1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117 };
118
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
152
153 struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 static struct workqueue_struct *nvme_fc_wq;
225
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228
229 /*
230 * These items are short-term. They will eventually be moved into
231 * a generic FC class. See comments in module init.
232 */
233 static struct device *fc_udev_device;
234
235 static void nvme_fc_complete_rq(struct request *rq);
236
237 /* *********************** FC-NVME Port Management ************************ */
238
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 struct nvme_fc_queue *, unsigned int);
241
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243
244
245 static void
nvme_fc_free_lport(struct kref * ref)246 nvme_fc_free_lport(struct kref *ref)
247 {
248 struct nvme_fc_lport *lport =
249 container_of(ref, struct nvme_fc_lport, ref);
250 unsigned long flags;
251
252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 WARN_ON(!list_empty(&lport->endp_list));
254
255 /* remove from transport list */
256 spin_lock_irqsave(&nvme_fc_lock, flags);
257 list_del(&lport->port_list);
258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 complete(&nvme_fc_unload_proceed);
260 spin_unlock_irqrestore(&nvme_fc_lock, flags);
261
262 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 ida_destroy(&lport->endp_cnt);
264
265 put_device(lport->dev);
266
267 kfree(lport);
268 }
269
270 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
272 {
273 kref_put(&lport->ref, nvme_fc_free_lport);
274 }
275
276 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
278 {
279 return kref_get_unless_zero(&lport->ref);
280 }
281
282
283 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 struct nvme_fc_port_template *ops,
286 struct device *dev)
287 {
288 struct nvme_fc_lport *lport;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nvme_fc_lock, flags);
292
293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 if (lport->localport.node_name != pinfo->node_name ||
295 lport->localport.port_name != pinfo->port_name)
296 continue;
297
298 if (lport->dev != dev) {
299 lport = ERR_PTR(-EXDEV);
300 goto out_done;
301 }
302
303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 lport = ERR_PTR(-EEXIST);
305 goto out_done;
306 }
307
308 if (!nvme_fc_lport_get(lport)) {
309 /*
310 * fails if ref cnt already 0. If so,
311 * act as if lport already deleted
312 */
313 lport = NULL;
314 goto out_done;
315 }
316
317 /* resume the lport */
318
319 lport->ops = ops;
320 lport->localport.port_role = pinfo->port_role;
321 lport->localport.port_id = pinfo->port_id;
322 lport->localport.port_state = FC_OBJSTATE_ONLINE;
323
324 spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326 return lport;
327 }
328
329 lport = NULL;
330
331 out_done:
332 spin_unlock_irqrestore(&nvme_fc_lock, flags);
333
334 return lport;
335 }
336
337 /**
338 * nvme_fc_register_localport - transport entry point called by an
339 * LLDD to register the existence of a NVME
340 * host FC port.
341 * @pinfo: pointer to information about the port to be registered
342 * @template: LLDD entrypoints and operational parameters for the port
343 * @dev: physical hardware device node port corresponds to. Will be
344 * used for DMA mappings
345 * @portptr: pointer to a local port pointer. Upon success, the routine
346 * will allocate a nvme_fc_local_port structure and place its
347 * address in the local port pointer. Upon failure, local port
348 * pointer will be set to 0.
349 *
350 * Returns:
351 * a completion status. Must be 0 upon success; a negative errno
352 * (ex: -ENXIO) upon failure.
353 */
354 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 struct nvme_fc_port_template *template,
357 struct device *dev,
358 struct nvme_fc_local_port **portptr)
359 {
360 struct nvme_fc_lport *newrec;
361 unsigned long flags;
362 int ret, idx;
363
364 if (!template->localport_delete || !template->remoteport_delete ||
365 !template->ls_req || !template->fcp_io ||
366 !template->ls_abort || !template->fcp_abort ||
367 !template->max_hw_queues || !template->max_sgl_segments ||
368 !template->max_dif_sgl_segments || !template->dma_boundary) {
369 ret = -EINVAL;
370 goto out_reghost_failed;
371 }
372
373 /*
374 * look to see if there is already a localport that had been
375 * deregistered and in the process of waiting for all the
376 * references to fully be removed. If the references haven't
377 * expired, we can simply re-enable the localport. Remoteports
378 * and controller reconnections should resume naturally.
379 */
380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381
382 /* found an lport, but something about its state is bad */
383 if (IS_ERR(newrec)) {
384 ret = PTR_ERR(newrec);
385 goto out_reghost_failed;
386
387 /* found existing lport, which was resumed */
388 } else if (newrec) {
389 *portptr = &newrec->localport;
390 return 0;
391 }
392
393 /* nothing found - allocate a new localport struct */
394
395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396 GFP_KERNEL);
397 if (!newrec) {
398 ret = -ENOMEM;
399 goto out_reghost_failed;
400 }
401
402 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
403 if (idx < 0) {
404 ret = -ENOSPC;
405 goto out_fail_kfree;
406 }
407
408 if (!get_device(dev) && dev) {
409 ret = -ENODEV;
410 goto out_ida_put;
411 }
412
413 INIT_LIST_HEAD(&newrec->port_list);
414 INIT_LIST_HEAD(&newrec->endp_list);
415 kref_init(&newrec->ref);
416 atomic_set(&newrec->act_rport_cnt, 0);
417 newrec->ops = template;
418 newrec->dev = dev;
419 ida_init(&newrec->endp_cnt);
420 if (template->local_priv_sz)
421 newrec->localport.private = &newrec[1];
422 else
423 newrec->localport.private = NULL;
424 newrec->localport.node_name = pinfo->node_name;
425 newrec->localport.port_name = pinfo->port_name;
426 newrec->localport.port_role = pinfo->port_role;
427 newrec->localport.port_id = pinfo->port_id;
428 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 newrec->localport.port_num = idx;
430
431 spin_lock_irqsave(&nvme_fc_lock, flags);
432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 spin_unlock_irqrestore(&nvme_fc_lock, flags);
434
435 if (dev)
436 dma_set_seg_boundary(dev, template->dma_boundary);
437
438 *portptr = &newrec->localport;
439 return 0;
440
441 out_ida_put:
442 ida_free(&nvme_fc_local_port_cnt, idx);
443 out_fail_kfree:
444 kfree(newrec);
445 out_reghost_failed:
446 *portptr = NULL;
447
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451
452 /**
453 * nvme_fc_unregister_localport - transport entry point called by an
454 * LLDD to deregister/remove a previously
455 * registered a NVME host FC port.
456 * @portptr: pointer to the (registered) local port that is to be deregistered.
457 *
458 * Returns:
459 * a completion status. Must be 0 upon success; a negative errno
460 * (ex: -ENXIO) upon failure.
461 */
462 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464 {
465 struct nvme_fc_lport *lport = localport_to_lport(portptr);
466 unsigned long flags;
467
468 if (!portptr)
469 return -EINVAL;
470
471 spin_lock_irqsave(&nvme_fc_lock, flags);
472
473 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 return -EINVAL;
476 }
477 portptr->port_state = FC_OBJSTATE_DELETED;
478
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 if (atomic_read(&lport->act_rport_cnt) == 0)
482 lport->ops->localport_delete(&lport->localport);
483
484 nvme_fc_lport_put(lport);
485
486 return 0;
487 }
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489
490 /*
491 * TRADDR strings, per FC-NVME are fixed format:
492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493 * udev event will only differ by prefix of what field is
494 * being specified:
495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496 * 19 + 43 + null_fudge = 64 characters
497 */
498 #define FCNVME_TRADDR_LENGTH 64
499
500 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 struct nvme_fc_rport *rport)
503 {
504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507
508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509 return;
510
511 snprintf(hostaddr, sizeof(hostaddr),
512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 lport->localport.node_name, lport->localport.port_name);
514 snprintf(tgtaddr, sizeof(tgtaddr),
515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 rport->remoteport.node_name, rport->remoteport.port_name);
517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518 }
519
520 static void
nvme_fc_free_rport(struct kref * ref)521 nvme_fc_free_rport(struct kref *ref)
522 {
523 struct nvme_fc_rport *rport =
524 container_of(ref, struct nvme_fc_rport, ref);
525 struct nvme_fc_lport *lport =
526 localport_to_lport(rport->remoteport.localport);
527 unsigned long flags;
528
529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 WARN_ON(!list_empty(&rport->ctrl_list));
531
532 /* remove from lport list */
533 spin_lock_irqsave(&nvme_fc_lock, flags);
534 list_del(&rport->endp_list);
535 spin_unlock_irqrestore(&nvme_fc_lock, flags);
536
537 WARN_ON(!list_empty(&rport->disc_list));
538 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
539
540 kfree(rport);
541
542 nvme_fc_lport_put(lport);
543 }
544
545 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
547 {
548 kref_put(&rport->ref, nvme_fc_free_rport);
549 }
550
551 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
553 {
554 return kref_get_unless_zero(&rport->ref);
555 }
556
557 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559 {
560 switch (ctrl->ctrl.state) {
561 case NVME_CTRL_NEW:
562 case NVME_CTRL_CONNECTING:
563 /*
564 * As all reconnects were suppressed, schedule a
565 * connect.
566 */
567 dev_info(ctrl->ctrl.device,
568 "NVME-FC{%d}: connectivity re-established. "
569 "Attempting reconnect\n", ctrl->cnum);
570
571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572 break;
573
574 case NVME_CTRL_RESETTING:
575 /*
576 * Controller is already in the process of terminating the
577 * association. No need to do anything further. The reconnect
578 * step will naturally occur after the reset completes.
579 */
580 break;
581
582 default:
583 /* no action to take - let it delete */
584 break;
585 }
586 }
587
588 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 struct nvme_fc_port_info *pinfo)
591 {
592 struct nvme_fc_rport *rport;
593 struct nvme_fc_ctrl *ctrl;
594 unsigned long flags;
595
596 spin_lock_irqsave(&nvme_fc_lock, flags);
597
598 list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 if (rport->remoteport.node_name != pinfo->node_name ||
600 rport->remoteport.port_name != pinfo->port_name)
601 continue;
602
603 if (!nvme_fc_rport_get(rport)) {
604 rport = ERR_PTR(-ENOLCK);
605 goto out_done;
606 }
607
608 spin_unlock_irqrestore(&nvme_fc_lock, flags);
609
610 spin_lock_irqsave(&rport->lock, flags);
611
612 /* has it been unregistered */
613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 /* means lldd called us twice */
615 spin_unlock_irqrestore(&rport->lock, flags);
616 nvme_fc_rport_put(rport);
617 return ERR_PTR(-ESTALE);
618 }
619
620 rport->remoteport.port_role = pinfo->port_role;
621 rport->remoteport.port_id = pinfo->port_id;
622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 rport->dev_loss_end = 0;
624
625 /*
626 * kick off a reconnect attempt on all associations to the
627 * remote port. A successful reconnects will resume i/o.
628 */
629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 nvme_fc_resume_controller(ctrl);
631
632 spin_unlock_irqrestore(&rport->lock, flags);
633
634 return rport;
635 }
636
637 rport = NULL;
638
639 out_done:
640 spin_unlock_irqrestore(&nvme_fc_lock, flags);
641
642 return rport;
643 }
644
645 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 struct nvme_fc_port_info *pinfo)
648 {
649 if (pinfo->dev_loss_tmo)
650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651 else
652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653 }
654
655 /**
656 * nvme_fc_register_remoteport - transport entry point called by an
657 * LLDD to register the existence of a NVME
658 * subsystem FC port on its fabric.
659 * @localport: pointer to the (registered) local port that the remote
660 * subsystem port is connected to.
661 * @pinfo: pointer to information about the port to be registered
662 * @portptr: pointer to a remote port pointer. Upon success, the routine
663 * will allocate a nvme_fc_remote_port structure and place its
664 * address in the remote port pointer. Upon failure, remote port
665 * pointer will be set to 0.
666 *
667 * Returns:
668 * a completion status. Must be 0 upon success; a negative errno
669 * (ex: -ENXIO) upon failure.
670 */
671 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 struct nvme_fc_port_info *pinfo,
674 struct nvme_fc_remote_port **portptr)
675 {
676 struct nvme_fc_lport *lport = localport_to_lport(localport);
677 struct nvme_fc_rport *newrec;
678 unsigned long flags;
679 int ret, idx;
680
681 if (!nvme_fc_lport_get(lport)) {
682 ret = -ESHUTDOWN;
683 goto out_reghost_failed;
684 }
685
686 /*
687 * look to see if there is already a remoteport that is waiting
688 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 * If so, transition to it and reconnect.
690 */
691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692
693 /* found an rport, but something about its state is bad */
694 if (IS_ERR(newrec)) {
695 ret = PTR_ERR(newrec);
696 goto out_lport_put;
697
698 /* found existing rport, which was resumed */
699 } else if (newrec) {
700 nvme_fc_lport_put(lport);
701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 nvme_fc_signal_discovery_scan(lport, newrec);
703 *portptr = &newrec->remoteport;
704 return 0;
705 }
706
707 /* nothing found - allocate a new remoteport struct */
708
709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710 GFP_KERNEL);
711 if (!newrec) {
712 ret = -ENOMEM;
713 goto out_lport_put;
714 }
715
716 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
717 if (idx < 0) {
718 ret = -ENOSPC;
719 goto out_kfree_rport;
720 }
721
722 INIT_LIST_HEAD(&newrec->endp_list);
723 INIT_LIST_HEAD(&newrec->ctrl_list);
724 INIT_LIST_HEAD(&newrec->ls_req_list);
725 INIT_LIST_HEAD(&newrec->disc_list);
726 kref_init(&newrec->ref);
727 atomic_set(&newrec->act_ctrl_cnt, 0);
728 spin_lock_init(&newrec->lock);
729 newrec->remoteport.localport = &lport->localport;
730 INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 newrec->dev = lport->dev;
732 newrec->lport = lport;
733 if (lport->ops->remote_priv_sz)
734 newrec->remoteport.private = &newrec[1];
735 else
736 newrec->remoteport.private = NULL;
737 newrec->remoteport.port_role = pinfo->port_role;
738 newrec->remoteport.node_name = pinfo->node_name;
739 newrec->remoteport.port_name = pinfo->port_name;
740 newrec->remoteport.port_id = pinfo->port_id;
741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 newrec->remoteport.port_num = idx;
743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745
746 spin_lock_irqsave(&nvme_fc_lock, flags);
747 list_add_tail(&newrec->endp_list, &lport->endp_list);
748 spin_unlock_irqrestore(&nvme_fc_lock, flags);
749
750 nvme_fc_signal_discovery_scan(lport, newrec);
751
752 *portptr = &newrec->remoteport;
753 return 0;
754
755 out_kfree_rport:
756 kfree(newrec);
757 out_lport_put:
758 nvme_fc_lport_put(lport);
759 out_reghost_failed:
760 *portptr = NULL;
761 return ret;
762 }
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764
765 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767 {
768 struct nvmefc_ls_req_op *lsop;
769 unsigned long flags;
770
771 restart:
772 spin_lock_irqsave(&rport->lock, flags);
773
774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 lsop->flags |= FCOP_FLAGS_TERMIO;
777 spin_unlock_irqrestore(&rport->lock, flags);
778 rport->lport->ops->ls_abort(&rport->lport->localport,
779 &rport->remoteport,
780 &lsop->ls_req);
781 goto restart;
782 }
783 }
784 spin_unlock_irqrestore(&rport->lock, flags);
785
786 return 0;
787 }
788
789 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791 {
792 dev_info(ctrl->ctrl.device,
793 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794 "Reconnect", ctrl->cnum);
795
796 switch (ctrl->ctrl.state) {
797 case NVME_CTRL_NEW:
798 case NVME_CTRL_LIVE:
799 /*
800 * Schedule a controller reset. The reset will terminate the
801 * association and schedule the reconnect timer. Reconnects
802 * will be attempted until either the ctlr_loss_tmo
803 * (max_retries * connect_delay) expires or the remoteport's
804 * dev_loss_tmo expires.
805 */
806 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 dev_warn(ctrl->ctrl.device,
808 "NVME-FC{%d}: Couldn't schedule reset.\n",
809 ctrl->cnum);
810 nvme_delete_ctrl(&ctrl->ctrl);
811 }
812 break;
813
814 case NVME_CTRL_CONNECTING:
815 /*
816 * The association has already been terminated and the
817 * controller is attempting reconnects. No need to do anything
818 * futher. Reconnects will be attempted until either the
819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 * remoteport's dev_loss_tmo expires.
821 */
822 break;
823
824 case NVME_CTRL_RESETTING:
825 /*
826 * Controller is already in the process of terminating the
827 * association. No need to do anything further. The reconnect
828 * step will kick in naturally after the association is
829 * terminated.
830 */
831 break;
832
833 case NVME_CTRL_DELETING:
834 case NVME_CTRL_DELETING_NOIO:
835 default:
836 /* no action to take - let it delete */
837 break;
838 }
839 }
840
841 /**
842 * nvme_fc_unregister_remoteport - transport entry point called by an
843 * LLDD to deregister/remove a previously
844 * registered a NVME subsystem FC port.
845 * @portptr: pointer to the (registered) remote port that is to be
846 * deregistered.
847 *
848 * Returns:
849 * a completion status. Must be 0 upon success; a negative errno
850 * (ex: -ENXIO) upon failure.
851 */
852 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854 {
855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 struct nvme_fc_ctrl *ctrl;
857 unsigned long flags;
858
859 if (!portptr)
860 return -EINVAL;
861
862 spin_lock_irqsave(&rport->lock, flags);
863
864 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 spin_unlock_irqrestore(&rport->lock, flags);
866 return -EINVAL;
867 }
868 portptr->port_state = FC_OBJSTATE_DELETED;
869
870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871
872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 /* if dev_loss_tmo==0, dev loss is immediate */
874 if (!portptr->dev_loss_tmo) {
875 dev_warn(ctrl->ctrl.device,
876 "NVME-FC{%d}: controller connectivity lost.\n",
877 ctrl->cnum);
878 nvme_delete_ctrl(&ctrl->ctrl);
879 } else
880 nvme_fc_ctrl_connectivity_loss(ctrl);
881 }
882
883 spin_unlock_irqrestore(&rport->lock, flags);
884
885 nvme_fc_abort_lsops(rport);
886
887 if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 rport->lport->ops->remoteport_delete(portptr);
889
890 /*
891 * release the reference, which will allow, if all controllers
892 * go away, which should only occur after dev_loss_tmo occurs,
893 * for the rport to be torn down.
894 */
895 nvme_fc_rport_put(rport);
896
897 return 0;
898 }
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900
901 /**
902 * nvme_fc_rescan_remoteport - transport entry point called by an
903 * LLDD to request a nvme device rescan.
904 * @remoteport: pointer to the (registered) remote port that is to be
905 * rescanned.
906 *
907 * Returns: N/A
908 */
909 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911 {
912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913
914 nvme_fc_signal_discovery_scan(rport->lport, rport);
915 }
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917
918 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920 u32 dev_loss_tmo)
921 {
922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923 unsigned long flags;
924
925 spin_lock_irqsave(&rport->lock, flags);
926
927 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 spin_unlock_irqrestore(&rport->lock, flags);
929 return -EINVAL;
930 }
931
932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934
935 spin_unlock_irqrestore(&rport->lock, flags);
936
937 return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940
941
942 /* *********************** FC-NVME DMA Handling **************************** */
943
944 /*
945 * The fcloop device passes in a NULL device pointer. Real LLD's will
946 * pass in a valid device pointer. If NULL is passed to the dma mapping
947 * routines, depending on the platform, it may or may not succeed, and
948 * may crash.
949 *
950 * As such:
951 * Wrapper all the dma routines and check the dev pointer.
952 *
953 * If simple mappings (return just a dma address, we'll noop them,
954 * returning a dma address of 0.
955 *
956 * On more complex mappings (dma_map_sg), a pseudo routine fills
957 * in the scatter list, setting all dma addresses to 0.
958 */
959
960 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 enum dma_data_direction dir)
963 {
964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965 }
966
967 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969 {
970 return dev ? dma_mapping_error(dev, dma_addr) : 0;
971 }
972
973 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 enum dma_data_direction dir)
976 {
977 if (dev)
978 dma_unmap_single(dev, addr, size, dir);
979 }
980
981 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 enum dma_data_direction dir)
984 {
985 if (dev)
986 dma_sync_single_for_cpu(dev, addr, size, dir);
987 }
988
989 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 enum dma_data_direction dir)
992 {
993 if (dev)
994 dma_sync_single_for_device(dev, addr, size, dir);
995 }
996
997 /* pseudo dma_map_sg call */
998 static int
fc_map_sg(struct scatterlist * sg,int nents)999 fc_map_sg(struct scatterlist *sg, int nents)
1000 {
1001 struct scatterlist *s;
1002 int i;
1003
1004 WARN_ON(nents == 0 || sg[0].length == 0);
1005
1006 for_each_sg(sg, s, nents, i) {
1007 s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 s->dma_length = s->length;
1010 #endif
1011 }
1012 return nents;
1013 }
1014
1015 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1018 {
1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020 }
1021
1022 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 enum dma_data_direction dir)
1025 {
1026 if (dev)
1027 dma_unmap_sg(dev, sg, nents, dir);
1028 }
1029
1030 /* *********************** FC-NVME LS Handling **************************** */
1031
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036
1037 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039 {
1040 struct nvme_fc_rport *rport = lsop->rport;
1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&rport->lock, flags);
1045
1046 if (!lsop->req_queued) {
1047 spin_unlock_irqrestore(&rport->lock, flags);
1048 return;
1049 }
1050
1051 list_del(&lsop->lsreq_list);
1052
1053 lsop->req_queued = false;
1054
1055 spin_unlock_irqrestore(&rport->lock, flags);
1056
1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 (lsreq->rqstlen + lsreq->rsplen),
1059 DMA_BIDIRECTIONAL);
1060
1061 nvme_fc_rport_put(rport);
1062 }
1063
1064 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 struct nvmefc_ls_req_op *lsop,
1067 void (*done)(struct nvmefc_ls_req *req, int status))
1068 {
1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 unsigned long flags;
1071 int ret = 0;
1072
1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 return -ECONNREFUSED;
1075
1076 if (!nvme_fc_rport_get(rport))
1077 return -ESHUTDOWN;
1078
1079 lsreq->done = done;
1080 lsop->rport = rport;
1081 lsop->req_queued = false;
1082 INIT_LIST_HEAD(&lsop->lsreq_list);
1083 init_completion(&lsop->ls_done);
1084
1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 lsreq->rqstlen + lsreq->rsplen,
1087 DMA_BIDIRECTIONAL);
1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089 ret = -EFAULT;
1090 goto out_putrport;
1091 }
1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093
1094 spin_lock_irqsave(&rport->lock, flags);
1095
1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097
1098 lsop->req_queued = true;
1099
1100 spin_unlock_irqrestore(&rport->lock, flags);
1101
1102 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 &rport->remoteport, lsreq);
1104 if (ret)
1105 goto out_unlink;
1106
1107 return 0;
1108
1109 out_unlink:
1110 lsop->ls_error = ret;
1111 spin_lock_irqsave(&rport->lock, flags);
1112 lsop->req_queued = false;
1113 list_del(&lsop->lsreq_list);
1114 spin_unlock_irqrestore(&rport->lock, flags);
1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 (lsreq->rqstlen + lsreq->rsplen),
1117 DMA_BIDIRECTIONAL);
1118 out_putrport:
1119 nvme_fc_rport_put(rport);
1120
1121 return ret;
1122 }
1123
1124 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126 {
1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128
1129 lsop->ls_error = status;
1130 complete(&lsop->ls_done);
1131 }
1132
1133 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135 {
1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138 int ret;
1139
1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141
1142 if (!ret) {
1143 /*
1144 * No timeout/not interruptible as we need the struct
1145 * to exist until the lldd calls us back. Thus mandate
1146 * wait until driver calls back. lldd responsible for
1147 * the timeout action
1148 */
1149 wait_for_completion(&lsop->ls_done);
1150
1151 __nvme_fc_finish_ls_req(lsop);
1152
1153 ret = lsop->ls_error;
1154 }
1155
1156 if (ret)
1157 return ret;
1158
1159 /* ACC or RJT payload ? */
1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161 return -ENXIO;
1162
1163 return 0;
1164 }
1165
1166 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 struct nvmefc_ls_req_op *lsop,
1169 void (*done)(struct nvmefc_ls_req *req, int status))
1170 {
1171 /* don't wait for completion */
1172
1173 return __nvme_fc_send_ls_req(rport, lsop, done);
1174 }
1175
1176 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 unsigned long flags;
1185 int ret, fcret = 0;
1186
1187 lsop = kzalloc((sizeof(*lsop) +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190 if (!lsop) {
1191 dev_info(ctrl->ctrl.device,
1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193 ctrl->cnum);
1194 ret = -ENOMEM;
1195 goto out_no_memory;
1196 }
1197
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 lsreq = &lsop->ls_req;
1201 if (ctrl->lport->ops->lsrqst_priv_sz)
1202 lsreq->private = &assoc_acc[1];
1203 else
1204 lsreq->private = NULL;
1205
1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 assoc_rqst->desc_list_len =
1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210 assoc_rqst->assoc_cmd.desc_tag =
1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 assoc_rqst->assoc_cmd.desc_len =
1213 fcnvme_lsdesc_len(
1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215
1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 /* Linux supports only Dynamic controllers */
1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225
1226 lsop->queue = queue;
1227 lsreq->rqstaddr = assoc_rqst;
1228 lsreq->rqstlen = sizeof(*assoc_rqst);
1229 lsreq->rspaddr = assoc_acc;
1230 lsreq->rsplen = sizeof(*assoc_acc);
1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232
1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234 if (ret)
1235 goto out_free_buffer;
1236
1237 /* process connect LS completion */
1238
1239 /* validate the ACC response */
1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241 fcret = VERR_LSACC;
1242 else if (assoc_acc->hdr.desc_list_len !=
1243 fcnvme_lsdesc_len(
1244 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 fcret = VERR_CR_ASSOC_ACC_LEN;
1246 else if (assoc_acc->hdr.rqst.desc_tag !=
1247 cpu_to_be32(FCNVME_LSDESC_RQST))
1248 fcret = VERR_LSDESC_RQST;
1249 else if (assoc_acc->hdr.rqst.desc_len !=
1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 fcret = VERR_LSDESC_RQST_LEN;
1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 fcret = VERR_CR_ASSOC;
1254 else if (assoc_acc->associd.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 fcret = VERR_ASSOC_ID;
1257 else if (assoc_acc->associd.desc_len !=
1258 fcnvme_lsdesc_len(
1259 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 fcret = VERR_ASSOC_ID_LEN;
1261 else if (assoc_acc->connectid.desc_tag !=
1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 fcret = VERR_CONN_ID;
1264 else if (assoc_acc->connectid.desc_len !=
1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 fcret = VERR_CONN_ID_LEN;
1267
1268 if (fcret) {
1269 ret = -EBADF;
1270 dev_err(ctrl->dev,
1271 "q %d Create Association LS failed: %s\n",
1272 queue->qnum, validation_errors[fcret]);
1273 } else {
1274 spin_lock_irqsave(&ctrl->lock, flags);
1275 ctrl->association_id =
1276 be64_to_cpu(assoc_acc->associd.association_id);
1277 queue->connection_id =
1278 be64_to_cpu(assoc_acc->connectid.connection_id);
1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 spin_unlock_irqrestore(&ctrl->lock, flags);
1281 }
1282
1283 out_free_buffer:
1284 kfree(lsop);
1285 out_no_memory:
1286 if (ret)
1287 dev_err(ctrl->dev,
1288 "queue %d connect admin queue failed (%d).\n",
1289 queue->qnum, ret);
1290 return ret;
1291 }
1292
1293 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 u16 qsize, u16 ersp_ratio)
1296 {
1297 struct nvmefc_ls_req_op *lsop;
1298 struct nvmefc_ls_req *lsreq;
1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 struct fcnvme_ls_cr_conn_acc *conn_acc;
1301 int ret, fcret = 0;
1302
1303 lsop = kzalloc((sizeof(*lsop) +
1304 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306 if (!lsop) {
1307 dev_info(ctrl->ctrl.device,
1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309 ctrl->cnum);
1310 ret = -ENOMEM;
1311 goto out_no_memory;
1312 }
1313
1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 lsreq = &lsop->ls_req;
1317 if (ctrl->lport->ops->lsrqst_priv_sz)
1318 lsreq->private = (void *)&conn_acc[1];
1319 else
1320 lsreq->private = NULL;
1321
1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 conn_rqst->desc_list_len = cpu_to_be32(
1324 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326
1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 conn_rqst->associd.desc_len =
1329 fcnvme_lsdesc_len(
1330 sizeof(struct fcnvme_lsdesc_assoc_id));
1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 conn_rqst->connect_cmd.desc_tag =
1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 conn_rqst->connect_cmd.desc_len =
1335 fcnvme_lsdesc_len(
1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340
1341 lsop->queue = queue;
1342 lsreq->rqstaddr = conn_rqst;
1343 lsreq->rqstlen = sizeof(*conn_rqst);
1344 lsreq->rspaddr = conn_acc;
1345 lsreq->rsplen = sizeof(*conn_acc);
1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347
1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349 if (ret)
1350 goto out_free_buffer;
1351
1352 /* process connect LS completion */
1353
1354 /* validate the ACC response */
1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356 fcret = VERR_LSACC;
1357 else if (conn_acc->hdr.desc_list_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 fcret = VERR_CR_CONN_ACC_LEN;
1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 fcret = VERR_LSDESC_RQST;
1362 else if (conn_acc->hdr.rqst.desc_len !=
1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 fcret = VERR_LSDESC_RQST_LEN;
1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 fcret = VERR_CR_CONN;
1367 else if (conn_acc->connectid.desc_tag !=
1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 fcret = VERR_CONN_ID;
1370 else if (conn_acc->connectid.desc_len !=
1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 fcret = VERR_CONN_ID_LEN;
1373
1374 if (fcret) {
1375 ret = -EBADF;
1376 dev_err(ctrl->dev,
1377 "q %d Create I/O Connection LS failed: %s\n",
1378 queue->qnum, validation_errors[fcret]);
1379 } else {
1380 queue->connection_id =
1381 be64_to_cpu(conn_acc->connectid.connection_id);
1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383 }
1384
1385 out_free_buffer:
1386 kfree(lsop);
1387 out_no_memory:
1388 if (ret)
1389 dev_err(ctrl->dev,
1390 "queue %d connect I/O queue failed (%d).\n",
1391 queue->qnum, ret);
1392 return ret;
1393 }
1394
1395 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397 {
1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399
1400 __nvme_fc_finish_ls_req(lsop);
1401
1402 /* fc-nvme initiator doesn't care about success or failure of cmd */
1403
1404 kfree(lsop);
1405 }
1406
1407 /*
1408 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409 * the FC-NVME Association. Terminating the association also
1410 * terminates the FC-NVME connections (per queue, both admin and io
1411 * queues) that are part of the association. E.g. things are torn
1412 * down, and the related FC-NVME Association ID and Connection IDs
1413 * become invalid.
1414 *
1415 * The behavior of the fc-nvme initiator is such that it's
1416 * understanding of the association and connections will implicitly
1417 * be torn down. The action is implicit as it may be due to a loss of
1418 * connectivity with the fc-nvme target, so you may never get a
1419 * response even if you tried. As such, the action of this routine
1420 * is to asynchronously send the LS, ignore any results of the LS, and
1421 * continue on with terminating the association. If the fc-nvme target
1422 * is present and receives the LS, it too can tear down.
1423 */
1424 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426 {
1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 struct nvmefc_ls_req_op *lsop;
1430 struct nvmefc_ls_req *lsreq;
1431 int ret;
1432
1433 lsop = kzalloc((sizeof(*lsop) +
1434 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436 if (!lsop) {
1437 dev_info(ctrl->ctrl.device,
1438 "NVME-FC{%d}: send Disconnect Association "
1439 "failed: ENOMEM\n",
1440 ctrl->cnum);
1441 return;
1442 }
1443
1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 lsreq = &lsop->ls_req;
1447 if (ctrl->lport->ops->lsrqst_priv_sz)
1448 lsreq->private = (void *)&discon_acc[1];
1449 else
1450 lsreq->private = NULL;
1451
1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 ctrl->association_id);
1454
1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 nvme_fc_disconnect_assoc_done);
1457 if (ret)
1458 kfree(lsop);
1459 }
1460
1461 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463 {
1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 struct nvme_fc_rport *rport = lsop->rport;
1466 struct nvme_fc_lport *lport = rport->lport;
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&rport->lock, flags);
1470 list_del(&lsop->lsrcv_list);
1471 spin_unlock_irqrestore(&rport->lock, flags);
1472
1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477
1478 kfree(lsop->rspbuf);
1479 kfree(lsop->rqstbuf);
1480 kfree(lsop);
1481
1482 nvme_fc_rport_put(rport);
1483 }
1484
1485 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1486 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1487 {
1488 struct nvme_fc_rport *rport = lsop->rport;
1489 struct nvme_fc_lport *lport = rport->lport;
1490 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1491 int ret;
1492
1493 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1494 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1495
1496 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1497 lsop->lsrsp);
1498 if (ret) {
1499 dev_warn(lport->dev,
1500 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1501 w0->ls_cmd, ret);
1502 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1503 return;
1504 }
1505 }
1506
1507 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1508 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1509 struct nvmefc_ls_rcv_op *lsop)
1510 {
1511 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1512 &lsop->rqstbuf->rq_dis_assoc;
1513 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1514 struct nvmefc_ls_rcv_op *oldls = NULL;
1515 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1516 unsigned long flags;
1517
1518 spin_lock_irqsave(&rport->lock, flags);
1519
1520 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1521 if (!nvme_fc_ctrl_get(ctrl))
1522 continue;
1523 spin_lock(&ctrl->lock);
1524 if (association_id == ctrl->association_id) {
1525 oldls = ctrl->rcv_disconn;
1526 ctrl->rcv_disconn = lsop;
1527 ret = ctrl;
1528 }
1529 spin_unlock(&ctrl->lock);
1530 if (ret)
1531 /* leave the ctrl get reference */
1532 break;
1533 nvme_fc_ctrl_put(ctrl);
1534 }
1535
1536 spin_unlock_irqrestore(&rport->lock, flags);
1537
1538 /* transmit a response for anything that was pending */
1539 if (oldls) {
1540 dev_info(rport->lport->dev,
1541 "NVME-FC{%d}: Multiple Disconnect Association "
1542 "LS's received\n", ctrl->cnum);
1543 /* overwrite good response with bogus failure */
1544 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1545 sizeof(*oldls->rspbuf),
1546 rqst->w0.ls_cmd,
1547 FCNVME_RJT_RC_UNAB,
1548 FCNVME_RJT_EXP_NONE, 0);
1549 nvme_fc_xmt_ls_rsp(oldls);
1550 }
1551
1552 return ret;
1553 }
1554
1555 /*
1556 * returns true to mean LS handled and ls_rsp can be sent
1557 * returns false to defer ls_rsp xmt (will be done as part of
1558 * association termination)
1559 */
1560 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1561 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1562 {
1563 struct nvme_fc_rport *rport = lsop->rport;
1564 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1565 &lsop->rqstbuf->rq_dis_assoc;
1566 struct fcnvme_ls_disconnect_assoc_acc *acc =
1567 &lsop->rspbuf->rsp_dis_assoc;
1568 struct nvme_fc_ctrl *ctrl = NULL;
1569 int ret = 0;
1570
1571 memset(acc, 0, sizeof(*acc));
1572
1573 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1574 if (!ret) {
1575 /* match an active association */
1576 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1577 if (!ctrl)
1578 ret = VERR_NO_ASSOC;
1579 }
1580
1581 if (ret) {
1582 dev_info(rport->lport->dev,
1583 "Disconnect LS failed: %s\n",
1584 validation_errors[ret]);
1585 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1586 sizeof(*acc), rqst->w0.ls_cmd,
1587 (ret == VERR_NO_ASSOC) ?
1588 FCNVME_RJT_RC_INV_ASSOC :
1589 FCNVME_RJT_RC_LOGIC,
1590 FCNVME_RJT_EXP_NONE, 0);
1591 return true;
1592 }
1593
1594 /* format an ACCept response */
1595
1596 lsop->lsrsp->rsplen = sizeof(*acc);
1597
1598 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1599 fcnvme_lsdesc_len(
1600 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1601 FCNVME_LS_DISCONNECT_ASSOC);
1602
1603 /*
1604 * the transmit of the response will occur after the exchanges
1605 * for the association have been ABTS'd by
1606 * nvme_fc_delete_association().
1607 */
1608
1609 /* fail the association */
1610 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1611
1612 /* release the reference taken by nvme_fc_match_disconn_ls() */
1613 nvme_fc_ctrl_put(ctrl);
1614
1615 return false;
1616 }
1617
1618 /*
1619 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1620 * returns true if a response should be sent afterward, false if rsp will
1621 * be sent asynchronously.
1622 */
1623 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1624 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1625 {
1626 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1627 bool ret = true;
1628
1629 lsop->lsrsp->nvme_fc_private = lsop;
1630 lsop->lsrsp->rspbuf = lsop->rspbuf;
1631 lsop->lsrsp->rspdma = lsop->rspdma;
1632 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1633 /* Be preventative. handlers will later set to valid length */
1634 lsop->lsrsp->rsplen = 0;
1635
1636 /*
1637 * handlers:
1638 * parse request input, execute the request, and format the
1639 * LS response
1640 */
1641 switch (w0->ls_cmd) {
1642 case FCNVME_LS_DISCONNECT_ASSOC:
1643 ret = nvme_fc_ls_disconnect_assoc(lsop);
1644 break;
1645 case FCNVME_LS_DISCONNECT_CONN:
1646 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1647 sizeof(*lsop->rspbuf), w0->ls_cmd,
1648 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1649 break;
1650 case FCNVME_LS_CREATE_ASSOCIATION:
1651 case FCNVME_LS_CREATE_CONNECTION:
1652 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1653 sizeof(*lsop->rspbuf), w0->ls_cmd,
1654 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1655 break;
1656 default:
1657 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1658 sizeof(*lsop->rspbuf), w0->ls_cmd,
1659 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1660 break;
1661 }
1662
1663 return(ret);
1664 }
1665
1666 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1667 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1668 {
1669 struct nvme_fc_rport *rport =
1670 container_of(work, struct nvme_fc_rport, lsrcv_work);
1671 struct fcnvme_ls_rqst_w0 *w0;
1672 struct nvmefc_ls_rcv_op *lsop;
1673 unsigned long flags;
1674 bool sendrsp;
1675
1676 restart:
1677 sendrsp = true;
1678 spin_lock_irqsave(&rport->lock, flags);
1679 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1680 if (lsop->handled)
1681 continue;
1682
1683 lsop->handled = true;
1684 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1685 spin_unlock_irqrestore(&rport->lock, flags);
1686 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1687 } else {
1688 spin_unlock_irqrestore(&rport->lock, flags);
1689 w0 = &lsop->rqstbuf->w0;
1690 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1691 lsop->rspbuf,
1692 sizeof(*lsop->rspbuf),
1693 w0->ls_cmd,
1694 FCNVME_RJT_RC_UNAB,
1695 FCNVME_RJT_EXP_NONE, 0);
1696 }
1697 if (sendrsp)
1698 nvme_fc_xmt_ls_rsp(lsop);
1699 goto restart;
1700 }
1701 spin_unlock_irqrestore(&rport->lock, flags);
1702 }
1703
1704 static
nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport * lport,struct fcnvme_ls_rqst_w0 * w0)1705 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1706 struct fcnvme_ls_rqst_w0 *w0)
1707 {
1708 dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1709 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1710 nvmefc_ls_names[w0->ls_cmd] : "");
1711 }
1712
1713 /**
1714 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1715 * upon the reception of a NVME LS request.
1716 *
1717 * The nvme-fc layer will copy payload to an internal structure for
1718 * processing. As such, upon completion of the routine, the LLDD may
1719 * immediately free/reuse the LS request buffer passed in the call.
1720 *
1721 * If this routine returns error, the LLDD should abort the exchange.
1722 *
1723 * @portptr: pointer to the (registered) remote port that the LS
1724 * was received from. The remoteport is associated with
1725 * a specific localport.
1726 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1727 * used to reference the exchange corresponding to the LS
1728 * when issuing an ls response.
1729 * @lsreqbuf: pointer to the buffer containing the LS Request
1730 * @lsreqbuf_len: length, in bytes, of the received LS request
1731 */
1732 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1733 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1734 struct nvmefc_ls_rsp *lsrsp,
1735 void *lsreqbuf, u32 lsreqbuf_len)
1736 {
1737 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1738 struct nvme_fc_lport *lport = rport->lport;
1739 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1740 struct nvmefc_ls_rcv_op *lsop;
1741 unsigned long flags;
1742 int ret;
1743
1744 nvme_fc_rport_get(rport);
1745
1746 /* validate there's a routine to transmit a response */
1747 if (!lport->ops->xmt_ls_rsp) {
1748 dev_info(lport->dev,
1749 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1750 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1751 nvmefc_ls_names[w0->ls_cmd] : "");
1752 ret = -EINVAL;
1753 goto out_put;
1754 }
1755
1756 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1757 dev_info(lport->dev,
1758 "RCV %s LS failed: payload too large\n",
1759 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1760 nvmefc_ls_names[w0->ls_cmd] : "");
1761 ret = -E2BIG;
1762 goto out_put;
1763 }
1764
1765 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1766 if (!lsop) {
1767 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1768 ret = -ENOMEM;
1769 goto out_put;
1770 }
1771
1772 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1773 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1774 if (!lsop->rqstbuf || !lsop->rspbuf) {
1775 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1776 ret = -ENOMEM;
1777 goto out_free;
1778 }
1779
1780 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1781 sizeof(*lsop->rspbuf),
1782 DMA_TO_DEVICE);
1783 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1784 dev_info(lport->dev,
1785 "RCV %s LS failed: DMA mapping failure\n",
1786 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1787 nvmefc_ls_names[w0->ls_cmd] : "");
1788 ret = -EFAULT;
1789 goto out_free;
1790 }
1791
1792 lsop->rport = rport;
1793 lsop->lsrsp = lsrsp;
1794
1795 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1796 lsop->rqstdatalen = lsreqbuf_len;
1797
1798 spin_lock_irqsave(&rport->lock, flags);
1799 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1800 spin_unlock_irqrestore(&rport->lock, flags);
1801 ret = -ENOTCONN;
1802 goto out_unmap;
1803 }
1804 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1805 spin_unlock_irqrestore(&rport->lock, flags);
1806
1807 schedule_work(&rport->lsrcv_work);
1808
1809 return 0;
1810
1811 out_unmap:
1812 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1813 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1814 out_free:
1815 kfree(lsop->rspbuf);
1816 kfree(lsop->rqstbuf);
1817 kfree(lsop);
1818 out_put:
1819 nvme_fc_rport_put(rport);
1820 return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1823
1824
1825 /* *********************** NVME Ctrl Routines **************************** */
1826
1827 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1828 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1829 struct nvme_fc_fcp_op *op)
1830 {
1831 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1832 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1833 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1834 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1835
1836 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1837 }
1838
1839 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1840 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1841 unsigned int hctx_idx)
1842 {
1843 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1844
1845 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1846 }
1847
1848 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1849 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1850 {
1851 unsigned long flags;
1852 int opstate;
1853
1854 spin_lock_irqsave(&ctrl->lock, flags);
1855 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1856 if (opstate != FCPOP_STATE_ACTIVE)
1857 atomic_set(&op->state, opstate);
1858 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1859 op->flags |= FCOP_FLAGS_TERMIO;
1860 ctrl->iocnt++;
1861 }
1862 spin_unlock_irqrestore(&ctrl->lock, flags);
1863
1864 if (opstate != FCPOP_STATE_ACTIVE)
1865 return -ECANCELED;
1866
1867 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1868 &ctrl->rport->remoteport,
1869 op->queue->lldd_handle,
1870 &op->fcp_req);
1871
1872 return 0;
1873 }
1874
1875 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1876 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1877 {
1878 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1879 int i;
1880
1881 /* ensure we've initialized the ops once */
1882 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1883 return;
1884
1885 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1886 __nvme_fc_abort_op(ctrl, aen_op);
1887 }
1888
1889 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1890 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1891 struct nvme_fc_fcp_op *op, int opstate)
1892 {
1893 unsigned long flags;
1894
1895 if (opstate == FCPOP_STATE_ABORTED) {
1896 spin_lock_irqsave(&ctrl->lock, flags);
1897 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1898 op->flags & FCOP_FLAGS_TERMIO) {
1899 if (!--ctrl->iocnt)
1900 wake_up(&ctrl->ioabort_wait);
1901 }
1902 spin_unlock_irqrestore(&ctrl->lock, flags);
1903 }
1904 }
1905
1906 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1907 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1908 {
1909 struct nvme_fc_ctrl *ctrl =
1910 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1911
1912 nvme_fc_error_recovery(ctrl, "transport detected io error");
1913 }
1914
1915 /*
1916 * nvme_fc_io_getuuid - Routine called to get the appid field
1917 * associated with request by the lldd
1918 * @req:IO request from nvme fc to driver
1919 * Returns: UUID if there is an appid associated with VM or
1920 * NULL if the user/libvirt has not set the appid to VM
1921 */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1922 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1923 {
1924 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1925 struct request *rq = op->rq;
1926
1927 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1928 return NULL;
1929 return blkcg_get_fc_appid(rq->bio);
1930 }
1931 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1932
1933 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1934 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1935 {
1936 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1937 struct request *rq = op->rq;
1938 struct nvmefc_fcp_req *freq = &op->fcp_req;
1939 struct nvme_fc_ctrl *ctrl = op->ctrl;
1940 struct nvme_fc_queue *queue = op->queue;
1941 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1942 struct nvme_command *sqe = &op->cmd_iu.sqe;
1943 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1944 union nvme_result result;
1945 bool terminate_assoc = true;
1946 int opstate;
1947
1948 /*
1949 * WARNING:
1950 * The current linux implementation of a nvme controller
1951 * allocates a single tag set for all io queues and sizes
1952 * the io queues to fully hold all possible tags. Thus, the
1953 * implementation does not reference or care about the sqhd
1954 * value as it never needs to use the sqhd/sqtail pointers
1955 * for submission pacing.
1956 *
1957 * This affects the FC-NVME implementation in two ways:
1958 * 1) As the value doesn't matter, we don't need to waste
1959 * cycles extracting it from ERSPs and stamping it in the
1960 * cases where the transport fabricates CQEs on successful
1961 * completions.
1962 * 2) The FC-NVME implementation requires that delivery of
1963 * ERSP completions are to go back to the nvme layer in order
1964 * relative to the rsn, such that the sqhd value will always
1965 * be "in order" for the nvme layer. As the nvme layer in
1966 * linux doesn't care about sqhd, there's no need to return
1967 * them in order.
1968 *
1969 * Additionally:
1970 * As the core nvme layer in linux currently does not look at
1971 * every field in the cqe - in cases where the FC transport must
1972 * fabricate a CQE, the following fields will not be set as they
1973 * are not referenced:
1974 * cqe.sqid, cqe.sqhd, cqe.command_id
1975 *
1976 * Failure or error of an individual i/o, in a transport
1977 * detected fashion unrelated to the nvme completion status,
1978 * potentially cause the initiator and target sides to get out
1979 * of sync on SQ head/tail (aka outstanding io count allowed).
1980 * Per FC-NVME spec, failure of an individual command requires
1981 * the connection to be terminated, which in turn requires the
1982 * association to be terminated.
1983 */
1984
1985 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1986
1987 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1988 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1989
1990 if (opstate == FCPOP_STATE_ABORTED)
1991 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1992 else if (freq->status) {
1993 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994 dev_info(ctrl->ctrl.device,
1995 "NVME-FC{%d}: io failed due to lldd error %d\n",
1996 ctrl->cnum, freq->status);
1997 }
1998
1999 /*
2000 * For the linux implementation, if we have an unsuccesful
2001 * status, they blk-mq layer can typically be called with the
2002 * non-zero status and the content of the cqe isn't important.
2003 */
2004 if (status)
2005 goto done;
2006
2007 /*
2008 * command completed successfully relative to the wire
2009 * protocol. However, validate anything received and
2010 * extract the status and result from the cqe (create it
2011 * where necessary).
2012 */
2013
2014 switch (freq->rcv_rsplen) {
2015
2016 case 0:
2017 case NVME_FC_SIZEOF_ZEROS_RSP:
2018 /*
2019 * No response payload or 12 bytes of payload (which
2020 * should all be zeros) are considered successful and
2021 * no payload in the CQE by the transport.
2022 */
2023 if (freq->transferred_length !=
2024 be32_to_cpu(op->cmd_iu.data_len)) {
2025 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2026 dev_info(ctrl->ctrl.device,
2027 "NVME-FC{%d}: io failed due to bad transfer "
2028 "length: %d vs expected %d\n",
2029 ctrl->cnum, freq->transferred_length,
2030 be32_to_cpu(op->cmd_iu.data_len));
2031 goto done;
2032 }
2033 result.u64 = 0;
2034 break;
2035
2036 case sizeof(struct nvme_fc_ersp_iu):
2037 /*
2038 * The ERSP IU contains a full completion with CQE.
2039 * Validate ERSP IU and look at cqe.
2040 */
2041 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2042 (freq->rcv_rsplen / 4) ||
2043 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2044 freq->transferred_length ||
2045 op->rsp_iu.ersp_result ||
2046 sqe->common.command_id != cqe->command_id)) {
2047 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2048 dev_info(ctrl->ctrl.device,
2049 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2050 "iu len %d, xfr len %d vs %d, status code "
2051 "%d, cmdid %d vs %d\n",
2052 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2053 be32_to_cpu(op->rsp_iu.xfrd_len),
2054 freq->transferred_length,
2055 op->rsp_iu.ersp_result,
2056 sqe->common.command_id,
2057 cqe->command_id);
2058 goto done;
2059 }
2060 result = cqe->result;
2061 status = cqe->status;
2062 break;
2063
2064 default:
2065 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2066 dev_info(ctrl->ctrl.device,
2067 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2068 "len %d\n",
2069 ctrl->cnum, freq->rcv_rsplen);
2070 goto done;
2071 }
2072
2073 terminate_assoc = false;
2074
2075 done:
2076 if (op->flags & FCOP_FLAGS_AEN) {
2077 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2078 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2079 atomic_set(&op->state, FCPOP_STATE_IDLE);
2080 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2081 nvme_fc_ctrl_put(ctrl);
2082 goto check_error;
2083 }
2084
2085 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2086 if (!nvme_try_complete_req(rq, status, result))
2087 nvme_fc_complete_rq(rq);
2088
2089 check_error:
2090 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2091 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2092 }
2093
2094 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2095 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2096 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2097 struct request *rq, u32 rqno)
2098 {
2099 struct nvme_fcp_op_w_sgl *op_w_sgl =
2100 container_of(op, typeof(*op_w_sgl), op);
2101 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2102 int ret = 0;
2103
2104 memset(op, 0, sizeof(*op));
2105 op->fcp_req.cmdaddr = &op->cmd_iu;
2106 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2107 op->fcp_req.rspaddr = &op->rsp_iu;
2108 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2109 op->fcp_req.done = nvme_fc_fcpio_done;
2110 op->ctrl = ctrl;
2111 op->queue = queue;
2112 op->rq = rq;
2113 op->rqno = rqno;
2114
2115 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2116 cmdiu->fc_id = NVME_CMD_FC_ID;
2117 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2118 if (queue->qnum)
2119 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2120 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2121 else
2122 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2123
2124 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2125 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2126 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2127 dev_err(ctrl->dev,
2128 "FCP Op failed - cmdiu dma mapping failed.\n");
2129 ret = -EFAULT;
2130 goto out_on_error;
2131 }
2132
2133 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2134 &op->rsp_iu, sizeof(op->rsp_iu),
2135 DMA_FROM_DEVICE);
2136 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2137 dev_err(ctrl->dev,
2138 "FCP Op failed - rspiu dma mapping failed.\n");
2139 ret = -EFAULT;
2140 }
2141
2142 atomic_set(&op->state, FCPOP_STATE_IDLE);
2143 out_on_error:
2144 return ret;
2145 }
2146
2147 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2148 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2149 unsigned int hctx_idx, unsigned int numa_node)
2150 {
2151 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2152 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2153 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2154 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2155 int res;
2156
2157 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2158 if (res)
2159 return res;
2160 op->op.fcp_req.first_sgl = op->sgl;
2161 op->op.fcp_req.private = &op->priv[0];
2162 nvme_req(rq)->ctrl = &ctrl->ctrl;
2163 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2164 return res;
2165 }
2166
2167 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2168 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2169 {
2170 struct nvme_fc_fcp_op *aen_op;
2171 struct nvme_fc_cmd_iu *cmdiu;
2172 struct nvme_command *sqe;
2173 void *private = NULL;
2174 int i, ret;
2175
2176 aen_op = ctrl->aen_ops;
2177 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2178 if (ctrl->lport->ops->fcprqst_priv_sz) {
2179 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2180 GFP_KERNEL);
2181 if (!private)
2182 return -ENOMEM;
2183 }
2184
2185 cmdiu = &aen_op->cmd_iu;
2186 sqe = &cmdiu->sqe;
2187 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2188 aen_op, (struct request *)NULL,
2189 (NVME_AQ_BLK_MQ_DEPTH + i));
2190 if (ret) {
2191 kfree(private);
2192 return ret;
2193 }
2194
2195 aen_op->flags = FCOP_FLAGS_AEN;
2196 aen_op->fcp_req.private = private;
2197
2198 memset(sqe, 0, sizeof(*sqe));
2199 sqe->common.opcode = nvme_admin_async_event;
2200 /* Note: core layer may overwrite the sqe.command_id value */
2201 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2202 }
2203 return 0;
2204 }
2205
2206 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2207 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2208 {
2209 struct nvme_fc_fcp_op *aen_op;
2210 int i;
2211
2212 cancel_work_sync(&ctrl->ctrl.async_event_work);
2213 aen_op = ctrl->aen_ops;
2214 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2215 __nvme_fc_exit_request(ctrl, aen_op);
2216
2217 kfree(aen_op->fcp_req.private);
2218 aen_op->fcp_req.private = NULL;
2219 }
2220 }
2221
2222 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2223 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2224 {
2225 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2226 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2227
2228 hctx->driver_data = queue;
2229 queue->hctx = hctx;
2230 return 0;
2231 }
2232
2233 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2234 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2235 {
2236 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2237 }
2238
2239 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2240 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2241 unsigned int hctx_idx)
2242 {
2243 return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2244 }
2245
2246 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2247 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2248 {
2249 struct nvme_fc_queue *queue;
2250
2251 queue = &ctrl->queues[idx];
2252 memset(queue, 0, sizeof(*queue));
2253 queue->ctrl = ctrl;
2254 queue->qnum = idx;
2255 atomic_set(&queue->csn, 0);
2256 queue->dev = ctrl->dev;
2257
2258 if (idx > 0)
2259 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2260 else
2261 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2262
2263 /*
2264 * Considered whether we should allocate buffers for all SQEs
2265 * and CQEs and dma map them - mapping their respective entries
2266 * into the request structures (kernel vm addr and dma address)
2267 * thus the driver could use the buffers/mappings directly.
2268 * It only makes sense if the LLDD would use them for its
2269 * messaging api. It's very unlikely most adapter api's would use
2270 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2271 * structures were used instead.
2272 */
2273 }
2274
2275 /*
2276 * This routine terminates a queue at the transport level.
2277 * The transport has already ensured that all outstanding ios on
2278 * the queue have been terminated.
2279 * The transport will send a Disconnect LS request to terminate
2280 * the queue's connection. Termination of the admin queue will also
2281 * terminate the association at the target.
2282 */
2283 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2284 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2285 {
2286 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2287 return;
2288
2289 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2290 /*
2291 * Current implementation never disconnects a single queue.
2292 * It always terminates a whole association. So there is never
2293 * a disconnect(queue) LS sent to the target.
2294 */
2295
2296 queue->connection_id = 0;
2297 atomic_set(&queue->csn, 0);
2298 }
2299
2300 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2301 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2302 struct nvme_fc_queue *queue, unsigned int qidx)
2303 {
2304 if (ctrl->lport->ops->delete_queue)
2305 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2306 queue->lldd_handle);
2307 queue->lldd_handle = NULL;
2308 }
2309
2310 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2311 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2312 {
2313 int i;
2314
2315 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2316 nvme_fc_free_queue(&ctrl->queues[i]);
2317 }
2318
2319 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2320 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2321 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2322 {
2323 int ret = 0;
2324
2325 queue->lldd_handle = NULL;
2326 if (ctrl->lport->ops->create_queue)
2327 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2328 qidx, qsize, &queue->lldd_handle);
2329
2330 return ret;
2331 }
2332
2333 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2334 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2335 {
2336 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2337 int i;
2338
2339 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2340 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2341 }
2342
2343 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2344 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2345 {
2346 struct nvme_fc_queue *queue = &ctrl->queues[1];
2347 int i, ret;
2348
2349 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2350 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2351 if (ret)
2352 goto delete_queues;
2353 }
2354
2355 return 0;
2356
2357 delete_queues:
2358 for (; i > 0; i--)
2359 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2360 return ret;
2361 }
2362
2363 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2364 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2365 {
2366 int i, ret = 0;
2367
2368 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2369 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2370 (qsize / 5));
2371 if (ret)
2372 break;
2373 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2374 if (ret)
2375 break;
2376
2377 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2378 }
2379
2380 return ret;
2381 }
2382
2383 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2384 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2385 {
2386 int i;
2387
2388 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2389 nvme_fc_init_queue(ctrl, i);
2390 }
2391
2392 static void
nvme_fc_ctrl_free(struct kref * ref)2393 nvme_fc_ctrl_free(struct kref *ref)
2394 {
2395 struct nvme_fc_ctrl *ctrl =
2396 container_of(ref, struct nvme_fc_ctrl, ref);
2397 unsigned long flags;
2398
2399 if (ctrl->ctrl.tagset)
2400 nvme_remove_io_tag_set(&ctrl->ctrl);
2401
2402 /* remove from rport list */
2403 spin_lock_irqsave(&ctrl->rport->lock, flags);
2404 list_del(&ctrl->ctrl_list);
2405 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2406
2407 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2408 nvme_remove_admin_tag_set(&ctrl->ctrl);
2409
2410 kfree(ctrl->queues);
2411
2412 put_device(ctrl->dev);
2413 nvme_fc_rport_put(ctrl->rport);
2414
2415 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2416 if (ctrl->ctrl.opts)
2417 nvmf_free_options(ctrl->ctrl.opts);
2418 kfree(ctrl);
2419 }
2420
2421 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2422 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2423 {
2424 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2425 }
2426
2427 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2428 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2429 {
2430 return kref_get_unless_zero(&ctrl->ref);
2431 }
2432
2433 /*
2434 * All accesses from nvme core layer done - can now free the
2435 * controller. Called after last nvme_put_ctrl() call
2436 */
2437 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2438 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2439 {
2440 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2441
2442 WARN_ON(nctrl != &ctrl->ctrl);
2443
2444 nvme_fc_ctrl_put(ctrl);
2445 }
2446
2447 /*
2448 * This routine is used by the transport when it needs to find active
2449 * io on a queue that is to be terminated. The transport uses
2450 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2451 * this routine to kill them on a 1 by 1 basis.
2452 *
2453 * As FC allocates FC exchange for each io, the transport must contact
2454 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2455 * After terminating the exchange the LLDD will call the transport's
2456 * normal io done path for the request, but it will have an aborted
2457 * status. The done path will return the io request back to the block
2458 * layer with an error status.
2459 */
nvme_fc_terminate_exchange(struct request * req,void * data)2460 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2461 {
2462 struct nvme_ctrl *nctrl = data;
2463 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2464 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2465
2466 op->nreq.flags |= NVME_REQ_CANCELLED;
2467 __nvme_fc_abort_op(ctrl, op);
2468 return true;
2469 }
2470
2471 /*
2472 * This routine runs through all outstanding commands on the association
2473 * and aborts them. This routine is typically be called by the
2474 * delete_association routine. It is also called due to an error during
2475 * reconnect. In that scenario, it is most likely a command that initializes
2476 * the controller, including fabric Connect commands on io queues, that
2477 * may have timed out or failed thus the io must be killed for the connect
2478 * thread to see the error.
2479 */
2480 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2481 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2482 {
2483 int q;
2484
2485 /*
2486 * if aborting io, the queues are no longer good, mark them
2487 * all as not live.
2488 */
2489 if (ctrl->ctrl.queue_count > 1) {
2490 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2491 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2492 }
2493 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2494
2495 /*
2496 * If io queues are present, stop them and terminate all outstanding
2497 * ios on them. As FC allocates FC exchange for each io, the
2498 * transport must contact the LLDD to terminate the exchange,
2499 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2500 * to tell us what io's are busy and invoke a transport routine
2501 * to kill them with the LLDD. After terminating the exchange
2502 * the LLDD will call the transport's normal io done path, but it
2503 * will have an aborted status. The done path will return the
2504 * io requests back to the block layer as part of normal completions
2505 * (but with error status).
2506 */
2507 if (ctrl->ctrl.queue_count > 1) {
2508 nvme_quiesce_io_queues(&ctrl->ctrl);
2509 nvme_sync_io_queues(&ctrl->ctrl);
2510 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2511 nvme_fc_terminate_exchange, &ctrl->ctrl);
2512 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2513 if (start_queues)
2514 nvme_unquiesce_io_queues(&ctrl->ctrl);
2515 }
2516
2517 /*
2518 * Other transports, which don't have link-level contexts bound
2519 * to sqe's, would try to gracefully shutdown the controller by
2520 * writing the registers for shutdown and polling (call
2521 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2522 * just aborted and we will wait on those contexts, and given
2523 * there was no indication of how live the controlelr is on the
2524 * link, don't send more io to create more contexts for the
2525 * shutdown. Let the controller fail via keepalive failure if
2526 * its still present.
2527 */
2528
2529 /*
2530 * clean up the admin queue. Same thing as above.
2531 */
2532 nvme_quiesce_admin_queue(&ctrl->ctrl);
2533 blk_sync_queue(ctrl->ctrl.admin_q);
2534 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2535 nvme_fc_terminate_exchange, &ctrl->ctrl);
2536 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2537 if (start_queues)
2538 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2539 }
2540
2541 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2542 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2543 {
2544 /*
2545 * if an error (io timeout, etc) while (re)connecting, the remote
2546 * port requested terminating of the association (disconnect_ls)
2547 * or an error (timeout or abort) occurred on an io while creating
2548 * the controller. Abort any ios on the association and let the
2549 * create_association error path resolve things.
2550 */
2551 enum nvme_ctrl_state state;
2552 unsigned long flags;
2553
2554 spin_lock_irqsave(&ctrl->lock, flags);
2555 state = ctrl->ctrl.state;
2556 if (state == NVME_CTRL_CONNECTING) {
2557 set_bit(ASSOC_FAILED, &ctrl->flags);
2558 spin_unlock_irqrestore(&ctrl->lock, flags);
2559 __nvme_fc_abort_outstanding_ios(ctrl, true);
2560 dev_warn(ctrl->ctrl.device,
2561 "NVME-FC{%d}: transport error during (re)connect\n",
2562 ctrl->cnum);
2563 return;
2564 }
2565 spin_unlock_irqrestore(&ctrl->lock, flags);
2566
2567 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2568 if (state != NVME_CTRL_LIVE)
2569 return;
2570
2571 dev_warn(ctrl->ctrl.device,
2572 "NVME-FC{%d}: transport association event: %s\n",
2573 ctrl->cnum, errmsg);
2574 dev_warn(ctrl->ctrl.device,
2575 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2576
2577 nvme_reset_ctrl(&ctrl->ctrl);
2578 }
2579
nvme_fc_timeout(struct request * rq)2580 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2581 {
2582 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2583 struct nvme_fc_ctrl *ctrl = op->ctrl;
2584 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2585 struct nvme_command *sqe = &cmdiu->sqe;
2586
2587 /*
2588 * Attempt to abort the offending command. Command completion
2589 * will detect the aborted io and will fail the connection.
2590 */
2591 dev_info(ctrl->ctrl.device,
2592 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2593 "x%08x/x%08x\n",
2594 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2595 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2596 if (__nvme_fc_abort_op(ctrl, op))
2597 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2598
2599 /*
2600 * the io abort has been initiated. Have the reset timer
2601 * restarted and the abort completion will complete the io
2602 * shortly. Avoids a synchronous wait while the abort finishes.
2603 */
2604 return BLK_EH_RESET_TIMER;
2605 }
2606
2607 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2608 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2609 struct nvme_fc_fcp_op *op)
2610 {
2611 struct nvmefc_fcp_req *freq = &op->fcp_req;
2612 int ret;
2613
2614 freq->sg_cnt = 0;
2615
2616 if (!blk_rq_nr_phys_segments(rq))
2617 return 0;
2618
2619 freq->sg_table.sgl = freq->first_sgl;
2620 ret = sg_alloc_table_chained(&freq->sg_table,
2621 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2622 NVME_INLINE_SG_CNT);
2623 if (ret)
2624 return -ENOMEM;
2625
2626 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2627 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2628 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2629 op->nents, rq_dma_dir(rq));
2630 if (unlikely(freq->sg_cnt <= 0)) {
2631 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2632 freq->sg_cnt = 0;
2633 return -EFAULT;
2634 }
2635
2636 /*
2637 * TODO: blk_integrity_rq(rq) for DIF
2638 */
2639 return 0;
2640 }
2641
2642 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2643 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2644 struct nvme_fc_fcp_op *op)
2645 {
2646 struct nvmefc_fcp_req *freq = &op->fcp_req;
2647
2648 if (!freq->sg_cnt)
2649 return;
2650
2651 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2652 rq_dma_dir(rq));
2653
2654 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2655
2656 freq->sg_cnt = 0;
2657 }
2658
2659 /*
2660 * In FC, the queue is a logical thing. At transport connect, the target
2661 * creates its "queue" and returns a handle that is to be given to the
2662 * target whenever it posts something to the corresponding SQ. When an
2663 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2664 * command contained within the SQE, an io, and assigns a FC exchange
2665 * to it. The SQE and the associated SQ handle are sent in the initial
2666 * CMD IU sents on the exchange. All transfers relative to the io occur
2667 * as part of the exchange. The CQE is the last thing for the io,
2668 * which is transferred (explicitly or implicitly) with the RSP IU
2669 * sent on the exchange. After the CQE is received, the FC exchange is
2670 * terminaed and the Exchange may be used on a different io.
2671 *
2672 * The transport to LLDD api has the transport making a request for a
2673 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2674 * resource and transfers the command. The LLDD will then process all
2675 * steps to complete the io. Upon completion, the transport done routine
2676 * is called.
2677 *
2678 * So - while the operation is outstanding to the LLDD, there is a link
2679 * level FC exchange resource that is also outstanding. This must be
2680 * considered in all cleanup operations.
2681 */
2682 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2683 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2684 struct nvme_fc_fcp_op *op, u32 data_len,
2685 enum nvmefc_fcp_datadir io_dir)
2686 {
2687 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2688 struct nvme_command *sqe = &cmdiu->sqe;
2689 int ret, opstate;
2690
2691 /*
2692 * before attempting to send the io, check to see if we believe
2693 * the target device is present
2694 */
2695 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2696 return BLK_STS_RESOURCE;
2697
2698 if (!nvme_fc_ctrl_get(ctrl))
2699 return BLK_STS_IOERR;
2700
2701 /* format the FC-NVME CMD IU and fcp_req */
2702 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2703 cmdiu->data_len = cpu_to_be32(data_len);
2704 switch (io_dir) {
2705 case NVMEFC_FCP_WRITE:
2706 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2707 break;
2708 case NVMEFC_FCP_READ:
2709 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2710 break;
2711 case NVMEFC_FCP_NODATA:
2712 cmdiu->flags = 0;
2713 break;
2714 }
2715 op->fcp_req.payload_length = data_len;
2716 op->fcp_req.io_dir = io_dir;
2717 op->fcp_req.transferred_length = 0;
2718 op->fcp_req.rcv_rsplen = 0;
2719 op->fcp_req.status = NVME_SC_SUCCESS;
2720 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2721
2722 /*
2723 * validate per fabric rules, set fields mandated by fabric spec
2724 * as well as those by FC-NVME spec.
2725 */
2726 WARN_ON_ONCE(sqe->common.metadata);
2727 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2728
2729 /*
2730 * format SQE DPTR field per FC-NVME rules:
2731 * type=0x5 Transport SGL Data Block Descriptor
2732 * subtype=0xA Transport-specific value
2733 * address=0
2734 * length=length of the data series
2735 */
2736 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2737 NVME_SGL_FMT_TRANSPORT_A;
2738 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2739 sqe->rw.dptr.sgl.addr = 0;
2740
2741 if (!(op->flags & FCOP_FLAGS_AEN)) {
2742 ret = nvme_fc_map_data(ctrl, op->rq, op);
2743 if (ret < 0) {
2744 nvme_cleanup_cmd(op->rq);
2745 nvme_fc_ctrl_put(ctrl);
2746 if (ret == -ENOMEM || ret == -EAGAIN)
2747 return BLK_STS_RESOURCE;
2748 return BLK_STS_IOERR;
2749 }
2750 }
2751
2752 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2753 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2754
2755 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2756
2757 if (!(op->flags & FCOP_FLAGS_AEN))
2758 nvme_start_request(op->rq);
2759
2760 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2761 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2762 &ctrl->rport->remoteport,
2763 queue->lldd_handle, &op->fcp_req);
2764
2765 if (ret) {
2766 /*
2767 * If the lld fails to send the command is there an issue with
2768 * the csn value? If the command that fails is the Connect,
2769 * no - as the connection won't be live. If it is a command
2770 * post-connect, it's possible a gap in csn may be created.
2771 * Does this matter? As Linux initiators don't send fused
2772 * commands, no. The gap would exist, but as there's nothing
2773 * that depends on csn order to be delivered on the target
2774 * side, it shouldn't hurt. It would be difficult for a
2775 * target to even detect the csn gap as it has no idea when the
2776 * cmd with the csn was supposed to arrive.
2777 */
2778 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2779 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2780
2781 if (!(op->flags & FCOP_FLAGS_AEN)) {
2782 nvme_fc_unmap_data(ctrl, op->rq, op);
2783 nvme_cleanup_cmd(op->rq);
2784 }
2785
2786 nvme_fc_ctrl_put(ctrl);
2787
2788 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2789 ret != -EBUSY)
2790 return BLK_STS_IOERR;
2791
2792 return BLK_STS_RESOURCE;
2793 }
2794
2795 return BLK_STS_OK;
2796 }
2797
2798 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2799 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2800 const struct blk_mq_queue_data *bd)
2801 {
2802 struct nvme_ns *ns = hctx->queue->queuedata;
2803 struct nvme_fc_queue *queue = hctx->driver_data;
2804 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2805 struct request *rq = bd->rq;
2806 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2807 enum nvmefc_fcp_datadir io_dir;
2808 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2809 u32 data_len;
2810 blk_status_t ret;
2811
2812 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2813 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2814 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2815
2816 ret = nvme_setup_cmd(ns, rq);
2817 if (ret)
2818 return ret;
2819
2820 /*
2821 * nvme core doesn't quite treat the rq opaquely. Commands such
2822 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2823 * there is no actual payload to be transferred.
2824 * To get it right, key data transmission on there being 1 or
2825 * more physical segments in the sg list. If there is no
2826 * physical segments, there is no payload.
2827 */
2828 if (blk_rq_nr_phys_segments(rq)) {
2829 data_len = blk_rq_payload_bytes(rq);
2830 io_dir = ((rq_data_dir(rq) == WRITE) ?
2831 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2832 } else {
2833 data_len = 0;
2834 io_dir = NVMEFC_FCP_NODATA;
2835 }
2836
2837
2838 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2839 }
2840
2841 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2842 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2843 {
2844 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2845 struct nvme_fc_fcp_op *aen_op;
2846 blk_status_t ret;
2847
2848 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2849 return;
2850
2851 aen_op = &ctrl->aen_ops[0];
2852
2853 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2854 NVMEFC_FCP_NODATA);
2855 if (ret)
2856 dev_err(ctrl->ctrl.device,
2857 "failed async event work\n");
2858 }
2859
2860 static void
nvme_fc_complete_rq(struct request * rq)2861 nvme_fc_complete_rq(struct request *rq)
2862 {
2863 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2864 struct nvme_fc_ctrl *ctrl = op->ctrl;
2865
2866 atomic_set(&op->state, FCPOP_STATE_IDLE);
2867 op->flags &= ~FCOP_FLAGS_TERMIO;
2868
2869 nvme_fc_unmap_data(ctrl, rq, op);
2870 nvme_complete_rq(rq);
2871 nvme_fc_ctrl_put(ctrl);
2872 }
2873
nvme_fc_map_queues(struct blk_mq_tag_set * set)2874 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2875 {
2876 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2877 int i;
2878
2879 for (i = 0; i < set->nr_maps; i++) {
2880 struct blk_mq_queue_map *map = &set->map[i];
2881
2882 if (!map->nr_queues) {
2883 WARN_ON(i == HCTX_TYPE_DEFAULT);
2884 continue;
2885 }
2886
2887 /* Call LLDD map queue functionality if defined */
2888 if (ctrl->lport->ops->map_queues)
2889 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2890 map);
2891 else
2892 blk_mq_map_queues(map);
2893 }
2894 }
2895
2896 static const struct blk_mq_ops nvme_fc_mq_ops = {
2897 .queue_rq = nvme_fc_queue_rq,
2898 .complete = nvme_fc_complete_rq,
2899 .init_request = nvme_fc_init_request,
2900 .exit_request = nvme_fc_exit_request,
2901 .init_hctx = nvme_fc_init_hctx,
2902 .timeout = nvme_fc_timeout,
2903 .map_queues = nvme_fc_map_queues,
2904 };
2905
2906 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2907 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2908 {
2909 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2910 unsigned int nr_io_queues;
2911 int ret;
2912
2913 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2914 ctrl->lport->ops->max_hw_queues);
2915 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2916 if (ret) {
2917 dev_info(ctrl->ctrl.device,
2918 "set_queue_count failed: %d\n", ret);
2919 return ret;
2920 }
2921
2922 ctrl->ctrl.queue_count = nr_io_queues + 1;
2923 if (!nr_io_queues)
2924 return 0;
2925
2926 nvme_fc_init_io_queues(ctrl);
2927
2928 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2929 &nvme_fc_mq_ops, 1,
2930 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2931 ctrl->lport->ops->fcprqst_priv_sz));
2932 if (ret)
2933 return ret;
2934
2935 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2936 if (ret)
2937 goto out_cleanup_tagset;
2938
2939 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2940 if (ret)
2941 goto out_delete_hw_queues;
2942
2943 ctrl->ioq_live = true;
2944
2945 return 0;
2946
2947 out_delete_hw_queues:
2948 nvme_fc_delete_hw_io_queues(ctrl);
2949 out_cleanup_tagset:
2950 nvme_remove_io_tag_set(&ctrl->ctrl);
2951 nvme_fc_free_io_queues(ctrl);
2952
2953 /* force put free routine to ignore io queues */
2954 ctrl->ctrl.tagset = NULL;
2955
2956 return ret;
2957 }
2958
2959 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2960 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2961 {
2962 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2963 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2964 unsigned int nr_io_queues;
2965 int ret;
2966
2967 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2968 ctrl->lport->ops->max_hw_queues);
2969 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2970 if (ret) {
2971 dev_info(ctrl->ctrl.device,
2972 "set_queue_count failed: %d\n", ret);
2973 return ret;
2974 }
2975
2976 if (!nr_io_queues && prior_ioq_cnt) {
2977 dev_info(ctrl->ctrl.device,
2978 "Fail Reconnect: At least 1 io queue "
2979 "required (was %d)\n", prior_ioq_cnt);
2980 return -ENOSPC;
2981 }
2982
2983 ctrl->ctrl.queue_count = nr_io_queues + 1;
2984 /* check for io queues existing */
2985 if (ctrl->ctrl.queue_count == 1)
2986 return 0;
2987
2988 if (prior_ioq_cnt != nr_io_queues) {
2989 dev_info(ctrl->ctrl.device,
2990 "reconnect: revising io queue count from %d to %d\n",
2991 prior_ioq_cnt, nr_io_queues);
2992 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2993 }
2994
2995 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2996 if (ret)
2997 goto out_free_io_queues;
2998
2999 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
3000 if (ret)
3001 goto out_delete_hw_queues;
3002
3003 return 0;
3004
3005 out_delete_hw_queues:
3006 nvme_fc_delete_hw_io_queues(ctrl);
3007 out_free_io_queues:
3008 nvme_fc_free_io_queues(ctrl);
3009 return ret;
3010 }
3011
3012 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)3013 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
3014 {
3015 struct nvme_fc_lport *lport = rport->lport;
3016
3017 atomic_inc(&lport->act_rport_cnt);
3018 }
3019
3020 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)3021 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
3022 {
3023 struct nvme_fc_lport *lport = rport->lport;
3024 u32 cnt;
3025
3026 cnt = atomic_dec_return(&lport->act_rport_cnt);
3027 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3028 lport->ops->localport_delete(&lport->localport);
3029 }
3030
3031 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)3032 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3033 {
3034 struct nvme_fc_rport *rport = ctrl->rport;
3035 u32 cnt;
3036
3037 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3038 return 1;
3039
3040 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3041 if (cnt == 1)
3042 nvme_fc_rport_active_on_lport(rport);
3043
3044 return 0;
3045 }
3046
3047 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3048 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3049 {
3050 struct nvme_fc_rport *rport = ctrl->rport;
3051 struct nvme_fc_lport *lport = rport->lport;
3052 u32 cnt;
3053
3054 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3055
3056 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3057 if (cnt == 0) {
3058 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3059 lport->ops->remoteport_delete(&rport->remoteport);
3060 nvme_fc_rport_inactive_on_lport(rport);
3061 }
3062
3063 return 0;
3064 }
3065
3066 /*
3067 * This routine restarts the controller on the host side, and
3068 * on the link side, recreates the controller association.
3069 */
3070 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3071 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3072 {
3073 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3074 struct nvmefc_ls_rcv_op *disls = NULL;
3075 unsigned long flags;
3076 int ret;
3077 bool changed;
3078
3079 ++ctrl->ctrl.nr_reconnects;
3080
3081 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3082 return -ENODEV;
3083
3084 if (nvme_fc_ctlr_active_on_rport(ctrl))
3085 return -ENOTUNIQ;
3086
3087 dev_info(ctrl->ctrl.device,
3088 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3089 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3090 ctrl->cnum, ctrl->lport->localport.port_name,
3091 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3092
3093 clear_bit(ASSOC_FAILED, &ctrl->flags);
3094
3095 /*
3096 * Create the admin queue
3097 */
3098
3099 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3100 NVME_AQ_DEPTH);
3101 if (ret)
3102 goto out_free_queue;
3103
3104 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3105 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3106 if (ret)
3107 goto out_delete_hw_queue;
3108
3109 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3110 if (ret)
3111 goto out_disconnect_admin_queue;
3112
3113 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3114
3115 /*
3116 * Check controller capabilities
3117 *
3118 * todo:- add code to check if ctrl attributes changed from
3119 * prior connection values
3120 */
3121
3122 ret = nvme_enable_ctrl(&ctrl->ctrl);
3123 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3124 ret = -EIO;
3125 if (ret)
3126 goto out_disconnect_admin_queue;
3127
3128 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3129 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3130 (ilog2(SZ_4K) - 9);
3131
3132 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3133
3134 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3135 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3136 ret = -EIO;
3137 if (ret)
3138 goto out_disconnect_admin_queue;
3139
3140 /* sanity checks */
3141
3142 /* FC-NVME does not have other data in the capsule */
3143 if (ctrl->ctrl.icdoff) {
3144 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3145 ctrl->ctrl.icdoff);
3146 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3147 goto out_disconnect_admin_queue;
3148 }
3149
3150 /* FC-NVME supports normal SGL Data Block Descriptors */
3151 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3152 dev_err(ctrl->ctrl.device,
3153 "Mandatory sgls are not supported!\n");
3154 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3155 goto out_disconnect_admin_queue;
3156 }
3157
3158 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3159 /* warn if maxcmd is lower than queue_size */
3160 dev_warn(ctrl->ctrl.device,
3161 "queue_size %zu > ctrl maxcmd %u, reducing "
3162 "to maxcmd\n",
3163 opts->queue_size, ctrl->ctrl.maxcmd);
3164 opts->queue_size = ctrl->ctrl.maxcmd;
3165 ctrl->ctrl.sqsize = opts->queue_size - 1;
3166 }
3167
3168 ret = nvme_fc_init_aen_ops(ctrl);
3169 if (ret)
3170 goto out_term_aen_ops;
3171
3172 /*
3173 * Create the io queues
3174 */
3175
3176 if (ctrl->ctrl.queue_count > 1) {
3177 if (!ctrl->ioq_live)
3178 ret = nvme_fc_create_io_queues(ctrl);
3179 else
3180 ret = nvme_fc_recreate_io_queues(ctrl);
3181 }
3182
3183 spin_lock_irqsave(&ctrl->lock, flags);
3184 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3185 ret = -EIO;
3186 if (ret) {
3187 spin_unlock_irqrestore(&ctrl->lock, flags);
3188 goto out_term_aen_ops;
3189 }
3190 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3191 spin_unlock_irqrestore(&ctrl->lock, flags);
3192
3193 ctrl->ctrl.nr_reconnects = 0;
3194
3195 if (changed)
3196 nvme_start_ctrl(&ctrl->ctrl);
3197
3198 return 0; /* Success */
3199
3200 out_term_aen_ops:
3201 nvme_fc_term_aen_ops(ctrl);
3202 out_disconnect_admin_queue:
3203 dev_warn(ctrl->ctrl.device,
3204 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3205 ctrl->cnum, ctrl->association_id, ret);
3206 /* send a Disconnect(association) LS to fc-nvme target */
3207 nvme_fc_xmt_disconnect_assoc(ctrl);
3208 spin_lock_irqsave(&ctrl->lock, flags);
3209 ctrl->association_id = 0;
3210 disls = ctrl->rcv_disconn;
3211 ctrl->rcv_disconn = NULL;
3212 spin_unlock_irqrestore(&ctrl->lock, flags);
3213 if (disls)
3214 nvme_fc_xmt_ls_rsp(disls);
3215 out_delete_hw_queue:
3216 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3217 out_free_queue:
3218 nvme_fc_free_queue(&ctrl->queues[0]);
3219 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3220 nvme_fc_ctlr_inactive_on_rport(ctrl);
3221
3222 return ret;
3223 }
3224
3225
3226 /*
3227 * This routine stops operation of the controller on the host side.
3228 * On the host os stack side: Admin and IO queues are stopped,
3229 * outstanding ios on them terminated via FC ABTS.
3230 * On the link side: the association is terminated.
3231 */
3232 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3233 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3234 {
3235 struct nvmefc_ls_rcv_op *disls = NULL;
3236 unsigned long flags;
3237
3238 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3239 return;
3240
3241 spin_lock_irqsave(&ctrl->lock, flags);
3242 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3243 ctrl->iocnt = 0;
3244 spin_unlock_irqrestore(&ctrl->lock, flags);
3245
3246 __nvme_fc_abort_outstanding_ios(ctrl, false);
3247
3248 /* kill the aens as they are a separate path */
3249 nvme_fc_abort_aen_ops(ctrl);
3250
3251 /* wait for all io that had to be aborted */
3252 spin_lock_irq(&ctrl->lock);
3253 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3254 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3255 spin_unlock_irq(&ctrl->lock);
3256
3257 nvme_fc_term_aen_ops(ctrl);
3258
3259 /*
3260 * send a Disconnect(association) LS to fc-nvme target
3261 * Note: could have been sent at top of process, but
3262 * cleaner on link traffic if after the aborts complete.
3263 * Note: if association doesn't exist, association_id will be 0
3264 */
3265 if (ctrl->association_id)
3266 nvme_fc_xmt_disconnect_assoc(ctrl);
3267
3268 spin_lock_irqsave(&ctrl->lock, flags);
3269 ctrl->association_id = 0;
3270 disls = ctrl->rcv_disconn;
3271 ctrl->rcv_disconn = NULL;
3272 spin_unlock_irqrestore(&ctrl->lock, flags);
3273 if (disls)
3274 /*
3275 * if a Disconnect Request was waiting for a response, send
3276 * now that all ABTS's have been issued (and are complete).
3277 */
3278 nvme_fc_xmt_ls_rsp(disls);
3279
3280 if (ctrl->ctrl.tagset) {
3281 nvme_fc_delete_hw_io_queues(ctrl);
3282 nvme_fc_free_io_queues(ctrl);
3283 }
3284
3285 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3286 nvme_fc_free_queue(&ctrl->queues[0]);
3287
3288 /* re-enable the admin_q so anything new can fast fail */
3289 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3290
3291 /* resume the io queues so that things will fast fail */
3292 nvme_unquiesce_io_queues(&ctrl->ctrl);
3293
3294 nvme_fc_ctlr_inactive_on_rport(ctrl);
3295 }
3296
3297 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3298 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3299 {
3300 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3301
3302 cancel_work_sync(&ctrl->ioerr_work);
3303 cancel_delayed_work_sync(&ctrl->connect_work);
3304 /*
3305 * kill the association on the link side. this will block
3306 * waiting for io to terminate
3307 */
3308 nvme_fc_delete_association(ctrl);
3309 }
3310
3311 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3312 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3313 {
3314 struct nvme_fc_rport *rport = ctrl->rport;
3315 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3316 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3317 bool recon = true;
3318
3319 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3320 return;
3321
3322 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3323 dev_info(ctrl->ctrl.device,
3324 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3325 ctrl->cnum, status);
3326 if (status > 0 && (status & NVME_SC_DNR))
3327 recon = false;
3328 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3329 recon = false;
3330
3331 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3332 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3333 dev_info(ctrl->ctrl.device,
3334 "NVME-FC{%d}: Reconnect attempt in %ld "
3335 "seconds\n",
3336 ctrl->cnum, recon_delay / HZ);
3337 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3338 recon_delay = rport->dev_loss_end - jiffies;
3339
3340 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3341 } else {
3342 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3343 if (status > 0 && (status & NVME_SC_DNR))
3344 dev_warn(ctrl->ctrl.device,
3345 "NVME-FC{%d}: reconnect failure\n",
3346 ctrl->cnum);
3347 else
3348 dev_warn(ctrl->ctrl.device,
3349 "NVME-FC{%d}: Max reconnect attempts "
3350 "(%d) reached.\n",
3351 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3352 } else
3353 dev_warn(ctrl->ctrl.device,
3354 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3355 "while waiting for remoteport connectivity.\n",
3356 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3357 (ctrl->ctrl.opts->max_reconnects *
3358 ctrl->ctrl.opts->reconnect_delay)));
3359 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3360 }
3361 }
3362
3363 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3364 nvme_fc_reset_ctrl_work(struct work_struct *work)
3365 {
3366 struct nvme_fc_ctrl *ctrl =
3367 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3368
3369 nvme_stop_ctrl(&ctrl->ctrl);
3370
3371 /* will block will waiting for io to terminate */
3372 nvme_fc_delete_association(ctrl);
3373
3374 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3375 dev_err(ctrl->ctrl.device,
3376 "NVME-FC{%d}: error_recovery: Couldn't change state "
3377 "to CONNECTING\n", ctrl->cnum);
3378
3379 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3380 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3381 dev_err(ctrl->ctrl.device,
3382 "NVME-FC{%d}: failed to schedule connect "
3383 "after reset\n", ctrl->cnum);
3384 } else {
3385 flush_delayed_work(&ctrl->connect_work);
3386 }
3387 } else {
3388 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3389 }
3390 }
3391
3392
3393 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3394 .name = "fc",
3395 .module = THIS_MODULE,
3396 .flags = NVME_F_FABRICS,
3397 .reg_read32 = nvmf_reg_read32,
3398 .reg_read64 = nvmf_reg_read64,
3399 .reg_write32 = nvmf_reg_write32,
3400 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3401 .submit_async_event = nvme_fc_submit_async_event,
3402 .delete_ctrl = nvme_fc_delete_ctrl,
3403 .get_address = nvmf_get_address,
3404 };
3405
3406 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3407 nvme_fc_connect_ctrl_work(struct work_struct *work)
3408 {
3409 int ret;
3410
3411 struct nvme_fc_ctrl *ctrl =
3412 container_of(to_delayed_work(work),
3413 struct nvme_fc_ctrl, connect_work);
3414
3415 ret = nvme_fc_create_association(ctrl);
3416 if (ret)
3417 nvme_fc_reconnect_or_delete(ctrl, ret);
3418 else
3419 dev_info(ctrl->ctrl.device,
3420 "NVME-FC{%d}: controller connect complete\n",
3421 ctrl->cnum);
3422 }
3423
3424
3425 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3426 .queue_rq = nvme_fc_queue_rq,
3427 .complete = nvme_fc_complete_rq,
3428 .init_request = nvme_fc_init_request,
3429 .exit_request = nvme_fc_exit_request,
3430 .init_hctx = nvme_fc_init_admin_hctx,
3431 .timeout = nvme_fc_timeout,
3432 };
3433
3434
3435 /*
3436 * Fails a controller request if it matches an existing controller
3437 * (association) with the same tuple:
3438 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3439 *
3440 * The ports don't need to be compared as they are intrinsically
3441 * already matched by the port pointers supplied.
3442 */
3443 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3444 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3445 struct nvmf_ctrl_options *opts)
3446 {
3447 struct nvme_fc_ctrl *ctrl;
3448 unsigned long flags;
3449 bool found = false;
3450
3451 spin_lock_irqsave(&rport->lock, flags);
3452 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3453 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3454 if (found)
3455 break;
3456 }
3457 spin_unlock_irqrestore(&rport->lock, flags);
3458
3459 return found;
3460 }
3461
3462 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3463 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3464 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3465 {
3466 struct nvme_fc_ctrl *ctrl;
3467 unsigned long flags;
3468 int ret, idx, ctrl_loss_tmo;
3469
3470 if (!(rport->remoteport.port_role &
3471 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3472 ret = -EBADR;
3473 goto out_fail;
3474 }
3475
3476 if (!opts->duplicate_connect &&
3477 nvme_fc_existing_controller(rport, opts)) {
3478 ret = -EALREADY;
3479 goto out_fail;
3480 }
3481
3482 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3483 if (!ctrl) {
3484 ret = -ENOMEM;
3485 goto out_fail;
3486 }
3487
3488 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3489 if (idx < 0) {
3490 ret = -ENOSPC;
3491 goto out_free_ctrl;
3492 }
3493
3494 /*
3495 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3496 * is being used, change to a shorter reconnect delay for FC.
3497 */
3498 if (opts->max_reconnects != -1 &&
3499 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3500 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3501 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3502 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3503 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3504 opts->reconnect_delay);
3505 }
3506
3507 ctrl->ctrl.opts = opts;
3508 ctrl->ctrl.nr_reconnects = 0;
3509 if (lport->dev)
3510 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3511 else
3512 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3513 INIT_LIST_HEAD(&ctrl->ctrl_list);
3514 ctrl->lport = lport;
3515 ctrl->rport = rport;
3516 ctrl->dev = lport->dev;
3517 ctrl->cnum = idx;
3518 ctrl->ioq_live = false;
3519 init_waitqueue_head(&ctrl->ioabort_wait);
3520
3521 get_device(ctrl->dev);
3522 kref_init(&ctrl->ref);
3523
3524 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3525 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3526 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3527 spin_lock_init(&ctrl->lock);
3528
3529 /* io queue count */
3530 ctrl->ctrl.queue_count = min_t(unsigned int,
3531 opts->nr_io_queues,
3532 lport->ops->max_hw_queues);
3533 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3534
3535 ctrl->ctrl.sqsize = opts->queue_size - 1;
3536 ctrl->ctrl.kato = opts->kato;
3537 ctrl->ctrl.cntlid = 0xffff;
3538
3539 ret = -ENOMEM;
3540 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3541 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3542 if (!ctrl->queues)
3543 goto out_free_ida;
3544
3545 nvme_fc_init_queue(ctrl, 0);
3546
3547 /*
3548 * Would have been nice to init io queues tag set as well.
3549 * However, we require interaction from the controller
3550 * for max io queue count before we can do so.
3551 * Defer this to the connect path.
3552 */
3553
3554 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3555 if (ret)
3556 goto out_free_queues;
3557
3558 /* at this point, teardown path changes to ref counting on nvme ctrl */
3559
3560 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3561 &nvme_fc_admin_mq_ops,
3562 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3563 ctrl->lport->ops->fcprqst_priv_sz));
3564 if (ret)
3565 goto fail_ctrl;
3566
3567 spin_lock_irqsave(&rport->lock, flags);
3568 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3569 spin_unlock_irqrestore(&rport->lock, flags);
3570
3571 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3572 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3573 dev_err(ctrl->ctrl.device,
3574 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3575 goto fail_ctrl;
3576 }
3577
3578 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3579 dev_err(ctrl->ctrl.device,
3580 "NVME-FC{%d}: failed to schedule initial connect\n",
3581 ctrl->cnum);
3582 goto fail_ctrl;
3583 }
3584
3585 flush_delayed_work(&ctrl->connect_work);
3586
3587 dev_info(ctrl->ctrl.device,
3588 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3589 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3590
3591 return &ctrl->ctrl;
3592
3593 fail_ctrl:
3594 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3595 cancel_work_sync(&ctrl->ioerr_work);
3596 cancel_work_sync(&ctrl->ctrl.reset_work);
3597 cancel_delayed_work_sync(&ctrl->connect_work);
3598
3599 ctrl->ctrl.opts = NULL;
3600
3601 /* initiate nvme ctrl ref counting teardown */
3602 nvme_uninit_ctrl(&ctrl->ctrl);
3603
3604 /* Remove core ctrl ref. */
3605 nvme_put_ctrl(&ctrl->ctrl);
3606
3607 /* as we're past the point where we transition to the ref
3608 * counting teardown path, if we return a bad pointer here,
3609 * the calling routine, thinking it's prior to the
3610 * transition, will do an rport put. Since the teardown
3611 * path also does a rport put, we do an extra get here to
3612 * so proper order/teardown happens.
3613 */
3614 nvme_fc_rport_get(rport);
3615
3616 return ERR_PTR(-EIO);
3617
3618 out_free_queues:
3619 kfree(ctrl->queues);
3620 out_free_ida:
3621 put_device(ctrl->dev);
3622 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3623 out_free_ctrl:
3624 kfree(ctrl);
3625 out_fail:
3626 /* exit via here doesn't follow ctlr ref points */
3627 return ERR_PTR(ret);
3628 }
3629
3630
3631 struct nvmet_fc_traddr {
3632 u64 nn;
3633 u64 pn;
3634 };
3635
3636 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3637 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3638 {
3639 u64 token64;
3640
3641 if (match_u64(sstr, &token64))
3642 return -EINVAL;
3643 *val = token64;
3644
3645 return 0;
3646 }
3647
3648 /*
3649 * This routine validates and extracts the WWN's from the TRADDR string.
3650 * As kernel parsers need the 0x to determine number base, universally
3651 * build string to parse with 0x prefix before parsing name strings.
3652 */
3653 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3654 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3655 {
3656 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3657 substring_t wwn = { name, &name[sizeof(name)-1] };
3658 int nnoffset, pnoffset;
3659
3660 /* validate if string is one of the 2 allowed formats */
3661 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3662 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3663 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3664 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3665 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3666 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3667 NVME_FC_TRADDR_OXNNLEN;
3668 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3669 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3670 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3671 "pn-", NVME_FC_TRADDR_NNLEN))) {
3672 nnoffset = NVME_FC_TRADDR_NNLEN;
3673 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3674 } else
3675 goto out_einval;
3676
3677 name[0] = '0';
3678 name[1] = 'x';
3679 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3680
3681 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3682 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3683 goto out_einval;
3684
3685 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3686 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3687 goto out_einval;
3688
3689 return 0;
3690
3691 out_einval:
3692 pr_warn("%s: bad traddr string\n", __func__);
3693 return -EINVAL;
3694 }
3695
3696 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3697 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3698 {
3699 struct nvme_fc_lport *lport;
3700 struct nvme_fc_rport *rport;
3701 struct nvme_ctrl *ctrl;
3702 struct nvmet_fc_traddr laddr = { 0L, 0L };
3703 struct nvmet_fc_traddr raddr = { 0L, 0L };
3704 unsigned long flags;
3705 int ret;
3706
3707 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3708 if (ret || !raddr.nn || !raddr.pn)
3709 return ERR_PTR(-EINVAL);
3710
3711 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3712 if (ret || !laddr.nn || !laddr.pn)
3713 return ERR_PTR(-EINVAL);
3714
3715 /* find the host and remote ports to connect together */
3716 spin_lock_irqsave(&nvme_fc_lock, flags);
3717 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3718 if (lport->localport.node_name != laddr.nn ||
3719 lport->localport.port_name != laddr.pn ||
3720 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3721 continue;
3722
3723 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3724 if (rport->remoteport.node_name != raddr.nn ||
3725 rport->remoteport.port_name != raddr.pn ||
3726 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3727 continue;
3728
3729 /* if fail to get reference fall through. Will error */
3730 if (!nvme_fc_rport_get(rport))
3731 break;
3732
3733 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3734
3735 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3736 if (IS_ERR(ctrl))
3737 nvme_fc_rport_put(rport);
3738 return ctrl;
3739 }
3740 }
3741 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3742
3743 pr_warn("%s: %s - %s combination not found\n",
3744 __func__, opts->traddr, opts->host_traddr);
3745 return ERR_PTR(-ENOENT);
3746 }
3747
3748
3749 static struct nvmf_transport_ops nvme_fc_transport = {
3750 .name = "fc",
3751 .module = THIS_MODULE,
3752 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3753 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3754 .create_ctrl = nvme_fc_create_ctrl,
3755 };
3756
3757 /* Arbitrary successive failures max. With lots of subsystems could be high */
3758 #define DISCOVERY_MAX_FAIL 20
3759
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3760 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3761 struct device_attribute *attr, const char *buf, size_t count)
3762 {
3763 unsigned long flags;
3764 LIST_HEAD(local_disc_list);
3765 struct nvme_fc_lport *lport;
3766 struct nvme_fc_rport *rport;
3767 int failcnt = 0;
3768
3769 spin_lock_irqsave(&nvme_fc_lock, flags);
3770 restart:
3771 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3772 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3773 if (!nvme_fc_lport_get(lport))
3774 continue;
3775 if (!nvme_fc_rport_get(rport)) {
3776 /*
3777 * This is a temporary condition. Upon restart
3778 * this rport will be gone from the list.
3779 *
3780 * Revert the lport put and retry. Anything
3781 * added to the list already will be skipped (as
3782 * they are no longer list_empty). Loops should
3783 * resume at rports that were not yet seen.
3784 */
3785 nvme_fc_lport_put(lport);
3786
3787 if (failcnt++ < DISCOVERY_MAX_FAIL)
3788 goto restart;
3789
3790 pr_err("nvme_discovery: too many reference "
3791 "failures\n");
3792 goto process_local_list;
3793 }
3794 if (list_empty(&rport->disc_list))
3795 list_add_tail(&rport->disc_list,
3796 &local_disc_list);
3797 }
3798 }
3799
3800 process_local_list:
3801 while (!list_empty(&local_disc_list)) {
3802 rport = list_first_entry(&local_disc_list,
3803 struct nvme_fc_rport, disc_list);
3804 list_del_init(&rport->disc_list);
3805 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3806
3807 lport = rport->lport;
3808 /* signal discovery. Won't hurt if it repeats */
3809 nvme_fc_signal_discovery_scan(lport, rport);
3810 nvme_fc_rport_put(rport);
3811 nvme_fc_lport_put(lport);
3812
3813 spin_lock_irqsave(&nvme_fc_lock, flags);
3814 }
3815 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3816
3817 return count;
3818 }
3819
3820 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3821
3822 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3823 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3824 static int fc_parse_cgrpid(const char *buf, u64 *id)
3825 {
3826 char cgrp_id[16+1];
3827 int cgrpid_len, j;
3828
3829 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3830 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3831 if (buf[cgrpid_len] != ':')
3832 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3833 else {
3834 j = 1;
3835 break;
3836 }
3837 }
3838 if (!j)
3839 return -EINVAL;
3840 if (kstrtou64(cgrp_id, 16, id) < 0)
3841 return -EINVAL;
3842 return cgrpid_len;
3843 }
3844
3845 /*
3846 * Parse and update the appid in the blkcg associated with the cgroupid.
3847 */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3848 static ssize_t fc_appid_store(struct device *dev,
3849 struct device_attribute *attr, const char *buf, size_t count)
3850 {
3851 size_t orig_count = count;
3852 u64 cgrp_id;
3853 int appid_len = 0;
3854 int cgrpid_len = 0;
3855 char app_id[FC_APPID_LEN];
3856 int ret = 0;
3857
3858 if (buf[count-1] == '\n')
3859 count--;
3860
3861 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3862 return -EINVAL;
3863
3864 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3865 if (cgrpid_len < 0)
3866 return -EINVAL;
3867 appid_len = count - cgrpid_len - 1;
3868 if (appid_len > FC_APPID_LEN)
3869 return -EINVAL;
3870
3871 memset(app_id, 0x0, sizeof(app_id));
3872 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3873 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3874 if (ret < 0)
3875 return ret;
3876 return orig_count;
3877 }
3878 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3879 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3880
3881 static struct attribute *nvme_fc_attrs[] = {
3882 &dev_attr_nvme_discovery.attr,
3883 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3884 &dev_attr_appid_store.attr,
3885 #endif
3886 NULL
3887 };
3888
3889 static const struct attribute_group nvme_fc_attr_group = {
3890 .attrs = nvme_fc_attrs,
3891 };
3892
3893 static const struct attribute_group *nvme_fc_attr_groups[] = {
3894 &nvme_fc_attr_group,
3895 NULL
3896 };
3897
3898 static struct class fc_class = {
3899 .name = "fc",
3900 .dev_groups = nvme_fc_attr_groups,
3901 };
3902
nvme_fc_init_module(void)3903 static int __init nvme_fc_init_module(void)
3904 {
3905 int ret;
3906
3907 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3908 if (!nvme_fc_wq)
3909 return -ENOMEM;
3910
3911 /*
3912 * NOTE:
3913 * It is expected that in the future the kernel will combine
3914 * the FC-isms that are currently under scsi and now being
3915 * added to by NVME into a new standalone FC class. The SCSI
3916 * and NVME protocols and their devices would be under this
3917 * new FC class.
3918 *
3919 * As we need something to post FC-specific udev events to,
3920 * specifically for nvme probe events, start by creating the
3921 * new device class. When the new standalone FC class is
3922 * put in place, this code will move to a more generic
3923 * location for the class.
3924 */
3925 ret = class_register(&fc_class);
3926 if (ret) {
3927 pr_err("couldn't register class fc\n");
3928 goto out_destroy_wq;
3929 }
3930
3931 /*
3932 * Create a device for the FC-centric udev events
3933 */
3934 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3935 "fc_udev_device");
3936 if (IS_ERR(fc_udev_device)) {
3937 pr_err("couldn't create fc_udev device!\n");
3938 ret = PTR_ERR(fc_udev_device);
3939 goto out_destroy_class;
3940 }
3941
3942 ret = nvmf_register_transport(&nvme_fc_transport);
3943 if (ret)
3944 goto out_destroy_device;
3945
3946 return 0;
3947
3948 out_destroy_device:
3949 device_destroy(&fc_class, MKDEV(0, 0));
3950 out_destroy_class:
3951 class_unregister(&fc_class);
3952 out_destroy_wq:
3953 destroy_workqueue(nvme_fc_wq);
3954
3955 return ret;
3956 }
3957
3958 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3959 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3960 {
3961 struct nvme_fc_ctrl *ctrl;
3962
3963 spin_lock(&rport->lock);
3964 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3965 dev_warn(ctrl->ctrl.device,
3966 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3967 ctrl->cnum);
3968 nvme_delete_ctrl(&ctrl->ctrl);
3969 }
3970 spin_unlock(&rport->lock);
3971 }
3972
3973 static void
nvme_fc_cleanup_for_unload(void)3974 nvme_fc_cleanup_for_unload(void)
3975 {
3976 struct nvme_fc_lport *lport;
3977 struct nvme_fc_rport *rport;
3978
3979 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3980 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3981 nvme_fc_delete_controllers(rport);
3982 }
3983 }
3984 }
3985
nvme_fc_exit_module(void)3986 static void __exit nvme_fc_exit_module(void)
3987 {
3988 unsigned long flags;
3989 bool need_cleanup = false;
3990
3991 spin_lock_irqsave(&nvme_fc_lock, flags);
3992 nvme_fc_waiting_to_unload = true;
3993 if (!list_empty(&nvme_fc_lport_list)) {
3994 need_cleanup = true;
3995 nvme_fc_cleanup_for_unload();
3996 }
3997 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3998 if (need_cleanup) {
3999 pr_info("%s: waiting for ctlr deletes\n", __func__);
4000 wait_for_completion(&nvme_fc_unload_proceed);
4001 pr_info("%s: ctrl deletes complete\n", __func__);
4002 }
4003
4004 nvmf_unregister_transport(&nvme_fc_transport);
4005
4006 ida_destroy(&nvme_fc_local_port_cnt);
4007 ida_destroy(&nvme_fc_ctrl_cnt);
4008
4009 device_destroy(&fc_class, MKDEV(0, 0));
4010 class_unregister(&fc_class);
4011 destroy_workqueue(nvme_fc_wq);
4012 }
4013
4014 module_init(nvme_fc_init_module);
4015 module_exit(nvme_fc_exit_module);
4016
4017 MODULE_LICENSE("GPL v2");
4018