1 /*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT 256
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43 struct nvmefc_tgt_ls_req *lsreq;
44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
45
46 struct list_head ls_list; /* tgtport->ls_list */
47
48 struct nvmet_fc_tgtport *tgtport;
49 struct nvmet_fc_tgt_assoc *assoc;
50
51 u8 *rqstbuf;
52 u8 *rspbuf;
53 u16 rqstdatalen;
54 dma_addr_t rspdma;
55
56 struct scatterlist sg[2];
57
58 struct work_struct work;
59 } __aligned(sizeof(unsigned long long));
60
61 /* desired maximum for a single sequence - if sg list allows it */
62 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
63
64 enum nvmet_fcp_datadir {
65 NVMET_FCP_NODATA,
66 NVMET_FCP_WRITE,
67 NVMET_FCP_READ,
68 NVMET_FCP_ABORTED,
69 };
70
71 struct nvmet_fc_fcp_iod {
72 struct nvmefc_tgt_fcp_req *fcpreq;
73
74 struct nvme_fc_cmd_iu cmdiubuf;
75 struct nvme_fc_ersp_iu rspiubuf;
76 dma_addr_t rspdma;
77 struct scatterlist *next_sg;
78 struct scatterlist *data_sg;
79 int data_sg_cnt;
80 u32 offset;
81 enum nvmet_fcp_datadir io_dir;
82 bool active;
83 bool abort;
84 bool aborted;
85 bool writedataactive;
86 spinlock_t flock;
87
88 struct nvmet_req req;
89 struct work_struct work;
90 struct work_struct done_work;
91 struct work_struct defer_work;
92
93 struct nvmet_fc_tgtport *tgtport;
94 struct nvmet_fc_tgt_queue *queue;
95
96 struct list_head fcp_list; /* tgtport->fcp_list */
97 };
98
99 struct nvmet_fc_tgtport {
100
101 struct nvmet_fc_target_port fc_target_port;
102
103 struct list_head tgt_list; /* nvmet_fc_target_list */
104 struct device *dev; /* dev for dma mapping */
105 struct nvmet_fc_target_template *ops;
106
107 struct nvmet_fc_ls_iod *iod;
108 spinlock_t lock;
109 struct list_head ls_list;
110 struct list_head ls_busylist;
111 struct list_head assoc_list;
112 struct ida assoc_cnt;
113 struct nvmet_port *port;
114 struct kref ref;
115 u32 max_sg_cnt;
116 };
117
118 struct nvmet_fc_defer_fcp_req {
119 struct list_head req_list;
120 struct nvmefc_tgt_fcp_req *fcp_req;
121 };
122
123 struct nvmet_fc_tgt_queue {
124 bool ninetypercent;
125 u16 qid;
126 u16 sqsize;
127 u16 ersp_ratio;
128 __le16 sqhd;
129 int cpu;
130 atomic_t connected;
131 atomic_t sqtail;
132 atomic_t zrspcnt;
133 atomic_t rsn;
134 spinlock_t qlock;
135 struct nvmet_port *port;
136 struct nvmet_cq nvme_cq;
137 struct nvmet_sq nvme_sq;
138 struct nvmet_fc_tgt_assoc *assoc;
139 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */
140 struct list_head fod_list;
141 struct list_head pending_cmd_list;
142 struct list_head avail_defer_list;
143 struct workqueue_struct *work_q;
144 struct kref ref;
145 } __aligned(sizeof(unsigned long long));
146
147 struct nvmet_fc_tgt_assoc {
148 u64 association_id;
149 u32 a_id;
150 struct nvmet_fc_tgtport *tgtport;
151 struct list_head a_list;
152 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1];
153 struct kref ref;
154 struct work_struct del_work;
155 };
156
157
158 static inline int
nvmet_fc_iodnum(struct nvmet_fc_ls_iod * iodptr)159 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
160 {
161 return (iodptr - iodptr->tgtport->iod);
162 }
163
164 static inline int
nvmet_fc_fodnum(struct nvmet_fc_fcp_iod * fodptr)165 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
166 {
167 return (fodptr - fodptr->queue->fod);
168 }
169
170
171 /*
172 * Association and Connection IDs:
173 *
174 * Association ID will have random number in upper 6 bytes and zero
175 * in lower 2 bytes
176 *
177 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
178 *
179 * note: Association ID = Connection ID for queue 0
180 */
181 #define BYTES_FOR_QID sizeof(u16)
182 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
183 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
184
185 static inline u64
nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc * assoc,u16 qid)186 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
187 {
188 return (assoc->association_id | qid);
189 }
190
191 static inline u64
nvmet_fc_getassociationid(u64 connectionid)192 nvmet_fc_getassociationid(u64 connectionid)
193 {
194 return connectionid & ~NVMET_FC_QUEUEID_MASK;
195 }
196
197 static inline u16
nvmet_fc_getqueueid(u64 connectionid)198 nvmet_fc_getqueueid(u64 connectionid)
199 {
200 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
201 }
202
203 static inline struct nvmet_fc_tgtport *
targetport_to_tgtport(struct nvmet_fc_target_port * targetport)204 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
205 {
206 return container_of(targetport, struct nvmet_fc_tgtport,
207 fc_target_port);
208 }
209
210 static inline struct nvmet_fc_fcp_iod *
nvmet_req_to_fod(struct nvmet_req * nvme_req)211 nvmet_req_to_fod(struct nvmet_req *nvme_req)
212 {
213 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
214 }
215
216
217 /* *************************** Globals **************************** */
218
219
220 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
221
222 static LIST_HEAD(nvmet_fc_target_list);
223 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
224
225
226 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
227 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
228 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
229 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
230 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
231 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
232 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
233 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
234 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
235 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
236 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
237 struct nvmet_fc_fcp_iod *fod);
238 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
239
240
241 /* *********************** FC-NVME DMA Handling **************************** */
242
243 /*
244 * The fcloop device passes in a NULL device pointer. Real LLD's will
245 * pass in a valid device pointer. If NULL is passed to the dma mapping
246 * routines, depending on the platform, it may or may not succeed, and
247 * may crash.
248 *
249 * As such:
250 * Wrapper all the dma routines and check the dev pointer.
251 *
252 * If simple mappings (return just a dma address, we'll noop them,
253 * returning a dma address of 0.
254 *
255 * On more complex mappings (dma_map_sg), a pseudo routine fills
256 * in the scatter list, setting all dma addresses to 0.
257 */
258
259 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)260 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
261 enum dma_data_direction dir)
262 {
263 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
264 }
265
266 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)267 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
268 {
269 return dev ? dma_mapping_error(dev, dma_addr) : 0;
270 }
271
272 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)273 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
274 enum dma_data_direction dir)
275 {
276 if (dev)
277 dma_unmap_single(dev, addr, size, dir);
278 }
279
280 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)281 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
282 enum dma_data_direction dir)
283 {
284 if (dev)
285 dma_sync_single_for_cpu(dev, addr, size, dir);
286 }
287
288 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)289 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
290 enum dma_data_direction dir)
291 {
292 if (dev)
293 dma_sync_single_for_device(dev, addr, size, dir);
294 }
295
296 /* pseudo dma_map_sg call */
297 static int
fc_map_sg(struct scatterlist * sg,int nents)298 fc_map_sg(struct scatterlist *sg, int nents)
299 {
300 struct scatterlist *s;
301 int i;
302
303 WARN_ON(nents == 0 || sg[0].length == 0);
304
305 for_each_sg(sg, s, nents, i) {
306 s->dma_address = 0L;
307 #ifdef CONFIG_NEED_SG_DMA_LENGTH
308 s->dma_length = s->length;
309 #endif
310 }
311 return nents;
312 }
313
314 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)315 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
316 enum dma_data_direction dir)
317 {
318 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
319 }
320
321 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)322 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
323 enum dma_data_direction dir)
324 {
325 if (dev)
326 dma_unmap_sg(dev, sg, nents, dir);
327 }
328
329
330 /* *********************** FC-NVME Port Management ************************ */
331
332
333 static int
nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport * tgtport)334 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
335 {
336 struct nvmet_fc_ls_iod *iod;
337 int i;
338
339 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
340 GFP_KERNEL);
341 if (!iod)
342 return -ENOMEM;
343
344 tgtport->iod = iod;
345
346 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
347 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
348 iod->tgtport = tgtport;
349 list_add_tail(&iod->ls_list, &tgtport->ls_list);
350
351 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
352 GFP_KERNEL);
353 if (!iod->rqstbuf)
354 goto out_fail;
355
356 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
357
358 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
359 NVME_FC_MAX_LS_BUFFER_SIZE,
360 DMA_TO_DEVICE);
361 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
362 goto out_fail;
363 }
364
365 return 0;
366
367 out_fail:
368 kfree(iod->rqstbuf);
369 list_del(&iod->ls_list);
370 for (iod--, i--; i >= 0; iod--, i--) {
371 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
372 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
373 kfree(iod->rqstbuf);
374 list_del(&iod->ls_list);
375 }
376
377 kfree(iod);
378
379 return -EFAULT;
380 }
381
382 static void
nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport * tgtport)383 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
384 {
385 struct nvmet_fc_ls_iod *iod = tgtport->iod;
386 int i;
387
388 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
389 fc_dma_unmap_single(tgtport->dev,
390 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
391 DMA_TO_DEVICE);
392 kfree(iod->rqstbuf);
393 list_del(&iod->ls_list);
394 }
395 kfree(tgtport->iod);
396 }
397
398 static struct nvmet_fc_ls_iod *
nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport * tgtport)399 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
400 {
401 struct nvmet_fc_ls_iod *iod;
402 unsigned long flags;
403
404 spin_lock_irqsave(&tgtport->lock, flags);
405 iod = list_first_entry_or_null(&tgtport->ls_list,
406 struct nvmet_fc_ls_iod, ls_list);
407 if (iod)
408 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
409 spin_unlock_irqrestore(&tgtport->lock, flags);
410 return iod;
411 }
412
413
414 static void
nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)415 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
416 struct nvmet_fc_ls_iod *iod)
417 {
418 unsigned long flags;
419
420 spin_lock_irqsave(&tgtport->lock, flags);
421 list_move(&iod->ls_list, &tgtport->ls_list);
422 spin_unlock_irqrestore(&tgtport->lock, flags);
423 }
424
425 static void
nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)426 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
427 struct nvmet_fc_tgt_queue *queue)
428 {
429 struct nvmet_fc_fcp_iod *fod = queue->fod;
430 int i;
431
432 for (i = 0; i < queue->sqsize; fod++, i++) {
433 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
434 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
435 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
436 fod->tgtport = tgtport;
437 fod->queue = queue;
438 fod->active = false;
439 fod->abort = false;
440 fod->aborted = false;
441 fod->fcpreq = NULL;
442 list_add_tail(&fod->fcp_list, &queue->fod_list);
443 spin_lock_init(&fod->flock);
444
445 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
446 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
447 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
448 list_del(&fod->fcp_list);
449 for (fod--, i--; i >= 0; fod--, i--) {
450 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
451 sizeof(fod->rspiubuf),
452 DMA_TO_DEVICE);
453 fod->rspdma = 0L;
454 list_del(&fod->fcp_list);
455 }
456
457 return;
458 }
459 }
460 }
461
462 static void
nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue)463 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
464 struct nvmet_fc_tgt_queue *queue)
465 {
466 struct nvmet_fc_fcp_iod *fod = queue->fod;
467 int i;
468
469 for (i = 0; i < queue->sqsize; fod++, i++) {
470 if (fod->rspdma)
471 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
472 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
473 }
474 }
475
476 static struct nvmet_fc_fcp_iod *
nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue * queue)477 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
478 {
479 struct nvmet_fc_fcp_iod *fod;
480
481 lockdep_assert_held(&queue->qlock);
482
483 fod = list_first_entry_or_null(&queue->fod_list,
484 struct nvmet_fc_fcp_iod, fcp_list);
485 if (fod) {
486 list_del(&fod->fcp_list);
487 fod->active = true;
488 /*
489 * no queue reference is taken, as it was taken by the
490 * queue lookup just prior to the allocation. The iod
491 * will "inherit" that reference.
492 */
493 }
494 return fod;
495 }
496
497
498 static void
nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_tgt_queue * queue,struct nvmefc_tgt_fcp_req * fcpreq)499 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
500 struct nvmet_fc_tgt_queue *queue,
501 struct nvmefc_tgt_fcp_req *fcpreq)
502 {
503 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
504
505 /*
506 * put all admin cmds on hw queue id 0. All io commands go to
507 * the respective hw queue based on a modulo basis
508 */
509 fcpreq->hwqid = queue->qid ?
510 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
511
512 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
513 queue_work_on(queue->cpu, queue->work_q, &fod->work);
514 else
515 nvmet_fc_handle_fcp_rqst(tgtport, fod);
516 }
517
518 static void
nvmet_fc_fcp_rqst_op_defer_work(struct work_struct * work)519 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
520 {
521 struct nvmet_fc_fcp_iod *fod =
522 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
523
524 /* Submit deferred IO for processing */
525 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
526
527 }
528
529 static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue * queue,struct nvmet_fc_fcp_iod * fod)530 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
531 struct nvmet_fc_fcp_iod *fod)
532 {
533 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
534 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
535 struct nvmet_fc_defer_fcp_req *deferfcp;
536 unsigned long flags;
537
538 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
539 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
540
541 fcpreq->nvmet_fc_private = NULL;
542
543 fod->active = false;
544 fod->abort = false;
545 fod->aborted = false;
546 fod->writedataactive = false;
547 fod->fcpreq = NULL;
548
549 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
550
551 /* release the queue lookup reference on the completed IO */
552 nvmet_fc_tgt_q_put(queue);
553
554 spin_lock_irqsave(&queue->qlock, flags);
555 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
556 struct nvmet_fc_defer_fcp_req, req_list);
557 if (!deferfcp) {
558 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
559 spin_unlock_irqrestore(&queue->qlock, flags);
560 return;
561 }
562
563 /* Re-use the fod for the next pending cmd that was deferred */
564 list_del(&deferfcp->req_list);
565
566 fcpreq = deferfcp->fcp_req;
567
568 /* deferfcp can be reused for another IO at a later date */
569 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
570
571 spin_unlock_irqrestore(&queue->qlock, flags);
572
573 /* Save NVME CMD IO in fod */
574 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
575
576 /* Setup new fcpreq to be processed */
577 fcpreq->rspaddr = NULL;
578 fcpreq->rsplen = 0;
579 fcpreq->nvmet_fc_private = fod;
580 fod->fcpreq = fcpreq;
581 fod->active = true;
582
583 /* inform LLDD IO is now being processed */
584 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
585
586 /*
587 * Leave the queue lookup get reference taken when
588 * fod was originally allocated.
589 */
590
591 queue_work(queue->work_q, &fod->defer_work);
592 }
593
594 static int
nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport * tgtport,int qid)595 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
596 {
597 int cpu, idx, cnt;
598
599 if (tgtport->ops->max_hw_queues == 1)
600 return WORK_CPU_UNBOUND;
601
602 /* Simple cpu selection based on qid modulo active cpu count */
603 idx = !qid ? 0 : (qid - 1) % num_active_cpus();
604
605 /* find the n'th active cpu */
606 for (cpu = 0, cnt = 0; ; ) {
607 if (cpu_active(cpu)) {
608 if (cnt == idx)
609 break;
610 cnt++;
611 }
612 cpu = (cpu + 1) % num_possible_cpus();
613 }
614
615 return cpu;
616 }
617
618 static struct nvmet_fc_tgt_queue *
nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc * assoc,u16 qid,u16 sqsize)619 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
620 u16 qid, u16 sqsize)
621 {
622 struct nvmet_fc_tgt_queue *queue;
623 unsigned long flags;
624 int ret;
625
626 if (qid > NVMET_NR_QUEUES)
627 return NULL;
628
629 queue = kzalloc((sizeof(*queue) +
630 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
631 GFP_KERNEL);
632 if (!queue)
633 return NULL;
634
635 if (!nvmet_fc_tgt_a_get(assoc))
636 goto out_free_queue;
637
638 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
639 assoc->tgtport->fc_target_port.port_num,
640 assoc->a_id, qid);
641 if (!queue->work_q)
642 goto out_a_put;
643
644 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
645 queue->qid = qid;
646 queue->sqsize = sqsize;
647 queue->assoc = assoc;
648 queue->port = assoc->tgtport->port;
649 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
650 INIT_LIST_HEAD(&queue->fod_list);
651 INIT_LIST_HEAD(&queue->avail_defer_list);
652 INIT_LIST_HEAD(&queue->pending_cmd_list);
653 atomic_set(&queue->connected, 0);
654 atomic_set(&queue->sqtail, 0);
655 atomic_set(&queue->rsn, 1);
656 atomic_set(&queue->zrspcnt, 0);
657 spin_lock_init(&queue->qlock);
658 kref_init(&queue->ref);
659
660 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
661
662 ret = nvmet_sq_init(&queue->nvme_sq);
663 if (ret)
664 goto out_fail_iodlist;
665
666 WARN_ON(assoc->queues[qid]);
667 spin_lock_irqsave(&assoc->tgtport->lock, flags);
668 assoc->queues[qid] = queue;
669 spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
670
671 return queue;
672
673 out_fail_iodlist:
674 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
675 destroy_workqueue(queue->work_q);
676 out_a_put:
677 nvmet_fc_tgt_a_put(assoc);
678 out_free_queue:
679 kfree(queue);
680 return NULL;
681 }
682
683
684 static void
nvmet_fc_tgt_queue_free(struct kref * ref)685 nvmet_fc_tgt_queue_free(struct kref *ref)
686 {
687 struct nvmet_fc_tgt_queue *queue =
688 container_of(ref, struct nvmet_fc_tgt_queue, ref);
689 unsigned long flags;
690
691 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
692 queue->assoc->queues[queue->qid] = NULL;
693 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
694
695 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
696
697 nvmet_fc_tgt_a_put(queue->assoc);
698
699 destroy_workqueue(queue->work_q);
700
701 kfree(queue);
702 }
703
704 static void
nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue * queue)705 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
706 {
707 kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
708 }
709
710 static int
nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue * queue)711 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
712 {
713 return kref_get_unless_zero(&queue->ref);
714 }
715
716
717 static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue * queue)718 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
719 {
720 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
721 struct nvmet_fc_fcp_iod *fod = queue->fod;
722 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
723 unsigned long flags;
724 int i, writedataactive;
725 bool disconnect;
726
727 disconnect = atomic_xchg(&queue->connected, 0);
728
729 spin_lock_irqsave(&queue->qlock, flags);
730 /* about outstanding io's */
731 for (i = 0; i < queue->sqsize; fod++, i++) {
732 if (fod->active) {
733 spin_lock(&fod->flock);
734 fod->abort = true;
735 writedataactive = fod->writedataactive;
736 spin_unlock(&fod->flock);
737 /*
738 * only call lldd abort routine if waiting for
739 * writedata. other outstanding ops should finish
740 * on their own.
741 */
742 if (writedataactive) {
743 spin_lock(&fod->flock);
744 fod->aborted = true;
745 spin_unlock(&fod->flock);
746 tgtport->ops->fcp_abort(
747 &tgtport->fc_target_port, fod->fcpreq);
748 }
749 }
750 }
751
752 /* Cleanup defer'ed IOs in queue */
753 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
754 req_list) {
755 list_del(&deferfcp->req_list);
756 kfree(deferfcp);
757 }
758
759 for (;;) {
760 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
761 struct nvmet_fc_defer_fcp_req, req_list);
762 if (!deferfcp)
763 break;
764
765 list_del(&deferfcp->req_list);
766 spin_unlock_irqrestore(&queue->qlock, flags);
767
768 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
769 deferfcp->fcp_req);
770
771 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
772 deferfcp->fcp_req);
773
774 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
775 deferfcp->fcp_req);
776
777 /* release the queue lookup reference */
778 nvmet_fc_tgt_q_put(queue);
779
780 kfree(deferfcp);
781
782 spin_lock_irqsave(&queue->qlock, flags);
783 }
784 spin_unlock_irqrestore(&queue->qlock, flags);
785
786 flush_workqueue(queue->work_q);
787
788 if (disconnect)
789 nvmet_sq_destroy(&queue->nvme_sq);
790
791 nvmet_fc_tgt_q_put(queue);
792 }
793
794 static struct nvmet_fc_tgt_queue *
nvmet_fc_find_target_queue(struct nvmet_fc_tgtport * tgtport,u64 connection_id)795 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
796 u64 connection_id)
797 {
798 struct nvmet_fc_tgt_assoc *assoc;
799 struct nvmet_fc_tgt_queue *queue;
800 u64 association_id = nvmet_fc_getassociationid(connection_id);
801 u16 qid = nvmet_fc_getqueueid(connection_id);
802 unsigned long flags;
803
804 if (qid > NVMET_NR_QUEUES)
805 return NULL;
806
807 spin_lock_irqsave(&tgtport->lock, flags);
808 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
809 if (association_id == assoc->association_id) {
810 queue = assoc->queues[qid];
811 if (queue &&
812 (!atomic_read(&queue->connected) ||
813 !nvmet_fc_tgt_q_get(queue)))
814 queue = NULL;
815 spin_unlock_irqrestore(&tgtport->lock, flags);
816 return queue;
817 }
818 }
819 spin_unlock_irqrestore(&tgtport->lock, flags);
820 return NULL;
821 }
822
823 static void
nvmet_fc_delete_assoc(struct work_struct * work)824 nvmet_fc_delete_assoc(struct work_struct *work)
825 {
826 struct nvmet_fc_tgt_assoc *assoc =
827 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
828
829 nvmet_fc_delete_target_assoc(assoc);
830 nvmet_fc_tgt_a_put(assoc);
831 }
832
833 static struct nvmet_fc_tgt_assoc *
nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport * tgtport)834 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
835 {
836 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
837 unsigned long flags;
838 u64 ran;
839 int idx;
840 bool needrandom = true;
841
842 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
843 if (!assoc)
844 return NULL;
845
846 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
847 if (idx < 0)
848 goto out_free_assoc;
849
850 if (!nvmet_fc_tgtport_get(tgtport))
851 goto out_ida_put;
852
853 assoc->tgtport = tgtport;
854 assoc->a_id = idx;
855 INIT_LIST_HEAD(&assoc->a_list);
856 kref_init(&assoc->ref);
857 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
858
859 while (needrandom) {
860 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
861 ran = ran << BYTES_FOR_QID_SHIFT;
862
863 spin_lock_irqsave(&tgtport->lock, flags);
864 needrandom = false;
865 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
866 if (ran == tmpassoc->association_id) {
867 needrandom = true;
868 break;
869 }
870 if (!needrandom) {
871 assoc->association_id = ran;
872 list_add_tail(&assoc->a_list, &tgtport->assoc_list);
873 }
874 spin_unlock_irqrestore(&tgtport->lock, flags);
875 }
876
877 return assoc;
878
879 out_ida_put:
880 ida_simple_remove(&tgtport->assoc_cnt, idx);
881 out_free_assoc:
882 kfree(assoc);
883 return NULL;
884 }
885
886 static void
nvmet_fc_target_assoc_free(struct kref * ref)887 nvmet_fc_target_assoc_free(struct kref *ref)
888 {
889 struct nvmet_fc_tgt_assoc *assoc =
890 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
891 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
892 unsigned long flags;
893
894 spin_lock_irqsave(&tgtport->lock, flags);
895 list_del(&assoc->a_list);
896 spin_unlock_irqrestore(&tgtport->lock, flags);
897 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
898 kfree(assoc);
899 nvmet_fc_tgtport_put(tgtport);
900 }
901
902 static void
nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc * assoc)903 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
904 {
905 kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
906 }
907
908 static int
nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc * assoc)909 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
910 {
911 return kref_get_unless_zero(&assoc->ref);
912 }
913
914 static void
nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc * assoc)915 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
916 {
917 struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
918 struct nvmet_fc_tgt_queue *queue;
919 unsigned long flags;
920 int i;
921
922 spin_lock_irqsave(&tgtport->lock, flags);
923 for (i = NVMET_NR_QUEUES; i >= 0; i--) {
924 queue = assoc->queues[i];
925 if (queue) {
926 if (!nvmet_fc_tgt_q_get(queue))
927 continue;
928 spin_unlock_irqrestore(&tgtport->lock, flags);
929 nvmet_fc_delete_target_queue(queue);
930 nvmet_fc_tgt_q_put(queue);
931 spin_lock_irqsave(&tgtport->lock, flags);
932 }
933 }
934 spin_unlock_irqrestore(&tgtport->lock, flags);
935
936 nvmet_fc_tgt_a_put(assoc);
937 }
938
939 static struct nvmet_fc_tgt_assoc *
nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport * tgtport,u64 association_id)940 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
941 u64 association_id)
942 {
943 struct nvmet_fc_tgt_assoc *assoc;
944 struct nvmet_fc_tgt_assoc *ret = NULL;
945 unsigned long flags;
946
947 spin_lock_irqsave(&tgtport->lock, flags);
948 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
949 if (association_id == assoc->association_id) {
950 ret = assoc;
951 nvmet_fc_tgt_a_get(assoc);
952 break;
953 }
954 }
955 spin_unlock_irqrestore(&tgtport->lock, flags);
956
957 return ret;
958 }
959
960
961 /**
962 * nvme_fc_register_targetport - transport entry point called by an
963 * LLDD to register the existence of a local
964 * NVME subystem FC port.
965 * @pinfo: pointer to information about the port to be registered
966 * @template: LLDD entrypoints and operational parameters for the port
967 * @dev: physical hardware device node port corresponds to. Will be
968 * used for DMA mappings
969 * @portptr: pointer to a local port pointer. Upon success, the routine
970 * will allocate a nvme_fc_local_port structure and place its
971 * address in the local port pointer. Upon failure, local port
972 * pointer will be set to NULL.
973 *
974 * Returns:
975 * a completion status. Must be 0 upon success; a negative errno
976 * (ex: -ENXIO) upon failure.
977 */
978 int
nvmet_fc_register_targetport(struct nvmet_fc_port_info * pinfo,struct nvmet_fc_target_template * template,struct device * dev,struct nvmet_fc_target_port ** portptr)979 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
980 struct nvmet_fc_target_template *template,
981 struct device *dev,
982 struct nvmet_fc_target_port **portptr)
983 {
984 struct nvmet_fc_tgtport *newrec;
985 unsigned long flags;
986 int ret, idx;
987
988 if (!template->xmt_ls_rsp || !template->fcp_op ||
989 !template->fcp_abort ||
990 !template->fcp_req_release || !template->targetport_delete ||
991 !template->max_hw_queues || !template->max_sgl_segments ||
992 !template->max_dif_sgl_segments || !template->dma_boundary) {
993 ret = -EINVAL;
994 goto out_regtgt_failed;
995 }
996
997 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
998 GFP_KERNEL);
999 if (!newrec) {
1000 ret = -ENOMEM;
1001 goto out_regtgt_failed;
1002 }
1003
1004 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1005 if (idx < 0) {
1006 ret = -ENOSPC;
1007 goto out_fail_kfree;
1008 }
1009
1010 if (!get_device(dev) && dev) {
1011 ret = -ENODEV;
1012 goto out_ida_put;
1013 }
1014
1015 newrec->fc_target_port.node_name = pinfo->node_name;
1016 newrec->fc_target_port.port_name = pinfo->port_name;
1017 newrec->fc_target_port.private = &newrec[1];
1018 newrec->fc_target_port.port_id = pinfo->port_id;
1019 newrec->fc_target_port.port_num = idx;
1020 INIT_LIST_HEAD(&newrec->tgt_list);
1021 newrec->dev = dev;
1022 newrec->ops = template;
1023 spin_lock_init(&newrec->lock);
1024 INIT_LIST_HEAD(&newrec->ls_list);
1025 INIT_LIST_HEAD(&newrec->ls_busylist);
1026 INIT_LIST_HEAD(&newrec->assoc_list);
1027 kref_init(&newrec->ref);
1028 ida_init(&newrec->assoc_cnt);
1029 newrec->max_sg_cnt = template->max_sgl_segments;
1030
1031 ret = nvmet_fc_alloc_ls_iodlist(newrec);
1032 if (ret) {
1033 ret = -ENOMEM;
1034 goto out_free_newrec;
1035 }
1036
1037 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1038 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1039 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1040
1041 *portptr = &newrec->fc_target_port;
1042 return 0;
1043
1044 out_free_newrec:
1045 put_device(dev);
1046 out_ida_put:
1047 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1048 out_fail_kfree:
1049 kfree(newrec);
1050 out_regtgt_failed:
1051 *portptr = NULL;
1052 return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1055
1056
1057 static void
nvmet_fc_free_tgtport(struct kref * ref)1058 nvmet_fc_free_tgtport(struct kref *ref)
1059 {
1060 struct nvmet_fc_tgtport *tgtport =
1061 container_of(ref, struct nvmet_fc_tgtport, ref);
1062 struct device *dev = tgtport->dev;
1063 unsigned long flags;
1064
1065 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1066 list_del(&tgtport->tgt_list);
1067 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1068
1069 nvmet_fc_free_ls_iodlist(tgtport);
1070
1071 /* let the LLDD know we've finished tearing it down */
1072 tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1073
1074 ida_simple_remove(&nvmet_fc_tgtport_cnt,
1075 tgtport->fc_target_port.port_num);
1076
1077 ida_destroy(&tgtport->assoc_cnt);
1078
1079 kfree(tgtport);
1080
1081 put_device(dev);
1082 }
1083
1084 static void
nvmet_fc_tgtport_put(struct nvmet_fc_tgtport * tgtport)1085 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1086 {
1087 kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1088 }
1089
1090 static int
nvmet_fc_tgtport_get(struct nvmet_fc_tgtport * tgtport)1091 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1092 {
1093 return kref_get_unless_zero(&tgtport->ref);
1094 }
1095
1096 static void
__nvmet_fc_free_assocs(struct nvmet_fc_tgtport * tgtport)1097 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1098 {
1099 struct nvmet_fc_tgt_assoc *assoc, *next;
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&tgtport->lock, flags);
1103 list_for_each_entry_safe(assoc, next,
1104 &tgtport->assoc_list, a_list) {
1105 if (!nvmet_fc_tgt_a_get(assoc))
1106 continue;
1107 spin_unlock_irqrestore(&tgtport->lock, flags);
1108 nvmet_fc_delete_target_assoc(assoc);
1109 nvmet_fc_tgt_a_put(assoc);
1110 spin_lock_irqsave(&tgtport->lock, flags);
1111 }
1112 spin_unlock_irqrestore(&tgtport->lock, flags);
1113 }
1114
1115 /*
1116 * nvmet layer has called to terminate an association
1117 */
1118 static void
nvmet_fc_delete_ctrl(struct nvmet_ctrl * ctrl)1119 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1120 {
1121 struct nvmet_fc_tgtport *tgtport, *next;
1122 struct nvmet_fc_tgt_assoc *assoc;
1123 struct nvmet_fc_tgt_queue *queue;
1124 unsigned long flags;
1125 bool found_ctrl = false;
1126
1127 /* this is a bit ugly, but don't want to make locks layered */
1128 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1129 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1130 tgt_list) {
1131 if (!nvmet_fc_tgtport_get(tgtport))
1132 continue;
1133 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1134
1135 spin_lock_irqsave(&tgtport->lock, flags);
1136 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1137 queue = assoc->queues[0];
1138 if (queue && queue->nvme_sq.ctrl == ctrl) {
1139 if (nvmet_fc_tgt_a_get(assoc))
1140 found_ctrl = true;
1141 break;
1142 }
1143 }
1144 spin_unlock_irqrestore(&tgtport->lock, flags);
1145
1146 nvmet_fc_tgtport_put(tgtport);
1147
1148 if (found_ctrl) {
1149 schedule_work(&assoc->del_work);
1150 return;
1151 }
1152
1153 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1154 }
1155 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1156 }
1157
1158 /**
1159 * nvme_fc_unregister_targetport - transport entry point called by an
1160 * LLDD to deregister/remove a previously
1161 * registered a local NVME subsystem FC port.
1162 * @tgtport: pointer to the (registered) target port that is to be
1163 * deregistered.
1164 *
1165 * Returns:
1166 * a completion status. Must be 0 upon success; a negative errno
1167 * (ex: -ENXIO) upon failure.
1168 */
1169 int
nvmet_fc_unregister_targetport(struct nvmet_fc_target_port * target_port)1170 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1171 {
1172 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1173
1174 /* terminate any outstanding associations */
1175 __nvmet_fc_free_assocs(tgtport);
1176
1177 nvmet_fc_tgtport_put(tgtport);
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1182
1183
1184 /* *********************** FC-NVME LS Handling **************************** */
1185
1186
1187 static void
nvmet_fc_format_rsp_hdr(void * buf,u8 ls_cmd,__be32 desc_len,u8 rqst_ls_cmd)1188 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1189 {
1190 struct fcnvme_ls_acc_hdr *acc = buf;
1191
1192 acc->w0.ls_cmd = ls_cmd;
1193 acc->desc_list_len = desc_len;
1194 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1195 acc->rqst.desc_len =
1196 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1197 acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1198 }
1199
1200 static int
nvmet_fc_format_rjt(void * buf,u16 buflen,u8 ls_cmd,u8 reason,u8 explanation,u8 vendor)1201 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1202 u8 reason, u8 explanation, u8 vendor)
1203 {
1204 struct fcnvme_ls_rjt *rjt = buf;
1205
1206 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1207 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1208 ls_cmd);
1209 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1210 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1211 rjt->rjt.reason_code = reason;
1212 rjt->rjt.reason_explanation = explanation;
1213 rjt->rjt.vendor = vendor;
1214
1215 return sizeof(struct fcnvme_ls_rjt);
1216 }
1217
1218 /* Validation Error indexes into the string table below */
1219 enum {
1220 VERR_NO_ERROR = 0,
1221 VERR_CR_ASSOC_LEN = 1,
1222 VERR_CR_ASSOC_RQST_LEN = 2,
1223 VERR_CR_ASSOC_CMD = 3,
1224 VERR_CR_ASSOC_CMD_LEN = 4,
1225 VERR_ERSP_RATIO = 5,
1226 VERR_ASSOC_ALLOC_FAIL = 6,
1227 VERR_QUEUE_ALLOC_FAIL = 7,
1228 VERR_CR_CONN_LEN = 8,
1229 VERR_CR_CONN_RQST_LEN = 9,
1230 VERR_ASSOC_ID = 10,
1231 VERR_ASSOC_ID_LEN = 11,
1232 VERR_NO_ASSOC = 12,
1233 VERR_CONN_ID = 13,
1234 VERR_CONN_ID_LEN = 14,
1235 VERR_NO_CONN = 15,
1236 VERR_CR_CONN_CMD = 16,
1237 VERR_CR_CONN_CMD_LEN = 17,
1238 VERR_DISCONN_LEN = 18,
1239 VERR_DISCONN_RQST_LEN = 19,
1240 VERR_DISCONN_CMD = 20,
1241 VERR_DISCONN_CMD_LEN = 21,
1242 VERR_DISCONN_SCOPE = 22,
1243 VERR_RS_LEN = 23,
1244 VERR_RS_RQST_LEN = 24,
1245 VERR_RS_CMD = 25,
1246 VERR_RS_CMD_LEN = 26,
1247 VERR_RS_RCTL = 27,
1248 VERR_RS_RO = 28,
1249 };
1250
1251 static char *validation_errors[] = {
1252 "OK",
1253 "Bad CR_ASSOC Length",
1254 "Bad CR_ASSOC Rqst Length",
1255 "Not CR_ASSOC Cmd",
1256 "Bad CR_ASSOC Cmd Length",
1257 "Bad Ersp Ratio",
1258 "Association Allocation Failed",
1259 "Queue Allocation Failed",
1260 "Bad CR_CONN Length",
1261 "Bad CR_CONN Rqst Length",
1262 "Not Association ID",
1263 "Bad Association ID Length",
1264 "No Association",
1265 "Not Connection ID",
1266 "Bad Connection ID Length",
1267 "No Connection",
1268 "Not CR_CONN Cmd",
1269 "Bad CR_CONN Cmd Length",
1270 "Bad DISCONN Length",
1271 "Bad DISCONN Rqst Length",
1272 "Not DISCONN Cmd",
1273 "Bad DISCONN Cmd Length",
1274 "Bad Disconnect Scope",
1275 "Bad RS Length",
1276 "Bad RS Rqst Length",
1277 "Not RS Cmd",
1278 "Bad RS Cmd Length",
1279 "Bad RS R_CTL",
1280 "Bad RS Relative Offset",
1281 };
1282
1283 static void
nvmet_fc_ls_create_association(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1284 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1285 struct nvmet_fc_ls_iod *iod)
1286 {
1287 struct fcnvme_ls_cr_assoc_rqst *rqst =
1288 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1289 struct fcnvme_ls_cr_assoc_acc *acc =
1290 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1291 struct nvmet_fc_tgt_queue *queue;
1292 int ret = 0;
1293
1294 memset(acc, 0, sizeof(*acc));
1295
1296 /*
1297 * FC-NVME spec changes. There are initiators sending different
1298 * lengths as padding sizes for Create Association Cmd descriptor
1299 * was incorrect.
1300 * Accept anything of "minimum" length. Assume format per 1.15
1301 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1302 * trailing pad length is.
1303 */
1304 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1305 ret = VERR_CR_ASSOC_LEN;
1306 else if (be32_to_cpu(rqst->desc_list_len) <
1307 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1308 ret = VERR_CR_ASSOC_RQST_LEN;
1309 else if (rqst->assoc_cmd.desc_tag !=
1310 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1311 ret = VERR_CR_ASSOC_CMD;
1312 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1313 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1314 ret = VERR_CR_ASSOC_CMD_LEN;
1315 else if (!rqst->assoc_cmd.ersp_ratio ||
1316 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1317 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1318 ret = VERR_ERSP_RATIO;
1319
1320 else {
1321 /* new association w/ admin queue */
1322 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1323 if (!iod->assoc)
1324 ret = VERR_ASSOC_ALLOC_FAIL;
1325 else {
1326 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1327 be16_to_cpu(rqst->assoc_cmd.sqsize));
1328 if (!queue)
1329 ret = VERR_QUEUE_ALLOC_FAIL;
1330 }
1331 }
1332
1333 if (ret) {
1334 dev_err(tgtport->dev,
1335 "Create Association LS failed: %s\n",
1336 validation_errors[ret]);
1337 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1338 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1339 FCNVME_RJT_RC_LOGIC,
1340 FCNVME_RJT_EXP_NONE, 0);
1341 return;
1342 }
1343
1344 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1345 atomic_set(&queue->connected, 1);
1346 queue->sqhd = 0; /* best place to init value */
1347
1348 /* format a response */
1349
1350 iod->lsreq->rsplen = sizeof(*acc);
1351
1352 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1353 fcnvme_lsdesc_len(
1354 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1355 FCNVME_LS_CREATE_ASSOCIATION);
1356 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1357 acc->associd.desc_len =
1358 fcnvme_lsdesc_len(
1359 sizeof(struct fcnvme_lsdesc_assoc_id));
1360 acc->associd.association_id =
1361 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1362 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1363 acc->connectid.desc_len =
1364 fcnvme_lsdesc_len(
1365 sizeof(struct fcnvme_lsdesc_conn_id));
1366 acc->connectid.connection_id = acc->associd.association_id;
1367 }
1368
1369 static void
nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1370 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1371 struct nvmet_fc_ls_iod *iod)
1372 {
1373 struct fcnvme_ls_cr_conn_rqst *rqst =
1374 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1375 struct fcnvme_ls_cr_conn_acc *acc =
1376 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1377 struct nvmet_fc_tgt_queue *queue;
1378 int ret = 0;
1379
1380 memset(acc, 0, sizeof(*acc));
1381
1382 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1383 ret = VERR_CR_CONN_LEN;
1384 else if (rqst->desc_list_len !=
1385 fcnvme_lsdesc_len(
1386 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1387 ret = VERR_CR_CONN_RQST_LEN;
1388 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1389 ret = VERR_ASSOC_ID;
1390 else if (rqst->associd.desc_len !=
1391 fcnvme_lsdesc_len(
1392 sizeof(struct fcnvme_lsdesc_assoc_id)))
1393 ret = VERR_ASSOC_ID_LEN;
1394 else if (rqst->connect_cmd.desc_tag !=
1395 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1396 ret = VERR_CR_CONN_CMD;
1397 else if (rqst->connect_cmd.desc_len !=
1398 fcnvme_lsdesc_len(
1399 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1400 ret = VERR_CR_CONN_CMD_LEN;
1401 else if (!rqst->connect_cmd.ersp_ratio ||
1402 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1403 be16_to_cpu(rqst->connect_cmd.sqsize)))
1404 ret = VERR_ERSP_RATIO;
1405
1406 else {
1407 /* new io queue */
1408 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1409 be64_to_cpu(rqst->associd.association_id));
1410 if (!iod->assoc)
1411 ret = VERR_NO_ASSOC;
1412 else {
1413 queue = nvmet_fc_alloc_target_queue(iod->assoc,
1414 be16_to_cpu(rqst->connect_cmd.qid),
1415 be16_to_cpu(rqst->connect_cmd.sqsize));
1416 if (!queue)
1417 ret = VERR_QUEUE_ALLOC_FAIL;
1418
1419 /* release get taken in nvmet_fc_find_target_assoc */
1420 nvmet_fc_tgt_a_put(iod->assoc);
1421 }
1422 }
1423
1424 if (ret) {
1425 dev_err(tgtport->dev,
1426 "Create Connection LS failed: %s\n",
1427 validation_errors[ret]);
1428 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1429 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1430 (ret == VERR_NO_ASSOC) ?
1431 FCNVME_RJT_RC_INV_ASSOC :
1432 FCNVME_RJT_RC_LOGIC,
1433 FCNVME_RJT_EXP_NONE, 0);
1434 return;
1435 }
1436
1437 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1438 atomic_set(&queue->connected, 1);
1439 queue->sqhd = 0; /* best place to init value */
1440
1441 /* format a response */
1442
1443 iod->lsreq->rsplen = sizeof(*acc);
1444
1445 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1446 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1447 FCNVME_LS_CREATE_CONNECTION);
1448 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1449 acc->connectid.desc_len =
1450 fcnvme_lsdesc_len(
1451 sizeof(struct fcnvme_lsdesc_conn_id));
1452 acc->connectid.connection_id =
1453 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1454 be16_to_cpu(rqst->connect_cmd.qid)));
1455 }
1456
1457 static void
nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1458 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1459 struct nvmet_fc_ls_iod *iod)
1460 {
1461 struct fcnvme_ls_disconnect_rqst *rqst =
1462 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1463 struct fcnvme_ls_disconnect_acc *acc =
1464 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1465 struct nvmet_fc_tgt_queue *queue = NULL;
1466 struct nvmet_fc_tgt_assoc *assoc;
1467 int ret = 0;
1468 bool del_assoc = false;
1469
1470 memset(acc, 0, sizeof(*acc));
1471
1472 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1473 ret = VERR_DISCONN_LEN;
1474 else if (rqst->desc_list_len !=
1475 fcnvme_lsdesc_len(
1476 sizeof(struct fcnvme_ls_disconnect_rqst)))
1477 ret = VERR_DISCONN_RQST_LEN;
1478 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1479 ret = VERR_ASSOC_ID;
1480 else if (rqst->associd.desc_len !=
1481 fcnvme_lsdesc_len(
1482 sizeof(struct fcnvme_lsdesc_assoc_id)))
1483 ret = VERR_ASSOC_ID_LEN;
1484 else if (rqst->discon_cmd.desc_tag !=
1485 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1486 ret = VERR_DISCONN_CMD;
1487 else if (rqst->discon_cmd.desc_len !=
1488 fcnvme_lsdesc_len(
1489 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1490 ret = VERR_DISCONN_CMD_LEN;
1491 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1492 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1493 ret = VERR_DISCONN_SCOPE;
1494 else {
1495 /* match an active association */
1496 assoc = nvmet_fc_find_target_assoc(tgtport,
1497 be64_to_cpu(rqst->associd.association_id));
1498 iod->assoc = assoc;
1499 if (assoc) {
1500 if (rqst->discon_cmd.scope ==
1501 FCNVME_DISCONN_CONNECTION) {
1502 queue = nvmet_fc_find_target_queue(tgtport,
1503 be64_to_cpu(
1504 rqst->discon_cmd.id));
1505 if (!queue) {
1506 nvmet_fc_tgt_a_put(assoc);
1507 ret = VERR_NO_CONN;
1508 }
1509 }
1510 } else
1511 ret = VERR_NO_ASSOC;
1512 }
1513
1514 if (ret) {
1515 dev_err(tgtport->dev,
1516 "Disconnect LS failed: %s\n",
1517 validation_errors[ret]);
1518 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1519 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1520 (ret == VERR_NO_ASSOC) ?
1521 FCNVME_RJT_RC_INV_ASSOC :
1522 (ret == VERR_NO_CONN) ?
1523 FCNVME_RJT_RC_INV_CONN :
1524 FCNVME_RJT_RC_LOGIC,
1525 FCNVME_RJT_EXP_NONE, 0);
1526 return;
1527 }
1528
1529 /* format a response */
1530
1531 iod->lsreq->rsplen = sizeof(*acc);
1532
1533 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1534 fcnvme_lsdesc_len(
1535 sizeof(struct fcnvme_ls_disconnect_acc)),
1536 FCNVME_LS_DISCONNECT);
1537
1538
1539 /* are we to delete a Connection ID (queue) */
1540 if (queue) {
1541 int qid = queue->qid;
1542
1543 nvmet_fc_delete_target_queue(queue);
1544
1545 /* release the get taken by find_target_queue */
1546 nvmet_fc_tgt_q_put(queue);
1547
1548 /* tear association down if io queue terminated */
1549 if (!qid)
1550 del_assoc = true;
1551 }
1552
1553 /* release get taken in nvmet_fc_find_target_assoc */
1554 nvmet_fc_tgt_a_put(iod->assoc);
1555
1556 if (del_assoc)
1557 nvmet_fc_delete_target_assoc(iod->assoc);
1558 }
1559
1560
1561 /* *********************** NVME Ctrl Routines **************************** */
1562
1563
1564 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1565
1566 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1567
1568 static void
nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req * lsreq)1569 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1570 {
1571 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1572 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1573
1574 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1575 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1576 nvmet_fc_free_ls_iod(tgtport, iod);
1577 nvmet_fc_tgtport_put(tgtport);
1578 }
1579
1580 static void
nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1581 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1582 struct nvmet_fc_ls_iod *iod)
1583 {
1584 int ret;
1585
1586 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1587 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1588
1589 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1590 if (ret)
1591 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1592 }
1593
1594 /*
1595 * Actual processing routine for received FC-NVME LS Requests from the LLD
1596 */
1597 static void
nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_ls_iod * iod)1598 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1599 struct nvmet_fc_ls_iod *iod)
1600 {
1601 struct fcnvme_ls_rqst_w0 *w0 =
1602 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1603
1604 iod->lsreq->nvmet_fc_private = iod;
1605 iod->lsreq->rspbuf = iod->rspbuf;
1606 iod->lsreq->rspdma = iod->rspdma;
1607 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1608 /* Be preventative. handlers will later set to valid length */
1609 iod->lsreq->rsplen = 0;
1610
1611 iod->assoc = NULL;
1612
1613 /*
1614 * handlers:
1615 * parse request input, execute the request, and format the
1616 * LS response
1617 */
1618 switch (w0->ls_cmd) {
1619 case FCNVME_LS_CREATE_ASSOCIATION:
1620 /* Creates Association and initial Admin Queue/Connection */
1621 nvmet_fc_ls_create_association(tgtport, iod);
1622 break;
1623 case FCNVME_LS_CREATE_CONNECTION:
1624 /* Creates an IO Queue/Connection */
1625 nvmet_fc_ls_create_connection(tgtport, iod);
1626 break;
1627 case FCNVME_LS_DISCONNECT:
1628 /* Terminate a Queue/Connection or the Association */
1629 nvmet_fc_ls_disconnect(tgtport, iod);
1630 break;
1631 default:
1632 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1633 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1634 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1635 }
1636
1637 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1638 }
1639
1640 /*
1641 * Actual processing routine for received FC-NVME LS Requests from the LLD
1642 */
1643 static void
nvmet_fc_handle_ls_rqst_work(struct work_struct * work)1644 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1645 {
1646 struct nvmet_fc_ls_iod *iod =
1647 container_of(work, struct nvmet_fc_ls_iod, work);
1648 struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1649
1650 nvmet_fc_handle_ls_rqst(tgtport, iod);
1651 }
1652
1653
1654 /**
1655 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1656 * upon the reception of a NVME LS request.
1657 *
1658 * The nvmet-fc layer will copy payload to an internal structure for
1659 * processing. As such, upon completion of the routine, the LLDD may
1660 * immediately free/reuse the LS request buffer passed in the call.
1661 *
1662 * If this routine returns error, the LLDD should abort the exchange.
1663 *
1664 * @tgtport: pointer to the (registered) target port the LS was
1665 * received on.
1666 * @lsreq: pointer to a lsreq request structure to be used to reference
1667 * the exchange corresponding to the LS.
1668 * @lsreqbuf: pointer to the buffer containing the LS Request
1669 * @lsreqbuf_len: length, in bytes, of the received LS request
1670 */
1671 int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_ls_req * lsreq,void * lsreqbuf,u32 lsreqbuf_len)1672 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1673 struct nvmefc_tgt_ls_req *lsreq,
1674 void *lsreqbuf, u32 lsreqbuf_len)
1675 {
1676 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1677 struct nvmet_fc_ls_iod *iod;
1678
1679 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1680 return -E2BIG;
1681
1682 if (!nvmet_fc_tgtport_get(tgtport))
1683 return -ESHUTDOWN;
1684
1685 iod = nvmet_fc_alloc_ls_iod(tgtport);
1686 if (!iod) {
1687 nvmet_fc_tgtport_put(tgtport);
1688 return -ENOENT;
1689 }
1690
1691 iod->lsreq = lsreq;
1692 iod->fcpreq = NULL;
1693 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1694 iod->rqstdatalen = lsreqbuf_len;
1695
1696 schedule_work(&iod->work);
1697
1698 return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1701
1702
1703 /*
1704 * **********************
1705 * Start of FCP handling
1706 * **********************
1707 */
1708
1709 static int
nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod * fod)1710 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1711 {
1712 struct scatterlist *sg;
1713 unsigned int nent;
1714
1715 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1716 if (!sg)
1717 goto out;
1718
1719 fod->data_sg = sg;
1720 fod->data_sg_cnt = nent;
1721 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1722 ((fod->io_dir == NVMET_FCP_WRITE) ?
1723 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1724 /* note: write from initiator perspective */
1725 fod->next_sg = fod->data_sg;
1726
1727 return 0;
1728
1729 out:
1730 return NVME_SC_INTERNAL;
1731 }
1732
1733 static void
nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod * fod)1734 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1735 {
1736 if (!fod->data_sg || !fod->data_sg_cnt)
1737 return;
1738
1739 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1740 ((fod->io_dir == NVMET_FCP_WRITE) ?
1741 DMA_FROM_DEVICE : DMA_TO_DEVICE));
1742 sgl_free(fod->data_sg);
1743 fod->data_sg = NULL;
1744 fod->data_sg_cnt = 0;
1745 }
1746
1747
1748 static bool
queue_90percent_full(struct nvmet_fc_tgt_queue * q,u32 sqhd)1749 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1750 {
1751 u32 sqtail, used;
1752
1753 /* egad, this is ugly. And sqtail is just a best guess */
1754 sqtail = atomic_read(&q->sqtail) % q->sqsize;
1755
1756 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1757 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1758 }
1759
1760 /*
1761 * Prep RSP payload.
1762 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1763 */
1764 static void
nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)1765 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1766 struct nvmet_fc_fcp_iod *fod)
1767 {
1768 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1769 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1770 struct nvme_completion *cqe = &ersp->cqe;
1771 u32 *cqewd = (u32 *)cqe;
1772 bool send_ersp = false;
1773 u32 rsn, rspcnt, xfr_length;
1774
1775 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1776 xfr_length = fod->req.transfer_len;
1777 else
1778 xfr_length = fod->offset;
1779
1780 /*
1781 * check to see if we can send a 0's rsp.
1782 * Note: to send a 0's response, the NVME-FC host transport will
1783 * recreate the CQE. The host transport knows: sq id, SQHD (last
1784 * seen in an ersp), and command_id. Thus it will create a
1785 * zero-filled CQE with those known fields filled in. Transport
1786 * must send an ersp for any condition where the cqe won't match
1787 * this.
1788 *
1789 * Here are the FC-NVME mandated cases where we must send an ersp:
1790 * every N responses, where N=ersp_ratio
1791 * force fabric commands to send ersp's (not in FC-NVME but good
1792 * practice)
1793 * normal cmds: any time status is non-zero, or status is zero
1794 * but words 0 or 1 are non-zero.
1795 * the SQ is 90% or more full
1796 * the cmd is a fused command
1797 * transferred data length not equal to cmd iu length
1798 */
1799 rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1800 if (!(rspcnt % fod->queue->ersp_ratio) ||
1801 sqe->opcode == nvme_fabrics_command ||
1802 xfr_length != fod->req.transfer_len ||
1803 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1804 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1805 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1806 send_ersp = true;
1807
1808 /* re-set the fields */
1809 fod->fcpreq->rspaddr = ersp;
1810 fod->fcpreq->rspdma = fod->rspdma;
1811
1812 if (!send_ersp) {
1813 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1814 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1815 } else {
1816 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1817 rsn = atomic_inc_return(&fod->queue->rsn);
1818 ersp->rsn = cpu_to_be32(rsn);
1819 ersp->xfrd_len = cpu_to_be32(xfr_length);
1820 fod->fcpreq->rsplen = sizeof(*ersp);
1821 }
1822
1823 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1824 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1825 }
1826
1827 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1828
1829 static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)1830 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1831 struct nvmet_fc_fcp_iod *fod)
1832 {
1833 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1834
1835 /* data no longer needed */
1836 nvmet_fc_free_tgt_pgs(fod);
1837
1838 /*
1839 * if an ABTS was received or we issued the fcp_abort early
1840 * don't call abort routine again.
1841 */
1842 /* no need to take lock - lock was taken earlier to get here */
1843 if (!fod->aborted)
1844 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1845
1846 nvmet_fc_free_fcp_iod(fod->queue, fod);
1847 }
1848
1849 static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)1850 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1851 struct nvmet_fc_fcp_iod *fod)
1852 {
1853 int ret;
1854
1855 fod->fcpreq->op = NVMET_FCOP_RSP;
1856 fod->fcpreq->timeout = 0;
1857
1858 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1859
1860 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1861 if (ret)
1862 nvmet_fc_abort_op(tgtport, fod);
1863 }
1864
1865 static void
nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,u8 op)1866 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1867 struct nvmet_fc_fcp_iod *fod, u8 op)
1868 {
1869 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1870 struct scatterlist *sg = fod->next_sg;
1871 unsigned long flags;
1872 u32 remaininglen = fod->req.transfer_len - fod->offset;
1873 u32 tlen = 0;
1874 int ret;
1875
1876 fcpreq->op = op;
1877 fcpreq->offset = fod->offset;
1878 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1879
1880 /*
1881 * for next sequence:
1882 * break at a sg element boundary
1883 * attempt to keep sequence length capped at
1884 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1885 * be longer if a single sg element is larger
1886 * than that amount. This is done to avoid creating
1887 * a new sg list to use for the tgtport api.
1888 */
1889 fcpreq->sg = sg;
1890 fcpreq->sg_cnt = 0;
1891 while (tlen < remaininglen &&
1892 fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1893 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1894 fcpreq->sg_cnt++;
1895 tlen += sg_dma_len(sg);
1896 sg = sg_next(sg);
1897 }
1898 if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1899 fcpreq->sg_cnt++;
1900 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1901 sg = sg_next(sg);
1902 }
1903 if (tlen < remaininglen)
1904 fod->next_sg = sg;
1905 else
1906 fod->next_sg = NULL;
1907
1908 fcpreq->transfer_length = tlen;
1909 fcpreq->transferred_length = 0;
1910 fcpreq->fcp_error = 0;
1911 fcpreq->rsplen = 0;
1912
1913 /*
1914 * If the last READDATA request: check if LLDD supports
1915 * combined xfr with response.
1916 */
1917 if ((op == NVMET_FCOP_READDATA) &&
1918 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1919 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1920 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1921 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1922 }
1923
1924 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1925 if (ret) {
1926 /*
1927 * should be ok to set w/o lock as its in the thread of
1928 * execution (not an async timer routine) and doesn't
1929 * contend with any clearing action
1930 */
1931 fod->abort = true;
1932
1933 if (op == NVMET_FCOP_WRITEDATA) {
1934 spin_lock_irqsave(&fod->flock, flags);
1935 fod->writedataactive = false;
1936 spin_unlock_irqrestore(&fod->flock, flags);
1937 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1938 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1939 fcpreq->fcp_error = ret;
1940 fcpreq->transferred_length = 0;
1941 nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1942 }
1943 }
1944 }
1945
1946 static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod * fod,bool abort)1947 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1948 {
1949 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1950 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1951
1952 /* if in the middle of an io and we need to tear down */
1953 if (abort) {
1954 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1955 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1956 return true;
1957 }
1958
1959 nvmet_fc_abort_op(tgtport, fod);
1960 return true;
1961 }
1962
1963 return false;
1964 }
1965
1966 /*
1967 * actual done handler for FCP operations when completed by the lldd
1968 */
1969 static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod * fod)1970 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1971 {
1972 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1973 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1974 unsigned long flags;
1975 bool abort;
1976
1977 spin_lock_irqsave(&fod->flock, flags);
1978 abort = fod->abort;
1979 fod->writedataactive = false;
1980 spin_unlock_irqrestore(&fod->flock, flags);
1981
1982 switch (fcpreq->op) {
1983
1984 case NVMET_FCOP_WRITEDATA:
1985 if (__nvmet_fc_fod_op_abort(fod, abort))
1986 return;
1987 if (fcpreq->fcp_error ||
1988 fcpreq->transferred_length != fcpreq->transfer_length) {
1989 spin_lock(&fod->flock);
1990 fod->abort = true;
1991 spin_unlock(&fod->flock);
1992
1993 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1994 return;
1995 }
1996
1997 fod->offset += fcpreq->transferred_length;
1998 if (fod->offset != fod->req.transfer_len) {
1999 spin_lock_irqsave(&fod->flock, flags);
2000 fod->writedataactive = true;
2001 spin_unlock_irqrestore(&fod->flock, flags);
2002
2003 /* transfer the next chunk */
2004 nvmet_fc_transfer_fcp_data(tgtport, fod,
2005 NVMET_FCOP_WRITEDATA);
2006 return;
2007 }
2008
2009 /* data transfer complete, resume with nvmet layer */
2010 nvmet_req_execute(&fod->req);
2011 break;
2012
2013 case NVMET_FCOP_READDATA:
2014 case NVMET_FCOP_READDATA_RSP:
2015 if (__nvmet_fc_fod_op_abort(fod, abort))
2016 return;
2017 if (fcpreq->fcp_error ||
2018 fcpreq->transferred_length != fcpreq->transfer_length) {
2019 nvmet_fc_abort_op(tgtport, fod);
2020 return;
2021 }
2022
2023 /* success */
2024
2025 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2026 /* data no longer needed */
2027 nvmet_fc_free_tgt_pgs(fod);
2028 nvmet_fc_free_fcp_iod(fod->queue, fod);
2029 return;
2030 }
2031
2032 fod->offset += fcpreq->transferred_length;
2033 if (fod->offset != fod->req.transfer_len) {
2034 /* transfer the next chunk */
2035 nvmet_fc_transfer_fcp_data(tgtport, fod,
2036 NVMET_FCOP_READDATA);
2037 return;
2038 }
2039
2040 /* data transfer complete, send response */
2041
2042 /* data no longer needed */
2043 nvmet_fc_free_tgt_pgs(fod);
2044
2045 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2046
2047 break;
2048
2049 case NVMET_FCOP_RSP:
2050 if (__nvmet_fc_fod_op_abort(fod, abort))
2051 return;
2052 nvmet_fc_free_fcp_iod(fod->queue, fod);
2053 break;
2054
2055 default:
2056 break;
2057 }
2058 }
2059
2060 static void
nvmet_fc_fcp_rqst_op_done_work(struct work_struct * work)2061 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2062 {
2063 struct nvmet_fc_fcp_iod *fod =
2064 container_of(work, struct nvmet_fc_fcp_iod, done_work);
2065
2066 nvmet_fc_fod_op_done(fod);
2067 }
2068
2069 static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req * fcpreq)2070 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2071 {
2072 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2073 struct nvmet_fc_tgt_queue *queue = fod->queue;
2074
2075 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2076 /* context switch so completion is not in ISR context */
2077 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2078 else
2079 nvmet_fc_fod_op_done(fod);
2080 }
2081
2082 /*
2083 * actual completion handler after execution by the nvmet layer
2084 */
2085 static void
__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod,int status)2086 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2087 struct nvmet_fc_fcp_iod *fod, int status)
2088 {
2089 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2090 struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2091 unsigned long flags;
2092 bool abort;
2093
2094 spin_lock_irqsave(&fod->flock, flags);
2095 abort = fod->abort;
2096 spin_unlock_irqrestore(&fod->flock, flags);
2097
2098 /* if we have a CQE, snoop the last sq_head value */
2099 if (!status)
2100 fod->queue->sqhd = cqe->sq_head;
2101
2102 if (abort) {
2103 nvmet_fc_abort_op(tgtport, fod);
2104 return;
2105 }
2106
2107 /* if an error handling the cmd post initial parsing */
2108 if (status) {
2109 /* fudge up a failed CQE status for our transport error */
2110 memset(cqe, 0, sizeof(*cqe));
2111 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */
2112 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2113 cqe->command_id = sqe->command_id;
2114 cqe->status = cpu_to_le16(status);
2115 } else {
2116
2117 /*
2118 * try to push the data even if the SQE status is non-zero.
2119 * There may be a status where data still was intended to
2120 * be moved
2121 */
2122 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2123 /* push the data over before sending rsp */
2124 nvmet_fc_transfer_fcp_data(tgtport, fod,
2125 NVMET_FCOP_READDATA);
2126 return;
2127 }
2128
2129 /* writes & no data - fall thru */
2130 }
2131
2132 /* data no longer needed */
2133 nvmet_fc_free_tgt_pgs(fod);
2134
2135 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2136 }
2137
2138
2139 static void
nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req * nvme_req)2140 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2141 {
2142 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2143 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2144
2145 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2146 }
2147
2148
2149 /*
2150 * Actual processing routine for received FC-NVME LS Requests from the LLD
2151 */
2152 static void
nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport * tgtport,struct nvmet_fc_fcp_iod * fod)2153 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2154 struct nvmet_fc_fcp_iod *fod)
2155 {
2156 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2157 u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2158 int ret;
2159
2160 /*
2161 * Fused commands are currently not supported in the linux
2162 * implementation.
2163 *
2164 * As such, the implementation of the FC transport does not
2165 * look at the fused commands and order delivery to the upper
2166 * layer until we have both based on csn.
2167 */
2168
2169 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2170
2171 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2172 fod->io_dir = NVMET_FCP_WRITE;
2173 if (!nvme_is_write(&cmdiu->sqe))
2174 goto transport_error;
2175 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2176 fod->io_dir = NVMET_FCP_READ;
2177 if (nvme_is_write(&cmdiu->sqe))
2178 goto transport_error;
2179 } else {
2180 fod->io_dir = NVMET_FCP_NODATA;
2181 if (xfrlen)
2182 goto transport_error;
2183 }
2184
2185 fod->req.cmd = &fod->cmdiubuf.sqe;
2186 fod->req.rsp = &fod->rspiubuf.cqe;
2187 fod->req.port = fod->queue->port;
2188
2189 /* clear any response payload */
2190 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2191
2192 fod->data_sg = NULL;
2193 fod->data_sg_cnt = 0;
2194
2195 ret = nvmet_req_init(&fod->req,
2196 &fod->queue->nvme_cq,
2197 &fod->queue->nvme_sq,
2198 &nvmet_fc_tgt_fcp_ops);
2199 if (!ret) {
2200 /* bad SQE content or invalid ctrl state */
2201 /* nvmet layer has already called op done to send rsp. */
2202 return;
2203 }
2204
2205 fod->req.transfer_len = xfrlen;
2206
2207 /* keep a running counter of tail position */
2208 atomic_inc(&fod->queue->sqtail);
2209
2210 if (fod->req.transfer_len) {
2211 ret = nvmet_fc_alloc_tgt_pgs(fod);
2212 if (ret) {
2213 nvmet_req_complete(&fod->req, ret);
2214 return;
2215 }
2216 }
2217 fod->req.sg = fod->data_sg;
2218 fod->req.sg_cnt = fod->data_sg_cnt;
2219 fod->offset = 0;
2220
2221 if (fod->io_dir == NVMET_FCP_WRITE) {
2222 /* pull the data over before invoking nvmet layer */
2223 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2224 return;
2225 }
2226
2227 /*
2228 * Reads or no data:
2229 *
2230 * can invoke the nvmet_layer now. If read data, cmd completion will
2231 * push the data
2232 */
2233 nvmet_req_execute(&fod->req);
2234 return;
2235
2236 transport_error:
2237 nvmet_fc_abort_op(tgtport, fod);
2238 }
2239
2240 /*
2241 * Actual processing routine for received FC-NVME LS Requests from the LLD
2242 */
2243 static void
nvmet_fc_handle_fcp_rqst_work(struct work_struct * work)2244 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2245 {
2246 struct nvmet_fc_fcp_iod *fod =
2247 container_of(work, struct nvmet_fc_fcp_iod, work);
2248 struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2249
2250 nvmet_fc_handle_fcp_rqst(tgtport, fod);
2251 }
2252
2253 /**
2254 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2255 * upon the reception of a NVME FCP CMD IU.
2256 *
2257 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2258 * layer for processing.
2259 *
2260 * The nvmet_fc layer allocates a local job structure (struct
2261 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2262 * CMD IU buffer to the job structure. As such, on a successful
2263 * completion (returns 0), the LLDD may immediately free/reuse
2264 * the CMD IU buffer passed in the call.
2265 *
2266 * However, in some circumstances, due to the packetized nature of FC
2267 * and the api of the FC LLDD which may issue a hw command to send the
2268 * response, but the LLDD may not get the hw completion for that command
2269 * and upcall the nvmet_fc layer before a new command may be
2270 * asynchronously received - its possible for a command to be received
2271 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2272 * the appearance of more commands received than fits in the sq.
2273 * To alleviate this scenario, a temporary queue is maintained in the
2274 * transport for pending LLDD requests waiting for a queue job structure.
2275 * In these "overrun" cases, a temporary queue element is allocated
2276 * the LLDD request and CMD iu buffer information remembered, and the
2277 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2278 * structure is freed, it is immediately reallocated for anything on the
2279 * pending request list. The LLDDs defer_rcv() callback is called,
2280 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2281 * is then started normally with the transport.
2282 *
2283 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2284 * the completion as successful but must not reuse the CMD IU buffer
2285 * until the LLDD's defer_rcv() callback has been called for the
2286 * corresponding struct nvmefc_tgt_fcp_req pointer.
2287 *
2288 * If there is any other condition in which an error occurs, the
2289 * transport will return a non-zero status indicating the error.
2290 * In all cases other than -EOVERFLOW, the transport has not accepted the
2291 * request and the LLDD should abort the exchange.
2292 *
2293 * @target_port: pointer to the (registered) target port the FCP CMD IU
2294 * was received on.
2295 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2296 * the exchange corresponding to the FCP Exchange.
2297 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2298 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2299 */
2300 int
nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq,void * cmdiubuf,u32 cmdiubuf_len)2301 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2302 struct nvmefc_tgt_fcp_req *fcpreq,
2303 void *cmdiubuf, u32 cmdiubuf_len)
2304 {
2305 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2306 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2307 struct nvmet_fc_tgt_queue *queue;
2308 struct nvmet_fc_fcp_iod *fod;
2309 struct nvmet_fc_defer_fcp_req *deferfcp;
2310 unsigned long flags;
2311
2312 /* validate iu, so the connection id can be used to find the queue */
2313 if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2314 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2315 (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2316 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2317 return -EIO;
2318
2319 queue = nvmet_fc_find_target_queue(tgtport,
2320 be64_to_cpu(cmdiu->connection_id));
2321 if (!queue)
2322 return -ENOTCONN;
2323
2324 /*
2325 * note: reference taken by find_target_queue
2326 * After successful fod allocation, the fod will inherit the
2327 * ownership of that reference and will remove the reference
2328 * when the fod is freed.
2329 */
2330
2331 spin_lock_irqsave(&queue->qlock, flags);
2332
2333 fod = nvmet_fc_alloc_fcp_iod(queue);
2334 if (fod) {
2335 spin_unlock_irqrestore(&queue->qlock, flags);
2336
2337 fcpreq->nvmet_fc_private = fod;
2338 fod->fcpreq = fcpreq;
2339
2340 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2341
2342 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2343
2344 return 0;
2345 }
2346
2347 if (!tgtport->ops->defer_rcv) {
2348 spin_unlock_irqrestore(&queue->qlock, flags);
2349 /* release the queue lookup reference */
2350 nvmet_fc_tgt_q_put(queue);
2351 return -ENOENT;
2352 }
2353
2354 deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2355 struct nvmet_fc_defer_fcp_req, req_list);
2356 if (deferfcp) {
2357 /* Just re-use one that was previously allocated */
2358 list_del(&deferfcp->req_list);
2359 } else {
2360 spin_unlock_irqrestore(&queue->qlock, flags);
2361
2362 /* Now we need to dynamically allocate one */
2363 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2364 if (!deferfcp) {
2365 /* release the queue lookup reference */
2366 nvmet_fc_tgt_q_put(queue);
2367 return -ENOMEM;
2368 }
2369 spin_lock_irqsave(&queue->qlock, flags);
2370 }
2371
2372 /* For now, use rspaddr / rsplen to save payload information */
2373 fcpreq->rspaddr = cmdiubuf;
2374 fcpreq->rsplen = cmdiubuf_len;
2375 deferfcp->fcp_req = fcpreq;
2376
2377 /* defer processing till a fod becomes available */
2378 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2379
2380 /* NOTE: the queue lookup reference is still valid */
2381
2382 spin_unlock_irqrestore(&queue->qlock, flags);
2383
2384 return -EOVERFLOW;
2385 }
2386 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2387
2388 /**
2389 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2390 * upon the reception of an ABTS for a FCP command
2391 *
2392 * Notify the transport that an ABTS has been received for a FCP command
2393 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2394 * LLDD believes the command is still being worked on
2395 * (template_ops->fcp_req_release() has not been called).
2396 *
2397 * The transport will wait for any outstanding work (an op to the LLDD,
2398 * which the lldd should complete with error due to the ABTS; or the
2399 * completion from the nvmet layer of the nvme command), then will
2400 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2401 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2402 * to the ABTS either after return from this function (assuming any
2403 * outstanding op work has been terminated) or upon the callback being
2404 * called.
2405 *
2406 * @target_port: pointer to the (registered) target port the FCP CMD IU
2407 * was received on.
2408 * @fcpreq: pointer to the fcpreq request structure that corresponds
2409 * to the exchange that received the ABTS.
2410 */
2411 void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port * target_port,struct nvmefc_tgt_fcp_req * fcpreq)2412 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2413 struct nvmefc_tgt_fcp_req *fcpreq)
2414 {
2415 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2416 struct nvmet_fc_tgt_queue *queue;
2417 unsigned long flags;
2418
2419 if (!fod || fod->fcpreq != fcpreq)
2420 /* job appears to have already completed, ignore abort */
2421 return;
2422
2423 queue = fod->queue;
2424
2425 spin_lock_irqsave(&queue->qlock, flags);
2426 if (fod->active) {
2427 /*
2428 * mark as abort. The abort handler, invoked upon completion
2429 * of any work, will detect the aborted status and do the
2430 * callback.
2431 */
2432 spin_lock(&fod->flock);
2433 fod->abort = true;
2434 fod->aborted = true;
2435 spin_unlock(&fod->flock);
2436 }
2437 spin_unlock_irqrestore(&queue->qlock, flags);
2438 }
2439 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2440
2441
2442 struct nvmet_fc_traddr {
2443 u64 nn;
2444 u64 pn;
2445 };
2446
2447 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)2448 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2449 {
2450 u64 token64;
2451
2452 if (match_u64(sstr, &token64))
2453 return -EINVAL;
2454 *val = token64;
2455
2456 return 0;
2457 }
2458
2459 /*
2460 * This routine validates and extracts the WWN's from the TRADDR string.
2461 * As kernel parsers need the 0x to determine number base, universally
2462 * build string to parse with 0x prefix before parsing name strings.
2463 */
2464 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)2465 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2466 {
2467 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2468 substring_t wwn = { name, &name[sizeof(name)-1] };
2469 int nnoffset, pnoffset;
2470
2471 /* validate it string one of the 2 allowed formats */
2472 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2473 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2474 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2475 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2476 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2477 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2478 NVME_FC_TRADDR_OXNNLEN;
2479 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2480 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2481 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2482 "pn-", NVME_FC_TRADDR_NNLEN))) {
2483 nnoffset = NVME_FC_TRADDR_NNLEN;
2484 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2485 } else
2486 goto out_einval;
2487
2488 name[0] = '0';
2489 name[1] = 'x';
2490 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2491
2492 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2493 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2494 goto out_einval;
2495
2496 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2497 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2498 goto out_einval;
2499
2500 return 0;
2501
2502 out_einval:
2503 pr_warn("%s: bad traddr string\n", __func__);
2504 return -EINVAL;
2505 }
2506
2507 static int
nvmet_fc_add_port(struct nvmet_port * port)2508 nvmet_fc_add_port(struct nvmet_port *port)
2509 {
2510 struct nvmet_fc_tgtport *tgtport;
2511 struct nvmet_fc_traddr traddr = { 0L, 0L };
2512 unsigned long flags;
2513 int ret;
2514
2515 /* validate the address info */
2516 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2517 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2518 return -EINVAL;
2519
2520 /* map the traddr address info to a target port */
2521
2522 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2523 sizeof(port->disc_addr.traddr));
2524 if (ret)
2525 return ret;
2526
2527 ret = -ENXIO;
2528 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2529 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2530 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2531 (tgtport->fc_target_port.port_name == traddr.pn)) {
2532 tgtport->port = port;
2533 ret = 0;
2534 break;
2535 }
2536 }
2537 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2538 return ret;
2539 }
2540
2541 static void
nvmet_fc_remove_port(struct nvmet_port * port)2542 nvmet_fc_remove_port(struct nvmet_port *port)
2543 {
2544 /* nothing to do */
2545 }
2546
2547 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2548 .owner = THIS_MODULE,
2549 .type = NVMF_TRTYPE_FC,
2550 .msdbd = 1,
2551 .add_port = nvmet_fc_add_port,
2552 .remove_port = nvmet_fc_remove_port,
2553 .queue_response = nvmet_fc_fcp_nvme_cmd_done,
2554 .delete_ctrl = nvmet_fc_delete_ctrl,
2555 };
2556
nvmet_fc_init_module(void)2557 static int __init nvmet_fc_init_module(void)
2558 {
2559 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2560 }
2561
nvmet_fc_exit_module(void)2562 static void __exit nvmet_fc_exit_module(void)
2563 {
2564 /* sanity check - all lports should be removed */
2565 if (!list_empty(&nvmet_fc_target_list))
2566 pr_warn("%s: targetport list not empty\n", __func__);
2567
2568 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2569
2570 ida_destroy(&nvmet_fc_tgtport_cnt);
2571 }
2572
2573 module_init(nvmet_fc_init_module);
2574 module_exit(nvmet_fc_exit_module);
2575
2576 MODULE_LICENSE("GPL v2");
2577