1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117 };
118
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
152
153 struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 static struct workqueue_struct *nvme_fc_wq;
225
226 static bool nvme_fc_waiting_to_unload;
227 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
228
229 /*
230 * These items are short-term. They will eventually be moved into
231 * a generic FC class. See comments in module init.
232 */
233 static struct device *fc_udev_device;
234
235 static void nvme_fc_complete_rq(struct request *rq);
236
237 /* *********************** FC-NVME Port Management ************************ */
238
239 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
240 struct nvme_fc_queue *, unsigned int);
241
242 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
243
244
245 static void
nvme_fc_free_lport(struct kref * ref)246 nvme_fc_free_lport(struct kref *ref)
247 {
248 struct nvme_fc_lport *lport =
249 container_of(ref, struct nvme_fc_lport, ref);
250 unsigned long flags;
251
252 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
253 WARN_ON(!list_empty(&lport->endp_list));
254
255 /* remove from transport list */
256 spin_lock_irqsave(&nvme_fc_lock, flags);
257 list_del(&lport->port_list);
258 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
259 complete(&nvme_fc_unload_proceed);
260 spin_unlock_irqrestore(&nvme_fc_lock, flags);
261
262 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
263 ida_destroy(&lport->endp_cnt);
264
265 put_device(lport->dev);
266
267 kfree(lport);
268 }
269
270 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)271 nvme_fc_lport_put(struct nvme_fc_lport *lport)
272 {
273 kref_put(&lport->ref, nvme_fc_free_lport);
274 }
275
276 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)277 nvme_fc_lport_get(struct nvme_fc_lport *lport)
278 {
279 return kref_get_unless_zero(&lport->ref);
280 }
281
282
283 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)284 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
285 struct nvme_fc_port_template *ops,
286 struct device *dev)
287 {
288 struct nvme_fc_lport *lport;
289 unsigned long flags;
290
291 spin_lock_irqsave(&nvme_fc_lock, flags);
292
293 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
294 if (lport->localport.node_name != pinfo->node_name ||
295 lport->localport.port_name != pinfo->port_name)
296 continue;
297
298 if (lport->dev != dev) {
299 lport = ERR_PTR(-EXDEV);
300 goto out_done;
301 }
302
303 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
304 lport = ERR_PTR(-EEXIST);
305 goto out_done;
306 }
307
308 if (!nvme_fc_lport_get(lport)) {
309 /*
310 * fails if ref cnt already 0. If so,
311 * act as if lport already deleted
312 */
313 lport = NULL;
314 goto out_done;
315 }
316
317 /* resume the lport */
318
319 lport->ops = ops;
320 lport->localport.port_role = pinfo->port_role;
321 lport->localport.port_id = pinfo->port_id;
322 lport->localport.port_state = FC_OBJSTATE_ONLINE;
323
324 spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326 return lport;
327 }
328
329 lport = NULL;
330
331 out_done:
332 spin_unlock_irqrestore(&nvme_fc_lock, flags);
333
334 return lport;
335 }
336
337 /**
338 * nvme_fc_register_localport - transport entry point called by an
339 * LLDD to register the existence of a NVME
340 * host FC port.
341 * @pinfo: pointer to information about the port to be registered
342 * @template: LLDD entrypoints and operational parameters for the port
343 * @dev: physical hardware device node port corresponds to. Will be
344 * used for DMA mappings
345 * @portptr: pointer to a local port pointer. Upon success, the routine
346 * will allocate a nvme_fc_local_port structure and place its
347 * address in the local port pointer. Upon failure, local port
348 * pointer will be set to 0.
349 *
350 * Returns:
351 * a completion status. Must be 0 upon success; a negative errno
352 * (ex: -ENXIO) upon failure.
353 */
354 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)355 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
356 struct nvme_fc_port_template *template,
357 struct device *dev,
358 struct nvme_fc_local_port **portptr)
359 {
360 struct nvme_fc_lport *newrec;
361 unsigned long flags;
362 int ret, idx;
363
364 if (!template->localport_delete || !template->remoteport_delete ||
365 !template->ls_req || !template->fcp_io ||
366 !template->ls_abort || !template->fcp_abort ||
367 !template->max_hw_queues || !template->max_sgl_segments ||
368 !template->max_dif_sgl_segments || !template->dma_boundary) {
369 ret = -EINVAL;
370 goto out_reghost_failed;
371 }
372
373 /*
374 * look to see if there is already a localport that had been
375 * deregistered and in the process of waiting for all the
376 * references to fully be removed. If the references haven't
377 * expired, we can simply re-enable the localport. Remoteports
378 * and controller reconnections should resume naturally.
379 */
380 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
381
382 /* found an lport, but something about its state is bad */
383 if (IS_ERR(newrec)) {
384 ret = PTR_ERR(newrec);
385 goto out_reghost_failed;
386
387 /* found existing lport, which was resumed */
388 } else if (newrec) {
389 *portptr = &newrec->localport;
390 return 0;
391 }
392
393 /* nothing found - allocate a new localport struct */
394
395 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
396 GFP_KERNEL);
397 if (!newrec) {
398 ret = -ENOMEM;
399 goto out_reghost_failed;
400 }
401
402 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
403 if (idx < 0) {
404 ret = -ENOSPC;
405 goto out_fail_kfree;
406 }
407
408 if (!get_device(dev) && dev) {
409 ret = -ENODEV;
410 goto out_ida_put;
411 }
412
413 INIT_LIST_HEAD(&newrec->port_list);
414 INIT_LIST_HEAD(&newrec->endp_list);
415 kref_init(&newrec->ref);
416 atomic_set(&newrec->act_rport_cnt, 0);
417 newrec->ops = template;
418 newrec->dev = dev;
419 ida_init(&newrec->endp_cnt);
420 if (template->local_priv_sz)
421 newrec->localport.private = &newrec[1];
422 else
423 newrec->localport.private = NULL;
424 newrec->localport.node_name = pinfo->node_name;
425 newrec->localport.port_name = pinfo->port_name;
426 newrec->localport.port_role = pinfo->port_role;
427 newrec->localport.port_id = pinfo->port_id;
428 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
429 newrec->localport.port_num = idx;
430
431 spin_lock_irqsave(&nvme_fc_lock, flags);
432 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
433 spin_unlock_irqrestore(&nvme_fc_lock, flags);
434
435 if (dev)
436 dma_set_seg_boundary(dev, template->dma_boundary);
437
438 *portptr = &newrec->localport;
439 return 0;
440
441 out_ida_put:
442 ida_free(&nvme_fc_local_port_cnt, idx);
443 out_fail_kfree:
444 kfree(newrec);
445 out_reghost_failed:
446 *portptr = NULL;
447
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
451
452 /**
453 * nvme_fc_unregister_localport - transport entry point called by an
454 * LLDD to deregister/remove a previously
455 * registered a NVME host FC port.
456 * @portptr: pointer to the (registered) local port that is to be deregistered.
457 *
458 * Returns:
459 * a completion status. Must be 0 upon success; a negative errno
460 * (ex: -ENXIO) upon failure.
461 */
462 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)463 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
464 {
465 struct nvme_fc_lport *lport = localport_to_lport(portptr);
466 unsigned long flags;
467
468 if (!portptr)
469 return -EINVAL;
470
471 spin_lock_irqsave(&nvme_fc_lock, flags);
472
473 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
474 spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 return -EINVAL;
476 }
477 portptr->port_state = FC_OBJSTATE_DELETED;
478
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 if (atomic_read(&lport->act_rport_cnt) == 0)
482 lport->ops->localport_delete(&lport->localport);
483
484 nvme_fc_lport_put(lport);
485
486 return 0;
487 }
488 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
489
490 /*
491 * TRADDR strings, per FC-NVME are fixed format:
492 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
493 * udev event will only differ by prefix of what field is
494 * being specified:
495 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
496 * 19 + 43 + null_fudge = 64 characters
497 */
498 #define FCNVME_TRADDR_LENGTH 64
499
500 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)501 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
502 struct nvme_fc_rport *rport)
503 {
504 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
505 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
506 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
507
508 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
509 return;
510
511 snprintf(hostaddr, sizeof(hostaddr),
512 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
513 lport->localport.node_name, lport->localport.port_name);
514 snprintf(tgtaddr, sizeof(tgtaddr),
515 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
516 rport->remoteport.node_name, rport->remoteport.port_name);
517 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
518 }
519
520 static void
nvme_fc_free_rport(struct kref * ref)521 nvme_fc_free_rport(struct kref *ref)
522 {
523 struct nvme_fc_rport *rport =
524 container_of(ref, struct nvme_fc_rport, ref);
525 struct nvme_fc_lport *lport =
526 localport_to_lport(rport->remoteport.localport);
527 unsigned long flags;
528
529 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
530 WARN_ON(!list_empty(&rport->ctrl_list));
531
532 /* remove from lport list */
533 spin_lock_irqsave(&nvme_fc_lock, flags);
534 list_del(&rport->endp_list);
535 spin_unlock_irqrestore(&nvme_fc_lock, flags);
536
537 WARN_ON(!list_empty(&rport->disc_list));
538 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
539
540 kfree(rport);
541
542 nvme_fc_lport_put(lport);
543 }
544
545 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)546 nvme_fc_rport_put(struct nvme_fc_rport *rport)
547 {
548 kref_put(&rport->ref, nvme_fc_free_rport);
549 }
550
551 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)552 nvme_fc_rport_get(struct nvme_fc_rport *rport)
553 {
554 return kref_get_unless_zero(&rport->ref);
555 }
556
557 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)558 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
559 {
560 switch (ctrl->ctrl.state) {
561 case NVME_CTRL_NEW:
562 case NVME_CTRL_CONNECTING:
563 /*
564 * As all reconnects were suppressed, schedule a
565 * connect.
566 */
567 dev_info(ctrl->ctrl.device,
568 "NVME-FC{%d}: connectivity re-established. "
569 "Attempting reconnect\n", ctrl->cnum);
570
571 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
572 break;
573
574 case NVME_CTRL_RESETTING:
575 /*
576 * Controller is already in the process of terminating the
577 * association. No need to do anything further. The reconnect
578 * step will naturally occur after the reset completes.
579 */
580 break;
581
582 default:
583 /* no action to take - let it delete */
584 break;
585 }
586 }
587
588 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)589 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
590 struct nvme_fc_port_info *pinfo)
591 {
592 struct nvme_fc_rport *rport;
593 struct nvme_fc_ctrl *ctrl;
594 unsigned long flags;
595
596 spin_lock_irqsave(&nvme_fc_lock, flags);
597
598 list_for_each_entry(rport, &lport->endp_list, endp_list) {
599 if (rport->remoteport.node_name != pinfo->node_name ||
600 rport->remoteport.port_name != pinfo->port_name)
601 continue;
602
603 if (!nvme_fc_rport_get(rport)) {
604 rport = ERR_PTR(-ENOLCK);
605 goto out_done;
606 }
607
608 spin_unlock_irqrestore(&nvme_fc_lock, flags);
609
610 spin_lock_irqsave(&rport->lock, flags);
611
612 /* has it been unregistered */
613 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
614 /* means lldd called us twice */
615 spin_unlock_irqrestore(&rport->lock, flags);
616 nvme_fc_rport_put(rport);
617 return ERR_PTR(-ESTALE);
618 }
619
620 rport->remoteport.port_role = pinfo->port_role;
621 rport->remoteport.port_id = pinfo->port_id;
622 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
623 rport->dev_loss_end = 0;
624
625 /*
626 * kick off a reconnect attempt on all associations to the
627 * remote port. A successful reconnects will resume i/o.
628 */
629 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
630 nvme_fc_resume_controller(ctrl);
631
632 spin_unlock_irqrestore(&rport->lock, flags);
633
634 return rport;
635 }
636
637 rport = NULL;
638
639 out_done:
640 spin_unlock_irqrestore(&nvme_fc_lock, flags);
641
642 return rport;
643 }
644
645 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)646 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
647 struct nvme_fc_port_info *pinfo)
648 {
649 if (pinfo->dev_loss_tmo)
650 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
651 else
652 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
653 }
654
655 /**
656 * nvme_fc_register_remoteport - transport entry point called by an
657 * LLDD to register the existence of a NVME
658 * subsystem FC port on its fabric.
659 * @localport: pointer to the (registered) local port that the remote
660 * subsystem port is connected to.
661 * @pinfo: pointer to information about the port to be registered
662 * @portptr: pointer to a remote port pointer. Upon success, the routine
663 * will allocate a nvme_fc_remote_port structure and place its
664 * address in the remote port pointer. Upon failure, remote port
665 * pointer will be set to 0.
666 *
667 * Returns:
668 * a completion status. Must be 0 upon success; a negative errno
669 * (ex: -ENXIO) upon failure.
670 */
671 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)672 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
673 struct nvme_fc_port_info *pinfo,
674 struct nvme_fc_remote_port **portptr)
675 {
676 struct nvme_fc_lport *lport = localport_to_lport(localport);
677 struct nvme_fc_rport *newrec;
678 unsigned long flags;
679 int ret, idx;
680
681 if (!nvme_fc_lport_get(lport)) {
682 ret = -ESHUTDOWN;
683 goto out_reghost_failed;
684 }
685
686 /*
687 * look to see if there is already a remoteport that is waiting
688 * for a reconnect (within dev_loss_tmo) with the same WWN's.
689 * If so, transition to it and reconnect.
690 */
691 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
692
693 /* found an rport, but something about its state is bad */
694 if (IS_ERR(newrec)) {
695 ret = PTR_ERR(newrec);
696 goto out_lport_put;
697
698 /* found existing rport, which was resumed */
699 } else if (newrec) {
700 nvme_fc_lport_put(lport);
701 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
702 nvme_fc_signal_discovery_scan(lport, newrec);
703 *portptr = &newrec->remoteport;
704 return 0;
705 }
706
707 /* nothing found - allocate a new remoteport struct */
708
709 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
710 GFP_KERNEL);
711 if (!newrec) {
712 ret = -ENOMEM;
713 goto out_lport_put;
714 }
715
716 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
717 if (idx < 0) {
718 ret = -ENOSPC;
719 goto out_kfree_rport;
720 }
721
722 INIT_LIST_HEAD(&newrec->endp_list);
723 INIT_LIST_HEAD(&newrec->ctrl_list);
724 INIT_LIST_HEAD(&newrec->ls_req_list);
725 INIT_LIST_HEAD(&newrec->disc_list);
726 kref_init(&newrec->ref);
727 atomic_set(&newrec->act_ctrl_cnt, 0);
728 spin_lock_init(&newrec->lock);
729 newrec->remoteport.localport = &lport->localport;
730 INIT_LIST_HEAD(&newrec->ls_rcv_list);
731 newrec->dev = lport->dev;
732 newrec->lport = lport;
733 if (lport->ops->remote_priv_sz)
734 newrec->remoteport.private = &newrec[1];
735 else
736 newrec->remoteport.private = NULL;
737 newrec->remoteport.port_role = pinfo->port_role;
738 newrec->remoteport.node_name = pinfo->node_name;
739 newrec->remoteport.port_name = pinfo->port_name;
740 newrec->remoteport.port_id = pinfo->port_id;
741 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
742 newrec->remoteport.port_num = idx;
743 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
744 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
745
746 spin_lock_irqsave(&nvme_fc_lock, flags);
747 list_add_tail(&newrec->endp_list, &lport->endp_list);
748 spin_unlock_irqrestore(&nvme_fc_lock, flags);
749
750 nvme_fc_signal_discovery_scan(lport, newrec);
751
752 *portptr = &newrec->remoteport;
753 return 0;
754
755 out_kfree_rport:
756 kfree(newrec);
757 out_lport_put:
758 nvme_fc_lport_put(lport);
759 out_reghost_failed:
760 *portptr = NULL;
761 return ret;
762 }
763 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
764
765 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)766 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
767 {
768 struct nvmefc_ls_req_op *lsop;
769 unsigned long flags;
770
771 restart:
772 spin_lock_irqsave(&rport->lock, flags);
773
774 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
775 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
776 lsop->flags |= FCOP_FLAGS_TERMIO;
777 spin_unlock_irqrestore(&rport->lock, flags);
778 rport->lport->ops->ls_abort(&rport->lport->localport,
779 &rport->remoteport,
780 &lsop->ls_req);
781 goto restart;
782 }
783 }
784 spin_unlock_irqrestore(&rport->lock, flags);
785
786 return 0;
787 }
788
789 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)790 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
791 {
792 dev_info(ctrl->ctrl.device,
793 "NVME-FC{%d}: controller connectivity lost. Awaiting "
794 "Reconnect", ctrl->cnum);
795
796 switch (ctrl->ctrl.state) {
797 case NVME_CTRL_NEW:
798 case NVME_CTRL_LIVE:
799 /*
800 * Schedule a controller reset. The reset will terminate the
801 * association and schedule the reconnect timer. Reconnects
802 * will be attempted until either the ctlr_loss_tmo
803 * (max_retries * connect_delay) expires or the remoteport's
804 * dev_loss_tmo expires.
805 */
806 if (nvme_reset_ctrl(&ctrl->ctrl)) {
807 dev_warn(ctrl->ctrl.device,
808 "NVME-FC{%d}: Couldn't schedule reset.\n",
809 ctrl->cnum);
810 nvme_delete_ctrl(&ctrl->ctrl);
811 }
812 break;
813
814 case NVME_CTRL_CONNECTING:
815 /*
816 * The association has already been terminated and the
817 * controller is attempting reconnects. No need to do anything
818 * futher. Reconnects will be attempted until either the
819 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
820 * remoteport's dev_loss_tmo expires.
821 */
822 break;
823
824 case NVME_CTRL_RESETTING:
825 /*
826 * Controller is already in the process of terminating the
827 * association. No need to do anything further. The reconnect
828 * step will kick in naturally after the association is
829 * terminated.
830 */
831 break;
832
833 case NVME_CTRL_DELETING:
834 case NVME_CTRL_DELETING_NOIO:
835 default:
836 /* no action to take - let it delete */
837 break;
838 }
839 }
840
841 /**
842 * nvme_fc_unregister_remoteport - transport entry point called by an
843 * LLDD to deregister/remove a previously
844 * registered a NVME subsystem FC port.
845 * @portptr: pointer to the (registered) remote port that is to be
846 * deregistered.
847 *
848 * Returns:
849 * a completion status. Must be 0 upon success; a negative errno
850 * (ex: -ENXIO) upon failure.
851 */
852 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)853 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
854 {
855 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
856 struct nvme_fc_ctrl *ctrl;
857 unsigned long flags;
858
859 if (!portptr)
860 return -EINVAL;
861
862 spin_lock_irqsave(&rport->lock, flags);
863
864 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
865 spin_unlock_irqrestore(&rport->lock, flags);
866 return -EINVAL;
867 }
868 portptr->port_state = FC_OBJSTATE_DELETED;
869
870 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
871
872 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
873 /* if dev_loss_tmo==0, dev loss is immediate */
874 if (!portptr->dev_loss_tmo) {
875 dev_warn(ctrl->ctrl.device,
876 "NVME-FC{%d}: controller connectivity lost.\n",
877 ctrl->cnum);
878 nvme_delete_ctrl(&ctrl->ctrl);
879 } else
880 nvme_fc_ctrl_connectivity_loss(ctrl);
881 }
882
883 spin_unlock_irqrestore(&rport->lock, flags);
884
885 nvme_fc_abort_lsops(rport);
886
887 if (atomic_read(&rport->act_ctrl_cnt) == 0)
888 rport->lport->ops->remoteport_delete(portptr);
889
890 /*
891 * release the reference, which will allow, if all controllers
892 * go away, which should only occur after dev_loss_tmo occurs,
893 * for the rport to be torn down.
894 */
895 nvme_fc_rport_put(rport);
896
897 return 0;
898 }
899 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
900
901 /**
902 * nvme_fc_rescan_remoteport - transport entry point called by an
903 * LLDD to request a nvme device rescan.
904 * @remoteport: pointer to the (registered) remote port that is to be
905 * rescanned.
906 *
907 * Returns: N/A
908 */
909 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)910 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
911 {
912 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
913
914 nvme_fc_signal_discovery_scan(rport->lport, rport);
915 }
916 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
917
918 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)919 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
920 u32 dev_loss_tmo)
921 {
922 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
923 unsigned long flags;
924
925 spin_lock_irqsave(&rport->lock, flags);
926
927 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
928 spin_unlock_irqrestore(&rport->lock, flags);
929 return -EINVAL;
930 }
931
932 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
933 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
934
935 spin_unlock_irqrestore(&rport->lock, flags);
936
937 return 0;
938 }
939 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
940
941
942 /* *********************** FC-NVME DMA Handling **************************** */
943
944 /*
945 * The fcloop device passes in a NULL device pointer. Real LLD's will
946 * pass in a valid device pointer. If NULL is passed to the dma mapping
947 * routines, depending on the platform, it may or may not succeed, and
948 * may crash.
949 *
950 * As such:
951 * Wrapper all the dma routines and check the dev pointer.
952 *
953 * If simple mappings (return just a dma address, we'll noop them,
954 * returning a dma address of 0.
955 *
956 * On more complex mappings (dma_map_sg), a pseudo routine fills
957 * in the scatter list, setting all dma addresses to 0.
958 */
959
960 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)961 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
962 enum dma_data_direction dir)
963 {
964 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
965 }
966
967 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)968 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
969 {
970 return dev ? dma_mapping_error(dev, dma_addr) : 0;
971 }
972
973 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)974 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
975 enum dma_data_direction dir)
976 {
977 if (dev)
978 dma_unmap_single(dev, addr, size, dir);
979 }
980
981 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)982 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
983 enum dma_data_direction dir)
984 {
985 if (dev)
986 dma_sync_single_for_cpu(dev, addr, size, dir);
987 }
988
989 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)990 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
991 enum dma_data_direction dir)
992 {
993 if (dev)
994 dma_sync_single_for_device(dev, addr, size, dir);
995 }
996
997 /* pseudo dma_map_sg call */
998 static int
fc_map_sg(struct scatterlist * sg,int nents)999 fc_map_sg(struct scatterlist *sg, int nents)
1000 {
1001 struct scatterlist *s;
1002 int i;
1003
1004 WARN_ON(nents == 0 || sg[0].length == 0);
1005
1006 for_each_sg(sg, s, nents, i) {
1007 s->dma_address = 0L;
1008 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1009 s->dma_length = s->length;
1010 #endif
1011 }
1012 return nents;
1013 }
1014
1015 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1016 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1017 enum dma_data_direction dir)
1018 {
1019 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1020 }
1021
1022 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1023 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1024 enum dma_data_direction dir)
1025 {
1026 if (dev)
1027 dma_unmap_sg(dev, sg, nents, dir);
1028 }
1029
1030 /* *********************** FC-NVME LS Handling **************************** */
1031
1032 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1033 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1034
1035 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1036
1037 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)1038 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1039 {
1040 struct nvme_fc_rport *rport = lsop->rport;
1041 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1042 unsigned long flags;
1043
1044 spin_lock_irqsave(&rport->lock, flags);
1045
1046 if (!lsop->req_queued) {
1047 spin_unlock_irqrestore(&rport->lock, flags);
1048 return;
1049 }
1050
1051 list_del(&lsop->lsreq_list);
1052
1053 lsop->req_queued = false;
1054
1055 spin_unlock_irqrestore(&rport->lock, flags);
1056
1057 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1058 (lsreq->rqstlen + lsreq->rsplen),
1059 DMA_BIDIRECTIONAL);
1060
1061 nvme_fc_rport_put(rport);
1062 }
1063
1064 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1065 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1066 struct nvmefc_ls_req_op *lsop,
1067 void (*done)(struct nvmefc_ls_req *req, int status))
1068 {
1069 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1070 unsigned long flags;
1071 int ret = 0;
1072
1073 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1074 return -ECONNREFUSED;
1075
1076 if (!nvme_fc_rport_get(rport))
1077 return -ESHUTDOWN;
1078
1079 lsreq->done = done;
1080 lsop->rport = rport;
1081 lsop->req_queued = false;
1082 INIT_LIST_HEAD(&lsop->lsreq_list);
1083 init_completion(&lsop->ls_done);
1084
1085 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1086 lsreq->rqstlen + lsreq->rsplen,
1087 DMA_BIDIRECTIONAL);
1088 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1089 ret = -EFAULT;
1090 goto out_putrport;
1091 }
1092 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1093
1094 spin_lock_irqsave(&rport->lock, flags);
1095
1096 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1097
1098 lsop->req_queued = true;
1099
1100 spin_unlock_irqrestore(&rport->lock, flags);
1101
1102 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1103 &rport->remoteport, lsreq);
1104 if (ret)
1105 goto out_unlink;
1106
1107 return 0;
1108
1109 out_unlink:
1110 lsop->ls_error = ret;
1111 spin_lock_irqsave(&rport->lock, flags);
1112 lsop->req_queued = false;
1113 list_del(&lsop->lsreq_list);
1114 spin_unlock_irqrestore(&rport->lock, flags);
1115 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1116 (lsreq->rqstlen + lsreq->rsplen),
1117 DMA_BIDIRECTIONAL);
1118 out_putrport:
1119 nvme_fc_rport_put(rport);
1120
1121 return ret;
1122 }
1123
1124 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1125 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1126 {
1127 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1128
1129 lsop->ls_error = status;
1130 complete(&lsop->ls_done);
1131 }
1132
1133 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1134 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1135 {
1136 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1137 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1138 int ret;
1139
1140 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1141
1142 if (!ret) {
1143 /*
1144 * No timeout/not interruptible as we need the struct
1145 * to exist until the lldd calls us back. Thus mandate
1146 * wait until driver calls back. lldd responsible for
1147 * the timeout action
1148 */
1149 wait_for_completion(&lsop->ls_done);
1150
1151 __nvme_fc_finish_ls_req(lsop);
1152
1153 ret = lsop->ls_error;
1154 }
1155
1156 if (ret)
1157 return ret;
1158
1159 /* ACC or RJT payload ? */
1160 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1161 return -ENXIO;
1162
1163 return 0;
1164 }
1165
1166 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1167 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1168 struct nvmefc_ls_req_op *lsop,
1169 void (*done)(struct nvmefc_ls_req *req, int status))
1170 {
1171 /* don't wait for completion */
1172
1173 return __nvme_fc_send_ls_req(rport, lsop, done);
1174 }
1175
1176 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 struct nvmefc_ls_req_op *lsop;
1181 struct nvmefc_ls_req *lsreq;
1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 unsigned long flags;
1185 int ret, fcret = 0;
1186
1187 lsop = kzalloc((sizeof(*lsop) +
1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1189 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1190 if (!lsop) {
1191 dev_info(ctrl->ctrl.device,
1192 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1193 ctrl->cnum);
1194 ret = -ENOMEM;
1195 goto out_no_memory;
1196 }
1197
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1199 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1200 lsreq = &lsop->ls_req;
1201 if (ctrl->lport->ops->lsrqst_priv_sz)
1202 lsreq->private = &assoc_acc[1];
1203 else
1204 lsreq->private = NULL;
1205
1206 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1207 assoc_rqst->desc_list_len =
1208 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209
1210 assoc_rqst->assoc_cmd.desc_tag =
1211 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1212 assoc_rqst->assoc_cmd.desc_len =
1213 fcnvme_lsdesc_len(
1214 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1215
1216 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1217 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1218 /* Linux supports only Dynamic controllers */
1219 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1220 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1221 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1222 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1223 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1224 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1225
1226 lsop->queue = queue;
1227 lsreq->rqstaddr = assoc_rqst;
1228 lsreq->rqstlen = sizeof(*assoc_rqst);
1229 lsreq->rspaddr = assoc_acc;
1230 lsreq->rsplen = sizeof(*assoc_acc);
1231 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1232
1233 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1234 if (ret)
1235 goto out_free_buffer;
1236
1237 /* process connect LS completion */
1238
1239 /* validate the ACC response */
1240 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1241 fcret = VERR_LSACC;
1242 else if (assoc_acc->hdr.desc_list_len !=
1243 fcnvme_lsdesc_len(
1244 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1245 fcret = VERR_CR_ASSOC_ACC_LEN;
1246 else if (assoc_acc->hdr.rqst.desc_tag !=
1247 cpu_to_be32(FCNVME_LSDESC_RQST))
1248 fcret = VERR_LSDESC_RQST;
1249 else if (assoc_acc->hdr.rqst.desc_len !=
1250 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1251 fcret = VERR_LSDESC_RQST_LEN;
1252 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1253 fcret = VERR_CR_ASSOC;
1254 else if (assoc_acc->associd.desc_tag !=
1255 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256 fcret = VERR_ASSOC_ID;
1257 else if (assoc_acc->associd.desc_len !=
1258 fcnvme_lsdesc_len(
1259 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260 fcret = VERR_ASSOC_ID_LEN;
1261 else if (assoc_acc->connectid.desc_tag !=
1262 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1263 fcret = VERR_CONN_ID;
1264 else if (assoc_acc->connectid.desc_len !=
1265 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1266 fcret = VERR_CONN_ID_LEN;
1267
1268 if (fcret) {
1269 ret = -EBADF;
1270 dev_err(ctrl->dev,
1271 "q %d Create Association LS failed: %s\n",
1272 queue->qnum, validation_errors[fcret]);
1273 } else {
1274 spin_lock_irqsave(&ctrl->lock, flags);
1275 ctrl->association_id =
1276 be64_to_cpu(assoc_acc->associd.association_id);
1277 queue->connection_id =
1278 be64_to_cpu(assoc_acc->connectid.connection_id);
1279 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1280 spin_unlock_irqrestore(&ctrl->lock, flags);
1281 }
1282
1283 out_free_buffer:
1284 kfree(lsop);
1285 out_no_memory:
1286 if (ret)
1287 dev_err(ctrl->dev,
1288 "queue %d connect admin queue failed (%d).\n",
1289 queue->qnum, ret);
1290 return ret;
1291 }
1292
1293 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1294 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1295 u16 qsize, u16 ersp_ratio)
1296 {
1297 struct nvmefc_ls_req_op *lsop;
1298 struct nvmefc_ls_req *lsreq;
1299 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1300 struct fcnvme_ls_cr_conn_acc *conn_acc;
1301 int ret, fcret = 0;
1302
1303 lsop = kzalloc((sizeof(*lsop) +
1304 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1305 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1306 if (!lsop) {
1307 dev_info(ctrl->ctrl.device,
1308 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1309 ctrl->cnum);
1310 ret = -ENOMEM;
1311 goto out_no_memory;
1312 }
1313
1314 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1315 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1316 lsreq = &lsop->ls_req;
1317 if (ctrl->lport->ops->lsrqst_priv_sz)
1318 lsreq->private = (void *)&conn_acc[1];
1319 else
1320 lsreq->private = NULL;
1321
1322 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1323 conn_rqst->desc_list_len = cpu_to_be32(
1324 sizeof(struct fcnvme_lsdesc_assoc_id) +
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326
1327 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1328 conn_rqst->associd.desc_len =
1329 fcnvme_lsdesc_len(
1330 sizeof(struct fcnvme_lsdesc_assoc_id));
1331 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1332 conn_rqst->connect_cmd.desc_tag =
1333 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1334 conn_rqst->connect_cmd.desc_len =
1335 fcnvme_lsdesc_len(
1336 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1337 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1338 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1339 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1340
1341 lsop->queue = queue;
1342 lsreq->rqstaddr = conn_rqst;
1343 lsreq->rqstlen = sizeof(*conn_rqst);
1344 lsreq->rspaddr = conn_acc;
1345 lsreq->rsplen = sizeof(*conn_acc);
1346 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1347
1348 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1349 if (ret)
1350 goto out_free_buffer;
1351
1352 /* process connect LS completion */
1353
1354 /* validate the ACC response */
1355 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1356 fcret = VERR_LSACC;
1357 else if (conn_acc->hdr.desc_list_len !=
1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1359 fcret = VERR_CR_CONN_ACC_LEN;
1360 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1361 fcret = VERR_LSDESC_RQST;
1362 else if (conn_acc->hdr.rqst.desc_len !=
1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1364 fcret = VERR_LSDESC_RQST_LEN;
1365 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1366 fcret = VERR_CR_CONN;
1367 else if (conn_acc->connectid.desc_tag !=
1368 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1369 fcret = VERR_CONN_ID;
1370 else if (conn_acc->connectid.desc_len !=
1371 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1372 fcret = VERR_CONN_ID_LEN;
1373
1374 if (fcret) {
1375 ret = -EBADF;
1376 dev_err(ctrl->dev,
1377 "q %d Create I/O Connection LS failed: %s\n",
1378 queue->qnum, validation_errors[fcret]);
1379 } else {
1380 queue->connection_id =
1381 be64_to_cpu(conn_acc->connectid.connection_id);
1382 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1383 }
1384
1385 out_free_buffer:
1386 kfree(lsop);
1387 out_no_memory:
1388 if (ret)
1389 dev_err(ctrl->dev,
1390 "queue %d connect I/O queue failed (%d).\n",
1391 queue->qnum, ret);
1392 return ret;
1393 }
1394
1395 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1396 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1397 {
1398 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1399
1400 __nvme_fc_finish_ls_req(lsop);
1401
1402 /* fc-nvme initiator doesn't care about success or failure of cmd */
1403
1404 kfree(lsop);
1405 }
1406
1407 /*
1408 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1409 * the FC-NVME Association. Terminating the association also
1410 * terminates the FC-NVME connections (per queue, both admin and io
1411 * queues) that are part of the association. E.g. things are torn
1412 * down, and the related FC-NVME Association ID and Connection IDs
1413 * become invalid.
1414 *
1415 * The behavior of the fc-nvme initiator is such that it's
1416 * understanding of the association and connections will implicitly
1417 * be torn down. The action is implicit as it may be due to a loss of
1418 * connectivity with the fc-nvme target, so you may never get a
1419 * response even if you tried. As such, the action of this routine
1420 * is to asynchronously send the LS, ignore any results of the LS, and
1421 * continue on with terminating the association. If the fc-nvme target
1422 * is present and receives the LS, it too can tear down.
1423 */
1424 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1425 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1426 {
1427 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1428 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1429 struct nvmefc_ls_req_op *lsop;
1430 struct nvmefc_ls_req *lsreq;
1431 int ret;
1432
1433 lsop = kzalloc((sizeof(*lsop) +
1434 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1435 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1436 if (!lsop) {
1437 dev_info(ctrl->ctrl.device,
1438 "NVME-FC{%d}: send Disconnect Association "
1439 "failed: ENOMEM\n",
1440 ctrl->cnum);
1441 return;
1442 }
1443
1444 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1445 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1446 lsreq = &lsop->ls_req;
1447 if (ctrl->lport->ops->lsrqst_priv_sz)
1448 lsreq->private = (void *)&discon_acc[1];
1449 else
1450 lsreq->private = NULL;
1451
1452 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1453 ctrl->association_id);
1454
1455 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1456 nvme_fc_disconnect_assoc_done);
1457 if (ret)
1458 kfree(lsop);
1459 }
1460
1461 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1462 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1463 {
1464 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1465 struct nvme_fc_rport *rport = lsop->rport;
1466 struct nvme_fc_lport *lport = rport->lport;
1467 unsigned long flags;
1468
1469 spin_lock_irqsave(&rport->lock, flags);
1470 list_del(&lsop->lsrcv_list);
1471 spin_unlock_irqrestore(&rport->lock, flags);
1472
1473 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1474 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1475 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1476 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1477
1478 kfree(lsop);
1479
1480 nvme_fc_rport_put(rport);
1481 }
1482
1483 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1484 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1485 {
1486 struct nvme_fc_rport *rport = lsop->rport;
1487 struct nvme_fc_lport *lport = rport->lport;
1488 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1489 int ret;
1490
1491 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1492 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1493
1494 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1495 lsop->lsrsp);
1496 if (ret) {
1497 dev_warn(lport->dev,
1498 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1499 w0->ls_cmd, ret);
1500 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1501 return;
1502 }
1503 }
1504
1505 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1506 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1507 struct nvmefc_ls_rcv_op *lsop)
1508 {
1509 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1510 &lsop->rqstbuf->rq_dis_assoc;
1511 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1512 struct nvmefc_ls_rcv_op *oldls = NULL;
1513 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1514 unsigned long flags;
1515
1516 spin_lock_irqsave(&rport->lock, flags);
1517
1518 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1519 if (!nvme_fc_ctrl_get(ctrl))
1520 continue;
1521 spin_lock(&ctrl->lock);
1522 if (association_id == ctrl->association_id) {
1523 oldls = ctrl->rcv_disconn;
1524 ctrl->rcv_disconn = lsop;
1525 ret = ctrl;
1526 }
1527 spin_unlock(&ctrl->lock);
1528 if (ret)
1529 /* leave the ctrl get reference */
1530 break;
1531 nvme_fc_ctrl_put(ctrl);
1532 }
1533
1534 spin_unlock_irqrestore(&rport->lock, flags);
1535
1536 /* transmit a response for anything that was pending */
1537 if (oldls) {
1538 dev_info(rport->lport->dev,
1539 "NVME-FC{%d}: Multiple Disconnect Association "
1540 "LS's received\n", ctrl->cnum);
1541 /* overwrite good response with bogus failure */
1542 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1543 sizeof(*oldls->rspbuf),
1544 rqst->w0.ls_cmd,
1545 FCNVME_RJT_RC_UNAB,
1546 FCNVME_RJT_EXP_NONE, 0);
1547 nvme_fc_xmt_ls_rsp(oldls);
1548 }
1549
1550 return ret;
1551 }
1552
1553 /*
1554 * returns true to mean LS handled and ls_rsp can be sent
1555 * returns false to defer ls_rsp xmt (will be done as part of
1556 * association termination)
1557 */
1558 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1559 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1560 {
1561 struct nvme_fc_rport *rport = lsop->rport;
1562 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1563 &lsop->rqstbuf->rq_dis_assoc;
1564 struct fcnvme_ls_disconnect_assoc_acc *acc =
1565 &lsop->rspbuf->rsp_dis_assoc;
1566 struct nvme_fc_ctrl *ctrl = NULL;
1567 int ret = 0;
1568
1569 memset(acc, 0, sizeof(*acc));
1570
1571 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1572 if (!ret) {
1573 /* match an active association */
1574 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1575 if (!ctrl)
1576 ret = VERR_NO_ASSOC;
1577 }
1578
1579 if (ret) {
1580 dev_info(rport->lport->dev,
1581 "Disconnect LS failed: %s\n",
1582 validation_errors[ret]);
1583 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1584 sizeof(*acc), rqst->w0.ls_cmd,
1585 (ret == VERR_NO_ASSOC) ?
1586 FCNVME_RJT_RC_INV_ASSOC :
1587 FCNVME_RJT_RC_LOGIC,
1588 FCNVME_RJT_EXP_NONE, 0);
1589 return true;
1590 }
1591
1592 /* format an ACCept response */
1593
1594 lsop->lsrsp->rsplen = sizeof(*acc);
1595
1596 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1597 fcnvme_lsdesc_len(
1598 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1599 FCNVME_LS_DISCONNECT_ASSOC);
1600
1601 /*
1602 * the transmit of the response will occur after the exchanges
1603 * for the association have been ABTS'd by
1604 * nvme_fc_delete_association().
1605 */
1606
1607 /* fail the association */
1608 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1609
1610 /* release the reference taken by nvme_fc_match_disconn_ls() */
1611 nvme_fc_ctrl_put(ctrl);
1612
1613 return false;
1614 }
1615
1616 /*
1617 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1618 * returns true if a response should be sent afterward, false if rsp will
1619 * be sent asynchronously.
1620 */
1621 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1622 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1623 {
1624 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1625 bool ret = true;
1626
1627 lsop->lsrsp->nvme_fc_private = lsop;
1628 lsop->lsrsp->rspbuf = lsop->rspbuf;
1629 lsop->lsrsp->rspdma = lsop->rspdma;
1630 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1631 /* Be preventative. handlers will later set to valid length */
1632 lsop->lsrsp->rsplen = 0;
1633
1634 /*
1635 * handlers:
1636 * parse request input, execute the request, and format the
1637 * LS response
1638 */
1639 switch (w0->ls_cmd) {
1640 case FCNVME_LS_DISCONNECT_ASSOC:
1641 ret = nvme_fc_ls_disconnect_assoc(lsop);
1642 break;
1643 case FCNVME_LS_DISCONNECT_CONN:
1644 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645 sizeof(*lsop->rspbuf), w0->ls_cmd,
1646 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1647 break;
1648 case FCNVME_LS_CREATE_ASSOCIATION:
1649 case FCNVME_LS_CREATE_CONNECTION:
1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1651 sizeof(*lsop->rspbuf), w0->ls_cmd,
1652 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1653 break;
1654 default:
1655 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1656 sizeof(*lsop->rspbuf), w0->ls_cmd,
1657 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1658 break;
1659 }
1660
1661 return(ret);
1662 }
1663
1664 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1665 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1666 {
1667 struct nvme_fc_rport *rport =
1668 container_of(work, struct nvme_fc_rport, lsrcv_work);
1669 struct fcnvme_ls_rqst_w0 *w0;
1670 struct nvmefc_ls_rcv_op *lsop;
1671 unsigned long flags;
1672 bool sendrsp;
1673
1674 restart:
1675 sendrsp = true;
1676 spin_lock_irqsave(&rport->lock, flags);
1677 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1678 if (lsop->handled)
1679 continue;
1680
1681 lsop->handled = true;
1682 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1683 spin_unlock_irqrestore(&rport->lock, flags);
1684 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1685 } else {
1686 spin_unlock_irqrestore(&rport->lock, flags);
1687 w0 = &lsop->rqstbuf->w0;
1688 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1689 lsop->rspbuf,
1690 sizeof(*lsop->rspbuf),
1691 w0->ls_cmd,
1692 FCNVME_RJT_RC_UNAB,
1693 FCNVME_RJT_EXP_NONE, 0);
1694 }
1695 if (sendrsp)
1696 nvme_fc_xmt_ls_rsp(lsop);
1697 goto restart;
1698 }
1699 spin_unlock_irqrestore(&rport->lock, flags);
1700 }
1701
1702 /**
1703 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1704 * upon the reception of a NVME LS request.
1705 *
1706 * The nvme-fc layer will copy payload to an internal structure for
1707 * processing. As such, upon completion of the routine, the LLDD may
1708 * immediately free/reuse the LS request buffer passed in the call.
1709 *
1710 * If this routine returns error, the LLDD should abort the exchange.
1711 *
1712 * @portptr: pointer to the (registered) remote port that the LS
1713 * was received from. The remoteport is associated with
1714 * a specific localport.
1715 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1716 * used to reference the exchange corresponding to the LS
1717 * when issuing an ls response.
1718 * @lsreqbuf: pointer to the buffer containing the LS Request
1719 * @lsreqbuf_len: length, in bytes, of the received LS request
1720 */
1721 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1722 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1723 struct nvmefc_ls_rsp *lsrsp,
1724 void *lsreqbuf, u32 lsreqbuf_len)
1725 {
1726 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1727 struct nvme_fc_lport *lport = rport->lport;
1728 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1729 struct nvmefc_ls_rcv_op *lsop;
1730 unsigned long flags;
1731 int ret;
1732
1733 nvme_fc_rport_get(rport);
1734
1735 /* validate there's a routine to transmit a response */
1736 if (!lport->ops->xmt_ls_rsp) {
1737 dev_info(lport->dev,
1738 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1739 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1740 nvmefc_ls_names[w0->ls_cmd] : "");
1741 ret = -EINVAL;
1742 goto out_put;
1743 }
1744
1745 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1746 dev_info(lport->dev,
1747 "RCV %s LS failed: payload too large\n",
1748 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1749 nvmefc_ls_names[w0->ls_cmd] : "");
1750 ret = -E2BIG;
1751 goto out_put;
1752 }
1753
1754 lsop = kzalloc(sizeof(*lsop) +
1755 sizeof(union nvmefc_ls_requests) +
1756 sizeof(union nvmefc_ls_responses),
1757 GFP_KERNEL);
1758 if (!lsop) {
1759 dev_info(lport->dev,
1760 "RCV %s LS failed: No memory\n",
1761 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1762 nvmefc_ls_names[w0->ls_cmd] : "");
1763 ret = -ENOMEM;
1764 goto out_put;
1765 }
1766 lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1767 lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1768
1769 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1770 sizeof(*lsop->rspbuf),
1771 DMA_TO_DEVICE);
1772 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1773 dev_info(lport->dev,
1774 "RCV %s LS failed: DMA mapping failure\n",
1775 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1776 nvmefc_ls_names[w0->ls_cmd] : "");
1777 ret = -EFAULT;
1778 goto out_free;
1779 }
1780
1781 lsop->rport = rport;
1782 lsop->lsrsp = lsrsp;
1783
1784 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1785 lsop->rqstdatalen = lsreqbuf_len;
1786
1787 spin_lock_irqsave(&rport->lock, flags);
1788 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1789 spin_unlock_irqrestore(&rport->lock, flags);
1790 ret = -ENOTCONN;
1791 goto out_unmap;
1792 }
1793 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1794 spin_unlock_irqrestore(&rport->lock, flags);
1795
1796 schedule_work(&rport->lsrcv_work);
1797
1798 return 0;
1799
1800 out_unmap:
1801 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1802 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1803 out_free:
1804 kfree(lsop);
1805 out_put:
1806 nvme_fc_rport_put(rport);
1807 return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1810
1811
1812 /* *********************** NVME Ctrl Routines **************************** */
1813
1814 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1815 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1816 struct nvme_fc_fcp_op *op)
1817 {
1818 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1819 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1820 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1821 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1822
1823 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1824 }
1825
1826 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1827 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1828 unsigned int hctx_idx)
1829 {
1830 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1831
1832 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1833 }
1834
1835 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1836 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1837 {
1838 unsigned long flags;
1839 int opstate;
1840
1841 spin_lock_irqsave(&ctrl->lock, flags);
1842 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1843 if (opstate != FCPOP_STATE_ACTIVE)
1844 atomic_set(&op->state, opstate);
1845 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1846 op->flags |= FCOP_FLAGS_TERMIO;
1847 ctrl->iocnt++;
1848 }
1849 spin_unlock_irqrestore(&ctrl->lock, flags);
1850
1851 if (opstate != FCPOP_STATE_ACTIVE)
1852 return -ECANCELED;
1853
1854 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1855 &ctrl->rport->remoteport,
1856 op->queue->lldd_handle,
1857 &op->fcp_req);
1858
1859 return 0;
1860 }
1861
1862 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1863 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1864 {
1865 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1866 int i;
1867
1868 /* ensure we've initialized the ops once */
1869 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1870 return;
1871
1872 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1873 __nvme_fc_abort_op(ctrl, aen_op);
1874 }
1875
1876 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1877 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1878 struct nvme_fc_fcp_op *op, int opstate)
1879 {
1880 unsigned long flags;
1881
1882 if (opstate == FCPOP_STATE_ABORTED) {
1883 spin_lock_irqsave(&ctrl->lock, flags);
1884 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1885 op->flags & FCOP_FLAGS_TERMIO) {
1886 if (!--ctrl->iocnt)
1887 wake_up(&ctrl->ioabort_wait);
1888 }
1889 spin_unlock_irqrestore(&ctrl->lock, flags);
1890 }
1891 }
1892
1893 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1894 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1895 {
1896 struct nvme_fc_ctrl *ctrl =
1897 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1898
1899 nvme_fc_error_recovery(ctrl, "transport detected io error");
1900 }
1901
1902 /*
1903 * nvme_fc_io_getuuid - Routine called to get the appid field
1904 * associated with request by the lldd
1905 * @req:IO request from nvme fc to driver
1906 * Returns: UUID if there is an appid associated with VM or
1907 * NULL if the user/libvirt has not set the appid to VM
1908 */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1909 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1910 {
1911 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1912 struct request *rq = op->rq;
1913
1914 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq->bio)
1915 return NULL;
1916 return blkcg_get_fc_appid(rq->bio);
1917 }
1918 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1919
1920 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1921 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1922 {
1923 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1924 struct request *rq = op->rq;
1925 struct nvmefc_fcp_req *freq = &op->fcp_req;
1926 struct nvme_fc_ctrl *ctrl = op->ctrl;
1927 struct nvme_fc_queue *queue = op->queue;
1928 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1929 struct nvme_command *sqe = &op->cmd_iu.sqe;
1930 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1931 union nvme_result result;
1932 bool terminate_assoc = true;
1933 int opstate;
1934
1935 /*
1936 * WARNING:
1937 * The current linux implementation of a nvme controller
1938 * allocates a single tag set for all io queues and sizes
1939 * the io queues to fully hold all possible tags. Thus, the
1940 * implementation does not reference or care about the sqhd
1941 * value as it never needs to use the sqhd/sqtail pointers
1942 * for submission pacing.
1943 *
1944 * This affects the FC-NVME implementation in two ways:
1945 * 1) As the value doesn't matter, we don't need to waste
1946 * cycles extracting it from ERSPs and stamping it in the
1947 * cases where the transport fabricates CQEs on successful
1948 * completions.
1949 * 2) The FC-NVME implementation requires that delivery of
1950 * ERSP completions are to go back to the nvme layer in order
1951 * relative to the rsn, such that the sqhd value will always
1952 * be "in order" for the nvme layer. As the nvme layer in
1953 * linux doesn't care about sqhd, there's no need to return
1954 * them in order.
1955 *
1956 * Additionally:
1957 * As the core nvme layer in linux currently does not look at
1958 * every field in the cqe - in cases where the FC transport must
1959 * fabricate a CQE, the following fields will not be set as they
1960 * are not referenced:
1961 * cqe.sqid, cqe.sqhd, cqe.command_id
1962 *
1963 * Failure or error of an individual i/o, in a transport
1964 * detected fashion unrelated to the nvme completion status,
1965 * potentially cause the initiator and target sides to get out
1966 * of sync on SQ head/tail (aka outstanding io count allowed).
1967 * Per FC-NVME spec, failure of an individual command requires
1968 * the connection to be terminated, which in turn requires the
1969 * association to be terminated.
1970 */
1971
1972 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1973
1974 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1975 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1976
1977 if (opstate == FCPOP_STATE_ABORTED)
1978 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1979 else if (freq->status) {
1980 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1981 dev_info(ctrl->ctrl.device,
1982 "NVME-FC{%d}: io failed due to lldd error %d\n",
1983 ctrl->cnum, freq->status);
1984 }
1985
1986 /*
1987 * For the linux implementation, if we have an unsuccesful
1988 * status, they blk-mq layer can typically be called with the
1989 * non-zero status and the content of the cqe isn't important.
1990 */
1991 if (status)
1992 goto done;
1993
1994 /*
1995 * command completed successfully relative to the wire
1996 * protocol. However, validate anything received and
1997 * extract the status and result from the cqe (create it
1998 * where necessary).
1999 */
2000
2001 switch (freq->rcv_rsplen) {
2002
2003 case 0:
2004 case NVME_FC_SIZEOF_ZEROS_RSP:
2005 /*
2006 * No response payload or 12 bytes of payload (which
2007 * should all be zeros) are considered successful and
2008 * no payload in the CQE by the transport.
2009 */
2010 if (freq->transferred_length !=
2011 be32_to_cpu(op->cmd_iu.data_len)) {
2012 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2013 dev_info(ctrl->ctrl.device,
2014 "NVME-FC{%d}: io failed due to bad transfer "
2015 "length: %d vs expected %d\n",
2016 ctrl->cnum, freq->transferred_length,
2017 be32_to_cpu(op->cmd_iu.data_len));
2018 goto done;
2019 }
2020 result.u64 = 0;
2021 break;
2022
2023 case sizeof(struct nvme_fc_ersp_iu):
2024 /*
2025 * The ERSP IU contains a full completion with CQE.
2026 * Validate ERSP IU and look at cqe.
2027 */
2028 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2029 (freq->rcv_rsplen / 4) ||
2030 be32_to_cpu(op->rsp_iu.xfrd_len) !=
2031 freq->transferred_length ||
2032 op->rsp_iu.ersp_result ||
2033 sqe->common.command_id != cqe->command_id)) {
2034 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2035 dev_info(ctrl->ctrl.device,
2036 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2037 "iu len %d, xfr len %d vs %d, status code "
2038 "%d, cmdid %d vs %d\n",
2039 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2040 be32_to_cpu(op->rsp_iu.xfrd_len),
2041 freq->transferred_length,
2042 op->rsp_iu.ersp_result,
2043 sqe->common.command_id,
2044 cqe->command_id);
2045 goto done;
2046 }
2047 result = cqe->result;
2048 status = cqe->status;
2049 break;
2050
2051 default:
2052 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2053 dev_info(ctrl->ctrl.device,
2054 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2055 "len %d\n",
2056 ctrl->cnum, freq->rcv_rsplen);
2057 goto done;
2058 }
2059
2060 terminate_assoc = false;
2061
2062 done:
2063 if (op->flags & FCOP_FLAGS_AEN) {
2064 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2065 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2066 atomic_set(&op->state, FCPOP_STATE_IDLE);
2067 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2068 nvme_fc_ctrl_put(ctrl);
2069 goto check_error;
2070 }
2071
2072 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2073 if (!nvme_try_complete_req(rq, status, result))
2074 nvme_fc_complete_rq(rq);
2075
2076 check_error:
2077 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2078 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2079 }
2080
2081 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2082 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2083 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2084 struct request *rq, u32 rqno)
2085 {
2086 struct nvme_fcp_op_w_sgl *op_w_sgl =
2087 container_of(op, typeof(*op_w_sgl), op);
2088 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2089 int ret = 0;
2090
2091 memset(op, 0, sizeof(*op));
2092 op->fcp_req.cmdaddr = &op->cmd_iu;
2093 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2094 op->fcp_req.rspaddr = &op->rsp_iu;
2095 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2096 op->fcp_req.done = nvme_fc_fcpio_done;
2097 op->ctrl = ctrl;
2098 op->queue = queue;
2099 op->rq = rq;
2100 op->rqno = rqno;
2101
2102 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2103 cmdiu->fc_id = NVME_CMD_FC_ID;
2104 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2105 if (queue->qnum)
2106 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2107 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2108 else
2109 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2110
2111 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2112 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2113 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2114 dev_err(ctrl->dev,
2115 "FCP Op failed - cmdiu dma mapping failed.\n");
2116 ret = -EFAULT;
2117 goto out_on_error;
2118 }
2119
2120 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2121 &op->rsp_iu, sizeof(op->rsp_iu),
2122 DMA_FROM_DEVICE);
2123 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2124 dev_err(ctrl->dev,
2125 "FCP Op failed - rspiu dma mapping failed.\n");
2126 ret = -EFAULT;
2127 }
2128
2129 atomic_set(&op->state, FCPOP_STATE_IDLE);
2130 out_on_error:
2131 return ret;
2132 }
2133
2134 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2135 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2136 unsigned int hctx_idx, unsigned int numa_node)
2137 {
2138 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2139 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2140 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2141 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2142 int res;
2143
2144 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2145 if (res)
2146 return res;
2147 op->op.fcp_req.first_sgl = op->sgl;
2148 op->op.fcp_req.private = &op->priv[0];
2149 nvme_req(rq)->ctrl = &ctrl->ctrl;
2150 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2151 return res;
2152 }
2153
2154 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2155 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2156 {
2157 struct nvme_fc_fcp_op *aen_op;
2158 struct nvme_fc_cmd_iu *cmdiu;
2159 struct nvme_command *sqe;
2160 void *private = NULL;
2161 int i, ret;
2162
2163 aen_op = ctrl->aen_ops;
2164 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2165 if (ctrl->lport->ops->fcprqst_priv_sz) {
2166 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2167 GFP_KERNEL);
2168 if (!private)
2169 return -ENOMEM;
2170 }
2171
2172 cmdiu = &aen_op->cmd_iu;
2173 sqe = &cmdiu->sqe;
2174 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2175 aen_op, (struct request *)NULL,
2176 (NVME_AQ_BLK_MQ_DEPTH + i));
2177 if (ret) {
2178 kfree(private);
2179 return ret;
2180 }
2181
2182 aen_op->flags = FCOP_FLAGS_AEN;
2183 aen_op->fcp_req.private = private;
2184
2185 memset(sqe, 0, sizeof(*sqe));
2186 sqe->common.opcode = nvme_admin_async_event;
2187 /* Note: core layer may overwrite the sqe.command_id value */
2188 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2189 }
2190 return 0;
2191 }
2192
2193 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2194 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2195 {
2196 struct nvme_fc_fcp_op *aen_op;
2197 int i;
2198
2199 cancel_work_sync(&ctrl->ctrl.async_event_work);
2200 aen_op = ctrl->aen_ops;
2201 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2202 __nvme_fc_exit_request(ctrl, aen_op);
2203
2204 kfree(aen_op->fcp_req.private);
2205 aen_op->fcp_req.private = NULL;
2206 }
2207 }
2208
2209 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2210 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2211 {
2212 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2213 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2214
2215 hctx->driver_data = queue;
2216 queue->hctx = hctx;
2217 return 0;
2218 }
2219
2220 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2221 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2222 {
2223 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2224 }
2225
2226 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2227 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2228 unsigned int hctx_idx)
2229 {
2230 return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2231 }
2232
2233 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2234 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2235 {
2236 struct nvme_fc_queue *queue;
2237
2238 queue = &ctrl->queues[idx];
2239 memset(queue, 0, sizeof(*queue));
2240 queue->ctrl = ctrl;
2241 queue->qnum = idx;
2242 atomic_set(&queue->csn, 0);
2243 queue->dev = ctrl->dev;
2244
2245 if (idx > 0)
2246 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2247 else
2248 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2249
2250 /*
2251 * Considered whether we should allocate buffers for all SQEs
2252 * and CQEs and dma map them - mapping their respective entries
2253 * into the request structures (kernel vm addr and dma address)
2254 * thus the driver could use the buffers/mappings directly.
2255 * It only makes sense if the LLDD would use them for its
2256 * messaging api. It's very unlikely most adapter api's would use
2257 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2258 * structures were used instead.
2259 */
2260 }
2261
2262 /*
2263 * This routine terminates a queue at the transport level.
2264 * The transport has already ensured that all outstanding ios on
2265 * the queue have been terminated.
2266 * The transport will send a Disconnect LS request to terminate
2267 * the queue's connection. Termination of the admin queue will also
2268 * terminate the association at the target.
2269 */
2270 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2271 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2272 {
2273 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2274 return;
2275
2276 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2277 /*
2278 * Current implementation never disconnects a single queue.
2279 * It always terminates a whole association. So there is never
2280 * a disconnect(queue) LS sent to the target.
2281 */
2282
2283 queue->connection_id = 0;
2284 atomic_set(&queue->csn, 0);
2285 }
2286
2287 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2288 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2289 struct nvme_fc_queue *queue, unsigned int qidx)
2290 {
2291 if (ctrl->lport->ops->delete_queue)
2292 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2293 queue->lldd_handle);
2294 queue->lldd_handle = NULL;
2295 }
2296
2297 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2298 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2299 {
2300 int i;
2301
2302 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2303 nvme_fc_free_queue(&ctrl->queues[i]);
2304 }
2305
2306 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2307 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2308 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2309 {
2310 int ret = 0;
2311
2312 queue->lldd_handle = NULL;
2313 if (ctrl->lport->ops->create_queue)
2314 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2315 qidx, qsize, &queue->lldd_handle);
2316
2317 return ret;
2318 }
2319
2320 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2321 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2322 {
2323 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2324 int i;
2325
2326 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2327 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2328 }
2329
2330 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2331 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2332 {
2333 struct nvme_fc_queue *queue = &ctrl->queues[1];
2334 int i, ret;
2335
2336 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2337 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2338 if (ret)
2339 goto delete_queues;
2340 }
2341
2342 return 0;
2343
2344 delete_queues:
2345 for (; i > 0; i--)
2346 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2347 return ret;
2348 }
2349
2350 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2351 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2352 {
2353 int i, ret = 0;
2354
2355 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2356 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2357 (qsize / 5));
2358 if (ret)
2359 break;
2360 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2361 if (ret)
2362 break;
2363
2364 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2365 }
2366
2367 return ret;
2368 }
2369
2370 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2371 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2372 {
2373 int i;
2374
2375 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2376 nvme_fc_init_queue(ctrl, i);
2377 }
2378
2379 static void
nvme_fc_ctrl_free(struct kref * ref)2380 nvme_fc_ctrl_free(struct kref *ref)
2381 {
2382 struct nvme_fc_ctrl *ctrl =
2383 container_of(ref, struct nvme_fc_ctrl, ref);
2384 unsigned long flags;
2385
2386 if (ctrl->ctrl.tagset)
2387 nvme_remove_io_tag_set(&ctrl->ctrl);
2388
2389 /* remove from rport list */
2390 spin_lock_irqsave(&ctrl->rport->lock, flags);
2391 list_del(&ctrl->ctrl_list);
2392 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2393
2394 nvme_start_admin_queue(&ctrl->ctrl);
2395 nvme_remove_admin_tag_set(&ctrl->ctrl);
2396
2397 kfree(ctrl->queues);
2398
2399 put_device(ctrl->dev);
2400 nvme_fc_rport_put(ctrl->rport);
2401
2402 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2403 if (ctrl->ctrl.opts)
2404 nvmf_free_options(ctrl->ctrl.opts);
2405 kfree(ctrl);
2406 }
2407
2408 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2409 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2410 {
2411 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2412 }
2413
2414 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2415 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2416 {
2417 return kref_get_unless_zero(&ctrl->ref);
2418 }
2419
2420 /*
2421 * All accesses from nvme core layer done - can now free the
2422 * controller. Called after last nvme_put_ctrl() call
2423 */
2424 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2425 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2426 {
2427 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2428
2429 WARN_ON(nctrl != &ctrl->ctrl);
2430
2431 nvme_fc_ctrl_put(ctrl);
2432 }
2433
2434 /*
2435 * This routine is used by the transport when it needs to find active
2436 * io on a queue that is to be terminated. The transport uses
2437 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2438 * this routine to kill them on a 1 by 1 basis.
2439 *
2440 * As FC allocates FC exchange for each io, the transport must contact
2441 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2442 * After terminating the exchange the LLDD will call the transport's
2443 * normal io done path for the request, but it will have an aborted
2444 * status. The done path will return the io request back to the block
2445 * layer with an error status.
2446 */
nvme_fc_terminate_exchange(struct request * req,void * data)2447 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2448 {
2449 struct nvme_ctrl *nctrl = data;
2450 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2451 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2452
2453 op->nreq.flags |= NVME_REQ_CANCELLED;
2454 __nvme_fc_abort_op(ctrl, op);
2455 return true;
2456 }
2457
2458 /*
2459 * This routine runs through all outstanding commands on the association
2460 * and aborts them. This routine is typically be called by the
2461 * delete_association routine. It is also called due to an error during
2462 * reconnect. In that scenario, it is most likely a command that initializes
2463 * the controller, including fabric Connect commands on io queues, that
2464 * may have timed out or failed thus the io must be killed for the connect
2465 * thread to see the error.
2466 */
2467 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2468 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2469 {
2470 int q;
2471
2472 /*
2473 * if aborting io, the queues are no longer good, mark them
2474 * all as not live.
2475 */
2476 if (ctrl->ctrl.queue_count > 1) {
2477 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2478 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2479 }
2480 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2481
2482 /*
2483 * If io queues are present, stop them and terminate all outstanding
2484 * ios on them. As FC allocates FC exchange for each io, the
2485 * transport must contact the LLDD to terminate the exchange,
2486 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2487 * to tell us what io's are busy and invoke a transport routine
2488 * to kill them with the LLDD. After terminating the exchange
2489 * the LLDD will call the transport's normal io done path, but it
2490 * will have an aborted status. The done path will return the
2491 * io requests back to the block layer as part of normal completions
2492 * (but with error status).
2493 */
2494 if (ctrl->ctrl.queue_count > 1) {
2495 nvme_stop_queues(&ctrl->ctrl);
2496 nvme_sync_io_queues(&ctrl->ctrl);
2497 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2498 nvme_fc_terminate_exchange, &ctrl->ctrl);
2499 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2500 if (start_queues)
2501 nvme_start_queues(&ctrl->ctrl);
2502 }
2503
2504 /*
2505 * Other transports, which don't have link-level contexts bound
2506 * to sqe's, would try to gracefully shutdown the controller by
2507 * writing the registers for shutdown and polling (call
2508 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2509 * just aborted and we will wait on those contexts, and given
2510 * there was no indication of how live the controlelr is on the
2511 * link, don't send more io to create more contexts for the
2512 * shutdown. Let the controller fail via keepalive failure if
2513 * its still present.
2514 */
2515
2516 /*
2517 * clean up the admin queue. Same thing as above.
2518 */
2519 nvme_stop_admin_queue(&ctrl->ctrl);
2520 blk_sync_queue(ctrl->ctrl.admin_q);
2521 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2522 nvme_fc_terminate_exchange, &ctrl->ctrl);
2523 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2524 if (start_queues)
2525 nvme_start_admin_queue(&ctrl->ctrl);
2526 }
2527
2528 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2529 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2530 {
2531 /*
2532 * if an error (io timeout, etc) while (re)connecting, the remote
2533 * port requested terminating of the association (disconnect_ls)
2534 * or an error (timeout or abort) occurred on an io while creating
2535 * the controller. Abort any ios on the association and let the
2536 * create_association error path resolve things.
2537 */
2538 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2539 __nvme_fc_abort_outstanding_ios(ctrl, true);
2540 set_bit(ASSOC_FAILED, &ctrl->flags);
2541 return;
2542 }
2543
2544 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2545 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2546 return;
2547
2548 dev_warn(ctrl->ctrl.device,
2549 "NVME-FC{%d}: transport association event: %s\n",
2550 ctrl->cnum, errmsg);
2551 dev_warn(ctrl->ctrl.device,
2552 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2553
2554 nvme_reset_ctrl(&ctrl->ctrl);
2555 }
2556
nvme_fc_timeout(struct request * rq)2557 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2558 {
2559 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2560 struct nvme_fc_ctrl *ctrl = op->ctrl;
2561 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2562 struct nvme_command *sqe = &cmdiu->sqe;
2563
2564 /*
2565 * Attempt to abort the offending command. Command completion
2566 * will detect the aborted io and will fail the connection.
2567 */
2568 dev_info(ctrl->ctrl.device,
2569 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2570 "x%08x/x%08x\n",
2571 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2572 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2573 if (__nvme_fc_abort_op(ctrl, op))
2574 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2575
2576 /*
2577 * the io abort has been initiated. Have the reset timer
2578 * restarted and the abort completion will complete the io
2579 * shortly. Avoids a synchronous wait while the abort finishes.
2580 */
2581 return BLK_EH_RESET_TIMER;
2582 }
2583
2584 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2585 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2586 struct nvme_fc_fcp_op *op)
2587 {
2588 struct nvmefc_fcp_req *freq = &op->fcp_req;
2589 int ret;
2590
2591 freq->sg_cnt = 0;
2592
2593 if (!blk_rq_nr_phys_segments(rq))
2594 return 0;
2595
2596 freq->sg_table.sgl = freq->first_sgl;
2597 ret = sg_alloc_table_chained(&freq->sg_table,
2598 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2599 NVME_INLINE_SG_CNT);
2600 if (ret)
2601 return -ENOMEM;
2602
2603 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2604 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2605 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2606 op->nents, rq_dma_dir(rq));
2607 if (unlikely(freq->sg_cnt <= 0)) {
2608 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2609 freq->sg_cnt = 0;
2610 return -EFAULT;
2611 }
2612
2613 /*
2614 * TODO: blk_integrity_rq(rq) for DIF
2615 */
2616 return 0;
2617 }
2618
2619 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2620 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2621 struct nvme_fc_fcp_op *op)
2622 {
2623 struct nvmefc_fcp_req *freq = &op->fcp_req;
2624
2625 if (!freq->sg_cnt)
2626 return;
2627
2628 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2629 rq_dma_dir(rq));
2630
2631 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2632
2633 freq->sg_cnt = 0;
2634 }
2635
2636 /*
2637 * In FC, the queue is a logical thing. At transport connect, the target
2638 * creates its "queue" and returns a handle that is to be given to the
2639 * target whenever it posts something to the corresponding SQ. When an
2640 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2641 * command contained within the SQE, an io, and assigns a FC exchange
2642 * to it. The SQE and the associated SQ handle are sent in the initial
2643 * CMD IU sents on the exchange. All transfers relative to the io occur
2644 * as part of the exchange. The CQE is the last thing for the io,
2645 * which is transferred (explicitly or implicitly) with the RSP IU
2646 * sent on the exchange. After the CQE is received, the FC exchange is
2647 * terminaed and the Exchange may be used on a different io.
2648 *
2649 * The transport to LLDD api has the transport making a request for a
2650 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2651 * resource and transfers the command. The LLDD will then process all
2652 * steps to complete the io. Upon completion, the transport done routine
2653 * is called.
2654 *
2655 * So - while the operation is outstanding to the LLDD, there is a link
2656 * level FC exchange resource that is also outstanding. This must be
2657 * considered in all cleanup operations.
2658 */
2659 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2660 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2661 struct nvme_fc_fcp_op *op, u32 data_len,
2662 enum nvmefc_fcp_datadir io_dir)
2663 {
2664 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2665 struct nvme_command *sqe = &cmdiu->sqe;
2666 int ret, opstate;
2667
2668 /*
2669 * before attempting to send the io, check to see if we believe
2670 * the target device is present
2671 */
2672 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2673 return BLK_STS_RESOURCE;
2674
2675 if (!nvme_fc_ctrl_get(ctrl))
2676 return BLK_STS_IOERR;
2677
2678 /* format the FC-NVME CMD IU and fcp_req */
2679 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2680 cmdiu->data_len = cpu_to_be32(data_len);
2681 switch (io_dir) {
2682 case NVMEFC_FCP_WRITE:
2683 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2684 break;
2685 case NVMEFC_FCP_READ:
2686 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2687 break;
2688 case NVMEFC_FCP_NODATA:
2689 cmdiu->flags = 0;
2690 break;
2691 }
2692 op->fcp_req.payload_length = data_len;
2693 op->fcp_req.io_dir = io_dir;
2694 op->fcp_req.transferred_length = 0;
2695 op->fcp_req.rcv_rsplen = 0;
2696 op->fcp_req.status = NVME_SC_SUCCESS;
2697 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2698
2699 /*
2700 * validate per fabric rules, set fields mandated by fabric spec
2701 * as well as those by FC-NVME spec.
2702 */
2703 WARN_ON_ONCE(sqe->common.metadata);
2704 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2705
2706 /*
2707 * format SQE DPTR field per FC-NVME rules:
2708 * type=0x5 Transport SGL Data Block Descriptor
2709 * subtype=0xA Transport-specific value
2710 * address=0
2711 * length=length of the data series
2712 */
2713 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2714 NVME_SGL_FMT_TRANSPORT_A;
2715 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2716 sqe->rw.dptr.sgl.addr = 0;
2717
2718 if (!(op->flags & FCOP_FLAGS_AEN)) {
2719 ret = nvme_fc_map_data(ctrl, op->rq, op);
2720 if (ret < 0) {
2721 nvme_cleanup_cmd(op->rq);
2722 nvme_fc_ctrl_put(ctrl);
2723 if (ret == -ENOMEM || ret == -EAGAIN)
2724 return BLK_STS_RESOURCE;
2725 return BLK_STS_IOERR;
2726 }
2727 }
2728
2729 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2730 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2731
2732 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2733
2734 if (!(op->flags & FCOP_FLAGS_AEN))
2735 blk_mq_start_request(op->rq);
2736
2737 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2738 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2739 &ctrl->rport->remoteport,
2740 queue->lldd_handle, &op->fcp_req);
2741
2742 if (ret) {
2743 /*
2744 * If the lld fails to send the command is there an issue with
2745 * the csn value? If the command that fails is the Connect,
2746 * no - as the connection won't be live. If it is a command
2747 * post-connect, it's possible a gap in csn may be created.
2748 * Does this matter? As Linux initiators don't send fused
2749 * commands, no. The gap would exist, but as there's nothing
2750 * that depends on csn order to be delivered on the target
2751 * side, it shouldn't hurt. It would be difficult for a
2752 * target to even detect the csn gap as it has no idea when the
2753 * cmd with the csn was supposed to arrive.
2754 */
2755 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2756 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2757
2758 if (!(op->flags & FCOP_FLAGS_AEN)) {
2759 nvme_fc_unmap_data(ctrl, op->rq, op);
2760 nvme_cleanup_cmd(op->rq);
2761 }
2762
2763 nvme_fc_ctrl_put(ctrl);
2764
2765 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2766 ret != -EBUSY)
2767 return BLK_STS_IOERR;
2768
2769 return BLK_STS_RESOURCE;
2770 }
2771
2772 return BLK_STS_OK;
2773 }
2774
2775 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2776 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2777 const struct blk_mq_queue_data *bd)
2778 {
2779 struct nvme_ns *ns = hctx->queue->queuedata;
2780 struct nvme_fc_queue *queue = hctx->driver_data;
2781 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2782 struct request *rq = bd->rq;
2783 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2784 enum nvmefc_fcp_datadir io_dir;
2785 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2786 u32 data_len;
2787 blk_status_t ret;
2788
2789 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2790 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2791 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2792
2793 ret = nvme_setup_cmd(ns, rq);
2794 if (ret)
2795 return ret;
2796
2797 /*
2798 * nvme core doesn't quite treat the rq opaquely. Commands such
2799 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2800 * there is no actual payload to be transferred.
2801 * To get it right, key data transmission on there being 1 or
2802 * more physical segments in the sg list. If there is no
2803 * physical segments, there is no payload.
2804 */
2805 if (blk_rq_nr_phys_segments(rq)) {
2806 data_len = blk_rq_payload_bytes(rq);
2807 io_dir = ((rq_data_dir(rq) == WRITE) ?
2808 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2809 } else {
2810 data_len = 0;
2811 io_dir = NVMEFC_FCP_NODATA;
2812 }
2813
2814
2815 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2816 }
2817
2818 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2819 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2820 {
2821 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2822 struct nvme_fc_fcp_op *aen_op;
2823 blk_status_t ret;
2824
2825 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2826 return;
2827
2828 aen_op = &ctrl->aen_ops[0];
2829
2830 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2831 NVMEFC_FCP_NODATA);
2832 if (ret)
2833 dev_err(ctrl->ctrl.device,
2834 "failed async event work\n");
2835 }
2836
2837 static void
nvme_fc_complete_rq(struct request * rq)2838 nvme_fc_complete_rq(struct request *rq)
2839 {
2840 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2841 struct nvme_fc_ctrl *ctrl = op->ctrl;
2842
2843 atomic_set(&op->state, FCPOP_STATE_IDLE);
2844 op->flags &= ~FCOP_FLAGS_TERMIO;
2845
2846 nvme_fc_unmap_data(ctrl, rq, op);
2847 nvme_complete_rq(rq);
2848 nvme_fc_ctrl_put(ctrl);
2849 }
2850
nvme_fc_map_queues(struct blk_mq_tag_set * set)2851 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2852 {
2853 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2854 int i;
2855
2856 for (i = 0; i < set->nr_maps; i++) {
2857 struct blk_mq_queue_map *map = &set->map[i];
2858
2859 if (!map->nr_queues) {
2860 WARN_ON(i == HCTX_TYPE_DEFAULT);
2861 continue;
2862 }
2863
2864 /* Call LLDD map queue functionality if defined */
2865 if (ctrl->lport->ops->map_queues)
2866 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2867 map);
2868 else
2869 blk_mq_map_queues(map);
2870 }
2871 }
2872
2873 static const struct blk_mq_ops nvme_fc_mq_ops = {
2874 .queue_rq = nvme_fc_queue_rq,
2875 .complete = nvme_fc_complete_rq,
2876 .init_request = nvme_fc_init_request,
2877 .exit_request = nvme_fc_exit_request,
2878 .init_hctx = nvme_fc_init_hctx,
2879 .timeout = nvme_fc_timeout,
2880 .map_queues = nvme_fc_map_queues,
2881 };
2882
2883 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2884 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2885 {
2886 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2887 unsigned int nr_io_queues;
2888 int ret;
2889
2890 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2891 ctrl->lport->ops->max_hw_queues);
2892 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2893 if (ret) {
2894 dev_info(ctrl->ctrl.device,
2895 "set_queue_count failed: %d\n", ret);
2896 return ret;
2897 }
2898
2899 ctrl->ctrl.queue_count = nr_io_queues + 1;
2900 if (!nr_io_queues)
2901 return 0;
2902
2903 nvme_fc_init_io_queues(ctrl);
2904
2905 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2906 &nvme_fc_mq_ops, BLK_MQ_F_SHOULD_MERGE,
2907 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2908 ctrl->lport->ops->fcprqst_priv_sz));
2909 if (ret)
2910 return ret;
2911
2912 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2913 if (ret)
2914 goto out_cleanup_tagset;
2915
2916 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2917 if (ret)
2918 goto out_delete_hw_queues;
2919
2920 ctrl->ioq_live = true;
2921
2922 return 0;
2923
2924 out_delete_hw_queues:
2925 nvme_fc_delete_hw_io_queues(ctrl);
2926 out_cleanup_tagset:
2927 nvme_remove_io_tag_set(&ctrl->ctrl);
2928 nvme_fc_free_io_queues(ctrl);
2929
2930 /* force put free routine to ignore io queues */
2931 ctrl->ctrl.tagset = NULL;
2932
2933 return ret;
2934 }
2935
2936 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2937 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2938 {
2939 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2940 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2941 unsigned int nr_io_queues;
2942 int ret;
2943
2944 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2945 ctrl->lport->ops->max_hw_queues);
2946 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2947 if (ret) {
2948 dev_info(ctrl->ctrl.device,
2949 "set_queue_count failed: %d\n", ret);
2950 return ret;
2951 }
2952
2953 if (!nr_io_queues && prior_ioq_cnt) {
2954 dev_info(ctrl->ctrl.device,
2955 "Fail Reconnect: At least 1 io queue "
2956 "required (was %d)\n", prior_ioq_cnt);
2957 return -ENOSPC;
2958 }
2959
2960 ctrl->ctrl.queue_count = nr_io_queues + 1;
2961 /* check for io queues existing */
2962 if (ctrl->ctrl.queue_count == 1)
2963 return 0;
2964
2965 if (prior_ioq_cnt != nr_io_queues) {
2966 dev_info(ctrl->ctrl.device,
2967 "reconnect: revising io queue count from %d to %d\n",
2968 prior_ioq_cnt, nr_io_queues);
2969 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2970 }
2971
2972 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2973 if (ret)
2974 goto out_free_io_queues;
2975
2976 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2977 if (ret)
2978 goto out_delete_hw_queues;
2979
2980 return 0;
2981
2982 out_delete_hw_queues:
2983 nvme_fc_delete_hw_io_queues(ctrl);
2984 out_free_io_queues:
2985 nvme_fc_free_io_queues(ctrl);
2986 return ret;
2987 }
2988
2989 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2990 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2991 {
2992 struct nvme_fc_lport *lport = rport->lport;
2993
2994 atomic_inc(&lport->act_rport_cnt);
2995 }
2996
2997 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2998 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2999 {
3000 struct nvme_fc_lport *lport = rport->lport;
3001 u32 cnt;
3002
3003 cnt = atomic_dec_return(&lport->act_rport_cnt);
3004 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
3005 lport->ops->localport_delete(&lport->localport);
3006 }
3007
3008 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)3009 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3010 {
3011 struct nvme_fc_rport *rport = ctrl->rport;
3012 u32 cnt;
3013
3014 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3015 return 1;
3016
3017 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3018 if (cnt == 1)
3019 nvme_fc_rport_active_on_lport(rport);
3020
3021 return 0;
3022 }
3023
3024 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)3025 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3026 {
3027 struct nvme_fc_rport *rport = ctrl->rport;
3028 struct nvme_fc_lport *lport = rport->lport;
3029 u32 cnt;
3030
3031 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3032
3033 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3034 if (cnt == 0) {
3035 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3036 lport->ops->remoteport_delete(&rport->remoteport);
3037 nvme_fc_rport_inactive_on_lport(rport);
3038 }
3039
3040 return 0;
3041 }
3042
3043 /*
3044 * This routine restarts the controller on the host side, and
3045 * on the link side, recreates the controller association.
3046 */
3047 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3048 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3049 {
3050 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3051 struct nvmefc_ls_rcv_op *disls = NULL;
3052 unsigned long flags;
3053 int ret;
3054 bool changed;
3055
3056 ++ctrl->ctrl.nr_reconnects;
3057
3058 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3059 return -ENODEV;
3060
3061 if (nvme_fc_ctlr_active_on_rport(ctrl))
3062 return -ENOTUNIQ;
3063
3064 dev_info(ctrl->ctrl.device,
3065 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3066 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3067 ctrl->cnum, ctrl->lport->localport.port_name,
3068 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3069
3070 clear_bit(ASSOC_FAILED, &ctrl->flags);
3071
3072 /*
3073 * Create the admin queue
3074 */
3075
3076 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3077 NVME_AQ_DEPTH);
3078 if (ret)
3079 goto out_free_queue;
3080
3081 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3082 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3083 if (ret)
3084 goto out_delete_hw_queue;
3085
3086 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3087 if (ret)
3088 goto out_disconnect_admin_queue;
3089
3090 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3091
3092 /*
3093 * Check controller capabilities
3094 *
3095 * todo:- add code to check if ctrl attributes changed from
3096 * prior connection values
3097 */
3098
3099 ret = nvme_enable_ctrl(&ctrl->ctrl);
3100 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3101 goto out_disconnect_admin_queue;
3102
3103 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3104 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3105 (ilog2(SZ_4K) - 9);
3106
3107 nvme_start_admin_queue(&ctrl->ctrl);
3108
3109 ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3110 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3111 goto out_disconnect_admin_queue;
3112
3113 /* sanity checks */
3114
3115 /* FC-NVME does not have other data in the capsule */
3116 if (ctrl->ctrl.icdoff) {
3117 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3118 ctrl->ctrl.icdoff);
3119 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3120 goto out_disconnect_admin_queue;
3121 }
3122
3123 /* FC-NVME supports normal SGL Data Block Descriptors */
3124 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3125 dev_err(ctrl->ctrl.device,
3126 "Mandatory sgls are not supported!\n");
3127 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3128 goto out_disconnect_admin_queue;
3129 }
3130
3131 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3132 /* warn if maxcmd is lower than queue_size */
3133 dev_warn(ctrl->ctrl.device,
3134 "queue_size %zu > ctrl maxcmd %u, reducing "
3135 "to maxcmd\n",
3136 opts->queue_size, ctrl->ctrl.maxcmd);
3137 opts->queue_size = ctrl->ctrl.maxcmd;
3138 ctrl->ctrl.sqsize = opts->queue_size - 1;
3139 }
3140
3141 ret = nvme_fc_init_aen_ops(ctrl);
3142 if (ret)
3143 goto out_term_aen_ops;
3144
3145 /*
3146 * Create the io queues
3147 */
3148
3149 if (ctrl->ctrl.queue_count > 1) {
3150 if (!ctrl->ioq_live)
3151 ret = nvme_fc_create_io_queues(ctrl);
3152 else
3153 ret = nvme_fc_recreate_io_queues(ctrl);
3154 }
3155 if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3156 goto out_term_aen_ops;
3157
3158 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3159
3160 ctrl->ctrl.nr_reconnects = 0;
3161
3162 if (changed)
3163 nvme_start_ctrl(&ctrl->ctrl);
3164
3165 return 0; /* Success */
3166
3167 out_term_aen_ops:
3168 nvme_fc_term_aen_ops(ctrl);
3169 out_disconnect_admin_queue:
3170 /* send a Disconnect(association) LS to fc-nvme target */
3171 nvme_fc_xmt_disconnect_assoc(ctrl);
3172 spin_lock_irqsave(&ctrl->lock, flags);
3173 ctrl->association_id = 0;
3174 disls = ctrl->rcv_disconn;
3175 ctrl->rcv_disconn = NULL;
3176 spin_unlock_irqrestore(&ctrl->lock, flags);
3177 if (disls)
3178 nvme_fc_xmt_ls_rsp(disls);
3179 out_delete_hw_queue:
3180 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3181 out_free_queue:
3182 nvme_fc_free_queue(&ctrl->queues[0]);
3183 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3184 nvme_fc_ctlr_inactive_on_rport(ctrl);
3185
3186 return ret;
3187 }
3188
3189
3190 /*
3191 * This routine stops operation of the controller on the host side.
3192 * On the host os stack side: Admin and IO queues are stopped,
3193 * outstanding ios on them terminated via FC ABTS.
3194 * On the link side: the association is terminated.
3195 */
3196 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3197 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3198 {
3199 struct nvmefc_ls_rcv_op *disls = NULL;
3200 unsigned long flags;
3201
3202 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3203 return;
3204
3205 spin_lock_irqsave(&ctrl->lock, flags);
3206 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3207 ctrl->iocnt = 0;
3208 spin_unlock_irqrestore(&ctrl->lock, flags);
3209
3210 __nvme_fc_abort_outstanding_ios(ctrl, false);
3211
3212 /* kill the aens as they are a separate path */
3213 nvme_fc_abort_aen_ops(ctrl);
3214
3215 /* wait for all io that had to be aborted */
3216 spin_lock_irq(&ctrl->lock);
3217 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3218 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3219 spin_unlock_irq(&ctrl->lock);
3220
3221 nvme_fc_term_aen_ops(ctrl);
3222
3223 /*
3224 * send a Disconnect(association) LS to fc-nvme target
3225 * Note: could have been sent at top of process, but
3226 * cleaner on link traffic if after the aborts complete.
3227 * Note: if association doesn't exist, association_id will be 0
3228 */
3229 if (ctrl->association_id)
3230 nvme_fc_xmt_disconnect_assoc(ctrl);
3231
3232 spin_lock_irqsave(&ctrl->lock, flags);
3233 ctrl->association_id = 0;
3234 disls = ctrl->rcv_disconn;
3235 ctrl->rcv_disconn = NULL;
3236 spin_unlock_irqrestore(&ctrl->lock, flags);
3237 if (disls)
3238 /*
3239 * if a Disconnect Request was waiting for a response, send
3240 * now that all ABTS's have been issued (and are complete).
3241 */
3242 nvme_fc_xmt_ls_rsp(disls);
3243
3244 if (ctrl->ctrl.tagset) {
3245 nvme_fc_delete_hw_io_queues(ctrl);
3246 nvme_fc_free_io_queues(ctrl);
3247 }
3248
3249 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3250 nvme_fc_free_queue(&ctrl->queues[0]);
3251
3252 /* re-enable the admin_q so anything new can fast fail */
3253 nvme_start_admin_queue(&ctrl->ctrl);
3254
3255 /* resume the io queues so that things will fast fail */
3256 nvme_start_queues(&ctrl->ctrl);
3257
3258 nvme_fc_ctlr_inactive_on_rport(ctrl);
3259 }
3260
3261 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3262 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3263 {
3264 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3265
3266 cancel_work_sync(&ctrl->ioerr_work);
3267 cancel_delayed_work_sync(&ctrl->connect_work);
3268 /*
3269 * kill the association on the link side. this will block
3270 * waiting for io to terminate
3271 */
3272 nvme_fc_delete_association(ctrl);
3273 }
3274
3275 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3276 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3277 {
3278 struct nvme_fc_rport *rport = ctrl->rport;
3279 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3280 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3281 bool recon = true;
3282
3283 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3284 return;
3285
3286 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3287 dev_info(ctrl->ctrl.device,
3288 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3289 ctrl->cnum, status);
3290 if (status > 0 && (status & NVME_SC_DNR))
3291 recon = false;
3292 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3293 recon = false;
3294
3295 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3296 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3297 dev_info(ctrl->ctrl.device,
3298 "NVME-FC{%d}: Reconnect attempt in %ld "
3299 "seconds\n",
3300 ctrl->cnum, recon_delay / HZ);
3301 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3302 recon_delay = rport->dev_loss_end - jiffies;
3303
3304 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3305 } else {
3306 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3307 if (status > 0 && (status & NVME_SC_DNR))
3308 dev_warn(ctrl->ctrl.device,
3309 "NVME-FC{%d}: reconnect failure\n",
3310 ctrl->cnum);
3311 else
3312 dev_warn(ctrl->ctrl.device,
3313 "NVME-FC{%d}: Max reconnect attempts "
3314 "(%d) reached.\n",
3315 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3316 } else
3317 dev_warn(ctrl->ctrl.device,
3318 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3319 "while waiting for remoteport connectivity.\n",
3320 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3321 (ctrl->ctrl.opts->max_reconnects *
3322 ctrl->ctrl.opts->reconnect_delay)));
3323 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3324 }
3325 }
3326
3327 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3328 nvme_fc_reset_ctrl_work(struct work_struct *work)
3329 {
3330 struct nvme_fc_ctrl *ctrl =
3331 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3332
3333 nvme_stop_ctrl(&ctrl->ctrl);
3334
3335 /* will block will waiting for io to terminate */
3336 nvme_fc_delete_association(ctrl);
3337
3338 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3339 dev_err(ctrl->ctrl.device,
3340 "NVME-FC{%d}: error_recovery: Couldn't change state "
3341 "to CONNECTING\n", ctrl->cnum);
3342
3343 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3344 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3345 dev_err(ctrl->ctrl.device,
3346 "NVME-FC{%d}: failed to schedule connect "
3347 "after reset\n", ctrl->cnum);
3348 } else {
3349 flush_delayed_work(&ctrl->connect_work);
3350 }
3351 } else {
3352 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3353 }
3354 }
3355
3356
3357 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3358 .name = "fc",
3359 .module = THIS_MODULE,
3360 .flags = NVME_F_FABRICS,
3361 .reg_read32 = nvmf_reg_read32,
3362 .reg_read64 = nvmf_reg_read64,
3363 .reg_write32 = nvmf_reg_write32,
3364 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3365 .submit_async_event = nvme_fc_submit_async_event,
3366 .delete_ctrl = nvme_fc_delete_ctrl,
3367 .get_address = nvmf_get_address,
3368 };
3369
3370 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3371 nvme_fc_connect_ctrl_work(struct work_struct *work)
3372 {
3373 int ret;
3374
3375 struct nvme_fc_ctrl *ctrl =
3376 container_of(to_delayed_work(work),
3377 struct nvme_fc_ctrl, connect_work);
3378
3379 ret = nvme_fc_create_association(ctrl);
3380 if (ret)
3381 nvme_fc_reconnect_or_delete(ctrl, ret);
3382 else
3383 dev_info(ctrl->ctrl.device,
3384 "NVME-FC{%d}: controller connect complete\n",
3385 ctrl->cnum);
3386 }
3387
3388
3389 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3390 .queue_rq = nvme_fc_queue_rq,
3391 .complete = nvme_fc_complete_rq,
3392 .init_request = nvme_fc_init_request,
3393 .exit_request = nvme_fc_exit_request,
3394 .init_hctx = nvme_fc_init_admin_hctx,
3395 .timeout = nvme_fc_timeout,
3396 };
3397
3398
3399 /*
3400 * Fails a controller request if it matches an existing controller
3401 * (association) with the same tuple:
3402 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3403 *
3404 * The ports don't need to be compared as they are intrinsically
3405 * already matched by the port pointers supplied.
3406 */
3407 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3408 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3409 struct nvmf_ctrl_options *opts)
3410 {
3411 struct nvme_fc_ctrl *ctrl;
3412 unsigned long flags;
3413 bool found = false;
3414
3415 spin_lock_irqsave(&rport->lock, flags);
3416 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3417 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3418 if (found)
3419 break;
3420 }
3421 spin_unlock_irqrestore(&rport->lock, flags);
3422
3423 return found;
3424 }
3425
3426 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3427 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3428 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3429 {
3430 struct nvme_fc_ctrl *ctrl;
3431 unsigned long flags;
3432 int ret, idx, ctrl_loss_tmo;
3433
3434 if (!(rport->remoteport.port_role &
3435 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3436 ret = -EBADR;
3437 goto out_fail;
3438 }
3439
3440 if (!opts->duplicate_connect &&
3441 nvme_fc_existing_controller(rport, opts)) {
3442 ret = -EALREADY;
3443 goto out_fail;
3444 }
3445
3446 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3447 if (!ctrl) {
3448 ret = -ENOMEM;
3449 goto out_fail;
3450 }
3451
3452 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3453 if (idx < 0) {
3454 ret = -ENOSPC;
3455 goto out_free_ctrl;
3456 }
3457
3458 /*
3459 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3460 * is being used, change to a shorter reconnect delay for FC.
3461 */
3462 if (opts->max_reconnects != -1 &&
3463 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3464 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3465 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3466 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3467 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3468 opts->reconnect_delay);
3469 }
3470
3471 ctrl->ctrl.opts = opts;
3472 ctrl->ctrl.nr_reconnects = 0;
3473 if (lport->dev)
3474 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3475 else
3476 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3477 INIT_LIST_HEAD(&ctrl->ctrl_list);
3478 ctrl->lport = lport;
3479 ctrl->rport = rport;
3480 ctrl->dev = lport->dev;
3481 ctrl->cnum = idx;
3482 ctrl->ioq_live = false;
3483 init_waitqueue_head(&ctrl->ioabort_wait);
3484
3485 get_device(ctrl->dev);
3486 kref_init(&ctrl->ref);
3487
3488 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3489 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3490 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3491 spin_lock_init(&ctrl->lock);
3492
3493 /* io queue count */
3494 ctrl->ctrl.queue_count = min_t(unsigned int,
3495 opts->nr_io_queues,
3496 lport->ops->max_hw_queues);
3497 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3498
3499 ctrl->ctrl.sqsize = opts->queue_size - 1;
3500 ctrl->ctrl.kato = opts->kato;
3501 ctrl->ctrl.cntlid = 0xffff;
3502
3503 ret = -ENOMEM;
3504 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3505 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3506 if (!ctrl->queues)
3507 goto out_free_ida;
3508
3509 nvme_fc_init_queue(ctrl, 0);
3510
3511 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3512 &nvme_fc_admin_mq_ops, BLK_MQ_F_NO_SCHED,
3513 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3514 ctrl->lport->ops->fcprqst_priv_sz));
3515 if (ret)
3516 goto out_free_queues;
3517
3518 /*
3519 * Would have been nice to init io queues tag set as well.
3520 * However, we require interaction from the controller
3521 * for max io queue count before we can do so.
3522 * Defer this to the connect path.
3523 */
3524
3525 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3526 if (ret)
3527 goto out_cleanup_tagset;
3528
3529 /* at this point, teardown path changes to ref counting on nvme ctrl */
3530
3531 spin_lock_irqsave(&rport->lock, flags);
3532 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3533 spin_unlock_irqrestore(&rport->lock, flags);
3534
3535 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3536 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3537 dev_err(ctrl->ctrl.device,
3538 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3539 goto fail_ctrl;
3540 }
3541
3542 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3543 dev_err(ctrl->ctrl.device,
3544 "NVME-FC{%d}: failed to schedule initial connect\n",
3545 ctrl->cnum);
3546 goto fail_ctrl;
3547 }
3548
3549 flush_delayed_work(&ctrl->connect_work);
3550
3551 dev_info(ctrl->ctrl.device,
3552 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3553 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3554
3555 return &ctrl->ctrl;
3556
3557 fail_ctrl:
3558 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3559 cancel_work_sync(&ctrl->ioerr_work);
3560 cancel_work_sync(&ctrl->ctrl.reset_work);
3561 cancel_delayed_work_sync(&ctrl->connect_work);
3562
3563 ctrl->ctrl.opts = NULL;
3564
3565 /* initiate nvme ctrl ref counting teardown */
3566 nvme_uninit_ctrl(&ctrl->ctrl);
3567
3568 /* Remove core ctrl ref. */
3569 nvme_put_ctrl(&ctrl->ctrl);
3570
3571 /* as we're past the point where we transition to the ref
3572 * counting teardown path, if we return a bad pointer here,
3573 * the calling routine, thinking it's prior to the
3574 * transition, will do an rport put. Since the teardown
3575 * path also does a rport put, we do an extra get here to
3576 * so proper order/teardown happens.
3577 */
3578 nvme_fc_rport_get(rport);
3579
3580 return ERR_PTR(-EIO);
3581
3582 out_cleanup_tagset:
3583 nvme_remove_admin_tag_set(&ctrl->ctrl);
3584 out_free_queues:
3585 kfree(ctrl->queues);
3586 out_free_ida:
3587 put_device(ctrl->dev);
3588 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3589 out_free_ctrl:
3590 kfree(ctrl);
3591 out_fail:
3592 /* exit via here doesn't follow ctlr ref points */
3593 return ERR_PTR(ret);
3594 }
3595
3596
3597 struct nvmet_fc_traddr {
3598 u64 nn;
3599 u64 pn;
3600 };
3601
3602 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3603 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3604 {
3605 u64 token64;
3606
3607 if (match_u64(sstr, &token64))
3608 return -EINVAL;
3609 *val = token64;
3610
3611 return 0;
3612 }
3613
3614 /*
3615 * This routine validates and extracts the WWN's from the TRADDR string.
3616 * As kernel parsers need the 0x to determine number base, universally
3617 * build string to parse with 0x prefix before parsing name strings.
3618 */
3619 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3620 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3621 {
3622 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3623 substring_t wwn = { name, &name[sizeof(name)-1] };
3624 int nnoffset, pnoffset;
3625
3626 /* validate if string is one of the 2 allowed formats */
3627 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3628 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3629 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3630 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3631 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3632 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3633 NVME_FC_TRADDR_OXNNLEN;
3634 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3635 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3636 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3637 "pn-", NVME_FC_TRADDR_NNLEN))) {
3638 nnoffset = NVME_FC_TRADDR_NNLEN;
3639 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3640 } else
3641 goto out_einval;
3642
3643 name[0] = '0';
3644 name[1] = 'x';
3645 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3646
3647 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3648 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3649 goto out_einval;
3650
3651 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3652 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3653 goto out_einval;
3654
3655 return 0;
3656
3657 out_einval:
3658 pr_warn("%s: bad traddr string\n", __func__);
3659 return -EINVAL;
3660 }
3661
3662 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3663 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3664 {
3665 struct nvme_fc_lport *lport;
3666 struct nvme_fc_rport *rport;
3667 struct nvme_ctrl *ctrl;
3668 struct nvmet_fc_traddr laddr = { 0L, 0L };
3669 struct nvmet_fc_traddr raddr = { 0L, 0L };
3670 unsigned long flags;
3671 int ret;
3672
3673 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3674 if (ret || !raddr.nn || !raddr.pn)
3675 return ERR_PTR(-EINVAL);
3676
3677 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3678 if (ret || !laddr.nn || !laddr.pn)
3679 return ERR_PTR(-EINVAL);
3680
3681 /* find the host and remote ports to connect together */
3682 spin_lock_irqsave(&nvme_fc_lock, flags);
3683 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3684 if (lport->localport.node_name != laddr.nn ||
3685 lport->localport.port_name != laddr.pn ||
3686 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3687 continue;
3688
3689 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3690 if (rport->remoteport.node_name != raddr.nn ||
3691 rport->remoteport.port_name != raddr.pn ||
3692 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3693 continue;
3694
3695 /* if fail to get reference fall through. Will error */
3696 if (!nvme_fc_rport_get(rport))
3697 break;
3698
3699 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3700
3701 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3702 if (IS_ERR(ctrl))
3703 nvme_fc_rport_put(rport);
3704 return ctrl;
3705 }
3706 }
3707 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3708
3709 pr_warn("%s: %s - %s combination not found\n",
3710 __func__, opts->traddr, opts->host_traddr);
3711 return ERR_PTR(-ENOENT);
3712 }
3713
3714
3715 static struct nvmf_transport_ops nvme_fc_transport = {
3716 .name = "fc",
3717 .module = THIS_MODULE,
3718 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3719 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3720 .create_ctrl = nvme_fc_create_ctrl,
3721 };
3722
3723 /* Arbitrary successive failures max. With lots of subsystems could be high */
3724 #define DISCOVERY_MAX_FAIL 20
3725
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3726 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3727 struct device_attribute *attr, const char *buf, size_t count)
3728 {
3729 unsigned long flags;
3730 LIST_HEAD(local_disc_list);
3731 struct nvme_fc_lport *lport;
3732 struct nvme_fc_rport *rport;
3733 int failcnt = 0;
3734
3735 spin_lock_irqsave(&nvme_fc_lock, flags);
3736 restart:
3737 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3738 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3739 if (!nvme_fc_lport_get(lport))
3740 continue;
3741 if (!nvme_fc_rport_get(rport)) {
3742 /*
3743 * This is a temporary condition. Upon restart
3744 * this rport will be gone from the list.
3745 *
3746 * Revert the lport put and retry. Anything
3747 * added to the list already will be skipped (as
3748 * they are no longer list_empty). Loops should
3749 * resume at rports that were not yet seen.
3750 */
3751 nvme_fc_lport_put(lport);
3752
3753 if (failcnt++ < DISCOVERY_MAX_FAIL)
3754 goto restart;
3755
3756 pr_err("nvme_discovery: too many reference "
3757 "failures\n");
3758 goto process_local_list;
3759 }
3760 if (list_empty(&rport->disc_list))
3761 list_add_tail(&rport->disc_list,
3762 &local_disc_list);
3763 }
3764 }
3765
3766 process_local_list:
3767 while (!list_empty(&local_disc_list)) {
3768 rport = list_first_entry(&local_disc_list,
3769 struct nvme_fc_rport, disc_list);
3770 list_del_init(&rport->disc_list);
3771 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3772
3773 lport = rport->lport;
3774 /* signal discovery. Won't hurt if it repeats */
3775 nvme_fc_signal_discovery_scan(lport, rport);
3776 nvme_fc_rport_put(rport);
3777 nvme_fc_lport_put(lport);
3778
3779 spin_lock_irqsave(&nvme_fc_lock, flags);
3780 }
3781 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3782
3783 return count;
3784 }
3785
3786 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3787
3788 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3789 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3790 static int fc_parse_cgrpid(const char *buf, u64 *id)
3791 {
3792 char cgrp_id[16+1];
3793 int cgrpid_len, j;
3794
3795 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3796 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3797 if (buf[cgrpid_len] != ':')
3798 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3799 else {
3800 j = 1;
3801 break;
3802 }
3803 }
3804 if (!j)
3805 return -EINVAL;
3806 if (kstrtou64(cgrp_id, 16, id) < 0)
3807 return -EINVAL;
3808 return cgrpid_len;
3809 }
3810
3811 /*
3812 * Parse and update the appid in the blkcg associated with the cgroupid.
3813 */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3814 static ssize_t fc_appid_store(struct device *dev,
3815 struct device_attribute *attr, const char *buf, size_t count)
3816 {
3817 size_t orig_count = count;
3818 u64 cgrp_id;
3819 int appid_len = 0;
3820 int cgrpid_len = 0;
3821 char app_id[FC_APPID_LEN];
3822 int ret = 0;
3823
3824 if (buf[count-1] == '\n')
3825 count--;
3826
3827 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3828 return -EINVAL;
3829
3830 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3831 if (cgrpid_len < 0)
3832 return -EINVAL;
3833 appid_len = count - cgrpid_len - 1;
3834 if (appid_len > FC_APPID_LEN)
3835 return -EINVAL;
3836
3837 memset(app_id, 0x0, sizeof(app_id));
3838 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3839 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3840 if (ret < 0)
3841 return ret;
3842 return orig_count;
3843 }
3844 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3845 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3846
3847 static struct attribute *nvme_fc_attrs[] = {
3848 &dev_attr_nvme_discovery.attr,
3849 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3850 &dev_attr_appid_store.attr,
3851 #endif
3852 NULL
3853 };
3854
3855 static const struct attribute_group nvme_fc_attr_group = {
3856 .attrs = nvme_fc_attrs,
3857 };
3858
3859 static const struct attribute_group *nvme_fc_attr_groups[] = {
3860 &nvme_fc_attr_group,
3861 NULL
3862 };
3863
3864 static struct class fc_class = {
3865 .name = "fc",
3866 .dev_groups = nvme_fc_attr_groups,
3867 .owner = THIS_MODULE,
3868 };
3869
nvme_fc_init_module(void)3870 static int __init nvme_fc_init_module(void)
3871 {
3872 int ret;
3873
3874 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3875 if (!nvme_fc_wq)
3876 return -ENOMEM;
3877
3878 /*
3879 * NOTE:
3880 * It is expected that in the future the kernel will combine
3881 * the FC-isms that are currently under scsi and now being
3882 * added to by NVME into a new standalone FC class. The SCSI
3883 * and NVME protocols and their devices would be under this
3884 * new FC class.
3885 *
3886 * As we need something to post FC-specific udev events to,
3887 * specifically for nvme probe events, start by creating the
3888 * new device class. When the new standalone FC class is
3889 * put in place, this code will move to a more generic
3890 * location for the class.
3891 */
3892 ret = class_register(&fc_class);
3893 if (ret) {
3894 pr_err("couldn't register class fc\n");
3895 goto out_destroy_wq;
3896 }
3897
3898 /*
3899 * Create a device for the FC-centric udev events
3900 */
3901 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3902 "fc_udev_device");
3903 if (IS_ERR(fc_udev_device)) {
3904 pr_err("couldn't create fc_udev device!\n");
3905 ret = PTR_ERR(fc_udev_device);
3906 goto out_destroy_class;
3907 }
3908
3909 ret = nvmf_register_transport(&nvme_fc_transport);
3910 if (ret)
3911 goto out_destroy_device;
3912
3913 return 0;
3914
3915 out_destroy_device:
3916 device_destroy(&fc_class, MKDEV(0, 0));
3917 out_destroy_class:
3918 class_unregister(&fc_class);
3919 out_destroy_wq:
3920 destroy_workqueue(nvme_fc_wq);
3921
3922 return ret;
3923 }
3924
3925 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3926 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3927 {
3928 struct nvme_fc_ctrl *ctrl;
3929
3930 spin_lock(&rport->lock);
3931 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3932 dev_warn(ctrl->ctrl.device,
3933 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3934 ctrl->cnum);
3935 nvme_delete_ctrl(&ctrl->ctrl);
3936 }
3937 spin_unlock(&rport->lock);
3938 }
3939
3940 static void
nvme_fc_cleanup_for_unload(void)3941 nvme_fc_cleanup_for_unload(void)
3942 {
3943 struct nvme_fc_lport *lport;
3944 struct nvme_fc_rport *rport;
3945
3946 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3947 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3948 nvme_fc_delete_controllers(rport);
3949 }
3950 }
3951 }
3952
nvme_fc_exit_module(void)3953 static void __exit nvme_fc_exit_module(void)
3954 {
3955 unsigned long flags;
3956 bool need_cleanup = false;
3957
3958 spin_lock_irqsave(&nvme_fc_lock, flags);
3959 nvme_fc_waiting_to_unload = true;
3960 if (!list_empty(&nvme_fc_lport_list)) {
3961 need_cleanup = true;
3962 nvme_fc_cleanup_for_unload();
3963 }
3964 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3965 if (need_cleanup) {
3966 pr_info("%s: waiting for ctlr deletes\n", __func__);
3967 wait_for_completion(&nvme_fc_unload_proceed);
3968 pr_info("%s: ctrl deletes complete\n", __func__);
3969 }
3970
3971 nvmf_unregister_transport(&nvme_fc_transport);
3972
3973 ida_destroy(&nvme_fc_local_port_cnt);
3974 ida_destroy(&nvme_fc_ctrl_cnt);
3975
3976 device_destroy(&fc_class, MKDEV(0, 0));
3977 class_unregister(&fc_class);
3978 destroy_workqueue(nvme_fc_wq);
3979 }
3980
3981 module_init(nvme_fc_init_module);
3982 module_exit(nvme_fc_exit_module);
3983
3984 MODULE_LICENSE("GPL v2");
3985