any outstanding work (an op to the LLDD,
2741 * which the lldd should complete with error due to the ABTS; or the
2742 * completion from the nvmet layer of the nvme command), then will
2743 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2744 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2745 * to the ABTS either after return from this function (assuming any
2746 * outstanding op work has been terminated) or upon the callback being
2747 * called.
2748 *
2749 * @target_port: pointer to the (registered) target port the FCP CMD IU
2750 * was received on.
2751 * @fcpreq: pointer to the fcpreq request structure that corresponds
2752 * to the exchange that received the ABTS.
2753 */
2754 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2755 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2756 struct nvmefc_tgt_fcp_req *fcpreq)
2757 {
2758 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2759 struct nvmet_fc_tgt_queue *queue;
2760 unsigned long flags;
2761
2762 if (!fod || fod->fcpreq != fcpreq)
2763 /* job appears to have already completed, ignore abort */
2764 return;
2765
2766 queue = fod->queue;
2767
2768 spin_lock_irqsave(&queue->qlock, flags);
2769 if (fod->active) {
2770 /*
2771 * mark as abort. The abort handler, invoked upon completion
2772 * of any work, will detect the aborted status and do the
2773 * callback.
2774 */
2775 spin_lock(&fod->flock);
2776 fod->abort = true;
2777 fod->aborted = true;
2778 spin_unlock(&fod->flock);
2779 }
2780 spin_unlock_irqrestore(&queue->qlock, flags);
2781 }
2782 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2783
2784
2785 struct nvmet_fc_traddr {
2786 u64 nn;
2787 u64 pn;
2788 };
2789
2790 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2791 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2792 {
2793 u64 token64;
2794
2795 if (match_u64(sstr, &token64))
2796 return -EINVAL;
2797 *val = token64;
2798
2799 return 0;
2800 }
2801
2802 /*
2803 * This routine validates and extracts the WWN's from the TRADDR string.
2804 * As kernel parsers need the 0x to determine number base, universally
2805 * build string to parse with 0x prefix before parsing name strings.
2806 */
2807 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2808 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2809 {
2810 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2811 substring_t wwn = { name, &name[sizeof(name)-1] };
2812 int nnoffset, pnoffset;
2813
2814 /* validate if string is one of the 2 allowed formats */
2815 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2816 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2817 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2818 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2819 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2820 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2821 NVME_FC_TRADDR_OXNNLEN;
2822 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2823 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2824 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2825 "pn-", NVME_FC_TRADDR_NNLEN))) {
2826 nnoffset = NVME_FC_TRADDR_NNLEN;
2827 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2828 } else
2829 goto out_einval;
2830
2831 name[0] = '0';
2832 name[1] = 'x';
2833 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2834
2835 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2836 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2837 goto out_einval;
2838
2839 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2840 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2841 goto out_einval;
2842
2843 return 0;
2844
2845 out_einval:
2846 pr_warn("%s: bad traddr string\n", __func__);
2847 return -EINVAL;
2848 }
2849
2850 static int
nvmet_fc_add_port(struct nvmet_port * port)2851 nvmet_fc_add_port(struct nvmet_port *port)
2852 {
2853 struct nvmet_fc_tgtport *tgtport;
2854 struct nvmet_fc_port_entry *pe;
2855 struct nvmet_fc_traddr traddr = { 0L, 0L };
2856 unsigned long flags;
2857 int ret;
2858
2859 /* validate the address info */
2860 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2861 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2862 return -EINVAL;
2863
2864 /* map the traddr address info to a target port */
2865
2866 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2867 sizeof(port->disc_addr.traddr));
2868 if (ret)
2869 return ret;
2870
2871 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2872 if (!pe)
2873 return -ENOMEM;
2874
2875 ret = -ENXIO;
2876 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2877 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2878 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2879 (tgtport->fc_target_port.port_name == traddr.pn)) {
2880 /* a FC port can only be 1 nvmet port id */
2881 if (!tgtport->pe) {
2882 nvmet_fc_portentry_bind(tgtport, pe, port);
2883 ret = 0;
2884 } else
2885 ret = -EALREADY;
2886 break;
2887 }
2888 }
2889 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2890
2891 if (ret)
2892 kfree(pe);
2893
2894 return ret;
2895 }
2896
2897 static void
nvmet_fc_remove_port(struct nvmet_port * port)2898 nvmet_fc_remove_port(struct nvmet_port *port)
2899 {
2900 struct nvmet_fc_port_entry *pe = port->priv;
2901
2902 nvmet_fc_portentry_unbind(pe);
2903
2904 kfree(pe);
2905 }
2906
2907 static void
nvmet_fc_discovery_chg(struct nvmet_port * port)2908 nvmet_fc_discovery_chg(struct nvmet_port *port)
2909 {
2910 struct nvmet_fc_port_entry *pe = port->priv;
2911 struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2912
2913 if (tgtport && tgtport->ops->discovery_event)
2914 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2915 }
2916
2917 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2918 .owner = THIS_MODULE,
2919 .type = NVMF_TRTYPE_FC,
2920 .msdbd = 1,
2921 .add_port = nvmet_fc_add_port,
2922 .remove_port = nvmet_fc_remove_port,
2923 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2924 .delete_ctrl = nvmet_fc_delete_ctrl,
2925 .discovery_chg = nvmet_fc_discovery_chg,
2926 };
2927
nvmet_fc_init_module(void)2928 static int __init nvmet_fc_init_module(void)
2929 {
2930 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2931 }
2932
nvmet_fc_exit_module(void)2933 static void __exit nvmet_fc_exit_module(void)
2934 {
2935 /* sanity check - all lports should be removed */
2936 if (!list_empty(&nvmet_fc_target_list))
2937 pr_warn("%s: targetport list not empty\n", __func__);
2938
2939 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2940
2941 ida_destroy(&nvmet_fc_tgtport_cnt);
2942 }
2943
2944 module_init(nvmet_fc_init_module);
2945 module_exit(nvmet_fc_exit_module);
2946
2947 MODULE_LICENSE("GPL v2");
2948